Home > Publications database > Non-perturbative effects and the refined topological string arXiv > print |
001 | 154786 | ||
005 | 20210406100011.0 | ||
037 | _ | _ | |a DESY-2013-01099 |
041 | _ | _ | |a English |
088 | 1 | _ | |a DESY-13-096 |
088 | _ | _ | |a DESY-13-096 |2 DESY |
100 | 1 | _ | |a Hatsuda, Yasuyuki |0 P:(DE-H253)PIP1018306 |b 0 |e Corresponding author |
245 | _ | _ | |a Non-perturbative effects and the refined topological string arXiv |
260 | _ | _ | |c 2013 |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1448878678_24197 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Internal Report |0 PUB:(DE-HGF)15 |2 PUB:(DE-HGF) |m intrep |
500 | _ | _ | |a *Temporary entry*38 pages, 5 figures |
520 | _ | _ | |a The partition function of ABJM theory on the three-sphere has non-perturbative corrections due to membrane instantons in the M-theory dual. We show that the full series of membrane instanton corrections is completely determined by the refined topological string on the Calabi-Yau manifold known as local P1xP1, in the Nekrasov-Shatashvili limit. Our result can be interpreted as a first-principles derivation of the full series of non-perturbative effects for the closed topological string on this Calabi-Yau background. Based on this, we make a proposal for the non-perturbative free energy of topological strings on general, local Calabi-Yau manifolds. arXiv |
536 | _ | _ | |a 514 - Theoretical Particle Physics (POF2-514) |0 G:(DE-HGF)POF2-514 |c POF2-514 |f POF II |x 0 |
536 | _ | _ | |a GATIS - Gauge Theory as an Integrable System (317089) |0 G:(EU-Grant)317089 |c 317089 |f FP7-PEOPLE-2012-ITN |x 1 |
588 | _ | _ | |a Dataset connected to INSPIRE |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Marino, Marcos |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Moriyama, Sanefumi |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Okuyama, Kazumi |0 P:(DE-HGF)0 |b 3 |
909 | C | O | |o oai:bib-pubdb1.desy.de:154786 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1018306 |
913 | 1 | _ | |a DE-HGF |b Struktur der Materie |l Elementarteilchenphysik |1 G:(DE-HGF)POF2-510 |0 G:(DE-HGF)POF2-514 |2 G:(DE-HGF)POF2-500 |v Theoretical Particle Physics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2013 |
920 | 1 | _ | |0 I:(DE-H253)T-20120731 |k T |l Theorie-Gruppe |x 0 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a intrep |
980 | _ | _ | |a I:(DE-H253)T-20120731 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|