2025-04-25 11:03 |
Detailed record - Similar records
|
2025-04-25 10:51 |
Detailed record - Similar records
|
2025-04-24 14:16 |
Detailed record - Similar records
|
2025-04-24 14:12 |
Detailed record - Similar records
|
2025-04-24 14:10 |
[PUBDB-2025-01472]
Preprint
Adachi, I. ; Ahn, J. K. ; Ahn, Y. ; et al
Measurements of the branching fractions of $\Xi_{c}^{+}\to \Sigma^{+}K_{S}^{0}$, $\Xi_{c}^{+}\to \Xi^{0}\pi^{+}$, and $\Xi_{c}^{+}\to \Xi^{0}K^{+}$ at Belle and Belle II
[Belle II Preprint 2025-005; KEK Preprint 2025-2; arXiv:2503.17643]
Using 983.0 $\rm{fb}^{-1}$ and 427.9 $\rm{fb}^{-1}$ data samples collected with the Belle and Belle II detectors at the KEKB and SuperKEKB asymmetric energy $e^+e^-$ colliders, respectively, we present studies of the Cabibbo-favored $\Xi_c^+$ decays ${\Xi_{c}^{+}\to \Sigma^{+}K_{S}^{0}}$ and $\Xi_{c}^{+}\to \Xi^{0}\pi^{+}$, and the singly Cabibbo-suppressed decay $\Xi_{c}^{+}\to \Xi^{0}K^{+}$. The ratios of branching fractions of ${\Xi_{c}^{+}\to \Sigma^{+}K_{S}^{0}}$ and $\Xi_{c}^{+}\to \Xi^{0}K^{+}$ relative to that of $\Xi_{c}^{+}\to\Xi^{-}\pi^{+}\pi^{+}$ are measured for the first time, while the ratio ${\cal B}(\Xi_{c}^{+}\to\Xi^{0}\pi^{+})/{\cal B}(\Xi_{c}^{+}\to\Xi^{-}\pi^{+}\pi^{+}) $ is also determined and improved by an order of magnitude in precision. [...]
Restricted: PDF PDF (PDFA);
Detailed record - Similar records
|
2025-04-24 14:08 |
[PUBDB-2025-01470]
Preprint
Adachi, I. ; Aggarwal, L. ; Ahmed, H. ; et al
Measurement of the Branching Fraction of $\Lambda_c^+ \to p K_S^0 \pi^0$ at Belle
[Belle II Preprint: 2024-022; KEK preprint: 2024-20; arXiv:2503.04371]
We report a precise measurement of the ratio of branching fractions $\mathcal{B}(\Lambda_c^+\to p K_S^0 \pi^0)/\mathcal{B}(\Lambda_c^+\to p K^- \pi^+)$ using 980 fb$^{-1}$ of $e^+e^-$ data from the Belle experiment. We obtain a value of $\mathcal{B}(\Lambda_c^+\to p K_S^0 \pi^0)/\mathcal{B}(\Lambda_c^+\to p K^- \pi^+)=0.339\pm 0.002\pm 0.009$, where the first and second uncertainties are statistical and systematic, respectively. [...]
OpenAccess: PDF PDF (PDFA);
Detailed record - Similar records
|
2025-04-23 13:45 |
Detailed record - Similar records
|
2025-04-23 10:56 |
Detailed record - Similar records
|
2025-04-22 12:37 |
Detailed record - Similar records
|
2025-04-16 16:06 |
[PUBDB-2025-01376]
Preprint
Fabri, M. ; Sfondrini, A. ; Skrzypek, T.
Perturbed symmetric-product orbifold: first-order mixing and puzzles for integrability
[DESY-25-064; arXiv:2504.13091]
We study the marginal deformation of the symmetric-product orbifold theory Sym$_N(T^4)$ which corresponds to introducing a small amount of Ramond-Ramond flux into the dual $AdS_3\times S^3\times T^4$ background. Already at first order in perturbation theory, the dimension of certain single-cycle operators is corrected, indicating that wrapping corrections from integrability must come into play earlier than expected.We also discuss a flaw in the original derivation of the integrable structure of the perturbed orbifold.Together, these observations suggest that more needs to be done to correctly identify and exploit the integrable structure of the perturbed orbifold CFT..
Detailed record - Similar records
|
|
|