000141360 001__ 141360
000141360 005__ 20250730162639.0
000141360 0247_ $$2pmid$$apmid:22561231
000141360 0247_ $$2ISSN$$a0005-2736
000141360 0247_ $$2ISSN$$a1879-2642
000141360 0247_ $$2doi$$a10.1016/j.bbalip.2012.04.006
000141360 0247_ $$2WOS$$aWOS:000305359200009
000141360 0247_ $$2openalex$$aopenalex:W1987406223
000141360 037__ $$aPHPPUBDB-25482
000141360 041__ $$aeng
000141360 082__ $$a570
000141360 1001_ $$0P:(DE-H253)PIP1013349$$aRengachari, S.$$b0
000141360 1101_ $$aDESY$$bEuropean Molecular Biology Laboratory
000141360 245__ $$aThe structure of monoacylglycerol lipase from Bacillus sp. H257 reveals unexpected conservation of the cap architecture between bacterial and human enzymes
000141360 260__ $$aAmsterdam$$bElsevier$$c2012
000141360 300__ $$a1012-1021
000141360 3367_ $$00$$2EndNote$$aJournal Article
000141360 3367_ $$2DRIVER$$aarticle
000141360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal
000141360 3367_ $$2BibTeX$$aARTICLE
000141360 440_0 $$0PERI:(DE-600)2209384-9$$aBBA - Biomembranes$$v1821$$x0005-2736$$y7
000141360 500__ $$a(c) Elsevier B.V. Code P.
000141360 520__ $$aMonoacylglycerol lipases (MGLs) catalyse the hydrolysis of monoacylglycerol into free fatty acid and glycerol. MGLs have been identified throughout all genera of life and have adopted different substrate specificities depending on their physiological role. In humans, MGL plays an integral part in lipid metabolism affecting energy homeostasis, signalling processes and cancer cell progression. In bacteria, MGLs degrade short-chain monoacylglycerols which are otherwise toxic to the organism. We report the crystal structures of MGL from the bacterium Bacillus sp. H257 (bMGL) in its free form at 1.2Å and in complex with phenylmethylsulfonyl fluoride at 1.8Å resolution. In both structures, bMGL adopts an α/β hydrolase fold with a cap in an open conformation. Access to the active site residues, which were unambiguously identified from the protein structure, is facilitated by two different channels. The larger channel constitutes the highly hydrophobic substrate binding pocket with enough room to accommodate monoacylglycerol. The other channel is rather small and resembles the proposed glycerol exit hole in human MGL. Molecular dynamics simulation of bMGL yielded open and closed states of the entrance channel and the glycerol exit hole. Despite differences in the number of residues, secondary structure elements, and low sequence identity in the cap region, this first structure of a bacterial MGL reveals striking structural conservation of the overall cap architecture in comparison with human MGL. Thus it provides insight into the structural conservation of the cap amongst MGLs throughout evolution and provides a framework for rationalising substrate specificities in each organism.
000141360 536__ $$0G:(DE-H253)POF2-D1.2-20130405$$aDORIS Beamline D1.2 (POF2-54G13)$$cPOF2-54G13$$fPOF II$$x0
000141360 588__ $$aDataset connected to Pubmed
000141360 650_7 $$00$$2NLM Chemicals$$aBacterial Proteins
000141360 650_7 $$00$$2NLM Chemicals$$aMonoglycerides
000141360 650_7 $$00$$2NLM Chemicals$$aRecombinant Proteins
000141360 650_7 $$0329-98-6$$2NLM Chemicals$$aPhenylmethylsulfonyl Fluoride
000141360 650_7 $$0EC 3.1.1.23$$2NLM Chemicals$$aMonoacylglycerol Lipases
000141360 650_2 $$2MeSH$$aAmino Acid Sequence
000141360 650_2 $$2MeSH$$aBacillus: enzymology
000141360 650_2 $$2MeSH$$aBacillus: genetics
000141360 650_2 $$2MeSH$$aBacterial Proteins: chemistry
000141360 650_2 $$2MeSH$$aBacterial Proteins: genetics
000141360 650_2 $$2MeSH$$aBacterial Proteins: metabolism
000141360 650_2 $$2MeSH$$aCatalytic Domain
000141360 650_2 $$2MeSH$$aCloning, Molecular
000141360 650_2 $$2MeSH$$aConserved Sequence
000141360 650_2 $$2MeSH$$aCrystallography, X-Ray
000141360 650_2 $$2MeSH$$aEscherichia coli
000141360 650_2 $$2MeSH$$aHumans
000141360 650_2 $$2MeSH$$aHydrophobic and Hydrophilic Interactions
000141360 650_2 $$2MeSH$$aMolecular Dynamics Simulation
000141360 650_2 $$2MeSH$$aMolecular Sequence Data
000141360 650_2 $$2MeSH$$aMonoacylglycerol Lipases: chemistry
000141360 650_2 $$2MeSH$$aMonoacylglycerol Lipases: genetics
000141360 650_2 $$2MeSH$$aMonoacylglycerol Lipases: metabolism
000141360 650_2 $$2MeSH$$aMonoglycerides: chemistry
000141360 650_2 $$2MeSH$$aMonoglycerides: metabolism
000141360 650_2 $$2MeSH$$aPhenylmethylsulfonyl Fluoride: chemistry
000141360 650_2 $$2MeSH$$aProtein Structure, Secondary
000141360 650_2 $$2MeSH$$aRecombinant Proteins: chemistry
000141360 650_2 $$2MeSH$$aRecombinant Proteins: genetics
000141360 650_2 $$2MeSH$$aRecombinant Proteins: metabolism
000141360 650_2 $$2MeSH$$aSequence Alignment
000141360 650_2 $$2MeSH$$aStructural Homology, Protein
000141360 650_2 $$2MeSH$$aSubstrate Specificity
000141360 693__ $$0EXP:(DE-H253)D-D1.2-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-D1.2-20150101$$aDORIS III$$fDORIS Beamline D1.2$$x0
000141360 7001_ $$0P:(DE-H253)PIP1013346$$aBezerra, G. A.$$b1
000141360 7001_ $$0P:(DE-HGF)0$$aRiegler-Berket, L.$$b2
000141360 7001_ $$0P:(DE-HGF)0$$aGruber, C. C.$$b3
000141360 7001_ $$0P:(DE-HGF)0$$aSturm, C.$$b4
000141360 7001_ $$0P:(DE-HGF)0$$aTaschler, U.$$b5
000141360 7001_ $$0P:(DE-HGF)0$$aBoeszoermenyi, A.$$b6
000141360 7001_ $$0P:(DE-HGF)0$$aDreveny, I.$$b7
000141360 7001_ $$0P:(DE-H253)PIP1004055$$aZimmermann, R.$$b8
000141360 7001_ $$0P:(DE-HGF)0$$aGruber, K.$$b9
000141360 7001_ $$0P:(DE-HGF)0$$aOberer, M.$$b10
000141360 773__ $$0PERI:(DE-600)2209384-9$$a10.1016/j.bbalip.2012.04.006$$gVol. 1821, p. 1012-1021$$p1012-1021$$q1821<1012-1021$$tBiochimica et biophysica acta / Biomembranes$$v1821$$x0005-2736$$y2012
000141360 85640 $$uhttp://www.sciencedirect.com/science/article/pii/S138819811200087X
000141360 8564_ $$uhttps://bib-pubdb1.desy.de/record/141360/files/rengachari.pdf$$yOpenAccess
000141360 8564_ $$uhttps://bib-pubdb1.desy.de/record/141360/files/rengachari.ps.gz$$yOpenAccess
000141360 8564_ $$uhttps://bib-pubdb1.desy.de/record/141360/files/rengachari.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000141360 8564_ $$uhttps://bib-pubdb1.desy.de/record/141360/files/rengachari.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000141360 8564_ $$uhttps://bib-pubdb1.desy.de/record/141360/files/rengachari.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000141360 909__ $$ooai:hh0024.library.desy.de:25482
000141360 909CO $$ooai:bib-pubdb1.desy.de:141360$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000141360 9101_ $$0I:(DE-HGF)0$$aExternes Institut$$kExtern
000141360 9132_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000141360 9131_ $$0G:(DE-HGF)POF2-54G13$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$9G:(DE-H253)POF2-D1.2-20130405$$aDE-H253$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vDORIS III$$x0
000141360 9141_ $$y2012
000141360 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000141360 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000141360 915__ $$0StatID:(DE-HGF)1$$2StatID$$aNo Author Disambiguation
000141360 9201_ $$0I:(DE-H253)EMBL_-2012_-20130307$$kEMBL(-2012)$$lEMBL$$x0
000141360 920_1 $$iEuropean Molecular Biology Laboratory$$kEMBL
000141360 920__ $$k001
000141360 980__ $$ajournal
000141360 980__ $$aVDB
000141360 980__ $$aPHPPUBDB
000141360 980__ $$aUNRESTRICTED
000141360 980__ $$aConvertedRecord
000141360 980__ $$aFullTexts
000141360 980__ $$aI:(DE-H253)EMBL_-2012_-20130307
000141360 9801_ $$aFullTexts