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The Golgi-associated four-phosphate adaptor protein 2 (FAPP2) has
been shown to possess transfer activity for glucosylceramide both
in vitro and in cells. We have previously shown that FAPP2 is
involved in apical transport from the Golgi complex in epithelial
MDCK cells. In this paper we assign a-new, activity for the protein
as well as providing structural insight into protein assembly and a
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utgoing traffic from the Golgi complex diverges into dif-

ferent directions. In epithelial cells, one major route is to
the apical membrane. The machinery responsible for the for-
mation of apical carriers is poorly understood. Several proteins
have been identified that play a role (1-3). One such protein is
the Golgi-associated four-phosphate adaptor protein 2 (FAPP2)
(4-6). FAPP2 is a cytosolic protein consisting of the following:
an N-terminal pleckstrin homology (PH) domain recognizing
the Golgi marker, phosphatidylinositol 4-phosphate [PI (4)P],
followed by a central proline-rich region, and a glycolipid
transfer protein (GLTP)-like domain toward the C terminus (4).
Recent studies have shown that FAPP2 has transfer activity for
glucosylceramide (GlcCer) both in vitro and in cells (7, 8).
Knocking down FAPP2 by RNAI reduces the conversion of
(GlcCer) to lactosylceramide (LacCer) and to downstream com-
plex glycolipids and gangliosides. Evidence suggesting that
FAPP2 regulates membrane transport from the Golgi by its
glycolipid transfer function was also brought forward. However,
the two papers give different directions for the transfer.
D’Angelo et al. (7) favor a transfer of GlcCer from the cis-Golgi
to the trans-Golgi, whereas Halter et al. (8) suggest that FAPP2
takes GlcCer from the trans-Golgi membrane to the endoplas-
mic reticulum. In the latter case, GlcCer would be flopped after
its transfer to the luminal side to be transported to the Golgi
complex, where it would function as a precursor for glycolipid
biosynthesis. Thus, there is no consensus as to how FAPP2 would
control exit of proteins from the trans Golgi network to the cell
surface.

In this paper we explored other possible properties of FAPP2
and discovered that purified FAPP2 tubulates lipid membranes
in a PI (4)P-dependent fashion. This finding would fit well with
properties previously attributed to the protein (4) and adds an
important missing function in the machinery responsible for
apical transport. In addition, analytical utracentrifugation
(AUC) and small-angle x-ray scattering (SAXS) studies provide
structural insights into the dimeric solution state and molecular
shape of the full-length FAPP2 protein.

Results

Previous studies by Godi et al. have shown that expression of
FAPP2 in Cos7 cells led to the formation of tubules from the

www.pnas.org/cgi/doi/10.1073/pnas.0911789106
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trans-Golgi network (4). To check whether this is also the case
in MDCK cells, we expressed FAPP2 in these cells and could
demonstrate that FAPP2 was indeed present in tubules forming
from the trans-Golgi (Fig. S1C).

To explore this phenomenon further, we tested whether
purified FAPP2 had tubulation activity in vitro. We first pro-
duced full-length canine FAPP2 having a gluthathione S-
transferase (GST) fusion at the N terminus in E. coli. The protein
was purified to high-purity (Fig. S3B, control lanes) for analysis
of its effects on membranes. In addition, an N-terminally tagged
mCherry-FAPP2 protein was produced to monitor the location
of FAPP2 on membranes.

Membrane Tubulation by FAPP2. The effect of FAPP2 on lipid
membranes sheets was monitored in real time by light micros-
copy (9). A mix of POPC:PI (4)P:GlcCer (96:2:2 mol%) was
spotted on a coverslip surface and dried. Injection of the soluble
protein to the rehydrated membrane sheets induced growth of
membrane tubules at the edges or on the top of the most
superficial layer of the lipid sheets (Fig. 14). Tubules coated with
mCherry-FAPP2 grew away from the membrane lipid sheets,
implying that the binding of FAPP2 to the membrane sheet
induced positive curvature of the membrane (Fig. 1E).

Because FAPP2 binds PI (4)P via its PH domain and GlcCer
through its GLTP domain, we investigated which lipids are
required for membrane tubulation. Full-length FAPP2 tubulated
membrane sheets in a PI (4)P-dependent manner, consistent
with the capability of its PH domain to bind specifically to this
phosphoinositide (10). Only PI(4)P and not GlcCer is required,
as tubulation occurred with POPC and PI (4)P (98:2 mol %)
(Fig. 1B), but not with either POPC alone (Fig. 1C) or with a
mixture of POPC and GlcCer (98:2 mol%) (Fig. 1D).

As the ability of FAPP2 to tubulate membrane sheets ap-
peared to be dependent on its PH domain and PI (4)P, we
examined whether mutation of Arg-18 to a leucine residue
(R18L) in the PH domain, which has been described to abolish
Golgi localization of FAPP2 (4), would affect tubulation. Puri-
fied FAPP2-R18L mutant protein did not induce any detectable
membrane tubulation (Fig. 24 and Movie S1), suggesting an
inability to associate with, insert into, or bend membranes. When
WT-FAPP2 was injected into the same chamber, tubules grew
out from the membrane sheet immediately, indicating a “recov-
ery” of activity at the membrane surface (Fig. 2B and Movie S2).
Together this indicates that tubulation activity requires a func-
tionally intact PH domain that can bind to PI (4)P.

The potential role of GlcCer in the tubulation activity was also
assessed by mutating an essential Trp in the GLTP domain of
FAPP2, disabling the protein to bind to GlcCer (7). The W407A
mutant protein generated tubules from the membrane sheets,
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FAPP2-mediated tubulation of flat membrane sheets. Tubulation activity of FAPP2 on membrane sheets with different compositions was followed by

DIC. Lipids membrane sheets consisted of the following: (A) POPC:PI (4)P:GlcCer (96:2:2 mol%); (B) POPC:PI (4)P (98:2 mol%); (C) POPC; and (D) POPC:GlcCer (98:2
mol%). (E) Fluorescence and dark field images of tubules generated on membrane sheet containing POPC: PI (4)P (98:2 mol%) by mCherry-FAPP2. Tubulation
was initiated by injection of 5 ul FAPP2 (1 mg/ml) into the reaction chamber. Bars, 40 um.

consistent with our observation that GlcCer was not required for
bilayer tubulation (Fig. 2C and Movie S3).

As an independent approach and also to measure the lipid-
binding properties the FAPP2 protein, we measured the surface
pressure changes (AIIl) on lipid monolayers containing POPC
and PI (4)P (98:2 mol%) after continuous addition of FAPP2
(Fig. S4). For WT-FAPP2, a constant increase in pressure was
noted up to 1.5 mN/m and at a protein concentration of 10 wg/ml.
At this point, surface pressure began to drop and reached a level
well below the starting pressure value, indicating the removal of
lipid by FAPP2. The FAPP2-R18L mutant, which is deficient in
PI (4)P binding, behaved in the same way as the FAPP2 on
POPC alone. FAPP2 associated linearly with the monolayer as
the protein concentration was increased but caused no drop in
pressure, indicating that although weak/transient binding did
occur, no removal of lipids could be observed. Taken together,
also here the FAPP2-PH domain appears to be required for
membrane penetration and tubulation in vitro.

Solution State of FAPP2. A combined approach of analytical
ultracentrifugation and chemical cross-linking was used to get

20of5 | www.pnas.org/cgi/doi/10.1073/pnas.0911789106

insights into the solution state of FAPP2. The ability of the GST
protein to dimerize can influence the hydrodynamic properties
of GST fusion proteins, complicating structural characterization.
We therefore decided to produce an additional FAPP2 protein,
which is tagged by 3myc and Hise at the N- and C-termini. To
define the relevant solution state of the FAPP2 proteins, size
exclusion chromatography (SEC) and analytical ultracentrifu-
gation (AUC) analysis of 3myc-FAPP2-Hiss and GST-FAPP2
were performed.

The SEC results revealed that the 3myc-FAPP2-Hisg protein
eluted as one symmetric peak and was stable and monodis-
persed. The GST-FAPP2 protein formed additional, larger
species, consistent with the ability of GST to dimerize (Fig. S24).
These states were stable in that they could be separated from
each other over repeated SEC experiments to enrich for the
main species. Both purified proteins were monodispersed based
on sedimentation velocity centrifugation (Fig. S34). The mo-
lecular weights were estimated from sedimentation equilibrium
data, and showed that the 3myc-FAPP2-Hiss and GST-FAPP2
proteins were 129 and 166 kDa, respectively, over a broad
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Fig.2. Membrane tubulation activity of FAPP2 is PI (4)P dependent. Screen
shots were taken from Movies S1-S3. (A) P (4)P binding—deficient FAPP2-R18L
lacks tubulation activity, whereas addition of WT-FAPP2 rescues membrane
tubulation (B). (C) FAPP2-W407A, lacking GlcCer binding, displays tubulation
activity as WT-FAPP2. Fast and narrow tubules, indicated by arrows, are
appearing at early time point as in Fig. 1A but grow back toward the lipid
sheet. In all tubulation assays, a lipid mixture consisting of POPC:PI (4)P:GlcCer
(96:2:2 mol%) was used. Tubulation was initiated by injection of 5 ul FAPP2 (1
mg/ml) into the reaction chamber.

concentration range (Table S2). As the theoretical molecular
mass of the respective monomers is 64 kDa and 84 kDa, the
centrifugation data showed that both FAPP2 constructs are
dimeric in solution. The dimeric state of each FAPP2 construct
was confirmed by chemical cross-linking experiments using
bis(sulfosuccinimidyl)-suberate (BS?). Both proteins yielded
only one additional band on SDS/PAGE gradient gels with
measured molecular weights of 159 and 205 kDa for 3myc-
FAPP2-Hiss and GST-FAPP2, respectively, consistent with co-
valently modified dimeric states (Fig. S3B).

To account for any possible tag effects on the membrane
tubulation activity, we also applied the 3myc-FAPP2-Hisq pro-
tein to our membrane sheet tubulation assay and could show that
the membrane tubulation activity was retained (Movie S4).

Low-Resolution Structure of FAPP2. Given the novel membrane
activity of FAPP2 and evidence of its dimeric solution state, we
used SAXS to provide insights into the overall size, shape and
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scattering intensities I(s) using a reduced angular range from
0.07 nm! to 3 nm™!, and the maximal particle size (Dmax) Was
estimated to 30 nm (Fig. 3B). The radius of gyration (R,) of
3myc-FAPP2-Hiss was found to be 8.37 nm. Together with the
maximum molecular dimension of 30 nm, FAPP2 appears to be
an extended protein assembly. This was also supported by the
calculated prolate frictional ratio of 1.71, based on analytical
utracentrifugation data (Table S2). A low-resolution envelope
model of FAPP2 was derived by ab initio shape modeling (see
Materials and Methods). The molecular shape is a well extended
and curved assembly. To assign the possible location of the
FAPP2 protein domains, global rigid body modeling (see Ma-
terials and Methods) against the obtained scattering data indi-
cated the GLTP and PH domain to be at either end of the
dimeric FAPP2.

Discussion

Our data demonstrate that FAPP2 has the capability to form
tubules from membrane sheets in vitro. This activity is depen-
dent on the PI (4)P-binding activity of the PH domain of FAPP2.
FAPP2 can thus be included in the growing list of proteins that
can bend membranes to generate tubules.

Mechanism of Tubulation. Two principal mechanisms are used by
proteins to induce membrane curvature. BAR domain-
containing proteins are ‘“banana-shaped” and thus confer cur-
vature by direct membrane scaffolding (11-13). They bind to
membranes by their positively charged concave face and there-
fore are able to sense, stabilize, and generate membrane cur-
vature (14). The other mechanism relies on insertion of a small
amphipathic or hydrophobic wedge to induce membrane asym-
metry resulting in curvature (11, 15). These proteins include
N-BAR domain-containing proteins having curvature-sensing
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SAXS analyses of dimeric 3myc-FAPP2-Hisg protein. (A) Experimental scattering curve (blue) and theoretical scattering curve of the modeled envelope

structure (red). (B) Distance distribution function shows 3myc-FAPP2-Hisg to be an extended molecule ~30 nm in length. (C) Low-resolution envelope of
3myc-FAPP2-His calculated by ab initio modeling (blue mesh surface). Rigid body modeling was used to calculate the possible locations of the PH- (blue and
orange) proline-rich (light green) and GLTP (dark green and red) domain of FAPP2.

Cao et al.

PNAS Early Edition | 3 of5

STXT

F3

Z5T2

BIOCHEMISTRY


http://www.pnas.org/cgi/data/0911789106/DCSupplemental/Supplemental_PDF#nameddest=ST2
http://www.pnas.org/cgi/data/0911789106/DCSupplemental/Supplemental_PDF#nameddest=SF3
http://www.pnas.org/cgi/data/0911789106/DCSupplemental/Supplemental_PDF#nameddest=SV4
http://www.pnas.org/cgi/data/0911789106/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0911789106/DCSupplemental/Supplemental_PDF#nameddest=ST2
http://www.pnas.org/cgi/data/0911789106/DCSupplemental/Supplemental_PDF#nameddest=SV1
mpi
Cross-Out

mpi
Replacement Text
remove!

mpi
Text Box
Please rescale image to 14 cm width. Illustrator image is attached to email. 


AQ:F

balt4/zpg-pnas/zpq-pnas/zpq99909/zpq0536-09a | mortonk2 | S=9 | 11/5/09 | 13:19 | 4/Color Figure(s): 1,3 | Art: 09-11789 | Input-PNAS

surfaces with additional N-terminally located amphipatic
wedges, inbuilt to generate membrane deformation and tubula-
tion. BAR and N-BAR domains can be extended additionally at
their ends by lipid binding modules, such as PH and PX domains
to localize the proteins at their intended compartment or by
protein—protein interacting modules, like SH3 or PDZ domains.
Our results suggest that FAPP2 also should be included in the
growing repertoire of tubulating proteins. Stahelin et al. showed,
in monolayer assays, that the FAPP1-PH domain also can
penetrate into lipid monolayers and decrease the surface pres-
sure (16). These data are in line with our monolayer assays and
membrane sheet tubulation results. Altogether, these studies
suggest that both membrane binding and tubulation is a property
of the PH domain, which seems to be conserved in FAPP1 and
FAPP2. The combined analytical centrifugation and SAXS
analyses indicate an extended curved shape of the dimeric
protein structure of 30 nm length. Because of the low resolution
of the FAPP2 structure, it is unclear to what extent the curved
shave of FAPP2 contributes to the described tubulation activity
and/or to curvature-sensing activity.

FAPP2 in the Cell Biology Context. Whether FAPP2 exerts mem-
brane tubulating activity in cells is not yet known. However, Godi
et al. reported that in Cos7 cells overexpressing GST-tagged
FAPP2, the protein is present on tubular extensions emanating
from the TGN. We confirmed these results in MDCK cells. The
carriers transporting protein cargo to the plasma membrane
from the TGN are known to be pleiomorphic in shape, forming
tubulovesicular structures and tubules of different lengths (17,
18). FAPP2 is also reported to bind the small GTPase, Arfl,
another protein recently assigned a membrane-tubulating activ-
ity (19-21). It is possible that FAPP2 and Arfl may act together,
inducing membrane deformations leading to tubulation at the
TGN. Our data demonstrate that the GLTP domain and its lipid
target GlcCer do not play a direct role in the tubulation activity
in vitro.

Thus the function of the GLTP domain in FAPP2 remains
unclear. It could be involved in transferring GlcCer to the
cellular site, where GlcCer can be translocated across the
membrane to function as a precursor luminally for complex
glycolipid synthesis either at the TGN or in the ER as suggested
previously (7, 8). However, whether the membrane trafficking
function could be explained solely by the glycolipid—transfer
activity of FAPP2 seems unlikely because reduction of glycolipid
biosynthesis has not previously been demonstrated to have such
inhibitory effects on TGN to plasma membrane transport (22—
24). It is also possible that FAPP2 functions as a sensor for
regulating glycolipid levels in the cell. The presence of GlcCer on
the cytoplasmic side of the TGN membrane could serve as a
signal for FAPP2 to bind. It would do so by coincidence, binding
to PI (4)P, Arfl, and potentially other factors. This ensemble
would contribute to the formation and tubulation of transport
carriers, which exit from the TGN to deliver both its protein and
(glyco)lipid cargo to the cell surface. A feedback mechanism
would limit GlcCer translocation from the cytosolic to the
luminal leaflet when LacCer and other downstream glycolipids
accumulate in the luminal leaflet of the TGN. Such a function
would be in keeping with the proposition that lipid transfer

1. Folsch H (2008) Regulation of membrane trafficking in polarized epithelial cells. Curr
Opin Cell Biol 20:208-213.

2. Schuck S, Simons K (2004) Polarized sorting in epithelial cells: Raft clustering and the
biogenesis of the apical membrane. J Cell Sci 117:5955-5964.
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proteins in general could function as biosensors regulating lipid
levels in the cell (24-26). Obviously this speculative hypothesis
would need to be tested experimentally. Nevertheless the dem-
onstration that FAPP2 has membrane tubulation activity brings
in a new dimension in the mechanistic dissection of FAPP
function in membrane trafficking.

Materials and Methods

In Vitro Tubulation of Flat Membrane Sheets. A system similar to that described
in Roux et al. was used (9). Briefly, two 1-ul droplets of a 10 mg/ml lipid stock
solution with indicated composition (see Results) were spotted on each cov-
erslip and allowed to dry. To remove any trace chloroform, lipid-coated
coverslips were further dried under vacuum for at least 1 h. Lipids were then
rehydrated for 20-30 min in an incubator (37 °C, 10% CO,, and 100% humid-
ity). A small reaction chamber was built by placing the coverslip over a glass
slide with strips of double-sided tape as spacers. Subsequently, lipids were
fully rehydrated by injecting 15-20 ul buffer (20 mM Hepes-NaOH, pH 7.4, 100
mM Nacl, 1 mM MgCl,, 1 mM DTT), containing 0.1 mg/ml casein (C7078, Sigma)
into the chamber. A 5-ul quantity of protein solution (1 mg/ml) was then
injected and the deformation of membrane sheets was recorded by DIC
microscopy on a Zeiss Axioplan 2 microscope (Carl Zeiss Jena) equipped with
EC Plan-Neofluar 10x/0.3 objective.

X-Ray Scattering Experiments and Data Analysis. SAXS data were collected at
the updated X33 beamline (27-29) using a MAR345 image plate detector
(MarResearch, Norderstedt, Germany) located at the EMBL Hamburg Outsta-
tion located on a bending magnet (sector D) on the storage ring DORIS IlI of
the Deutsches Elektronen Synchrotron (DESY). A single photon counting pixel
detector system (PILATUS 500k) was used as detector. A sample-detector
distance of 2,675 mm was used, covering the range of momentum transfer
0.1<s<5nm~" (s = 4msin(0)/A, where 0 is the scattering angle and A = 0.1504
nm is the x-ray wavelength). The s-axis was calibrated by the scattering pattern
of Silver-behenate salt (d-spacing 5.84 nm). The scattering patterns from
3myc-FAPP2-Hisg protein was measured at protein concentrations of 3.87 and
7.74 mg/ml. Protein sample was prepared in Dulbeccos’s PBS and 20 mM DTT
as radical quencher. Four repetitive measurements of 30 s at 15 °C of the same
protein solution were performed to check for radiation damage. All initial
data treatment was performed with the program PRIMUS (30), including
estimation of the radius of gyration and the maximal dimension of the protein
after Fourier transformation of the scattering intensity.

Fortheinitial shape analysis, 20 independent ab inito calculations using the
program DAMMIN (31) were preformed. A dimeric symmetry constraint was
applied, and x2 values obtained by this standard procedure ranged from 1.3 to
1.7. The resulting low-resolution envelope models were averaged accounting
for the ambiguity of solution scattering methods. Low NSD variations indicate
high structural similarity of these models, and a total of 18 models were used
for the averaging.

A more elaborated analysis method is used by program BUNCH (32). Based
on a homology model of the PH domain and the x-ray structure of the human
GLTP protein (PDB 1swx), a structural model for the entire protein was derived.
Here also the dimeric constraint was applied. To account for the lack of
high-resolution information the proline-rich domain was modeled as random
chain amino acids. The best-best fit model was obtained by additional con-
strains were chain interactions in the proline-rich domain between 260 and
280 were defined, decreasing the number of orientations of the flexible random
chain amino acids. Here also 20 independent BUNCH runs were performed.
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S| Materials and Methods

Reagents. Chemical cross-linker BS3 was from Pierce/Thermo
Scientific. Ni>"-NTA Superflow was supplied by Qiagen, and
Glutathione Sepharose 4B as well as Superdex 200 HR 10/30 by
GE Healthcare Europe GmbH.

Cloning of FAPP2 and Plasmid Construction. Total RNA was isolated
from Madin-Darby canine kidney II (MDCK II) cells using
RNAeasy Qiagen kit. RT-PCR was performed using SuperScript
reverse transcriptase (Invitrogen) with a poly dT oligo as primer.
The cDNA was used as template for PCR. According to FAPP2
sequence predicted by Bioinformatics (provided by MPI-CBG
Bioinformatics Facility), primers for FAPP2 were designed as
following: forward primer5’-ATG GAG GGG GTG CTG TAC
AAG T-3' and reverse primer 5'-TAC CAC CTC ATC AGA
CTC CAG-3'. The PCR products were cloned into pCR4-TOPO
vector using TOPO TA Cloning kit (Invitrogen), and processed
for sequencing. FAPP2 was then cloned into site Sall/Notl of
pET-24d (Novagen), which was modified with a 3myc-tag at the
N terminus, or into the EcoRI/Sall site of pGEX-6P-1 (GE
Healthcare). For the construction of mCherry-FAPP2, FAPP2
was inserted into the Sall/Xhol site of a modified pGEX-6P-1,
in which mCherry was in frame with the EcoRI/Sall inserted
mCherry. GST-tagged FAPP2 mutants R18L, W407A were
created using the QuikChange XL site-directed mutagenesis kit
(Stratagene, La Jolla, CA) according to the manufacturer’s
manual using primers as described in Table S1. All constructs
were sequenced in full.

Protein Expression and Purification. Transfected BL 21(DE3) cells
were grown in LB medium at 37 °C, induced with 0.1 mM
isopropyl-p-D-thiogalactopyranoside (IPTG), and grown for
another 16-20 h at 18 °C. Purification of recombinant proteins
from E. coli lysate protein was accomplished by Ni>™ and
glutathione affinity chromatography, respectively, following the
manufacturer’s instructions. PBS containing 9.6 mM B-mercap-
toethanol was used for all purification steps. For the elution of
His-tagged protein, an imidazole step gradient (40 mM, 60 mM,
80 mM, 100 mM, 120 mM, and 200 mM) in elution buffer was
applied with five column volumes in each step. Fractions con-
taining FAPP2 were pooled and subsequently applied on a
Superdex 200 HR 10/300 column (GE Healthcare) equilibrated
in PBS with 9.6 mM B-mercaptoethanol. Protein containing
fractions were pooled and concentrated by ultrafiltration in
YM-100 units (Millipore). In case of GST-FAPP2, the size
exclusion chromatography was optionally performed.

Lentivirus Production. EGFP-FAPP2 was cloned into the lentiviral
pRRLSIN. cPPT. SFFV/GFP. WRPR (provided by Marino
Zerial) using the restriction sites BamHI and Sall. The intrinsic
GFP fusogenic site of the aforementioned lentiviral vector was
removed through this insertion. The construct was further
transfected into HEK 293T cells using helper plasmids pVSVG,
pSPAX2 and Lipofectamine 2000 transfection reagent (Invitro-
gen). After 48 h of infection, supernatants bearing lentiviral
particles were used to infect MDCK II epithelial cells. EGFP-
FAPP2 expression was visible in 3 days, and the maximum
expression was achieved within 5-6 days.

Cao et al.jwww.pnas.org/cgi/content/short/0911789106
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Immunostaining and Confocal Microscopy. Wild-type and TGN38-
myc stable MDCK 1I cell lines were grown over night on
coverslips, fixed, and immunostained as described elsewhere (1
Images were analyzed using LSM-510 META laser scanni
confocal microscope with a plan-Apochromat 100x immersion
oil objective (Carl Zeiss Jena). The antibodies were used in
following dilutions: rabbit anti-furin (Affinity Bioreagents)
1:500, mouse anti-FAPP2 (clone A655-A08-2, prepared by the
Antibody Facility, MPI-CBG Dresden) 1:100 and rabbit anti-
myc (Santa Cruz) 1:500.

Surface Pressure Measurements of Lipid Monolayers. Monolayer
tests were performed via the surface pressure measurement by
the Wihelmy plate (Whatman Chrl), using a trough with a
constant surface area 24 cm? (volume 35 ml) and a Nima
tensiometer (Nima Technology) at room temperature. The
monolayer was formed in a dropwise manner by the injection of
a chloroform solution of a mixture of POPC:PI (4)P 98:2 mol%
(1 mg/ml) onto the subphase. The measurements were per-
formed after evaporation of the organic solvent (15 min), at an
initial surface pressure of 30 mN/m (= 1 mN/m). WT-FAPP2
was dialyzed against assay buffer (25 mM Hepes, pH 7.25, 150
mM NaCl, 9.6 mM B-mercaptoethanol) and injected into the
subphase to obtain the indicated concentration. The changes in
the surface pressure were recorded after the system reached
equilibrium (usually after 3 min). The protein concentration in
the subphase was increased by stepwise injection after 5 min. As
a control the respective volume of buffer was injected into the
subphase.

Analytical Ultracentrifugation. A Beckman XL-I analytical ultra-
centrifuge (Beckman Coulter) using an eight-cell 50Ti rotor was
used for the analytical utracentrifugation studies. For both
velocity and equilibrium sedimentation experiments, samples of
FAPP2 protein were prepared in Dulbecco’s PBS including 9.6
mM B-mercaptoethanol. Sedimentation velocity experiments
were carried out by centrifuging a two-sector cell at 40,000 rpm
for 17 h at 4 °C. The absorbance of the sample was measured at
a wavelength of 280 nm throughout the cell. A total of 126
measurements were taken of each sample during the run. These
data were then analyzed by applying the c(s) routine in SEDFIT
(2), with values for the partial specific volume of the protein,
viscosity, and density of the buffer being calculated using
SEDNTERP (3). The resulting values were then converted to
S99 w using SEDNTERP.

Sedimentation equilibrium experiments were carried out by
centrifuging a six-sector cell at 8,000, 11,000, and 14,000 rpm at
4 °C. Each speed was maintained for 20 h, and readings were
then taken once per hour for the next 4 h. These scans were then
compared to ensure that the sample had reached equilibrium.
These data were analyzed using SEDPHAT (4), applying a
single-species model with mass free to vary for the 3myc-FAPP2-
Hiss and a two-species model with mass free to vary for the
GST-FAPP2. The latter model was used to take into account a
low-molecular-weight contaminant <1000 Da that made fitting
with a single species model impossible. The prolate frictional
ratios [f/fp] for both FAPP2 constructs were calculated using
SEDNTERP.
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TGN38

EGFP-FAPP2

Fig. S1. Localization of FAPP2 at the TGN and its tubules. TGN38-myc stable cells were double-labeled with monoclonal A655-A08-2 anti-FAPP2 (green) and
rabbit anti-myc (red) (A) and rabbit anti-furin (B) antibodies. (Scale bar, 10 um.) (C) EGFP-FAPP2 lentiviral overexpression induced Golgi tubulation. (Scale bar,
5 pum.)
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Fig. S2. Size exclusion chromatography profiles. Affinity purified proteins were loaded on Superdex-200 HR10/30 column after equilibrating with PBS and 9.6

mM B-mercaptoethanol. SDS/PAGE of GST-FAPP2 (A) or 3myc-FAPP2-Hisg (B) protein samples before SEC is depicted in insets. FAPP2 containing fractions are

indicated by gray-shaded areas. For biochemical and structural experiments, only fractions after a retention volume of =10 ml were used. The GST-FAPP2 protein

eluted as polydispersed protein indicated by additional shoulders at early retention volumes, whereas 3myc-FAPP2-Hisg eluted in a single peak. Second peak in

the 3myc-FAPP2-Hisg profile represents low-molecular-weight impurities, labeled with asterisk. Black arrows indicate the column void volume. For SDS/PAGE of
ZSF3 the purified proteins after SEC, see Fig. S3.
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Fig. S3.

Gradient gels.
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L}

i ¥oth proteins are monodispersed in solution with S values of 3.31(3myc-
FAPP2-Hisg, squares) and 3.84 (GST-FAPP2, circles) respectively (see SI Materials and Methods). (B) GST-FAPP2 and 3myc-FAPP2-Hisg were incubated with the
chemical cross-linker BS? at indicated concentrations at room temperature for 30 min. Cross-linking products were resolved on 3-8% NuPAGE Tris-Acetate
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Fig. S4. FAPP2 removes lipids on a monolayer lipid surface. Surface pressure changes (AIl) after injection of WT-FAPP2 and mutants in the subphase of POPC
and PI (4)P (98:2 mol%) lipid monolayers. Isotherm was normalized to the initial established IT (=3 mN/m).
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196.00 sec

Movie S1

Legend: The PH domain of FAPP2 is involved in tubulation
deficient FAPP2-R18L lacks tubulation activity. Lipid mixtu
PI(4)P:GlcCer (96:2:2 mol%). Tubulation was initiated by in
(1mg/ml) into the reaction chamber.
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Legend: The PH domain of FAPP2 is involved in tubulation activity. PI(4)P binding deficient FAPP2-R18L lacks tubulation activity. Lipid mixture was consisting of POPC:PI(4)P:GlcCer (96:2:2 mol%). Tubulation was initiated by injection of 5 μl FAPP2 (1mg/ml) into the reaction chamber.
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Table S1. Primers for GST-FAPP2 mutants

Mutant Primer

R18L Forward 5'- CTG AGC GGT TGG CAG CCT CTATGG TTCCTA CTC TG -3’
Reverse 5'- CAG AGT AGG AAC CAT AGA GGC TGC CAA CCG CTCAG -3’

W407A

Forward 5'- GCT ACA GAA GCC CTC TTG GCG CTG AAG AGA GGT CTC —3'

ST1

Cao et al.jwww.pnas.org/cgi/content/short/0911789106
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Table S2. Analytical ultracentrifugation results

3myc-FAPP2-Hisg GST-FAPP2
S 3.31 £ 0.258 3.84 £0.184
S° 20w 5.25 5.97
MW from equilibrium 129 kDa = 1.6 166 kDa + 3.3
Prolate frictional ratio (f/fp) 1.71 1.76
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