

Nanosized Bimetallic Ni-X/SiO₂ Catalysts Prepared by SOMC/M route: Characterization and Catalytic Properties in Styrene Hydrogenation

L. Deghedi, (1) A. de Mallmann, (1) G. Bergeret, (2) M. Corral Valero, (3) J.A. Dalmon, (2) J.-P. Candy, (1) A-C. Dubreuil, (3) L. Fischer, (3) J.-M. Basset (1)

- ⊠ layane.deghedi@cpe.fr
 - (1) Université de Lyon, Laboratoire C2P2, équipe LCOMS, ESCPE Lyon, 43 bd. du 11 novembre 1918, F-69616 Villeurbanne, France.
 - (2) Université de Lyon, IRCELyon, 2 av. A. Einstein, F-69616 Villeurbanne, France.
 - (3) Institut Français du Pétrole, BP 3, 69390 Vernaison, France.

Industrial Background

Drawbacks of the Ni-S catalyst:

- > Insufficient or non-homogeneous passivation: risk of explosion because of the high exothermicity of total hydrogenation reactions of olefins and aromatics.
- > Excess passivation: inactive Ni₃S₂ formed.

Aims

- Replace Ni-S by a well defined bimetallic Ni-X catalyst
- Understand the selectivation mechanism in the hydrogenation of styrene

Strategy

- Surface OrganoMetallic Chemistry on Metals (SOMC/M) is an effective route to prepare well defined bimetallic catalysts by the means of a controlled reaction between reduced metal particles and organometallic compounds.
- → SOMC/M used to prepare well defined bimetallic Ni-X/SiO₂ catalysts.
- Selectivity in the hydrogenation of a C=C double bond against an aromatic ring can be explained by geometric or electronic effects.

According to the electronegativities in the Pauling scale (χ):

 $\chi_{Zr} < \chi_{Ni} \rightarrow Zr$ is an electro-donor towards Ni

 $\chi_{Sn} \sim \chi_{Ni} \rightarrow Sn$ is electronically neutral towards Ni

 $\chi_{Au} > \chi_{Ni} \rightarrow Au$ is an electro-attractor towards Ni

→ Ni-Sn, NiZr and Ni-Au catalysts prepared to study the possible geometric and electronic effects on selectivity in the hydrogenation of styrene.

Preparation and characterization of the catalysts

Ni/SiO₂ parent catalyst **Preparation Method:** Impregnation by cationic exchange of $Ni(NH_3)_6^{2+}$: $Si-O^-, H^+ + NH_4OH \implies Si-O^-, NH_4^+ + H_2O$ 2 Si-O⁻, NH_4^+ + $Ni(NH_3)_6^{2+}$ \Longrightarrow (Si-O⁻)₂, $Ni(NH_3)_6^{2+}$ + 2 NH_4^+ Ni(NO₃)₂ + NH₄OH Decomposition-Reduction at 600℃ under H₂ flow (3L/h) Washing and drying under vacuum at 80 then 100℃ 4g of silica Ni particles supported Impregnation for 24h Supposed surface species: $(\equiv SiO)_2Ni(NH_3)_4$ (exposed to air and stored + Phyllosilicates (talc, under normal conditions)

Ni loading: 11%w **Characterization: Estimated Ni particle size Characterization technique** 3.9 nm Magnetic measurements (2 - 6 nm)H₂ adsorption 3.4 nm XRD 2-3 nm

TEM images **Bright Field**

Ni - Zr

The Ni/SiO₂ parent catalyst was first reduced under flowing H₂ at 400℃

ZrNp₄ was then sublimed at 60℃ on the Ni catalyst, under ca. 50 mbar H₂

The catalyst was then heated under flowing H₂ at 400℃

Zr/Ni content: 0.2

H₂ adsorption measurements:

 H_2 adsorbed after grafting = 0.69 x (H_2 adsorbed before grafting)

→ 31% loss of Ni surface sites

XRD experiments performed at RT after exposure to air:

• Small Ni particles of ca. 2 nm

 $ZrNp_4$

• No proof of existence of Zr, nor Ni-Zr alloy

TEM/EDS/STEM analysis:

Particles with a blurred aspect, average size of ca. 3-4 nm

- bimetallic Ni-Zr particles with variable compositions in Zr and Ni Ni particles

XAFS (Zr and Ni K-edges):

No evidence for a Ni-Zr bond Only light neighbours for Zr (Zr-O)

 $S=r_1/r_2$: catalyst selectivation

ref : Ni/SiO₂ parent catalyst

Ni - Sn

3.1 nm

(1 - 5.5 nm)

The Ni/SiO₂ parent catalyst was first reduced under flowing H₂ at 400℃ SnBu₄ was then grafted on reduced Ni/SiO₂ under ca. 100 mbar H₂

TEM

The catalyst was then heated under flowing H₂ at 400℃

SnBu₄

Sn/Ni content: 0.3

H₂ adsorption measurements:

 H_2 adsorbed after grafting = 0.33 x (H_2 adsorbed before grafting)

→ 67% loss of Ni surface sites

XRD experiments performed in situ, during the heating at 400℃ under flowing H₂:

→ Formation of a Ni-Sn solid solution, wich is stable even after exposure to air

TEM/EDS analysis:

→ Well defined bimetallic Ni-Sn particles with variable compositions in Sn and Ni

• Sn-Ni contributions: 8 Ni neighbours at 2.61(1) Å Further Ni and Sn layers: 3.60(2) Å: 1Ni; 4.55(2) Å: 9Ni; 5.11(2) Å: 2Sn

Ni - Au

The Ni/SiO₂ parent catalyst was first reduced under flowing H_2 at 400°C, The catalyst was then transfered in a Schlenk tube,

covered with n-heptane under H₂ and AuCN was introduced for grafting at RT

After evacuation of the solvent, the catalyst was heated under flowing H₂ at 400℃

Au/Ni content: 0.25

XRD experiments performed in situ, during the heating at 400℃ under flowing H₂:

RT - in air 200℃ - under H₂

 AuCN decomposes into Au particles at 200℃

Au^I - CN

- Ni particles of ca. 3 nm
- Au particles of ca. 15 nm

TEM/EDS/STEM analysis:

- Well defined bimetallic Ni-Au particles with variable compositions in Au and Ni size varies from 4 to 150 nm
- Ni particles of ca. 3 nm, these particles have a blurred aspect

XAFS (Au L_{III} and Ni K-edges):

- Presence of large Au particles
- Simultaneous Au-Ni contributions at 2.59(4) Å, only for
- low Au content: Au/Ni < 0.05

Bimetallic Ni-X/SiO₂ catalysts with X: Zr, Sn and Au were prepared and well characterized.

Catalysts revealed different catalytic properties in the hydrogenation of styrene:

Conclusion

Styrene hydrogenation

- NiZr: decrease of r₁ and r₂ (geometric effect) but r₁ is more affected than r₂
- → the electro-donor effect of Zr poisons the C=C hyd.
- → selectivity decrease
- NiSn: decrease of r₁ and r₂
- → geometric effect affects in the same manner the 2 reaction rates → no effect on selectivity
- NiAu: decrease of r₁ and r₂ (geometric effect) but r₂ is more

affected than r₁

→ selectivity increase

- → the electro-attractor effect of Au promotes the C=C hyd.
- - The aromatic ring can adsorb and react with surface Ni-H

Ni parent catalyst

- The C=C double bond can adsorb and react with surface Ni-H
- → Total hydrogenation is possible

Modified Ni-X catalyst

- There aren't enough adjacent Ni-H sites for the aromatic ring to adsorb and react
 - → Inhibition of the aromatic ring hydrogenation
- The C=C double bond can adsorb and react with less surface Ni-H: → C=C hydrogenation is slowed down (geometric effect)
 - with Ni-Sn catalyst, Ni is electronically unaffected, → no change in selectivity
 - hyd. **→** selectivity decreases

- with Ni-Zr catalyst, Ni is elctronically enriched, which poisons C=C

- with Ni-Au, Ni is electro-deficient which favours C=C hyd. → selectivity increases