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Abstract. Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs)
or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism
in the early universe and survive as a cold dark matter population until today. We find that,
both for ALPs and HPs whose dominant interactions with the standard model arise from
couplings to photons, a huge region in the parameter spaces spanned by photon coupling
and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large
region of this parameter space coincides with that predicted in well motivated models of
fundamental physics. A wide range of experimental searches — exploiting haloscopes (direct
dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or
HPs), or light-shining-through-a-wall techniques — can probe large parts of this parameter
space in the foreseeable future.
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1 Introduction

The two most relevant features of dark matter (DM) particles are their feeble interactions
with standard model particles and their cosmological stability. In addition DM is required
to be sufficiently cold in order to allow for efficient structure formation.

A realization of all these features are weakly interacting massive particles (WIMPs).
Thermally produced in the early Universe their large, of order TeV scale mass ensures that
by now they are non-relativistic and therefore sufficiently cold. Their interactions are small
due to the large mass of the mediator particles (such as W or Z bosons) which makes the
interaction very short ranged. Despite this, their large mass and the correspondingly large
phase space is at odds with the required stability on cosmological time-scales. In order to
ensure this stability one is therefore forced to introduce symmetries that conserve the number
of these DM particles. However, motivating these symmetries on theoretical grounds is non-
trivial. Global symmetries may be broken in quantum gravity whereas local symmetries lead
to additional interactions which may cause conflicts with the required weakness of the DM
interactions. Nevertheless good candidates exist. Two of the most famous examples are:
the lightest supersymmetric particle in supersymmetric models with R-parity (see, e.g. [1]
for a review), or the lightest Kaluza-Klein modes in models with conserved parity in extra
dimensions (see, e.g. [2] for a review), both models very appealing because of their connection
with more fundamental theories of space and time, and their discovery potential at the LHC.



Although it is way too early to make a final judgement it is nevertheless noteworthy
that the initial searches at LHC have not given any indication of the existence of WIMPs.
Because of this and the mentioned theoretical issues it is interesting and timely to consider
alternative ways to realize the essential features of DM.

Sufficient stability of the DM particles can also be achieved by combining the weakness
of their interactions with a sufficiently small mass. The latter drastically reduces the phase
space (and the number/type of possible decay products) thereby increasing the lifetime. This
is the road we want to pursue in this paper: we will concentrate on very weakly interacting
slim particles (WISPs) as DM candidates.

Yet, a thermally produced light DM candidate can run foul of the required coldness
of DM and can prevent structure formation. More precisely, the free-streaming length (the
distance a DM particle can travel before getting trapped in a potential well) would increase
with decreasing mass, and therefore at some point these DM particles would be inconsis-
tent with the existence of dwarf galaxies, galaxies, clusters, superclusters and so on. This
argument can be used for instance to rule out standard neutrinos as DM. This reasoning is
extremely powerful in light of the increasingly precise cosmological data at our disposal and
even subdominant components of thermally produced light DM can be ruled out, the case of
eV mass axions being a prime example (see, e.g. [3]).

However, there are non-thermal means for producing sufficiently cold dark matter made
of light particles. One of the most interesting is the misalignment mechanism, discussed
mostly in the case of the QCD axion [4-6] or (recently) string axions [7-10] and the central
topic of this paper. Very recently, this mechanism has also been proposed to produce cold
dark matter (CDM) out of hidden photons (HPs) [11]. This mechanism is extremely general
and generates CDM out of essentially any field, if it satisfies some general conditions.

In this paper, we shall revisit the misalignment mechanism for both cases: we treat
first axion-like particles (ALPs - which may arise as pseudo-Nambu-Goldstone bosons in
field theory and appear generically in all string compactifications) and then hidden photons.
Our conclusions turn out to be extremely motivating. Once produced, a population of very
light cold dark matter particles is extremely difficult to reabsorb by the primordial plasma.
Therefore, we find that in both cases, ALPs and HPs, a huge region in parameter space
spanned by their masses and their couplings to standard model particles can give rise to the
observed dark matter. The novelty in this work is that we shall provide new constraints and
expose interesting regions of parameter space relevant for direct and indirect searches.

The outline of this paper goes as follows: in Sect. 2 we review the essentials of the
misalignment mechanism. In Sects. 3 and 4 we elaborate on two particular cases, axion-like
particles and hidden photons, respectively. We discuss the cosmological constraints, also
noting some misconceptions in the results of [11]. In Sect. 5 we discuss the direct detection
of ALP and HP CDM in microwave cavity experiments. We conclude in Sect. 6.

2 Essentials of the misalignment mechanism

The misalignment mechanism relies on assuming that fields in the early universe have a
random initial state (such as as one would expect, for example, to arise from quantum
fluctuations during inflation) which is fixed by the expansion of the universe; fields with mass
m evolve on timescales t ~ m™1. After such a timescale, the fields respond by attempting
to minimize their potential, and consequently oscillate around the minimum. If there is no
significant damping via decays, these oscillations can behave as a cold dark matter fluid since



their energy density is diluted by the expansion of the universe as p o a2, where a is the
universe scale factor.

In order to be more quantitative, let us revisit this mechanism for the simple case of a
real scalar field with Lagrangian,
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where L; encodes interactions of the scalar field with itself and the rest of particles in the
primordial bath. We assume that the universe underwent a period of inflation at a value of
the Hubble expansion parameter H = dloga/dt larger than the scalar mass. After inflation
the field shall be approximately spatially uniform and the initial state is characterized by a
single initial value, ¢;. After inflation a period of reheating occurs, followed by a period of
radiation dominated expansion. The equation of motion for ¢ in the expanding Universe is

¢+ 3H¢+m3¢ = 0. (2.2)

In general, the mass receives thermal corrections from £; which might be crucial, thus mg =
mg(t) should be understood.

The solution of this equation can be separated into two regimes. In a first epoch,
3H > my, so ¢ is an overdamped oscillator and gets frozen, <Z> = 0. At a later time, tq,
characterized by 3H(t1) = mg(t1) = mi, the damping becomes undercritical and the field
can roll down the potential and start to oscillate. During this epoch, the mass term is the
leading scale in the equation and the solution can be found in the WKB approximation,

mya 1/2 t .
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where ¢1 ~ ¢; since up to t; the evolution is frozen. Note that in obtaining this solution we
have not assumed a particular form for H but just its definition, and so it is valid for the
radiation, matter, and vacuum energy dominated phases of the universe and their transitions.

The solution corresponds to fast oscillations with a slow amplitude decay. Let us call
this amplitude A(t) = ¢1(mial/mya’)'/? and the phase a(t) = ft mg(t)dt. The energy
density of the scalar field is
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where the dots stand for terms involving derivatives of A, which by assumption are much
smaller than mg (mg > H in this regime). Let us also consider the pressure,

Py = %(f - %miqﬁz = —%miAZ cos (2a) — AAmg sin (2a) + A? cos? (a) . (2.5)

At times t > #;! the oscillations in the pressure occur at time scales 1/m, much much faster
than the cosmological evolution. We can therefore average over these oscillations, giving

(pg) = (A% cos* (o) =  A* (2.6)

"When the field just starts to oscillate the averaging employed in the following is not a good approximation
and the equation of state is a non-trivial and strongly time dependent function. Depending on when the
transition occurs this may have interesting cosmological effects on, e.g., structure formation.



As already mentioned A < mgA. Thus, at leading order in A/(Am), the equation of state
is just

w = (p)/(p) =0, (2.7)
which is exactly that of non-relativistic matter.

It follows from (2.3) that the energy density in a comoving volume, pa?, is not conserved
if the scalar mass changes in time. The quantity

1 2
N = pa’®/mg = Smiaiel, (2.8)
is however constant even in this case, and can be interpreted as a comoving number of non-
relativistic quanta of mass mg. Here, we only need the conservation of N to compute the
energy density today as
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where quantities with a O-subscript are evaluated at present time.

More physics insight is gained using temperatures instead of times and scale factors.
First, we use the conservation of comoving entropy S = sa® = 27mg.s(T)T3a®/45 to write
(a1/a)® = gus(T)T3/gss(T1)T}. Then we use the expression for the Hubble constant in the
radiation dominated era H = 1.66+/g.«(T)T?/mp) and the definition of Ty, 3H(T}) = m1 to
express T in terms of m; and the Planck mass mp; = 1.22 x 10" GeV. The functions g, and
gxs are the effective numbers of energy and entropy degrees of freedom defined in [12]. The
dark matter density today, (2.9), can then be expressed as

2
m
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where F(T1) = (g*(Tl)/S.SG)%(g*s(Tl)/3.91)_1 is a smooth function ranging from 1 to ~ 0.3
in the interval T} € (Tp,200GeV). The abundance is most sensitive to the initial amplitude
of the oscillations, ox ¢?, and to a lesser degree to today’s mass mg. The factor oc 1/ N
reflects the damping of the oscillations in the expanding universe: the later the oscillations
start, i.e. the smaller 77 and therefore H; and mq, the less damped they are for a given my.

If we compare the above estimate with the DM density measured by WMAP and other
large scale structure probes [13],
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it is clear that we need very large values of ¢ to account for all the dark matter. However,
a relatively small ¢; could be compensated by a small m; < myg.

If we want the condensate to mimic the behaviour of standard cold dark matter we
should ensure that, at latest at matter-radiation equality, at a temperature Toq ~ 1.3 eV,
the mass attains its current value mg and therefore the DM density starts to scale truly as
1/a®. In particular, at this point the field should already have started to oscillate. This
corresponds to a lower limit on my, my > 3H (Teq) = 1.8 x 10727 eV, which implies an upper
bound on py,

keV mo gbl 2
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In other words if we want these particles to be the DM, we need that (mg/eV)(¢;1/43 TeV)? >
1, giving us a constraint on the required initial field value as a function of the mass today.

To conclude this section let us note that dark matter generated by the misalignment
mechanism may have interesting properties beyond those of cold dark matter. At the time
of their production, particles from the misalignment mechanism are semi-relativistic. Their
momenta are of the order of the Hubble constant p ~ Hy < T7; accordingly we have (outside
of gravitational wells) a velocity distribution with a very narrow width of roughly,

su(t) ~ L <“1> <1 (2.13)

m1 \ao

Combined with the high number density of particles, ngo = N/ a3 = pcpm/mo, this narrow
distribution typically leads to very high occupation numbers for each quantum state,

(27‘(‘)3 g0 42 (T 3/2 eV 5/2
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where we have used ag/a; ~ T1/Ty ~ /mimp1/Tp. If the interactions are strong enough
to achieve thermalisation, as argued in Refs. [14, 15] for the case of axions, this high occu-
pation number can lead to the formation of a Bose-Einstein condensate. This could lead to
interesting properties which may also lead to interesting signatures in cosmological observa-
tions [14-18]. Although we will not investigate this intriguing possibility here, we note that
these features could also be realized for the more general light DM particles discussed in this
paper.

In the following we discuss two particularly interesting possibilities for DM from the
misalignment mechanism, axion-like particles and hidden photons.

3 Axion-like particles

In this section we will focus on a specific type of WISP, namely axion-like particles (ALPs).
By this we shall mean particles with only derivative couplings to matter, and in particular
an interaction with photons given by

1 -
£~ 90Fu ", (3.1)

where ¢ is the ALP and g is a dimensionful coupling. The chief examples of ALPs are pseudo
Nambu-Goldstone bosons (pNGBs) and string “axions” which can be treated together. For
concreteness we will focus in this paper on particles of these types.

The cosmology of the ALP condensate depends on the type of interaction generating
its mass and in particular how this mass changes through the evolution of the universe. In
the following we will go through a variety of possibilities for the DM formation as well as its
cosmological viability for different scenarios. The regions which allow for viable ALP DM
are then assembled in Fig. 1 in the mg — g plane.

3.1 Axion-like particles from pNGBs and string theory

When a continuous global symmetry is spontaneous broken, massless particles appear in the
low energy theory: Nambu-Goldstone bosons (NGBs). They appear in the Lagrangian as
phases of the high energy degrees of freedom. Since phases are dimensionless the canonically



normalised theory at low energies always involves the combination ¢/fs, where ¢ is the
NGB field and f, is a scale close to the spontaneous symmetry breaking (SSB) scale. The
range for ¢/ fy is (—m,7) and therefore the natural values for ¢ are ~ f4. String axions on
the other hand appear in all compactifications. They share these properties (having a shift
symmetry and being periodic) but with the natural size of fy being the string scale (in type
IT compactifications this can be somewhat modified by a factor of the typical length scale of
the compactification).

Indeed, all of the global symmetries in the standard model are broken®. Furthermore
the black hole no hair theorem and what we know about quantum gravity tell us that this
should ultimately also occur to any additional global symmetries. Hence we should have
pseudo Nambu-Goldstone Bosons (pNGBs) instead of NGBs. They then have a mass, and
can be a dark matter candidate.

There are many possibilities for breaking the shift symmetry, explicitly or spontaneously,
perturbatively or non-perturbatively; for stringy axions, the shift symmetry is exact to all
orders in perturbation theory and is only broken non-perturbatively, for instance from a
non-abelian anomaly, gaugino condensation or stringy instantons. The ALP potential can
typically be parametrized as

2

V(g) =m3f3 (1 — cos ¢) . (3.2)

The mass of the ALP is in general unrelated to the QCD axion mass and in particular will be
independent of the temperature unless generated by a sector that is thermalised. The ALP
will satisfy the equation of motion (2.2) as long as ¢/ f, is small, i.e. few oscillations after
t1. The inaccuracy of the quadratic approximation can be cured by an additional correction
factor to (2.10). This is normally an O(1) factor except if we fine tune the initial condition
to ¢ = mfy.

The dimensionful coupling parameter g in (3.1) can be parametrised as

g= ——N. (3.3)

In the simplest case A is an integer, but this is not true in general when the ALP mixes,
either kinetically or via symmetry-breaking effects with other ALPs or with pseudoscalar
mesons.

We can then represent the allowed regions of ALP dark matter in the mg-g plane by
using

aN

1= 91% (3.4)

with 01 = |¢1]/fs, the initial misalignment angle whose range is restricted to values be-
tween —7 and w. The model dependent factor N will from now on be taken to be unity,
but the reader should keep in mind that in principle it can be very different in particular
constructions.

3.2 ALP dark matter from the misalignment mechanism

The value of ¢ that determines the DM abundance depends on the behaviour of the ALP
field during inflation. For a pseudo-Nambu-Goldstone boson, the spontaneous symmetry

2 Assuming that neutrinos are Majorana fermions, otherwise B — L is an exception.



breaking (SSB) could take place before or after inflation: the pNGB effectively exists only
after SSB and it is during the associated phase transition that its initial values are set. For
a string axion, provided the inflationary scale is below the string scale (or, equivalently, the
decay constant) we should have control over the field theory, and so it will behave like a
pNGB with symmetry broken before inflation. Assuming its mass to be much smaller than
the Hubble scale at the time of SSB, Hssg, the ALP field will take random values in different
causally disconnected regions of the universe. The initial size of these domains cannot be

larger than
1 mpi
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For a string axion, or for a pNGB whose associated SSB happens before inflation,
the initial domains are stretched over a size larger than the current size of the universe.
Consequently the initial field value is the same for every point within our current horizon. The
current DM density then depends on this initial field value, leaving an additional parameter
to tune the DM density.

On the other hand, if the SSB happens after inflation, the DM density has inhomo-
geneities of order O(1) at length scales < L; gom. Non-linear effects, due to the attractive
self-interaction caused by higher order terms in the expansion of the potential (3.2), drive the
overabundances to form peculiar DM clumps that are called miniclusters [19-22]. These mini-
clusters act like seeds enhancing the successive gravitational clumping that leads to structure
formation. The minicluster mass is set by the dark matter mass inside the Hubble horizon
dy = H~! when the self-interaction freezes-out, i.e. Mpe ~ pq;(T,\)dH(T)\)?’ for the freeze-out
temperature T). Long-range interactions will be exponentially suppressed at distances longer
than 1/mg so we can expect T to be of the order T, with at most a logarithmic dependence
on other parameters. This is indeed the case for QCD axions, for which the minicluster-
ing is quenched soon after the QCD phase transition that turns on the potential (3.2) [14]
giving My ~ 10712My, where Mg = 1.116 x 10°7 GeV is the solar mass, and a radius
Rume ~ 10! cm [23]. In the case of ALPs, My, can be larger if the mass is lighter. The
authors of [22] pointed out that the present data on the CDM power spectrum constrain
Mpye < 4 x 103M,, which translates into a lower bound in temperature Ty > 2 x 107> GeV
and in the ALP mass my > H(T =2 x 1075 GeV) ~ 1072 eV,

If some of these miniclusters survive the tidal disruption during structure formation
they should be observable in forthcoming lensing experiments [22, 23]. In any case, at larger
scales, the DM density averages to a constant value corresponding to <¢%> ~ 2 f(% /3 bearing
the mentioned O(1) correction due to the non-harmonic behaviour of large initial phases.

During the spontaneous symmetry breaking of a global symmetry topological defects
such as cosmic strings [24] and domain walls can be formed. Strings have a thickness 6 ~ 1/ fy
and typical sizes of the order of the horizon, L ~ t. As strings enter into the horizon they
can rapidly reconnect, form loops and decay into pNGBs. If the SSB happens after inflation,
we have to consider also their contribution to the energy budget of the universe. Axions
resulting from string decay are known to contribute significantly to their cold DM density,
but the exact amount is subject to a long-standing controversy [12]. The debate is focused
around the axion emission spectrum. Some authors argue that the decay proceeds very
fast, with an emission spectrum 1/k with high and low energy cutoff of order respectively
1/6 and 1/L. In this case the contribution to ng is similar to that from the misalignment
mechanism [25, 26]. Others put forward that the string decays happen after many oscillations,
with a radiation spectrum peaked around 27/L, which enhances the contribution to cold

(3.5)



DM by a multiplicative factor of log(L/d) ~ log(fa/ma) ~ O(60) [27-33]. Once the axion
potential builds up at the QCD phase transition, domain walls build up. If the axion potential
has only one minimum these domain walls can still efficiently decay into axions, leading to
a third axion population which is thought however not to be significant. If different exactly
degenerate vacua exist the domain walls are persistent and can very easily run in conflict
with observations. Therefore one assumes a small explicit breaking of the Peccei-Quinn
symmetry, which breaks the degeneracy and allows domain walls to decay. It is possible
although somehow fine-tuned to do so without compromising the solution to the strong-CP
problem. For a recent review on axion cosmology see e.g. [34].

We expect the same type of behavior for ALPs with similar characteristics than axions,
i.e. ALPs whose mass is generated at a late phase transition due to a hidden sector which
becomes strongly interacting. In this case we should keep in mind the controversy of the string
decay spectrum and assume an uncertainty of order log(fs/mg) in the DM abundance. The
domain wall problem can in principle be solved by strong enough explicit breaking, and their
contribution to the DM appears to be subdominant as well. In models where the cosmological
evolution of the ALP mass is different, the situation can differ from the above. These models
have to be studied case by case, which is beyond the scope of this paper.

3.3 Sufficient production of dark matter

As we have seen in Sect. 2 a general constraint arises from the fact that we get a sufficient
amount of DM but at the same time the mass at matter radiation equality has to be greater
than the Hubble constant. This is the bound Eq. (2.12). For pNGB ALPs we however also
have that the field value itself cannot be larger than 7 f, which itself is connected to the
coupling to photons. Combining these two restrictions gives us a way to constrain the viable
regions. The light red region in Fig. 1 labelled “m; > 3H (T¢q)” corresponds to this general
bound with ¢; < fg and N'=1.

Any ALP model should satisfy this bound for its zero mode to behave as DM before
matter-radiation equality. Realistic models attempting to saturate this bound will have
problems either fitting the cosmic microwave background (CMB) data or with the WKB
approximation we have used. In this sense this bound is very conservative. Importantly, for
N ~ 1, it seems to exclude the possibility of providing DM from the type of ultralight ALP
field that has been invoked to explain the puzzlingly small opacity of the universe for ~ TeV
gamma rays (see Ref. [36] and references therein) in terms of photon <+ ALP conversions in
astrophysical magnetic fields, requiring® g ~ 1071'GeV~! and mg S 1 neV, see [37-40]. To
allow an ALP to explain these observations and simultaneously to be dark matter requires
N 2 10 which is still conceivable.

Let us now turn to the stronger constraints that can be obtained for specific
time/temperature dependencies of the ALP mass. The simplest realization of an ALP model
has m constant throughout the universe expansion. In this case, we can infer the DM yield
from Eq. (2.10) using m; = mg. The region of ALP DM in this case is depicted in pink
in Fig. 1 and labelled “Standard ALP CDM (m; = mg)”. We have assumed N' = 1 and
used the a-priori unknown value of 6; to tune the right DM abundance. The upper bound
on g reflects the fact that #; cannot be larger than m, and thus assumes 6; ~ 7. Moving
to lower values of g requires inflation happening after SSB in order to have a homogeneous
small value of #; which is increasingly fine-tuned to zero. In this sense the values closest to

3The required coupling is determined by the extragalactic background light and is therefore plagued by
sizeable uncertainties.
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Figure 1. Parameter space for axions (shaded band labelled “Axion models”) and axion-like par-
ticles. The regions where they could form DM are displayed in different shades of red (for details
see text). The lines representing DM regions are uncertain through a model-dependent multiplicative
factor, A/, which we have set equal to 1 here. The DM regions move towards larger couplings g, pro-
portional to this factor. The exclusion regions labelled “ALPS”, “CAST+Sumico” and “HB” arise
from experiments and astrophysical observations that do not require ALP dark matter (for a review,
see [35]). The remaining constraints are based on ALPs being DM and are described in the text.

the boundary, corresponding to the largest values of the photon coupling, can be considered
the most natural values.

Quantum fluctuations generated in the ALP field during inflation will produce unavoid-
able inhomogeneities in 6, of order 66y ~ Hp/(2mfs). This precludes fine-tuning of the
universe average of ¢; below Hj/2mw, and sets a minimum DM abundance for a specified
value of Hj.

Since the ALP is effectively massless during inflation, these inhomogeneities correspond
to isocurvature perturbations of the gravitational potential; this has been discussed exten-
sively in the literature in the context of axions (see e.g. [41]) and for many string axions,



see [8]. The WMAPT observations of the primordial density fluctuations set very stringent
constraints on isocurvature perturbations from which one can obtain an upper bound on Hy
assuming a given ALP DM defined essentially by fs. Assuming that the decay constant fy4
does not change during inflation (it certainly should not for string axions, for example) the
constraint is [13]

(15%)

= T T (I < 0.077, (3.6)

where (|S2|) is the isocurvature power spectrum, and (|R?|) the adiabatic one (generated by
2
Hi where H 1 is the Hubble

m2¢2
constant during inflation. At the pivot scale kg = 0.002 MPc™! WMAP finds (|R?|) =
2.42 x 1079 so we have a bound

the inflation or other fields). We can approximate (|S?|) ~

H;p <4 x 1075¢;. (3.7)

In principle we can constrain the mass of the ALP at the time when it starts oscillating by
requiring 3H; > 3H(T}) = my, so assuming that the ALP makes up all of the dark matter,

1 >6 x 10*my,

0.76 keVem =3\ > /mg\ 2 10} 3
—15 12 2R 0 1
1>3x1077°F° x ( 5 ) <e ) (1011 Go ) ) (3.8)

so at the boundary of sufficient dark matter production when ¢; = 7fy, and taking g4 =
a/27 fg this translates into

_31 2 9 —15 —1\ 3
0.76 keVem ) (@) (10 GeV ) ' (3.9)

p eV g

Clearly this is a rather weak constraint, and we are therefore allowed many orders of mag-
nitude between the inverse of the inflationary Hubble constant and the time when the ALP
oscillations begin. Conversely, the reheating temperature Try is bounded by TI%H < H;Mp;
with additional assumptions this can constrain ¢;: for example, requiring leptogenesis with
Tru ~ 10° GeV would bound ¢; > 10% GeV.

We do not have strong arguments against values of Hj larger than a few MeV [42], only
appealing theoretical prejudices at most, so we shall leave this question aside. In any case,
the most interesting region from observational purposes corresponds to the largest values of
g, where the initial angle is not fine-tuned.

This simple ALP model predicts quite weakly coupled ALP CDM. Models in which
m1 < mg can provide larger DM abundances with smaller values of f4 and therefore stronger
interactions.

1>107197F2 x (

An interesting example of this case arises if the ALP acquires a mass from coupling to
some (hidden) non-abelian group. For a pNGB, this would mean that the associated global
symmetry is anomalous under some the non-abelian group, just as the i’ or the hypothetical
axion acquire their mass via QCD instantons. For our ALP we need in principle another
unbroken SU(N) group, which condenses at a scale A. Then we can parametrize the ALP
mass as

’}—f =mg forT KA,

mg ™~ , (3.10)
mo <ATH> for T > A.

~10 -



Here T is the temperature of the new sector. Naively it makes sense to assume A’ ~ A” ~ A.
At temperatures larger than A, electric-screening damps long range correlations in the plasma
and thus the instantonic configurations, resulting in a decrease of the ALP mass. In specific
models the exponent S can be obtained for instance from instanton calculations but here we
will treat it as a free parameter. Assuming the onset of ALP coherent oscillations happens
in the mass suppression regime, it is easy to obtain an expression for mg/m; which is the
expected enhancement in the DM abundance. We find

B
mo mompy \ £+2 _—B_
oo _ (A”> (3 x 1.66,/gm1) 770 (3.11)

and the factor that controls the enhancement is

Jmompr N
0Pl me1 (3.12)
A7 ANy

Unfortunately these models can provide only a moderate enhancement of the DM density
with respect to the constant mg case. The gained regions for the ALP DM case for values
of = 1,3,5,7,9 can be seen in Fig. 1 from bottom to top (the lowermost region m; =
mg corresponds, of course, to 8 = 0, i.e. to the previously considered case). Actually,
even considering unrealistic huge values of 8 does not help much, as can be seen from the
asymptotic approach of the highest 3 cases. This is reflected by the finite limit of Eq. (3.11)
when 3 — oo, but it follows from its definition, Eq. (3.10). In the 8 — oo limit mg is a step
function of temperature m, = ©(T — A), and the relation mg = A?/f, determines A from
mg and fg (or g) so each point in the mgy — g parameter space has an implicit maximum DM
abundance, independent of f3.

Surprisingly, it appears that the crucial assumption that leads to these conclusions is
that A’ ~ A because it does not allow to consider arbitrary small values for A for a given
mass. Therefore, models in which A’ > A imply generically higher DM abundance and
therefore require smaller initial amplitudes ¢ and consequently stronger interactions more
prone to discovery. Unfortunately, at the moment we cannot provide for a fully motivated
example.

Finally let us note that the hidden sector responsible for the thermal mass of the ALP
can have implications for cosmology if it survives until SM temperatures below the MeV
range. For instance it can behave as dark radiation or dark matter during BBN. These
constraints have to be studied case by case but can be easily avoided if the temperature of
the hidden sector is smaller than the SM bath.

3.4 Survival of the condensate

The ALP CDM scenario can be tested via its coupling to photons. However, a blessing for
detection purposes might also be the model’s curse. Firstly, the two photon coupling endows
ALPs with the decay channel ¢ — v7. The corresponding lifetime in vacuum? is

=L T gk 10%s g - <m¢)_3 (3.13)
Td = — = ~ 1. —_— —_— . .
T, gtmd 10-10 Gev~! eV

ALPs with a lifetime shorter than the age of the universe, ~ 13.7 Gyr, cannot account for
the DM observed in galaxies and have to be discarded. In the mg — g plane this corresponds

“In the presence of a photon thermal bath the decay is stimulated by a factor 1/(1 — e~™¢/27)2,
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to the region in the up-right corner of Fig. 1, labelled “r < 10'7s” and excluded from further
discussion in this paper. Even if ALPs have much longer lifetimes, the few decay photons
can still be significantly above the measured photon backgrounds. We explore this possibility
later on.

Secondly, ALPs from the condensate can be absorbed by a thermal photon which is
either on-shell (y¢ — ~*) or off-shell (v*¢ — 7). Off-shell photons v* are understood to
be absorbed or emitted by another participating particle. The inverse-Primakoff process is
a notable example of the latter, with the extra particle being a charged particle from the
plasma, for instance an electron.

The thermalization rate of ALPs due to the Primakoff process has been treated in the
literature and found to be [43, 44]

2 2
Qg 3 T

5

This is much faster than the decay rate ~ g>m?2, since at early times the temperature exceeds

mg. However, this rate is thermally averaged over ALP energies with a thermal distribution.
If this rate would apply to the thermalization of the condensate, i.e. of the zero mode, the
condensate would perish if g?T? ever exceeded the expansion rate H ~ T2/mp). The higher
temperatures would be the most relevant and the condensate survives if g < 1/v/Trmpy.
However, let us convince ourselves that this is not the case.

First, note that the inverse-Primakoff process ¢ + e* — v + e* is exponentially sup-
pressed at high temperatures because the energy of the incoming electron E has to be enough
to produce a photon, which at finite temperature has a non-zero mass ~ e1'. This thresh-
old implies 2myE > mgy or E/T > e*T/m, which can be huge if my is tiny®. Since the
abundance of these electrons will be exponentially suppressed so would be the rate.

This is however not a showstopper, since the threshold can be easily overcome by con-
sidering an additional photon in the initial state, i.e. v + ¢ + e* — ~ + e. However, these
and similar processes are also suppressed at high temperatures T > mgy. The reason is that
the two-photon coupling involves the derivative of the axion field (since Fm,ﬁ/“’ is a total
derivative) whose only component is the time component dy¢ ~ my¢ (after ¢1) and therefore
all amplitudes involving the zero mode ALP absorption are necessarily proportional to my
and absorption probabilities to mi To provide a more complete example, we can compare
the rate of Compton scattering of a photon of energy w, denoted by I'c(w), with the rate
of the process y(w) + ¢ + e* — v + e*. In the limit of very small mg the ALP absorption
and the virtual photon scattering factorize and the differential ALP absorption rate due to
photons of energy w is

1 1

dlyc = %FC(W”M(VGZ) — ’Y*)|2(2wm¢)2 mn (ch(w))anw(w) (3.15)
B wTe(w)
= gmal” (2wmg)? + (ch(w))anv(W) (310

where dn(w) is the density of photons with energy w and  ~ 1 is the photon velocity. We
have included I'c as the imaginary part of the propagator to account for the finite photon

®One can check that after electron-positron annihilation, when the formulas we have used are not valid
anymore, the evaporation is still slow.
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lifetime in the thermal bath. For the rate of ALP absorption we have to integrate over the
initial photon energies thermally distributed. In the mg — 0 limit it is

203 ¢
Lyc ~g°T Tl (3.17)
where (I'c) denotes a certain thermal average, expected to be ~ a?T bearing phase space
factors. In practice this is a very large suppression factor with respect to the naive thermal-
ization rate g?T3, which leaves the parameter space shown in Fig. 1 untouched. We believe
that a similar kind of reasoning can be applied to other ALP couplings of derivative type, like
to fermions®. We plan to expand on these arguments at length in a forthcoming publication.

3.5 Thermal population of ALPs

The Primakoff process is able to create a thermal ALP population if T'y,+ exceeds the ex-
pansion rate at some point in the history of the universe. This population competes with the
condensate to form DM. The phenomenological implications of this population have been
recently reviewed in [46]. In particular, thermal ALP CDM exceeds the measured value
Eq. (2.11) unless

(3.18)

106.
mo < 1540V (08

9+(Ta)

where Ty is the temperature at which I'y,= ~ H where the ALP bath decouples from the SM
bath. This bound assumes that

1010 GeV> 2

Ty ~ 10* GeV < p

(3.19)
is somewhat smaller than the reheating temperature. In the large mass region this puts a
quite stringent limit on ALP CDM. However, it can be circumvented in scenarios with a low
reheating scale and we therefore do not include it in Fig. 1.

3.6 Detecting photons from ALP decay

Even if the ALP lifetime is longer than the age of the universe some ALP decays inevitably
happen and the resulting monochromatic photons can signal the existence of ALP CDM. We
show the bounds coming from relic photon detection in Fig. 1 and more specifically in Fig. 2,
where they are plotted in the mg — 7 parameter space (where 7 is the ALP lifetime).

To obtain these bounds we have compared the extragalactic background light (EBL)
spectrum from Ref. [47] with the estimated flux of photons due to the decay of the ALP [48,
19),

dFp 1 T, po(2)/mg _
dEdQ) 27 H(z) (14 2)3

3/2 3/2
Pb0/ M Ey to Ey
~ —— —2Ey). 2
277 Ho (7%/2) eXp( T <m¢>/2 #(ms o) (3.20)

where we wrote all present quantities with a subscript “0” and the decay-redshift as 1+ z =
(mg/2)/Eo, with Ey being the photon energy today.

STt seems that this argument was not taken into account in the axion case [45]. However, there it has no
phenomenological consequences.
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Figure 2. Exclusion bounds on axion-like particles from relic photons in the mass-lifetime parameter
space.

The EBL spectrum shows no particular features. Thus it can be used to exclude any
ALP which would provide too strong a signal. From the comparison we exclude the portion
of parameter space labelled “EBL” in Figs. 1 and 2.

Galaxies, being denser, should provide an enhanced signal for decaying ALPs. Again, if
the decay rate of ALP CDM is high enough, we should be able to detect a spectral line whose
energy is E = mg/2. Axions in the visible part of the spectrum [50-52] and sterile neutrinos
in X-ray spectra [53, 54] have already been searched using this technique. Following these
references and conveniently rescaling their results for ALPs, we obtain the exclusion bounds
in Figs. 1 and 2 labelled “Optical” and “X-Rays”, respectively.

The search for ALP decay photons is blinded in the ultraviolet range by the humongous
opacity of the atmosphere. However, a substantial amount of ionizing radiation at high
redshifts can strongly affect the reionization history of the universe. The optical depth of
reionization has been estimated by the WMAP7 to be 0.088 & 0.015, out of which nearly a
factor 0.04—0.05 can be attributed to a fully ionized universe up to redshift ~ 6 as supported
by the absence of Ly-a features in quasar spectra. The origin of the remaining part of the
optical depth is still matter of debate, and thus we require the ionization caused by decaying
ALPs to be less than what this fraction would require. Assuming one ionization per ALP
decay photon, we have computed the reionizaton history using RECFAST [55] and obtained
the modified optical depth from z = 6 to z = 100, 74. In the region labelled “zio,” in Figs. 1
and 2, ALP decays produce too early reionization and exceed the measured 74 ~ 0.04 by 1
standard deviation. This is a conservative bound. If we assume that the full energy of the
photon can be converted into ionization this bound strengthens increasingly with mass up to
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one order of magnitude at the largest masses for which ionization is effective, mg < 300 eV.

3.7 Direct experimental and observational constraints on ALPs

So far we have focussed on the astrophysical and cosmological constraints specific to ALP
CDM. However, in Fig. 1 we also show a variety of constraints that arise from the properties
of ALPs alone without them needing to form all or part of the DM. In the mass region
shown in Fig. 1 three constraints are most important. The constraint labelled “ALPS” arises
is the result of the light-shining-through-walls experiment” ALPS [57]. As we can see this
experiment does not yet test the ALP CDM region. However, in the near future significant
improvements by several orders of magnitude are expected by enhancing the signal with
resonant cavities [58, 59]. Moreover improvements are expected from upcoming experiments
in the microwave regime [60-62]

The “CAST+SUMICO” constraint arises from the helioscopes® [63] CAST [64, 65] and
SUMICO [66]. As we can see these experiments already exclude sizable regions of the ALP
CDM parameter space. Also for these experiments significant improvements are expected in
the future. In particular if a next generation axion helioscope such as IAXO [67] is realized.

Finally, the bound “HB” arises from comparing the observed cooling rate of horizontal
branch stars with the expected rate. This places strong bounds on additional energy losses
caused by a production of ALPs in the star’s core [68, 69]. These bounds are currently
the strongest and probe the ALP DM region. However, as these bounds are limited by
astrophysical uncertainties we expect that the more controlled experiments discussed above
will overtake them in the not too distant future.

As already alluded none of these experiments make use of ALPs being DM. This makes
them particularly model independent, but also ignores a potential plentiful source of ALPs.
We will return to haloscopes which indeed exploit this source in Sect. 5.

4 Hidden photons

The misalignment mechanism works in principle for any weakly-coupled light bosonic field. In
a recent article [11], Nelson and Scholtz have pointed out this possibility for a hidden photon
(HP), an Abelian gauge boson under which SM particles are uncharged. The Lagrangian is

1 m2,
L= Xuw X" + %XMX“ + Ly, (4.1)

where X* is the HP gauge field and X* its field strength. The HP mass might result from
the Higgs or Stiickelberg mechanisms. In the first case, we have to worry when the phase
transition happens and we might have a similar scenario to the one sketched in the previous
section for Nambu-Goldstone bosons. Also a Higgs particle appears in the spectrum, with
mass ~ ﬁm,yf /gn where g, is the hidden sector gauge coupling and \ the Higgs self-coupling.
Even if we take g, to be really small, the Higgs particle phenomenology tightly constrains
this scenario, especially for the sub-eV values of m., we explore [70]. As in the original

"In such an experiment strong magnetic fields are used to induce photon-ALP oscillations in incoming laser
light. The very weakly coupled ALP state can then pass through a wall. On the other side the ALPs can
then oscillate back into photons which can be detected. See [56] and references therein. For HPs the same
technique works but no magnets are required.

8Helioscopes use the same idea as light-shining-through walls experiments. The ALPs are however produced
inside the sun from photons interacting with the electromagnetic fields of electrons and ions in the plasma.
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proposal [11], we focus therefore on the Stiickelberg case, which occurs naturally in large
volume string compactifications [71-73].

In this case, there is no SSB phase transition and the initial state after inflation is a
homogeneous value of the field along some random direction. We denote by X the amplitude
in that preferred direction. In the absence of HP sources, we can take X° = 0. The dynamics
of the classical field are then captured in the very same Eq. (2.2) with ¢ — X and my — m..

The same approximate solution Eq. (2.10) holds for the HP case. However, in contrast
to the ALP case, there is no natural value for the initial value of the amplitude?, X, and
therefore any HP model can provide DM, i.e. nature might have tuned the value of X; to fit
the observed value Eq. (2.11).

One further comment is in order. The direction of the X field remains unchanged for
most of the universe history. However, it is conceivable that it changes during the process of
structure formation where inhomogeneities in the gravitational potential grow relevant and
Eq. (2.2) is no longer valid. This has important consequences for direct detection, that will
be discussed in Sect. 5.

4.1 Survival of the condensate

Under the assumption that SM particles are uncharged under the hidden photon gauge group,
the dominant interaction between the visible and the hidden sector is through gauge kinetic
mixing between photons and hidden photons [74],

2

1 w p_ X poy
S X X1 4 =X X0 = S F X1 JE A, (4.2)

4

1

£ 4

Fu, FH
where A, is the photon field and F),, the corresponding field strength, and J# is the current
of electrically charged matter. Kinetic mixing is generated at one-loop by the exchange of
heavy messengers that couple both to the ordinary photon as well as to the hidden photon,
its natural value therefore being determined by the visible and hidden gauge couplings via
X ~ egn/(1672). In field theory and in compactifications of heterotic string theory, the
hidden gauge coupling is of order one and thus x ~ 1073 [75, 76]. In large volume string
compactifications, the hidden gauge coupling g, can be very small and there is no clear
minimum for y: values in the 10721073 range have been predicted in the literature [72, 73].

By means of the re-definition A, = flﬂ —xX s Xy = X u we can identify the propagation
basis n vacuum (zzlu, X 1), where the kinetic mixing has been removed and the Lagrangian

looks like
2

3 1. - 1 - - m2, _ 3 .
L= =3B = X X1+ R K04 7 (A= xKa) (4.3)

The universe is not empty though. The interactions of photons with the charged parti-
cles in the primordial plasma induce refraction and absorption. This can be described with
an effective photon mass squared M? = m% + iwI’, where both the plasma mass m, and
the interaction rate I' only depend!” on the photon frequency, w, and the modulus of the
wavenumber, k [77]. The corresponding effective term in the Lagrangian can be written as

91f the hidden photon mass arises from a Higgs mechanism one may wonder if there is no limitation on the
field value from the fact that one component of the field arises from the “eaten” Goldstone boson which has a
limited field range, similar to the situation we discussed for ALPs. However, in effect the extra field component
of the gauge field corresponds to a derivative of the Goldstone boson, which is not bounded. Similar reasoning
can be applied to the Stiickelberg case.

1071 an isotropic homogeneous universe.
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L = M?A,A"/2. This is non diagonal in the {A, X} basis and crucially determines the
propagation eigenstates and their eigenvalues [77-80].

M? is proportional to the charge density ng and varies significantly during the history of
the Universe. After inflation we can assume ng = 0 and thus M? = 0. Both grow very rapidly
during reheating up to extremely large values and then decrease with smooth power laws until
today, where we shall assume them to be zero again. Forgetting pre-/reheating times for a
moment, at sufficiently early times M 2 is the largest scale in the problem. Neglecting H,
the e.o.m. for the photon A = A- XX is that of a damped oscillator, while the orthogonal
combination X — XA is (almost) a free field with a mass ~ m.,. The latter is the combination
which can form a condensate. B

Today M? tends to 0, so A and X are the propagation eigenstates, their e.o.m. decouple
and both follow the solution outlined in Sect. 2. Therefore, the condensate has to follow a
trajectory in field space from X — yA to X without loosing too much amplitude.

Assuming that the universe expands slowly compared to the microscopic timescales of
photon absorption (dI'/dt < I'2, or T' > H) the two eigenstates adiabatically follow their
static solutions. The adiabatic propagation eigenstates are given by an effective mixing angle,
Xeff, the angle between the sterile state ()Nf — Xg) and the condensate. The eigenstates decay
with rates I't = (1 — x%;)T" and I's = x%;I. At the lowest order in ¥, the effective mixing
angle can be approximated by

x*m

BN

ngf = (4.4)

where p? = max{xmg/, m~ T}
Before recombination m% is positive so there might be a moment where the mixing is
resonant. Characterizing it by the temperature of the universe at the time of the resonance

m%(Tres) = mg/, we can distinguish three regimes

o At high temperatures T >> Ties: M~y > m.s and the mixing is suppressed as Xeg =~
Xmgf, / m% < X.

o At low temperatures T' < Ties: M~ <K M. and we recover the vacuum mixing parameter
Xeff > X-

o At resonance T' = Ties: the mixing is significantly enhanced. If xm, > I' the mixing
angle is maximal and one can have a resonant transition similar to the MSW effect in
neutrinos. For small x the mixing still is enhanced with respect to the vacuum case by
a factor m, /T > 1.

Thus, in general the condensate does not move smoothly in field space from X — XA to
X. It overshoots X during the resonance only to then return to X.

Let us first discuss the case of over-damped oscillations during the resonance, i.e. ngf ~
x’m ,/ I'2. In this range of masses and resonant temperatures I' ~ n.ory, where oy, is the
Thomson cross section and n. the electron density. The amplitude of the HP condensate

decreases by the ratio
X c . 3/2 1 tioday
2,today _ <a1n1t1al> exp <_/ thQ) ’ (4.5)
X2,initia1 Qtoday 2 tivies

initial
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Figure 3. The decay rate of the HP condensate, I'y, normalized to Hx?, as a function of temperature,
for different HP masses.

Approximating T/Ty = ag/a, we can write ['adt as T'y/HdlogT. The function I'y/Hy? =
Fxgﬁ JH? is plotted for different HP masses in Fig. 3.

As expected the decay rate is heavily enhanced at Ties, and rapidly drops at higher
temperatures. The integral can be well approximated by the contribution near the resonance.
Using m?2 = mi, + (dmi, /dt)(T — Ties) and evaluating the other T-dependent quantities at
Tres We have

= (4.6)

1 [Tiwisal T Ty 9T My T2
T H 2rHyes 2

jkoday

where = dlogm2 /dlog T is an O(1) factor, see Fig. 2 of [77]. Moreover, exp(—73) gives the
damping of the total energy density due to the resonance. Note that the result is independent
of I.

If the resonance is not over-damped, i.e. xm, > I', the HP survival probability after
the level-crossing can be approximated by the Landau-Zener expression used in [80]. The
result coincides almost exactly with (4.5), only requiring an extra factor of 2 in the argument
of the exponential, i.e. 79 — 27.

The plasma effects where neglected in Ref. [11] which forced the authors to conclude
that the most relevant period for the evaporation of the condensate was at high temperatures
(the corresponding “approximation” is shown as a dotted line in Fig. 3). As we have seen,
at high temperatures the evaporation process is strongly suppressed by the effective mixing
angle. The resonance dominates the condensate evaporation and for the sub-eV masses of
main interest here happens at temperatures smaller than the electron mass [79].

Since we can adjust the value of X5 jnitia1 almost without restrictions'! it seems that we
can overcome any evaporation factor, even if it is enormously exponentially suppressed, and
still have today HP CDM. There are, however, several limitations to this due to the fact that

10One may wish to impose that the initial field value is smaller than mp;. But this does not lead to any
relevant additional constraints.
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the evaporation process dumps some energy into the photon bath,
Ap = pcpom(e™ —1). (4.7)

This photon injection dilutes neutrinos and baryons with respect to photons, which can be
constrained by the effective number of relativistic neutrino species N and by the successful
agreement of CMB and big bang nucleonsynthesis (BBN) to estimate the baryon to photon
ratio np. Considering three massless neutrino species, a number of effective neutrinos smaller
than 2.39 is excluded at 95% C.L. [81], which translates into a photon temperature increase
T'/T ~ 1.06. A similar value is obtained from BBN limits but the corresponding bound
only applies to injections between CMB and BBN times, while the Nﬁff one applies until the
neutrino decoupling T' ~ 2 MeV. If the injected photons thermalize, the photon temperature
increases to

m 1/4
Pnp(e™ — 1)> , (4.8)

, . 15A 1/4
T'= (Tt 580) o~ T (1418572

where we used pcpm ~ Smypnpny, with m, being the proton mass and n, the photon number
density. We see from Eq. (4.8) that to obtain a significant increase in temperature one needs
T2 > —In(ng) ~ 21. Imposing'? T’ /T}es < 1.06, we can exclude the region above the curve
labelled “N¢f” in Fig. 4.

If the resonance happens below a critical temperature, the interactions of photons with
the relic electrons and ions of the plasma might not be enough to fully recover a blackbody
spectrum. The photons are initially injected at ultra-low energies, w ~ wp; < T', at which
inverse bremsstrahlung (v + e~ + p™ — e~ + pT) and, to a lesser extent, inverse double
Compton scattering (y+vy+e~ — y+e ) are always efficient in absorbing them. This results
in the establishment of a blackbody distribution at a higher temperature than the initial,
but only at low frequencies, where these processes are effective. The equilibration of the low
energy and high energy parts of the spectrum can be achieved by a combination of Compton
scattering (which is efficient in reshuffling photons up and down in energy) and the photon-
number changing processes mentioned above which adjust the number density towards a
blackbody. The injection of a relatively high number of low energy photons, dn./n, >
dp~/p~, has not been considered in the literature and the use of numerical methods, even if
possible, is clearly beyond the scope of this paper. In order to obtain a first educated gues, we
have followed the analytical solutions derived in the limit of small distortions in [82] and the
powerful constraints set by FIRAS on a possible chemical potential ;z and a Comptonization
y distortion which imply bounds up to Ap,/p, < O(107%) [83], depending on Tyes. These
arguments lead to the constraint shown in Fig. 4 labelled “CMB distortions”, which is the
strongest requirement in the HP mass range neV —2 x 1074 eV.

The lower limit of the CMB constraints, m., ~mneV, corresponds to resonances hap-
pening around the onset of recombination. Smaller HP masses suffer resonant transitions
around this epoch because neutral Hydrogen contributes to mgy with a negative quantity
which increases with time and eventually makes m% = 0 by compensating the contribution
of free electrons. HPs with masses down to ~ 2 x 107! eV have their resonance around this
epoch [80]. It is very likely that CMB distortions will be produced for sub-neV masses, but
since we cannot ascertain the fate of the low energy photons injected during recombination,

121p this high 75 regime, our formula (4.6) is not completely consistent. But, as long as T"/T ~ 1, it should
provide a reasonable estimate.
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Figure 4. Allowed parameter space for hidden photon cold dark matter (HP CDM) (for details see
text). The exclusion regions labelled “Coulomb”, “CMB”, “ALPS”, “CAST” and “Solar Lifetime”
arise from experiments and astrophysical observations that do not require HP dark matter (for a
review see [35]). We also show constraints on the “cosmology of a thermal HP DM”. Note that
only constraints on HPs with masses below twice the electron mass are shown since otherwise the
cosmological stability condition requires unreasonably small values of the kinetic mixing, x. The
four constraints that bound the allowed region from above, “m >1", “CMB distortions”, “Nﬁﬁ” and
“X-rays” are described in the text.

we cannot use the results of [82] and we must leave the study of this region for a future
detailed numerical analysis. It is intriguing that a possible small distortion of the CMB spec-
trum due to HP CDM can in principle appear in the next generation of CMB spectral probes,
such as PIXIE [84]. We believe, these signatures can be quite distinctive and strengthen the
physics case for such probes, since they can help identifying the nature of the DM.

There is however a simple way of constraining the kinetic mixing of CDM HPs in this
low energy region. At late recombination, the density fluctuations are already imprinted in
the CMB and they provide us with the estimate (2.11) for the DM density. Since this value
agrees roughly with the average DM density observed today we cannot allow the resonant
depletion of HPs into photons at this epoch or any later, thus requiring 75 < 1. This bound
is depicted also in Fig. 4 and labelled as “m5 > 1”. In order to compute it, we have used the
model for m? provided in [80].

Hidden photons with masses below twice the electron mass, can only decay via an
electron loop into three photons. This decay rate is extremely suppressed for low mass HPs,
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I's, o a4mg/ /m8 [77]. However, for the most massive HPs considered here the decay can
be effective. Imposing that the population of decay photons is smaller than the diffuse X-
ray backgrounds one can constrain the cold HP population. This was done in [77] and we
reproduce their bounds, labelled “X-rays”, as the rightmost boundary of our HP CDM region
in Fig. 4.

4.2 Thermal population of HPs

During the resonance a thermal population of HPs can be generated without interfering with
the arguments above. The role of this population as DM has been addressed in [77] (which
excludes the region labelled “Cosmology of thermal HP DM” in Fig. 4) and, as dark radiation,
i.e. contributing to the number of effective neutrinos, in [79]. This conversion also produces
distortions of the CMB spectrum, which can be constrained by FIRAS. These arguments
give rise to the bounds labelled “CMB” in Fig. 4.

These thermal contributions are very much constrained by astrophysics and cosmology
and on the verge of detectability by solar HP searches or the contribution of the 7/ — 3~
decay to the interstellar diffuse photon background.

One could ask the question whether it is possible to have HP CDM and also explain
the small excess of N¢¥ observed by WMAP7 and other CMB and large scale structure
probes. The situation is a bit tricky since, for the parameters required to have the latter
effect (m, ~ O(meV), x ~ 107%) [79], the CDM evaporation is huge, 72 > 20, and the
required absorption of the CDM energy decreases Nﬁff opposing the first effect. Further
studies are required to see if such a scenario is plausible, but it seems complicated to avoid
the BBN bound coming from the dilution of the baryon density.

4.3 Direct experimental and observational constraints on HPs

In Fig. 4 we have also displayed the existing experimental bounds on the existence of HPs
which do not rely on HPs being DM. The bounds labelled “Solar lifetime” and “CAST”,
coming from the non-observation of HP emission from the Sun, exclude a large portion of
parameter space [78]. It is clear that improving the sensitivity of future searches of solar HPs
one has access to new parameter space in which HPs can be CDM [85]. The solar hidden
photon search (SHIPS) [86] in the Hamburg Observatory is currently exploring the sub-eV
mass region greatly improving over the previous CAST experiment and will soon publish
results.

Light-shining-through-walls experiments are also a powerful tool in the search for hidden
photons [87], the current best bound being provided by ALPS [57], and shown in Fig. 4. Asin
the case of ALPs they currently do not probe the DM region, but significant future improve-
ments are expected [56]. Indeed, here the microwave regime is particularly promising [61, 62],
with several new experiments already taking data [88, 89].

Finally, tests of Coulomb’s law provide strong constraints in the low mass region, see
Fig. 4. Although these bounds do not reach into the HP DM region one can hope that
improvements can be made since the best experiments [90] on this are more than 40 years
old.

5 Direct searches with haloscopes

One well-known tool to search for axion dark matter are so-called axion haloscopes [63]. Let
us briefly recap the basic principle of a haloscope. Using the abundance of axions all around
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us the task at hand is to to exploit their coupling to photons and to convert those axions
into photons which can be detected. For axions this can be achieved by utilizing off-shell
photons in the form of a strong magnetic field. Moreover, this conversion can be made more
efficient by employing a resonator, resonant at the frequency corresponding to the energy
of the produced photons. The energy of the outgoing photons is equal to the energy of
the incoming axions. As the DM particles are very cold their energy is dominated by their
mass. For axions in the natural dark matter window this mass is in the 1 — 100 ueV range
corresponding to microwave photons. A number of experiments of this type have already
been done [91-95] and further improvements are underway [96-98].

5.1 Axion-like particles

For axion-like particles the experiment proceeds exactly as in the axion case [63] (and very
similar to the hidden photon case described below). The important point is, however, that
now even bounds which do not reach the predictions of axion models (axion band in Fig. 1)
become meaningful since they test viable models.

For completeness we recap. In the axion case, the power output of a cavity of volume
V, quality @ and coupling « to the detector is

1
Pout = HQQV‘B(Q)MOgaXioniQy (5'1)
Mq
with pg the local axion CDM energy density, |Bg| the strength of the magnetic field and

g o (deEcaV'BO)2
axion — VdeEQ

cav

(5.2)

For cylindrical cavities in the TMg19 mode as, e.g., used in the ADMX experiment, Gaxion =
0.68. The currently excluded region from various axion haloscopes is shown as gray area in
Fig. 1. It already excludes a part of the ALP CDM parameter space.

5.2 Hidden photons

Microwave cavity experiments looking for relic axions could also be used to constrain and
search for the hypothetical cold HP condensate that we have discussed above. Starting from
Eq. (4.2) we can follow the usual route and trade the kinetic mixing term for a mass mixing
by performing a shift of the HP field X — X — yA. Neglecting terms of second order in y
the equation of motion for the photon field A then reads,

OuO" A = xm2, X" . (5.3)

We can therefore see that the hidden photon field acts as a source for the ordinary photon.

Let us first determine the strength of this source. As discussed above we can take
X9 = 0. For the spatial components we write X. The energy density in the hidden photons
is equal to the dark matter density. Therefore we have,

2

X2, 5.4
51X (5.4)

m

PCDM =

At this point a comment concerning the direction of the HP field is in order. In the
discussion above it was assumed that the HP field is homogeneous in space and points in
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the same direction everywhere. Due to structure formation the DM is clumped. A common
estimate for the DM energy density on Earth is therefore the energy density in the galactic

halo,
0.3GeV keV

PCDM,local ~ —— 35— > PCDM,average ™~ (55)
cm

cm?’
As we can see the local density is much higher than the average density, signifying that
structure formation clearly is very important. This raises the question whether structure
formation also influences the direction of the HP condensate. To answer this question one
would have to study structure formation for a vector field like our HP field. This is beyond
the scope of the current paper. Instead we will consider two possible scenarios:

(a) The direction of the HP field is (essentially) unaffected by structure formation and all
HPs point in the same direction (at least for a suitably big region of space).

(b) The direction of HPs behave like a gas of particles with the vector pointing in random
directions.

In scenario (a) the HP direction is characterized by a fixed vector n, whereas in the case
(b) we have to average the final result over all directions for 1. With this understood, let us

write,
NoT
X(x) = n Y20 (5.6)

my

with po the dark matter density on earth.
Let us now return to our cavity experiment. The photon field A inside the cavity can
be expanded in terms of the cavity modes,

A(x) = ZaiAga"(x), / dBx| A (x)|? = ¢y, (5.7)

with C; the normalisation coefficients. Using this expansion and including losses in the cavity
we obtain for the expansion coefficients,

d? d
( 402 wg) i(t) = b exp(—iwt), (5.8)

with wy the frequency of the cavity and @ its quality factor. The driving force b; can be

written as 5
xmZ,
b; = 7

/ AV A*(x) - X(x) (5.9)
and the frequency is given by the energy of the HPs,
w=E,~my. (5.10)

The asymptotic solution for the cavity coefficients is then,

, b; ,
a;(t) = a; g exp(—iwt) = m exp(—iwt). (5.11)
0 Q

Finally, the power emission of the cavity is related to the energy stored and the quality
factor of the cavity as

U
Pout = K§w07 (512)
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where k is the coupling of the cavity to the detector and

_ |Oéz‘,0|2w2

U 5 /d3x |ASY (x) |2 (5.13)

Replacing in this equation and evaluating at resonance wp = m. 13 we find
Pout = mx2m7/pQVQ, (5.14)
where the geometric factor G is defined as

| fdvAreY(x)

.fl|2
v [ &3 x|Av (x)]2°

G (5.15)

In a cavity E = wA. This geometry factor has exactly the same form as in the axion
case (cf. [94] and the subsection above) but with the direction n replacing the direction of
the external magnetic field Bg in the axion case. Accordingly,

g = gaxion 0082(9)7 (516)

where 6 is the angle between the magnetic field direction used in the axion case (this is
usually chosen to be optimal) and the direction n of the hidden photon field.

We can now use this formula to constrain the HP CDM with the present microwave
cavity searches for axions [91-95].

For scenario (a) the result depends on the relative orientation of the cavity at the
time of the measurement with respect to an a priori unknown direction of the HP field. This
requires detailed knowledge of the timing of the experiment etc. Here, we will use a simplified
approach. Assuming that all directions in space are equally likely we take a value for the
cos?(f) such that the real value is bigger with 95% probability. The corresponding value is
cos?(6) = 0.006.

For situation (b) we can average over all possible directions and obtain (cos?(6)) = 1/2.

The results of the analysis are shown in Fig. 4, under the label “Haloscope Searches”.
Blue shows scenario (a) with our simplified estimate and red scenario (b). With a more careful
analysis of the experiment, including the timing information, the sensitivity in scenario (a)
would be very similar to the one in scenario (b).

5.3 Non-resonant searches

Both for ALP DM and for HP DM the coupling to photons can be orders of magnitude bigger
than in the axion case. At the same time it is desirable to explore a bigger mass range. For a
first broadband search one may therefore be prepared to give up the resonant enhancement

13 As in the axion case using this condition requires that the @ is not too large since after structure forma-
tion the DM particles move with different velocities of order 300 km/s~ 10~ 3c. This restricts the maximal
usable Q to be < 10°. If axions form a Bose-Einstein condensate (see [14, 15] and Sect. 2) or the galactic
exhibits special structures as suggested in [99, 100], the velocity distribution could have significantly narrower
structures potentially allowing to utilize a cavity with higher ). Moreover, in this case one could also ben-
efit from using narrow bandwidth techniques. Strong magnetic fields typically limit the maximal Q < 10°.
Therefore, the former only works for hidden photons, where no magnetic field is needed and one can use super-
conducting cavities. The latter however, would work for both HPs and ALPs and has indeed been employed
in ADMX [101].
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in the cavity. Indeed the formulas in Sect. (5.2) up to Eq. (5.13) are valid also off resonance.
One can obtain the general result by replacing

TP 1]
©e T TG

(5.17)

2 _ 42 _ jwwo
w wh ZQ

In principle one can therefore explore a wide range off masses with a single fixed frequency
cavity (at the price of some loss of sensitivity). However, it should be noted that in order to
do so one also has to have a receiver sensitive in a sufficiently wide range of frequencies and
also check for signals off the resonance of the cavity.

6 Conclusions

Vacuum misalignment in the very early universe is a very generic mechanism capable of
producing a cold dark matter condensate from any very light, but massive (quasi-)stable
bosonic field. Clearly, its self-interactions and its interactions with the SM should be very
weak if it is to survive and to be a candidate for the observed cold dark matter today —
in other words their particle excitations should be very weakly interacting slim particles
(WISPs).

We found that for the most prominent and theoretically well-motivated WISP candi-
dates — axion-like particles (ALPs) and hidden photons (HPs), whose dominant interaction
with the standard model arise from couplings to photons — a huge region in parameter space
spanned by their masses and their photon coupling can give rise to the observed cold dark
matter.

WISPy CDM coupled to photons is particularly interesting because it can be probed
by both astrophysical observations as well as laboratory experiments. Figs. 1 and 4 show
that sizable regions of this parameter space have already been excluded by experiments
searching for WISPs without relying on them being dark matter. In particular, helioscopes —
experiments looking for WISPs produced in the sun — have already probed regions that allow
WISPy DM and will improve further in the near future. Soon also purely laboratory-based
light-shining-through-walls experiments (in the optical as well as in the microwave regime)
will reach a sensitivity that will allow them to test hidden photon DM with masses in the
ueV — meV region.

The possibility that WISPs can form all or part of DM allows for additional search
strategies. One way to exploit this is via haloscopes which already test both ALPs and
hidden photons extremely sensitively in the peV mass region. Moreover, searches for light
emitted from decaying ALPs already provide interesting constraints in a large range of masses
from meV to MeV and will hopefully further improve in the future.

Despite these bright prospects for future searches it is clear that huge areas of parameter
space allowing for WISPy CDM are so far unexplored and demand not only new searches
but also new search strategies — a challenge for both experiment and phenomenology.
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