001     148379
005     20250730151142.0
024 7 _ |2 pmid
|a pmid:23344952
024 7 _ |2 pmc
|a pmc:PMC3605634
024 7 _ |2 doi
|a 10.1074/jbc.M112.442285
024 7 _ |2 ISSN
|a 1083-351X
024 7 _ |2 ISSN
|a 0021-9258
024 7 _ |a WOS:000316564500016
|2 WOS
024 7 _ |a altmetric:1194079
|2 altmetric
024 7 _ |a openalex:W2158989840
|2 openalex
037 _ _ |a PHPPUBDB-26381
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Soderberg, C. A. G.
110 1 _ |a DESY
|b European Molecular Biology Laboratory
245 _ _ |a The Molecular Basis of Iron-induced Oligomerization of Frataxin and the Role of the Ferroxidation Reaction in Oligomerization
260 _ _ |a Bethesda, Md.
|b Soc.
|c 2013
300 _ _ |a 8156
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a article
|2 DRIVER
336 7 _ |a Journal Article
|m journal
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
440 _ 0 |a J. Biol. Chem.
|v 288
|y 12
|x 0021-9258
|0 PERI:(DE-600)1474604-9
500 _ _ |3 POF3_Assignment on 2016-02-09
500 _ _ |3 Converted on 2013-05-30 10:09
500 _ _ |3 Converted on 2013-06-21 19:21
520 _ _ |a The role of the mitochondrial protein frataxin in iron storage and detoxification, iron delivery to iron-sulfur cluster biosynthesis, heme biosynthesis, and aconitase repair has been extensively studied during the last decade. However, still no general consensus exists on the details of the mechanism of frataxin function and oligomerization. Here, using small-angle x-ray scattering and x-ray crystallography, we describe the solution structure of the oligomers formed during the iron-dependent assembly of yeast (Yfh1) and Escherichia coli (CyaY) frataxin. At an iron-to-protein ratio of 2, the initially monomeric Yfh1 is converted to a trimeric form in solution. The trimer in turn serves as the assembly unit for higher order oligomers induced at higher iron-to-protein ratios. The x-ray crystallographic structure obtained from iron-soaked crystals demonstrates that iron binds at the trimer-trimer interaction sites, presumably contributing to oligomer stabilization. For the ferroxidation-deficient D79A/D82A variant of Yfh1, iron-dependent oligomerization may still take place, although >50% of the protein is found in the monomeric state at the highest iron-to-protein ratio used. This demonstrates that the ferroxidation reaction controls frataxin assembly and presumably the iron chaperone function of frataxin and its interactions with target proteins. For E. coli CyaY, the assembly unit of higher order oligomers is a tetramer, which could be an effect of the much shorter N-terminal region of this protein. The results show that understanding of the mechanistic features of frataxin function requires detailed knowledge of the interplay between the ferroxidation reaction, iron-induced oligomerization, and the structure of oligomers formed during assembly.
536 _ _ |0 G:(DE-H253)POF2-DORIS-PETRA-20130405
|f POF II
|x 0
|c POF2-DORIS-PETRA-20130405
|a Facility (machine) DORIS/PETRA (POF2-DORIS-PETRA-20130405)
588 _ _ |a Dataset connected to Pubmed
650 _ 2 |2 MeSH
|a Amino Acid Sequence
650 _ 2 |2 MeSH
|a Amino Acid Substitution
650 _ 2 |2 MeSH
|a Binding Sites
650 _ 2 |2 MeSH
|a Conserved Sequence
650 _ 2 |2 MeSH
|a Crystallography, X-Ray
650 _ 2 |2 MeSH
|a Escherichia coli Proteins: chemistry
650 _ 2 |2 MeSH
|a Iron: chemistry
650 _ 2 |2 MeSH
|a Iron-Binding Proteins: chemistry
650 _ 2 |2 MeSH
|a Iron-Binding Proteins: genetics
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Molecular Sequence Data
650 _ 2 |2 MeSH
|a Mutagenesis, Site-Directed
650 _ 2 |2 MeSH
|a Oxidation-Reduction
650 _ 2 |2 MeSH
|a Protein Binding
650 _ 2 |2 MeSH
|a Protein Interaction Domains and Motifs
650 _ 2 |2 MeSH
|a Protein Multimerization
650 _ 2 |2 MeSH
|a Protein Structure, Quaternary
650 _ 2 |2 MeSH
|a Protein Structure, Secondary
650 _ 2 |2 MeSH
|a Scattering, Small Angle
650 _ 2 |2 MeSH
|a Thermodynamics
650 _ 7 |0 0
|2 NLM Chemicals
|a CyaY protein, E coli
650 _ 7 |0 0
|2 NLM Chemicals
|a Escherichia coli Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Iron-Binding Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a frataxin
650 _ 7 |0 7439-89-6
|2 NLM Chemicals
|a Iron
693 _ _ |a DORIS III
|e Facility (machine) DORIS III
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)DORISIII(machine)-20150101
|5 EXP:(DE-H253)DORISIII(machine)-20150101
|x 0
700 1 _ |a Rajan, S.
700 1 _ |a Shkumatov, A. V.
700 1 _ |a Gakh, O.
700 1 _ |a Schaefer, S.
700 1 _ |a Ahlgren, E.-C.
700 1 _ |a Svergun, D. I.
700 1 _ |a Isaya, G.
700 1 _ |a Al-karadaghi, S.
773 _ _ |0 PERI:(DE-600)1474604-9
|a 10.1074/jbc.M112.442285
|g Vol. 288, p. 8156
|p 8156
|q 288<8156
|t The @journal of biological chemistry
|v 288
|x 0021-9258
|y 2013
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605634
909 C O |o oai:bib-pubdb1.desy.de:148379
|p VDB
910 1 _ |0 I:(DE-588b)2008985-5
|a Deutsches Elektronen-Synchrotron
|k DESY
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 0
913 1 _ |0 G:(DE-HGF)POF2-54G13
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|9 G:(DE-H253)POF2-DORIS-PETRA-20130405
|b Struktur der Materie
|l Forschung mit Photonen, Neutronen und Ionen (PNI)
|v DORIS III
|x 0
|a DE-H253
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
915 _ _ |a Medline
|0 StatID:(DE-HGF)0300
|2 StatID
915 _ _ |a No Author Disambiguation
|0 StatID:(DE-HGF)1
|2 StatID
920 _ 1 |k HASYLAB
|i Experiments with synchrotron radiation
920 1 _ |0 I:(DE-H253)EMBL_-2012_-20130307
|k EMBL
|l European Molecular Biology Laboratory
|x 0
920 _ _ |k 100
980 _ _ |a PHPPUBDB
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-H253)EMBL_-2012_-20130307
980 _ _ |a ConvertedRecord


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21