001     166437
005     20250730152250.0
024 7 _ |a 10.1039/c3mt00088e
|2 doi
024 7 _ |a WOS:000324928700005
|2 WOS
024 7 _ |a pmid:23868355
|2 pmid
024 7 _ |a openalex:W2067686648
|2 openalex
037 _ _ |a DESY-2014-01341
041 _ _ |a English
082 _ _ |a 690
100 1 _ |a Andresen, Elisa
|0 P:(DE-H253)PIP1015968
|b 0
245 _ _ |a Different strategies of cadmium detoxification in the submerged macrophyte Ceratophyllum demersum L.
260 _ _ |a Cambridge
|c 2013
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1529605094_29810
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (c) The Royal Society of Chemistry; Post referee fulltext in progress; Embargo 12 months from publication
|3 POF3_Assignment on 2016-02-09
520 _ _ |a The heavy metal cadmium (Cd) is highly toxic to plants. To understand the mechanisms of tolerance and resistance to Cd, we treated the rootless, submerged macrophyte Ceratophyllum demersum L. with sub-micromolar concentrations of Cd under environmentally relevant conditions. X-ray fluorescence measurements revealed changing distribution patterns of Cd and Zn at non-toxic (0.2 nM, 2 nM), moderately toxic (20 nM) and highly toxic (200 nM) levels of Cd. Increasing Cd concentrations led to enhanced sequestration of Cd into non-photosynthetic tissues like epidermis and vein. At toxic Cd concentrations, Zn was redistributed and mainly found in the vein. Cd treatment induced the synthesis of phytochelatins (PCs) in the plants, with a threshold of induction already at 20 nM Cd for PC3. In comparison, in plants treated with Cu, elevated PC levels were detected only at the highest concentrations (100–200 nM Cu). Our results show that also non-accumulators like C. demersum store toxic metals in tissues where the heavy metal interferes least with metabolic pathways, but remaining toxicity interferes with micronutrient distribution. Furthermore, we found that the induction of phytochelatins is not proportional to metal concentration, but has a distinct threshold, specific for each PC species. Finally we could show that 20 nM Cd, which was previously regarded as non-toxic to most plants, already induces detoxifying mechanisms.
536 _ _ |0 G:(DE-H253)POF2-L-20130405
|f POF II
|x 0
|c POF2-54G13
|a DORIS Beamline L (POF2-54G13)
536 _ _ |a FS-Proposal: I-20110682 (I-20110682)
|0 G:(DE-H253)I-20110682
|c I-20110682
|x 1
693 _ _ |a DORIS III
|f DORIS Beamline L
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-L-20150101
|6 EXP:(DE-H253)D-L-20150101
|x 0
700 1 _ |a Mattusch, Jürgen
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wellenreuther, Gerd
|0 P:(DE-H253)PIP1006746
|b 2
700 1 _ |a Thomas, George
|0 P:(DE-H253)PIP1015974
|b 3
700 1 _ |a Abad, Uriel A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kuepper, Hendrik
|0 P:(DE-H253)PIP1013392
|b 5
|e Corresponding author
773 _ _ |a 10.1039/c3mt00088e
|0 PERI:(DE-600)2474317-3
|n 10
|p 1377-1386
|t Metallomics
|v 5
|y 2013
|x 1756-5901
856 4 _ |u http://pubs.rsc.org/en/content/articlelanding/2013/mt/c3mt00088e
856 4 _ |u https://bib-pubdb1.desy.de/record/166437/files/c3mt00088e.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/166437/files/c3mt00088e.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/166437/files/c3mt00088e.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/166437/files/c3mt00088e.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/166437/files/c3mt00088e.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/166437/files/c3mt00088e.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:bib-pubdb1.desy.de:166437
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1015968
910 1 _ |a Universität Konstanz
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-H253)PIP1015968
910 1 _ |a The European X-Ray Laser Project XFEL
|0 I:(DE-588b)16047298-2
|k XFEL
|b 2
|6 P:(DE-H253)PIP1006746
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1006746
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1006746
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1015974
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1013392
910 1 _ |a Universität Konstanz
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-H253)PIP1013392
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 0
913 1 _ |b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-54G13
|2 G:(DE-HGF)POF2-500
|v DORIS III
|9 G:(DE-H253)POF2-L-20130405
|x 0
|a DE-H253
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-DO-20120731
|k FS-DO
|l FS-Experimentebetreuung DORIS
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-DO-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21