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Abstract. The Stranski–Krastanow growth of SiGe islands by deposition of
SiGe alloys instead of pure Ge allows us to control both the Ge concentration
and gradient in the islands. In contrast to the commonly found increasing Ge
content with island height, growth conditions for islands with nearly constant
and even decreasing Ge profile along the growth direction were found. Atomic
force microscopy, transmission electron microscopy and high-resolution x-ray
diffraction were employed to determine the islands’ size, shape, lateral distance
and Ge composition. Efficient photoluminescence is emitted from these islands.
We show that for islands with higher Ge contents at the bottom than at the
apex, transitions between heavy holes and electron1xy states in the compressive
Si regions around the island’s circumference dominate the photoluminescence
spectra instead of the usually observed recombination between heavy holes and
electrons in the 1z valleys in the tensile Si above the island’s apex. The relative
importance of the 1xy transitions is enhanced for lateral island distances less
than 10 nm, where overlapping strain fields of neighbouring islands increase the
compressive strain in the Si region between them. At intense photoexcitation,
recombinations between electrons in the 1z valleys and light holes within the
islands appear in the photoluminescence spectra. These so far, for SiGe islands,
unobserved transitions were identified by a quantitative modelling of the band
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structure within the islands and in the surrounding Si matrix based on full 3D
simulations using the nextnano3 package with the experimentally obtained island
shape and composition as input parameters.
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1. Introduction

The necessity of adding optoelectronic building blocks to the standard Si CMOS technology for
managing the ever growing amount of data is well documented in the literature [1, 2]. Although
Si/Ge-based, monolithically integrated modulators [3] and detectors [4] with competitive bit
rates up to 30 Gb s−1 have been realized, as efficient electrically driven radiation sources only
hybrid solutions based on III–V lasers bonded to an SOI platform have been demonstrated up
to now [5].

For the monolithic integration of emitters into Si-based electronics, SiGe quantum dots
have been identified as promising candidates, since the three-dimensional (3D) confinement of
electrons and holes enhances the probability of photon emission that is low in Si and Ge bulk
crystals because of the indirect nature of their fundamental band gap. Thus, photoluminescence
(PL) from self-assembled Ge islands (grown in the Stranski–Krastanow growth mode) on (001)
Si substrates has been studied ever since their first observation (see for example [6]–[18]). As an
important step towards applications, it has been shown that the statistical size distribution and
thus the inhomogeneous broadening of the PL emission spectrum of an island ensemble can be
reduced by pre-structuring of the Si substrates [19]–[22]. However, despite the large amount of
data collected by many authors, a systematic comparison of the optical data with realistic band
structure calculations for the islands and the surrounding Si substrate and Si capping layer is
still lacking. In this paper, we aim to fill this gap with a systematic study of SiGe island growth,
their structural characterization using atomic force microscopy (AFM), transmission electron
microscopy (TEM) and x-ray diffraction (XRD) studies, PL investigations at low temperature
and an explanation of the features observed in PL based on 3D band structure simulations
for the islands and the surrounding Si matrix. In particular, by intentionally varying the Ge
concentration in the islands along the growth direction, the localization of the hole ground state
within the island was controlled. The influence of the localization of the holes on the overlap
with the electron wave functions confined to the Si matrix (type II band alignment [11]), and
thus on the PL efficiency, was investigated in three groups of samples containing islands with
either increasing, almost constant or decreasing Ge concentration along the growth direction.
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Table 1. Structural island parameters as determined from AFM and XRD
experiments used as input parameters for the nextnano3 [23] simulations. All
SiGe alloy layers were grown at a temperature (rate) of 650 ◦C (0.2 Å s−1).

Sample Radius (nm) Height (nm) hconst (nm) xGe,bot (%) xGe,top (%)

A 65 33 4.6 28 55
B 90 30 3.6 40 38
C 81 31 5 39 36
D 90 39 0 36 20
E 103 49 15 31 20
F 90 37 9.6 34 16

The paper is organized as follows: in section 2, we present the results on the molecular
beam epitaxial growth of the islands and their structural characterization emphasizing the
small lateral distance of the islands in our samples. In section 3, the PL spectra and the large
observed PL efficiency are discussed; in section 4, the results of the band structure calculations
for the heavy hole (HH) and light hole (LH) states within the islands, for the 1z and 1xy

conduction band states in the compressively and tensile strained Si around the islands and for the
influence of the lateral island distance on these states are presented. In section 5, we compare
the measured PL spectra with the calculated transition energies, emphasizing the influence of
localization of HH and LH states within an island on the observability of the PL transitions;
finally, we summarize our findings in section 6.

2. Growth and structural investigations

SiGe islands were grown by solid source molecular beam epitaxy (MBE) in the
Stranski–Krastanow growth mode. On top of (001) Si substrates, first a Si buffer layer was
deposited at temperatures ramping from 550 to 650 ◦C and at a growth rate of 1 Å s−1, followed
by deposition of SiGe alloys. During SiGe deposition the Ge content was either increased or
decreased with different gradients. Together with the intermixing and Ge segregation during
deposition, different Ge gradients in the islands result, as determined by XRD (see table 1).
The growth rate and temperature of the SiGe alloy was kept constant at 0.2 Å s−1 and 650 ◦C,
respectively. A constant Si and Ge flux reflecting the target alloy composition at the base
of the island was initially kept until island nucleation was observed in the reflection high-
energy electron diffraction (RHEED) pattern. The thickness of this layer with constant alloy
composition xGe,bot is given for the various samples by hconst in table 1. Subsequently, the Ge
flux was ramped to reach the Ge content xGe,top at the top of the islands given in table 1. After
island growth was completed, a part of the wafer intended for AFM measurements was covered
by a mechanical shutter before the capping with Si was initiated. After a growth interruption of
∼5 min during which the substrate temperature was decreased to 450 ◦C, the growth of the Si
capping layer was started. After 10 nm Si deposition the temperature was ramped up to 650 ◦C
during growth. This procedure ensured that the dot shape, size and composition did not suffer a
substantial change during capping, while at the same time the defect density was kept low. The
total Si capping layer thickness for all samples was 150 nm.

New Journal of Physics 11 (2009) 063021 (http://www.njp.org/)
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Figure 1. AFM (a) and TEM (b) images of sample B indicating small lateral
inter-island distances and large, dislocation-free islands.

The surface morphology of the uncapped region of each sample was investigated by AFM
in the tapping mode. A typical AFM picture obtained from sample B is shown in figure 1(a). The
SiGe islands have a dome shape with dominant {1, 1, 3} and {15, 3, 23} facets. For the growth
conditions employed, a relatively high density of the SiGe islands in the range 2–4 × 109 cm−2

is observed. As a consequence of the high density and the large base diameters of the domes in
the range between 130 and 200 nm, in all samples the islands nearly touch each other. A similar
surface morphology of domes formed during SiGe deposition is reported in [24]. Some of the
samples were investigated by cross sectional TEM. As an example, in figure 1(b) the TEM
micrograph for sample B is shown. From figure 1, it is evident that the 2D layer of thickness
hconst that was grown with constant Ge composition is virtually completely integrated into the
island most probably via trench formation around the islands [24]. Owing to the small inter-
island distance, it cannot be conclusively judged on the basis of the TEM pictures whether or
not a few-mono-layers-thick wetting layer (WL) remains between the islands. However, the
volume possibly occupied by such a WL is vanishingly small compared to the island volume
and thus no WL is included in the simulations discussed in the following. In none of the islands
were dislocations found in the TEM micrographs. In addition, the TEM data were used to check
the inter-island spacings and island aspect ratios, and good agreement between the TEM data
and the AFM data was found.

The AFM scans give the island sizes and information on the size distribution as well as
on their mutual distance. To obtain the Ge distribution and the strain state in the islands, we
performed XRD measurements. Reciprocal space maps (RSMs) around asymmetrical Bragg
peaks were recorded for all samples. For samples with large SiGe island volumes, the in-house
Seifert XRD3003 high-resolution diffractometer equipped with a Göbel mirror to increase the
primary beam intensity provided a sufficient signal-to-noise ratio to record the RSMs. For other
samples we used synchrotron radiation at beamline BW2 of HASYLAB in Hamburg, Germany.
In the former case, a wavelength of 1.54 Å (Cu Kα radiation) was used, and the intensity
was recorded by a linear position-sensitive detector, giving a dynamic range of five orders of
magnitude. In the latter case, a shorter wavelength of 1.24 Å was used to reduce atmospheric
attenuation, and the scattered radiation was recorded using a 2D position-sensitive detector,
giving a dynamic range of seven orders of magnitude. RSMs are shown in figure 2. Besides
the Si substrate peak (labelled ‘Si’), diffuse scattering from the partially relaxed SiGe islands
(labelled ‘SiGe’) is clearly visible.

New Journal of Physics 11 (2009) 063021 (http://www.njp.org/)
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Figure 2. XRD RSMs around the (2, 2, 4) Bragg reflection for samples A and
F. The labels Si and SiGe refer to the signal from the Si substrate and from
the partially relaxed SiGe islands, respectively. The intense lines labelled D are
detector array artifacts due to the huge intensity of the Si substrate peak. The
logarithm of the measured x-ray intensity is colour coded with dark red (blue),
indicating maximum (zero) intensity. The results of the simulations are shown
by the blue contour lines. For the heights and base diameters given in table 1 for
samples A and F, the best fits were achieved assuming the Ge gradients given in
the plot.

To analyse the XRD data, finite element modelling (FEM) was performed using the
COMSOL multiphysics FEM suite. For the geometry of the SiGe islands we used the shape
of a rotational paraboloid with heights and diameters as determined by AFM measurements.
Neglecting the particular faceted shape of the island and approximating it with a round shape
has no significant influence on the analysis, since the elastic relaxation is mainly governed
by the aspect ratio of the islands [25, 26] and the Ge distribution. The Ge profile entered the
simulations as a fitting parameter. We assumed linear profiles between the bottom and top
Ge content values xGe,bot and xGe,top and no lateral Ge gradients. From the FEM simulations,
we obtain the strain field inside the SiGe islands as well as the surrounding Si matrix. As
discussed in a previous paragraph, no clear evidence of a WL was found by TEM. Also, in the
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Figure 3. Low-temperature (10 K) PL spectra for samples A–F excited by an
Ar+ laser operating at 514 nm. Spectra measured at excitation intensities of 5
and 240 W cm−2 are shown by the full lines in (a) and (b), respectively. For
comparison, in (b), also the spectra measured at 5 W cm−2 are shown by the
broken lines. The arrows indicate calculated transition energies as described
in the text. In (a), the green and red arrows mark transitions from 1xy to HH
states. For the green arrow, the experimentally observed small lateral island
distance (2 nm) and, thus, strongly overlapping strain fields were included
(1o

xy–HH transitions), whereas for the red arrows a large (100 nm) lateral island
spacing and consequently non-overlapping strain fields were assumed (1∞

xy–HH
transitions). The blue arrows indicate the 1z–HH transitions. In (b), the grey
arrows indicate the 1z–LH transitions. The error bars in the top left corners
of both panels indicate the uncertainties in the calculated transition energies
estimated from the uncertainties of the island parameters as discussed in the text.

PL spectra shown in figure 3 WL emission lines are absent. Thus the WL was also omitted
in the FEM simulations. Using the strain distribution, we employed kinematical scattering
theory to simulate the diffuse scattering pattern4. The Ge profile was then varied in a fitting
loop to obtain the best correspondence between simulation and experiment (figure 2). This way
the Ge and strain distribution are determined. In the FEM modelling, only one SiGe island is
concerned, while in the XRD experiment a large ensemble of islands (typically ∼5 × 105) is
illuminated. Since the islands are randomly distributed on the substrate, the scattered signal
is the incoherent superposition of the scattering from each individual island, and hence is
proportional to the scattered intensity from a single island. However, it turned out to be crucial
in the simulations to take into account the close proximity of the islands, due to which their
individual strain fields overlap. This was accomplished by restricting the FEM modelling

4 For a review see [27].
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to a region centred around the island and exceeding its diameter in the [1 0 0] and [0 1 0]
directions by the average inter-island distance (i.e. by 2– 4 nm). On this region’s (1 0 0), (1 0 0),
(0 1 0) and (0 1 0) boundaries, the normal component of the displacement field was required to
vanish as those planes represent symmetry planes between adjacent islands. Only with these
FEM boundary conditions modelling the small distance between the islands are the diffraction
patterns reproduced with sufficient precision. Figure 2 shows as representative examples the
XRD data of samples A and F together with the corresponding simulations based on the fitting
parameters listed in table 1.

3. PL spectra

The PL spectra of samples A–F shown in figure 3 were measured for a sample temperature of
10 K using the 514 nm line of an Ar+ ion laser at an intensity of 5 W cm−2 for the excitation.
The spectra were recorded using an InGaAs line detector for energies above 0.78 eV. To access
also the energy range below 0.78 eV, an InAs single element detector was used together with a
lock-in amplifier. In the spectra of all samples, a clear SiGe island-related PL signal is observed
in the spectral range between 0.7 and 0.9 eV together with the characteristic PL emission of the
Si substrate close to 1.1 eV. A comparison of the intensities of the island-related signals and
the Si substrate signals indicates that the PL emission of the islands is rather intense, keeping in
mind that only one island layer is present in our samples. Depending on the sample composition,
this intense island emission can be shifted over a large part of the spectral region important for
telecommunication, and is reduced only by a factor of two by raising the sample temperature
from 10 K up to 77 K (not shown in figure 3).

In the region between 0.78 and 1 eV, additional spectra under a higher excitation intensity
of 240 W cm−2 were measured. These spectra are shown by the full lines in figure 3(b)
together with the spectra measured under 5 W cm−2 excitation intensity (broken lines). From
a comparison of the spectra it becomes evident that increasing the excitation intensity results in
both a broadening of the island-related emission also present at low excitation intensities, and in
the appearance of an additional emission band blue-shifted with respect to the low-excitation-
intensity PL band. This additional band is most prominently observed for samples A, B and C,
weakly present for D and absent for samples E and F. In the following sections, we compare
these experimental findings with the results of energy level calculations for the SiGe islands and
show how they can be correlated with the Ge profiles in the various samples (listed in table 1)
that were intentionally established during growth.

4. Calculation of transition energies

The radiative transitions in this Si/Ge system are indirect both in real and reciprocal space.
Thus, to fully understand the transitions observed in a PL experiment, the complexity of the
confinement situation for electrons and holes in these structures has to be taken into account.
This has been done based on the simulation package nextnano3 [23]. Within nextnano3, in a
first step, the strain fields in the SiGe islands and the Si matrix are calculated by minimizing
the elastic energy. In this calculation, the bulk lattice constant of SiGe alloys was calculated
according to Vegard’s law [28] and the elastic constants given in table 2 were used. The
strain fields calculated by nextnano3 are in excellent agreement with those calculated for the

New Journal of Physics 11 (2009) 063021 (http://www.njp.org/)
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Table 2. Material parameters used in the simulations. The values for a SiGe alloy
are calculated by linear interpolation from the respective values for Si and Ge.

Si Ge

Deformation potentials (eV) [29]
1-valley, hydrostatic (absolute, ac) 3.3 2.55
1-valley, uniaxial (41u ) 8.6 9.42
Valence band, hydrostatic (absolute, av) 1.8 1.24
Valence band, [100]-uniaxial (b) −2.1 −2.86
Valence band, [111]-uniaxial (d) −4.85 −5.28

Effective masses
1-valley, transverse (m1,t ) [30] 0.19 0.195
1-valley, longitudinal (m1,l) [30] 0.916 0.93
HH, spherically averaged (mHH) [31] 0.54 0.34
LH, spherically averaged (mLH) [31] 0.15 0.043

Elastic constants (GPa) [32]
c11 165.77 128.53
c12 63.93 48.62
c44 79.62 66.80

simulation of the XRD results (using the FEM simulation package). As an example, the non-
vanishing components (εxx , εyy , εzz, εyz) of the strain tensor in the [010] × [001] symmetry
plane of sample B are shown in a 3D plot in figure 4. Due to the elastic relaxation of the SiGe
island, the strain in the Si matrix above and below the island is compressive along the growth
direction, whereas along the circumference it is compressive in the lateral direction. Within the
SiGe island, lateral compressive strain dominates. Figure 4 also shows the type of rectangular,
manually set mesh that was used for the nextnano3 simulations. Mesh spacings between 2.75
and 11 nm (0.5 and 10 nm) were used in the lateral (growth) direction, the denser mesh regions
being located in and in the vicinity of the island, where wave functions are expected to be
localized.

In a second step of the nextnano3 simulations, the strain-induced spatial variation and
splitting of the conduction and valence band edges are calculated by linear deformation potential
theory. The deformation potential constants for SiGe were obtained by linear interpolation
between the respective values for Si and Ge given in table 2. The band offset between the average
of the Si and Si1−xGex valence bands for unstrained bulk crystals [Eav = Eav(SiGe)− Eav(Si)]
was calculated according to Eav = 580x (meV) [29]. The unstrained band gap of a SiGe alloy
was calculated according to [33]. Using these equations, the total variation of the conduction
and valence band edges as a function of the 3D position in and around the island is calculated
as outlined in [29]. Due to strain, the six-fold degeneracy of the Si 1 conduction band minima
is locally lifted into three two-fold degenerated valleys (1x , 1y , 1z) oriented along the [100],
[010] and [001] reciprocal space directions. In addition, also the degeneracy of the HH and LH
valence band edges is lifted.

In the last step of the nextnano3 simulations, in each of these 3D potential landscapes, a
single band, effective mass Schrödinger equation is solved for the1x ,1y ,1z, HH and LH wave
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Figure 4. Non-vanishing components of the strain tensor (εxx , εyy , εzz and εyz) in
the [010] × [001] symmetry plane of sample B. For all samples, meshes similar
to that shown in the 3D surfaces were used for the nextnano3 simulations.

functions and eigenenergies using the effective masses listed in table 2. In figure 5, the results
of these calculations based on the structural parameters listed in table 1 are shown as 3D iso-
surface plots for samples A–F on common x, y, z scales. The parabolic surface of the islands is
shown in yellow. Non-yellow surfaces confine spatial regions within which the squared moduli
of the wave functions (ψ∗ψ) are larger than 0.03 max(ψ∗ψ). The blue, red and grey surfaces
refer to the 1z, HH and LH wave functions, respectively. The green surfaces confine the 1xy

wave functions. A comparison of figures 4 and 5 shows that the 1z ground state is located in
the Si regions above the apex of the island where the Si is compressively strained along the
growth direction, whereas the 1xy ground states are localized in the Si matrix around the base
circumference of the islands in the regions of large lateral compressive strain. Both HH and LH
ground states are confined to the interior of the islands. Their relative distributions within the
island are determined by an interplay between Ge profile and strain as will be discussed in more
detail in section 5.

Note that in the results of the nextnano3 calculations shown in figure 5, the 1-valleys
in the two lateral directions are no longer degenerate nor do they show the HH states four-
fold symmetry. This breaking of the symmetry is caused by the choice of periodic boundary
conditions with different periods in [1, 0, 0] and [0, 1, 0] directions. In [1, 0, 0] direction, a period
only 2 nm larger than the island diameter is assumed. This choice of the period is consistent with
the results of the AFM scans that show that the islands are nearly touching each other. Also, in
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Figure 5. Iso-surface plot of the wave functions’ squared moduli ψ∗ψ and
island surfaces (yellow) for samples A–F. The green, blue, red and grey surfaces
confine regions in that ψ∗ψ > 0.03 max(ψ∗ψ) for the 1xy , 1z, HH and LH
states, respectively. The labels indicate the eigenenergies with respect to the
average of the three valence bands at the Ŵ-point of an unstrained Si bulk crystal.
In the lateral direction, periodic boundary conditions with 2 nm (100 nm) in
[1, 0, 0] ([0, 1, 0]) directions were assumed in order to investigate the influence
of strongly (non) overlapping strain fields on the 1o

xy (1∞
xy) eigenstate energies.

This breaking of the four-fold lateral symmetry is also reflected in the plots of
the HH wave functions.

New Journal of Physics 11 (2009) 063021 (http://www.njp.org/)
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Figure 6. Variation of 1xy and 1z eigenenergy with lateral island distance for
sample B. For distances smaller than 10 nm, the 1xy states become the electron
ground states.

the simulations of the XRD, a 2–4 nm lateral separation of the islands had to be assumed as a
prerequisite to achieve good agreement between measured and simulated XRD maps. In [0, 1, 0]
direction, a 100 nm spacing between neighbouring islands was assumed in the calculations in
order to quantify within one run of the computationally expensive simulation the influence
of the strongly overlapping strain fields of the closely spaced islands on the energy levels of
the 1xy valleys. As an example, the dependence of the 1xy and 1z ground state energies on
the lateral period is shown in figure 6 for sample B. At a lateral island distance around 10 nm,
the energy of the1xy states is reduced below that of the1z states so that below this distance the
1xy states become the electron ground states. In figure 5, the1xy ground state energy calculated
for strongly overlapping strain fields are labelled 1o

xy , whereas the results for isolated islands
are given by the 1∞

xy values. The influence of the overlapping strain fields on the HH ground
state energies is less significant. For samples A–F, typically only ∼8 meV lower HH ground
state energies are calculated if 100 nm island spacing is assumed instead of 2 nm. All labels
in figure 5 refer to the ground state energies of the respective valleys, where the origin of the
energy scale is set to the average energy of the three valence bands of unstrained bulk Si.

5. Analysis of the PL spectra

The identification of the observed PL transitions is based on the simulations of the ground
state wave functions for electrons and holes shown in figure 5. The samples investigated in
this work contain islands that can be grouped into three categories: islands with a significantly
larger Ge content at the apex than at the base (positive Ge gradient, sample A), islands with
almost constant Ge concentrations (samples B and C) and islands with a significantly smaller
Ge concentration at the apex than at the base (negative gradient, samples D–F).

The sign of the Ge gradient most obviously determines the localization of the HH and LH
ground states in the islands. For islands with a strong positive Ge gradient, both LH and HH
wave functions are localized at the apex of the islands (A). For islands with nearly constant Ge
concentration (B and C), the HH ground states are localized at the base circumference of the
islands, whereas the LH states are repelled from the circumference due to the strain, but are
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otherwise smeared out over most of the island volume. In islands with negative Ge gradients
(D–F), the LH states are in addition repelled from the apex of the island. Thus, they form a disc
close to the islands’ bases that remains radially separated from the HH states due to strain.

The overlap between the wave functions of the initial electron and the final hole states
determines the luminescence efficiency between these states. Based on this rule, different
transitions are expected to be dominant in islands with large positive and negative Ge gradient.
As shown in figure 5, for islands with significantly positive Ge gradient (sample A), the largest
overlap exists between 1z and HH ground states, whereas the overlap between 1xy and HH
ground states is negligible. Thus we conclude that the PL emission of sample A at small
excitation intensity (shown in figure 3(a)) is due to a 1z–HH transition. The corresponding
PL transition energy is calculated by subtracting HH from 1z energy as given in figure 5. The
result is indicated by the blue arrow in the PL spectrum labelled A in figure 3(a). Also shown
in figure 3(a) are the calculated energy differences between the HH ground state and the states
labelled 1o

xy and 1∞
xy in figure 5 by the green and red arrows, respectively. For sample A, the

values of all three calculated transition energies are within the width of the observed PL band
so that in this case experimentally no conclusions on the nature of the transition can be drawn.

As shown in figure 5, for nearly constant Ge concentration and negative Ge gradient the
overlap of the HH ground state with the 1z states vanishes. Instead, a finite overlap between
HH and the 1xy states is calculated. Thus, contrary to sample A we expect that 1z–HH
transitions do not occur in these samples. Whether or not 1xy–HH transitions are observable
instead depends then on the occupation of the 1xy states. For isolated islands with vanishing
overlap of the strain fields of adjacent islands, the 1xy states would not be the electron ground
states (compare 1∞

xy and 1z values in figure 5 for samples B–F) and, in this case, any 1∞
xy–1z

electron relaxation would effectively reduce the 1∞
xy–HH PL yield. However, the strain field

overlap due to the dense packing of the islands in our samples results in a reduction of the
1xy ground state energies of samples B–F (zero and negative Ge gradient) below that of the
1z states (compare 1o

xy and 1z values in figure 5 for samples B–F). Thus, 1o
xy–1z relaxations

cannot occur and in this case an efficient 1o
xy–HH PL emission, as observed in samples B–F,

is expected. Also the observed PL peak positions especially for the samples with negative Ge
gradient (D–F) indicate 1o

xy–HH transitions, since the calculated energies of the 1z–HH and
1∞

xy–HH transitions (marked by the blue and red arrows in figure 3(a)) are significantly too
large and only the calculated 1o

xy–HH energies (green arrows in figure 3(a)) fit reasonably.
We want to point out that without the correct inclusion of the overlapping strain fields, for
the samples with negative gradient (D–F) no convincing agreement between simulated and
observed PL spectra could be achieved based on the measured structural parameters of the
islands. The remaining small, seemingly systematic overestimation of the transition energies
by the nextnano3 calculations is most probably due to the uncertainties in the values for the
absolute deformation potential parameters ac and av listed in table 2. These parameters are
the proportionality factors between the hydrostatic strain and the absolute energetic positions
of conduction and valence bands in Si and Ge and thus are hardly accessible experimentally.
Therefore, the values reported in the literature scatter considerably [29], [34]–[36]. In addition,
exciton binding energies were not included in the calculation of the PL transition energies.
In [37], a variational method for calculating the exciton binding energies for spherical type II
QDs is presented. Following this work, the exciton binding energies for the present SiGe islands
can be estimated to be smaller than 10 meV. Although the inclusion of the exciton binding
energy would shift, for almost all samples (B–F), the calculated transition energy towards the
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observed transition energy, the size of this correction is regarded as insignificant compared to
uncertainties in both the deformation potentials listed in table 2 and the structural parameters
listed in table 1. Out of these structural parameters, the uncertainties in the Ge concentrations
determine the uncertainties in the calculated transition energies most significantly, whereas the
uncertainties in the island dimensions have a vanishing influence due to the small confinement
energies of these large islands. Because of the localization of the holes in the Ge-rich region,
the energies of those states are most sensitive to variations in the Ge concentration (∼ 7 meV
energy shift per percentage absolute concentration variation). From the analysis of the XRD
maps as described in section 2, the Ge concentrations xGe,bot,top can be determined with an
uncertainty of ±1.5% absolute, resulting in an uncertainty of the calculated PL transition
energies of ∼20 meV. Additionally, for the 1o

xy–HH energies, statistical variations of the inter-
island distances cause uncertainty. From figure 6, this uncertainty is estimated at 15 meV, which
corresponds to the variation of the inter-island distance between 2 and 8 nm, the latter distance
being defined by the transfer of the ground state from the 1o

xy to the 1z valley. Thus, 25 meV
results as an overall uncertainty for the 1o

xy–HH transition energy (indicated by the error bar in
the upper left corner of figure 3(a)).

Figure 3(b) shows that at higher excitation intensity (240 W m−2) a second PL peak at
larger energies is observed for the samples with positive and with vanishing Ge gradient. From
the energetic position, we ascribe this peak to an electron–LH transition. As shown in figure 5,
the LH ground state has vanishing overlap with the 1xy states for all signs of the Ge gradient:
for the islands with negative and vanishing Ge gradients (B–F), the LH states are repelled
from the base circumference along which the 1xy (and HH) states are localized due to the
strain. For positive Ge gradients, both HH and LH are localized at the apex of the islands, well
separated from the 1xy states. Thus, no 1xy–LH recombination can be expected. On the other
hand, for positive and vanishing Ge gradient, a finite overlap between 1z and LH states exists
that becomes smaller as the Ge gradient becomes smaller. In the experimental data shown in
figure 3(b), the calculated 1z–LH transition energies are marked by the grey arrows (∼20 meV
uncertainty in the arrow positions due to the uncertainty in the Ge concentration is indicated
by the error bar in the top left corner of figure 3(b)). Except for sample A, the position of the
additional peak agrees very well with the calculated 1z–LH transition energy. Moreover, the
observed intensity of the PL signal at the calculated 1z–LH transition vanishes for the samples
with negative gradient as predicted by our simulations. The good agreement of the calculated
transition energies as well as the absence of the additional PL line for the samples with negative
gradient confirm our assignment of this line to 1z–LH transitions.

6. Summary

A series of MBE-grown SiGe islands with intentionally varied Ge flux to realize different
Ge gradients along the growth direction was investigated with respect to their structural and
optical properties. Based on the simulation of XRD data, the Ge concentration gradients within
the islands were determined consistently for all investigated samples. By a comparison with
the results of nextnano3 band structure calculations, the different Ge gradients allowed for
an investigation of the influence of the regions of confinement for the electrons and holes on
PL spectra, both as far as the recombination energies and the PL efficiency are concerned. In
addition to the 1z– HH transitions involving electron states confined in the tensile strained Si
close to the top of the island and heavy hole states confined within the islands, again close
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to their tops, for appropriate gradients 1xy–HH transitions were also observed. In this latter
case the overlap is between electrons confined at the outer circumference of the islands, i.e. in
the compressively strained Si regions with HH states, which are pushed downwards from the
top to the circumference along the base of the islands. We showed that for the observation of
these transitions a small lateral inter-island distance is decisive, which leads to an increased
compressive strain in the Si regions in between the islands. For lateral inter-island distances
below ≈ 10 nm, these strain fields lower the energies of the 1xy states below those of the 1z

states, resulting in 1xy electron ground states. The observation of additional PL features at
higher energies for higher excitation intensity was attributed to the recombination of electrons
in the 1z states with LH states situated in the centre of the islands.
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