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Abstract

The production of charm and beauty quarks in ep interactions has been mea-
sured with the ZEUS detector at HERA for squared four-momentum exchange
Q% > 20GeV?, using an integrated luminosity of 126 pb~!. Charm and beauty
quarks were identified through their decays into muons. Differential cross sections
were measured for muon transverse momenta p4. > 1.5 GeV and pseudorapidities
—1.6 < n* < 2.3, as a function of p4., n*, Q* and Bjorken z. The charm and
beauty contributions to the proton structure function Fy were also extracted.
The results agree with previous measurements based on independent techniques
and are well described by QCD predictions.
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1 Introduction

The measurement of charm and beauty production in deep inelastic scattering (DIS)
provides a stringent test of quantum chromodynamics (QCD) since the large quark masses
provide hard scales that make perturbative calculations applicable. At leading order,
heavy quarks (HQs) are produced in DIS via boson—gluon fusion (BGF) (v*¢g — ¢q). A
precise measurement of HQ production in DIS therefore provides a direct constraint on
the gluon parton density function (PDF') of the proton.

Charm production in DIS at HERA has been measured previously using reconstructed
charmed mesons [1, 2] or inclusively by exploiting the long lifetime of charmed hadrons [3].
Beauty production in DIS has been studied in events with muons and jets [4, 5] and from
lifetime information [3]. The existing data are generally in good agreement with next-
to-leading-order (NLO) QCD predictions. The largest differences were observed in the
muon analyses [4, 5] where the measured beauty cross section was about two standard
deviations above the theoretical expectation.

In this paper, a simultaneous measurement of beauty and charm production using semi-
leptonic (SL) decays into muons is presented. The fractions of muons originating from
charm, beauty and light flavours (LF) were extracted by exploiting three discriminating
variables: the muon impact parameter, the muon momentum component transverse to
the associated jet axis and the missing transverse momentum, which is sensitive to the
neutrino from SL decays.

The analysis focused on data with large squared four-momentum exchange at the elec-
tron vertex, Q?, where charm measurements based on muons are competitive with those
based on identified charmed mesons, due to the larger statistics. The cross sections for
muons from charm and beauty decays were measured for Q> > 20 GeV?, muon transverse
momenta py. > 1.5GeV and pseudorapidities’ —1.6 < n* < 2.3 as a function of p., n*,
Q?, and of the Bjorken scaling variable x [6] and compared to QCD predictions. The
muon cross sections, measured in bins of x and Q?, were used to extract the heavy quark
contributions to the proton structure function F5 which were compared to previous results
and to QCD predictions.

The data used in this analysis were collected with the ZEUS detector in the 2005 running
period during which HERA collided electrons with energy E. = 27.5 GeV with protons
with £, = 920 GeV corresponding to a centre-of-mass energy /s = 318 GeV. The corre-
sponding integrated luminosity was £ = 126.0 + 3.3pb™".

I The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the
proton beam direction, referred to as the “forward direction”, and the X axis pointing towards the
centre of HERA. The pseudorapidity is defined as n = —1In (tan g), where 6 is the polar angle.



2 Theoretical predictions

Heavy quark production in DIS has been calculated at next-to-leading order (O(a?))

in the so-called fixed flavour number scheme (FFNS) in which only light flavours are
present in the proton and heavy quarks are produced in the interaction [7]. The results
of this analysis have been compared to NLO calculations performed with the HvQDIS
program [8, 9]. The renormalisation and factorisation scales were set to u% = pu% =
Q? + 4m3 and the quark masses to m. = 1.5 GeV and m;, = 4.75 GeV. The PDFs were
obtained by repeating the ZEUS-S [10] PDF fit in the FFNS with quark masses set to
the same values as in the HvQDIS calculation.

To calculate muon observables, the partonic results were interfaced to a model of HQ
fragmentation into weakly decaying heavy hadrons and of the decay of heavy hadrons into
muons. The hadron momentum was obtained by scaling the quark momentum according
to the fragmentation function of Peterson et al. [11] with the parameter . = 0.055 for
charm and ¢, = 0.0035 for beauty. This choice of €. corresponds to ¢, = 0.035 for D*
mesons [12] since kinematic considerations [13] and direct measurements [14] show that,
on average, the momentum of the weakly decaying hadrons is ~ 5% lower than that of
D* mesons.

The semileptonic decay spectrum for charm was taken from a recent CLEO measure-
ment [15]. The decay spectrum for beauty hadrons was taken from the PyTHIA [16]
Monte Carlo (MC), mixing direct SL decays and cascade decays through charm according
to the measured branching ratios [17]. It was checked that the MC described BELLE and
BABAR data [18] well. The branching ratios were set to B(c — p) = 0.096 £ 0.004 and
B(b — u) = 0.209 £+ 0.004 [17].

The uncertainty on the theoretical predictions was evaluated by independently varying
pur and pp by a factor two; by varying the HQ masses simultaneously to (m.,my) =
(1.3,4.5),(1.7,5.0) GeV in the calculation and in the PDF fit; by varying the proton
PDFs by their experimental uncertainty and by varying the fragmentation parameters
within 0.04 < e. < 0.12 (corresponding to 0.025 < €. < 0.085 for D* mesons [19]) and
0.0015 < ¢, <0.0055. As a further check, the fragmentation was performed by scaling the
sum of the energy and the momentum parallel to the HQ direction, E+p)|, rather than the
HQ momentum. The total theoretical uncertainty was obtained by adding in quadrature
the effects of each variation. In the beauty case, the total uncertainty is dominated by
the variation of ug and of the mass while for charm the variation of €. also gives a large
contribution.

The calculations of F§° and F2 in the FFNS were performed using HvQDIS and cross
checked with the QCD evolution code [20] used in the ZEUS PDF fit.



3 Monte Carlo samples

Charm and beauty MC samples were generated using RAPGAP 3.00 [21] to simulate
the leading order BGF process. Parton shower techniques were used to simulate higher
order QCD effects. The QED radiative effects were included through HERACLES 4.6 [22].
The CTEQSL [23] PDFs were used and the HQ masses were set to m, = 1.5 GeV and
my = 4.75 GeV.

Light flavour MC events were extracted from an inclusive DIS sample generated with
DiaNGOH 1.3 [24] which is interfaced to LEPTO 6.5 [25] to simulate the hadronic final
state with the matrix element plus parton shower (MEPS) model and to HERACLES 4.6
to include electroweak radiative corrections. The CTEQ5D [23] parton density was used.

Inelastic J/v¢ production was simulated with CASCADE [26] since that model generally
describes the DIS data of a previous publication [27].

The above samples corresponded to at least five times the luminosity of the data. A
smaller light quark sample was generated with RAPGAP and mixed with the heavy quark
RAPGAP samples for the study of the inclusive DIS control sample (Section 6).

Fragmentation and particle decays were simulated using the JETSET /PYTHIA model [28,
16]. The lepton energy spectrum from charm decays was reweighted to agree with CLEO
data [15]. The MC events were passed through a full simulation of the ZEUS detector
based on GEANT 3.21 [29]. They were then subjected to the same trigger criteria and
reconstructed with the same programs as used for the data.

4 Experimental set-up

A detailed description of the ZEUS detector can be found elsewhere [30]. A brief outline
of the components that were most relevant for this analysis is given below.

Charged particles were tracked in the silicon microvertex detector (MVD) [31] and in the
central tracking detector (CTD) [32], which operated in a magnetic field of 1.43 T provided
by a thin superconducting solenoid. The MVD consisted of a barrel (BMVD) and a
forward (FMVD) section with three cylindrical layers and four vertical planes of single-
sided silicon detectors, respectively. The CTD consisted of 72 cylindrical drift chamber
layers, organised in 9 superlayers covering the polar-angle region 15° < 6 < 164°. After
alignment, the single-hit resolution of the BMVD was 25 pym and the impact parameter
resolution of the CTD-BMVD system for high-momentum tracks was ~ 100 pm.

The high-resolution uranium-scintillator calorimeter (CAL) [33] consisted of three parts:
the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each part was



subdivided transversely into towers and longitudinally into one electromagnetic section
and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections. Under test-
beam conditions, the CAL single-particle relative energy resolutions were o(E)/E =
0.18/+/E for leptons and o(E)/E = 0.35/+/E for hadrons, with E in GeV. The energy of
electrons hitting the RCAL was corrected for the presence of dead material using the rear
presampler detector (PRES) [34] and the small angle rear tracking detector (SRTD) [35].

The muon system consisted of rear/barrel (R/BMUON) [36] and forward (FMUON) [30]
tracking detectors. The B/RMUON consisted of limited-streamer (LS) tube chambers
placed behind the BCAL (RCAL), inside and outside a magnetised iron yoke surrounding
the CAL. The barrel and rear muon chambers cover polar angles from 34° to 135° and
from 135° to 171°, respectively. The FMUON consisted of six trigger planes of LS tubes
and four planes of drift chambers covering the angular region from 5° to 32°. The muon
system exploited the magnetic field of the iron yoke and, in the forward direction, of two
iron toroids magnetised to ~ 1.6 T to provide an independent measurement of the muon
momentum.

The luminosity was measured using the Bethe-Heitler reaction ep — evyp with the lumi-
nosity detector which consisted of two independent systems, a photon calorimeter [37]
and a magnetic spectrometer [38].

5 Event reconstruction and selection

A three-level trigger was used to select events online [30, 39]. At the third level, DIS
events were selected by requiring a scattered electron in the CAL.

A scattered electron with energy E! > 8 GeV was required offline. The primary vertex
had to be within 430 ¢cm in Z from the nominal interaction point.

Muons were reconstructed by matching a CTD+MVD track to a track segment in the
inner or outer B/RMUON chambers or to an FMUON track crossing at least four FMUON
planes. This B/RMUON selection was looser than in some previous analyses, which
required the muons to reach the external chambers [4, 40], allowing a lower threshold for
the muon transverse momentum.

The central track associated to a B/RMUON candidate was required to pass at least
three CTD superlayers and to have at least four hits in the MVD to allow a good impact
parameter measurement. The tracks associated to FMUON candidates were required to
pass at least one CTD superlayer.

Muons were accepted in the kinematic region defined by

P> 15GeV,—1.6 <" < 2.3.



The hadronic system (including the muon) was reconstructed from energy flow objects
(EFOs) [41] that combine the information from calorimetry and tracking, corrected for
energy loss in the dead material. The EFOs were corrected using the measured momenta
of identified muons [40, 42]. A reconstructed four-momentum (p;, p,, p%,, E') was assigned
to each EFO 1.

To select a clean DIS sample, the following cuts on global variables were applied:

(E—Pg)ioy = (E—Pz)n+ E(1—cosf,) C [40,80] GeV
Ye= 1—FE!/(1—cosb.)/(2E.) <0.7
Yis = (E—=Pz)n/(2E,) > 0.01
Q%= (Elsin€.)’/(1—ys)  >20GeV?

where (E—P7), = > cpros B =D s = (E—P7)n/(E—Pz)io [43], and 0, is the electron
polar angle. These cuts restricted the accessible inelasticity y = Q?/(xs) and Q? to
0.01 <y < 0.7 and Q% > 20 GeV?. The DIS variables x and Q? were reconstructed using
the 3 estimators Q% and xy = Q%/(sys) [43].

To remove background events with isolated muons (yy — putp~, J/¢ and T decays) and
residual cosmic muons, an anti-isolation cut was applied by requiring that the hadronic
energy in a cone of radius 1 in the n — ¢ plane around the muon candidate, excluding the
muon itself, was E > 0.5GeV. From MC studies this cut was 98% (90%) efficient for
charm (beauty).

Jets were reconstructed from EFOs using the kp algorithm [44] in the longitudinally
invariant mode [45]. About 96% of the muon candidates were associated to a jet with
transverse momentum (including the muon) pk' > 2.5 GeV and kept for further analysis.

After the above selection, the final sample contained 11126 muons. A subsample of 35
events with more than one muon was found, 28 of which consisted of pu*p~ pairs. A
J/1 signal of 9 events was observed in the py*pu~ invariant mass distribution. The total
contamination from J/v¢ production was estimated with the CASCADE MC, normalised
to the observed J/1 signal. It was found to be (0.9 + 0.3)% and was neglected in the
analysis.

6 Extraction of the charm and beauty fractions

The sample of selected muon candidates contained signal muons from charm and beauty
decays and background from in-flight 7*s and K* decays and from the punch through of
hadronic jets in the muon chambers. The latter two categories, which are subsequently



denoted as “false muons”, were present both in the LF events and in events containing
HQs.
The fractions of muons originating from charm, beauty or LF events were determined

from a simultaneous fit of three discriminating variables sensitive to different aspects of
HQ decays:

e pi¢l the muon momentum component transverse to the axis of the associated jet,

rel __

br
have a harder p5' spectrum than those from charm or light quarks;

Ip* x p’°|/|p’|. Due to the large b mass, muons from beauty hadron decays

e ¢, the distance of closest approach of the muon track to the centre of the interaction
region (beam spot) in the X, Y plane. A positive sign was assigned to § if the muon
track crosses the axis of the associated jet in the jet hemisphere, negative otherwise.
The beam spot position was obtained by fitting the reconstructed primary vertex
distribution for every 2000 ep events. The size of the interaction region was 80x20 jim?
in X xY. Muons from decays of long-lived heavy quarks tend to have positive ¢ while
tracks originating from the primary interaction have a symmetric ¢ distribution around
zero, corresponding to the experimental resolution.

miss||p

ppr ", the missing transverse momentum parallel to the muon direction. The missing
transverse momentum vector was calculated using the electron and the EFOs. The
p?iss‘w distribution has a positive tail of events containing semileptonic HQ decays due
to the presence of the neutrino.

A control sample of inclusive DIS data, selected similarly to the muon sample but without
any muon requirement, was used to test the quality of the simulation of these variables.
The control sample is dominated by LF events, containing, according to MC, about
18% (1%) of ¢ (b) events. The pi! distribution of inclusive tracks in the control sample
was reasonably well reproduced by both the DJANGOH and the RAPGAP inclusive DIS
samples. The small differences (at most 10% at p' > 2GeV) were corrected for by
applying a bin-by-bin correction to the pi distribution of the LF and charm MC samples

iss||

as in a previous publication [40]. The quality of the MC description of pp. was also

evaluated in the control sample by studying a similar pp-balance variable: the missing
transverse momentum parallel to the electron p?iSSHe. The best description of the p?issne
distribution of the inclusive DIS sample was obtained by shifting the hadronic transverse
momentum by (0.1 £ 0.1) GeV in the MC and by increasing the hadronic transverse
momentum resolution by (5 4 5)% in the case of RAPGAP and by (0 + 5)% in the case
of DJANGOH. The resolution on § was studied using tracks in the inclusive DIS sample.
Since it was underestimated in the MC by ~ 15%, a pr-dependent smearing [46] was

applied to the MC, as was done in a previous publication [47].
The fractions of b, ¢ and LF events were obtained by fitting a combination of MC dis-



tributions to the measured three-dimensional distribution of the discriminating variables

[48]. The fit range was |§] < 0.1 cm, pi' < 2.5GeV and |p;HSSH“| < 10GeV. A precise

measurement of § was only possible inside the region covered by the BMVD. Hence for
rel miss|| 1

events with muons reconstructed in the FMUON only pit* and py, were used in the fit.
A Poisson likelihood fit was used, taking into account the limited MC statistics.

The global charm and beauty fractions resulting from the fit were
fe = 0.456 £ 0.029(stat.); f, = 0.122 £+ 0.013(stat.)

with a correlation coefficient pyp, = —0.43. Figure 1(a-c) shows the distributions of the
three discriminating variables compared to the MC distributions with the normalisation
corresponding to the fit. Figure 1(d) shows the distribution of pi! for a signal-enriched
subsample. The distributions of pf., n*, p];t, E — Pz, Q% and zx for the data and for the
MC samples normalised according to the fit are shown in Fig. 2. The overall agreement
is satisfactory.

7 Acceptance and QED corrections

The visible cross sections for muons from charm and beauty decays, including beauty
cascade decays via ¢, ¢, 7 and v, were measured in the kinematic range

Q* >20GeV?; 0.01 <y < 0.7; pb > 1.5CeV; —1.6 < n* < 2.3. (1)

The cross sections were calculated using

fo N
q p—
o= 47 C

where f, is the HQ fraction from the fit, N is the number of reconstructed muons, A,
is the acceptance, C, is the QED radiative correction, and ¢ = ¢, b. Differential cross
sections were measured by repeating the fit in bins of the reconstructed variable V' as
do/dV = o /AV;, where o is the cross section in the bin and AV} is the bin width.

The acceptance A, was evaluated from the MC simulation as the number of reconstructed
muons divided by the number of true muons from decays of the quark ¢. This definition
takes into account the charm and beauty events in which a “false muon” is reconstructed
rather than a signal muon from a HQ decay. The acceptance included the efficiency of
muon reconstruction (which in turn includes the efficiency of the muon chambers and of
the matching with central tracking) that was evaluated from an independent exclusive
dimuon sample as explained in previous publications [40, 42]. The acceptance for ¢ (b)
ranged from 23% (16%) at 1.5 < pf. < 2.5GeV to ~ 35% (25%) at pf. > 2.5GeV. The



difference in acceptance between ¢ and b was mainly due to the different contribution
from “false muons” which was ~ 25% for ¢ and ~ 3% for b.

According to the MC simulation, the probability to find a “false muon” in a DIS event
(before any muon selection) is Pase = 0.1%, almost independently from the event being c,
b or LF. The ability of the MC to reproduce Pk, was studied by comparing the number of
LF events in the data, as obtained from the fit, to the absolute prediction by DJANGOH.
The data/MC ratio, Pgat2 /PMC " was estimated as 0.80 £0.20 in the RMUON, 1.10+0.20
in the BMUON, and 1.05+ 0.40 in the FMUON, in agreement with previous studies [49].
The cross sections were corrected to the QED Born level, calculated using a running
coupling costant a.p, such that they can be compared directly to the QCD predictions
from the HvQDIS program (Section 2). The radiative corrections were obtained as C, =
OBorn/Orad, Where opom is the RAPGAP cross section with the QED corrections turned
off but keeping ai, running and o,.q is the RAPGAP cross section with the full QED
corrections, as in the standard MC samples. The corrections were typically C, ~ 1.05
and at maximum 1.10 in the highest Q? bin.

8 Systematic uncertainties

The following systematic uncertainties were considered (the effects on the total visible
cross section for ¢ and for b is given in parentheses):

B/RMUON efficiency: it was varied by its uncertainty of on average +5% (F5, F5)%;
FMUON efficiency: it was varied by +£20% (F2, F5)%;
“false muon” probability: it was varied within the corresponding uncertainty (;Z, F1)%;

global energy scale: it was varied by £2% (:51,13 )%;

ARl

calibration of p?iSSH“ . it was evaluated by varying the hadronic transverse momentum

in the MC by +0.1 GeV, as allowed by the transverse momentum balance in the
control sample (£12,77)%;

6. hadronic energy resolution: it was varied in the MC by +5% as allowed by the trans-
verse momentum balance in the control sample (13, F7)%;

7. simulation of the tails of pi***: the fits were redone in the restricted range |pi*"| <

5GeV (0, —6)%;
8. resolution on §: the smearing applied to the MC was varied by +25% as allowed by

the control sample (35,75")%;

9. pi¥! shape of LF and charm: it was evaluated by varying the pi! correction by +50%
(F1.5,7%)%;



10. hadronic energy flow near the muon: it was evaluated by varying the cut on E'° by
035 GeV (0,75 )%;
11. jet fragmentation: the cut on plt" was varied by 0.5 GeV (+2.5,752)%;

12. charm SL decay spectrum: the reweighting to the CLEO model was varied by £50%,
(33:25)%;

13. MC model dependence: RAPGAP was reweighted to reproduce the measured differ-
ential cross sections in Q% or in p4 and the largest deviation from the nominal cross
section was taken (46, +20)%;

14. higher order effects: this uncertainty was evaluated by varying the HQ distribution
before parton showering in RAPGAP by the difference between NLO and leading order,
as evaluated with HvqQpis (t9,,%3)%;

15. MVD efficiency: the efficiency of the cut on the number of MVD hits was varied by
its uncertainty (F3,F3)%;

16. CTD siumlation: tracks were required to pass > 4 superlayers in the B/RMUON
region and to have > 7 hits in the FMUON region (+1, 0)%;

17. integrated luminosity: measurement uncertainty (F2.6, F2.6)%.

The above uncertainties were summed in quadrature to obtain the total systematic un-

certainty (713,722)%.

9 Cross sections

The visible cross sections for muons from charm and beauty decays in the kinematic region
of Eq. (1) are

0 = 164 4 10(stat.) T3%(syst.) pb
o’ = 63+ T(stat.) "15(syst.) pb

to be compared with the NLO QCD cross sections obtained with HvQDIS of ¢ =
184730 pb and o® = 33 & 5 pb. The agreement is good for charm while the beauty
cross section is 2.3 (1.9) standard deviations above the central (upper) HvQDIs result.

The differential cross sections as a function of p., n, @Q* and x are presented in Table 1
and compared in Fig. 3 to the NLO QCD predictions based on HvQpis. The RAPGAP
MC predictions are also shown, normalised according to the result of the global fit. The
charm cross sections are in good agreement with the HvQDIS calculations. The tendency
of the beauty cross section to lie above the central NLO prediction is concentrated at
low p and low Q?. The RAPGAP MC gives a good description of the shape of all the
differential cross sections.



10 Extraction of F}’

The heavy quark contribution to the proton structure functions, 39, ng and the reduced
cross section 697 are defined in analogy with the inclusive case from the double differential
cross section in x and Q2 for the production of the quark g¢:

d?099

dx dQ)?

2
= K (@, Q%) = SFi(2.Q%) | =K 6@, Q% s),
+

where K =Y, (2ra?2,)/(zQ*) and Y, =1+ (1 —y)*

The muon cross sections, ¢, measured in bins of z and Q?, were used to extract Fy? at
a reference points in the x, Q? plane by:

M (2, Q%)

od:th ’

Fy'(2,Q*) =0

where F;q’th(:p,QQ) and o™ were calculated at NLO in the FFNS using the HvQDIS
program. The reference points were chosen close to the average x and Q2 of the events
within each bin.

This procedure contains several corrections: the extrapolation from the restricted muon
kinematic range (pf > 1.5GeV,—1.6 < n* < 2.3) to the full muon phase space; the
q — p branching ratio; the correction for the longitudinal structure function F gq and the
correction from a bin-averaged cross section to a point value (bin centring).

The largest uncertainty is related to the extrapolation to the full muon phase space. The
kinematic acceptance, A, defined as the fraction of muons from HQ decays that was
generated in the restricted kinematic region is, on average, (A) = 13%(27%), for charm
(beauty). According to HvQDIS, in the charm case, A becomes sizeable (A > 0.25(.A))
when one of the two charm quarks in the event has pr > 3GeV and its rapidity is in
the range (—1.5 : 2.5), which corresponds to the phase space containing 88% of the cross
section. In the beauty case, A is sizeable over the full HQ phase space.

The theoretical uncertainty in the extraction of Fy? was evaluated by varying the HvQDIS
parameters as explained in Section. 2 and by using a different PDF set (CTEQSF). It is
dominated by the fragmentation uncertainty. As a further check, Fy? was also evaluated
taking A from RAPGAP and found to be consistent within the quoted uncertainties.

The muon cross sections in bins of x and Q? are given in Table 2. The extracted Fi°
and szf’ are presented in Tables 3 and 4 and shown in Figs. 4 and 5. Also given in
Tables 3 and 4 are the factor A and the correction for the longitudinal structure function
Cp = 697/ FJ9 as obtained from the NLO theory . The effects of the individual sources of
systematic and theoretical uncertainty are given in Tables 5 and 6 in the Appendix.
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Figure 4 also contains a comparison of F5¢ with previous results based on the measurement
of D* mesons from ZEUS [1] and to results from the H1 collaboration based on inclusive
lifetime tagging (VTX) [3]. The previous results were corrected to the Q* values of the
present analysis, using the NLO theory. The agreement of the different data sets, obtained
with different charm tagging techniques, is good. At high Q?, the precision of present
data is similar or better than for the previous results. The NLO QCD calculations are
also shown.

Figure 5 shows the extracted F from this analysis and also a previous HI result [3],
corrected to the reference Q2 values used in the present analysis. The two data sets are
in good agreement. The precision of the present measurement is similar to that of the H1
data at high Q. The QCD calculations are also shown.

The structure functions F35° and FQI’E are also presented in Figs. 6 and 7 as functions of
Q? for fixed values of x, compared to previous results corrected to the same reference x
used in the present analysis.

11 Summary

The production of charm and beauty quarks was measured in DIS using their decay into
muons. Total and differential cross sections for muons from ¢ and b decays were measured
in the kinematic region

Q% >20GeV? 0.01 <y < 0.7; pbp > 1.5GeV; —1.6 < nt* < 2.3

and compared to NLO QCD calculations. The agreement is good for charm and reason-
able for beauty. The heavy quark contribution to the proton structure function Fy was
also measured and found to agree well with other measurements based on independent
techniques. For Q? > 60 GeV? the present results are of comparable or higher precision
than those previously existing.
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Pr do* / dp% Astat. Asyst. do® / dp% Astat. Asyst. Pe,b
(GeV) (pb/GeV) (pb/GeV)

1.5: 2.5 113 10 i 48 +8 iRH —0.48
2.5: 3.5 328 438 ey 154  +2.7 iy —0.46
35: 5.0 6.0  +1.4 e 6.3  *1.1 2 —0.48
5.0 : 10.0 097  +0.21 o 0.76  +0.22 iy | =045

n do* / dn*  Agat, Asyst. do® / dnt  Agtat. Asyst. Pe,b

(pb) (pb)

—1.60: —0.90 | 204  +3.3 e 50  £20 My ~0.36
—0.90: —0.40 | 40.7  £6.0 ey 13.6  £3.5 e —0.20
—0.40: +0.00 | 609  +£7.8 His 173 +4.8 iy —0.37
+0.00 : 4+0.50 | 67.0  £7.1 s 212 +4.4 o —0.42
+0.50 0 +1.48 | 477 +6.4 e 20.7  +4.3 o —0.49
+1.48: 4230 | 334 4100 T 164  46.9 3 —0.41

Q2 dac/dQQ Agtat. Asyst. dab/dQ2 Agtat. Asyst. Pe,b

(GeV?) (pb/GeV?) (pb/GeV?)

20: 40 | 343  £0.40 o 146  +0.24 o0 | —0.44
40: 80 1.22  +0.13 o 0.546  +0.086  Thjes | —0.41
80: 200 | 0.289  +0.031 100 0.124  +0.023 T8 | —0.36
200 : 500 | 0.0447  £0.0071  FPO0 | 0.0131  £0.0049  Tooees | —0.47
500 : 10000 | 0.00063 =0.00013 500016 | 0.00013  £0.00008 *5oo00s | —0.38

x do¢ / dr  Agtat. Asyst. do® / dr  Agtat. Asyst. Pe,b

(nb) (nb)

0.0003 : 0.0010 | 353  45.6 %2 174 439 iy —0.16
0.0010 : 0.0020 | 352  +4.1 A 124 426 iy —0.39
0.0020 : 0.0040 | 16.1  =£2.2 22 8.0  +1.4 s —0.51
0.0040 : 0.0100 | 7.38  40.72 i 2.04  +0.45 e | =045
0.0100 : 0.1000 | 0.417  £0.050 0068 0.076  +0.028 58 | —0.53

Table 1:  Muon differential cross sections for charm and beauty as a function

of n*, plr, Q* and x. The last column shows the statistical correlation coefficient
between charm and beauty.
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bin

Q2 T ¢ Agtat. Asyst. Agtat. Asyst. Pe,b

(GeV?) (pb) (pb)
1 | 20: 600.0003: 00012329 446 *8I 1139 +29 *32 | 029
2 | 20: 60|0.0012: 0.0020 | 17.7 +3.1 *i9 57 £2.0 *t15 | —0.42
3 | 20: 60|0.0020: 0.0035 | 16.2 +3.3 F37 55 +£20 % | 051
4 | 20: 60|0.0035:0.0060 | 35.1 =+£57 1% | 79 436 *12 | —0.56
5 | 60: 400 | 0.0009 : 0.0035 | 17.2 +2.7 *38 88 +£1.9 *% |-0.38
6 | 60: 400 | 0.0035: 0.0070 | 18.4 +2.3 39 42 +£15 5 | 035
7 | 60: 400 | 0.0070 : 0.0400 | 33.6 +3.5 TS 8.6 +£23 T3 | —0.46
8 | 400 :1000 | 0.0050 : 1.0000 | 7.6 +1.5 *12 1.6 +£09 01 | —0.45
Table 2:  Muon cross sections for charm and beauty in bins of Q* and x. The

last column shows the statistical correlation coefficient between charm and beauty.

bin | Q2 (GeV?)

T

cC
F2

Astat.

Asyst.

Atheo.

A

Cr

30
30
30
30
130
130
130
1000

O N O Ot = W N =

0.0008
0.0016
0.0025
0.0055
0.0025
0.0055
0.0130
0.0300

0.318
0.219
0.176
0.143
0.298
0.228
0.151
0.114

+0.044
+0.038
+0.036
+0.023
+0.047
+0.029
£0.016
£0.023

+0.078
—0.057
+0.024
—0.061
+0.040
—0.033
+0.044
—0.029
+0.066
—0.046
+0.037
—0.042
+0.027
—0.029
+0.018
—0.021

+0.061
—0.042
40.043
—0.016
40.032
~0.021
40.028
~0.009
+0.044
~0.025
+0.030
—0.015
+0.021
—0.011
40.010
—0.007

0.096
0.114
0.113
0.096
0.175
0.220
0.209
0.371

0.980
0.996
0.998
1.000
0.955
0.993
0.999
0.987

Table 3: The structure function F5¢(x, Q?). The last two columns show the muon
kinematic acceptance, A, and the correction for the longitudinal structure function,

Cr.
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bin | Q*(GeV?) | =z FP A, | Agst. | Atneo. | A | C1
30 | 0.0008 | 0.0220 | £0.0047 | T3-9939 | 000111 0.260 | 0.992
30 | 0.0016 | 0.0131 | £0.0047 | F39952 | +0-0009 1 0.264 | 0.998
30 | 0.0025 | 0.0114 | £0.0043 | £.9937 | +9-99¢% | 0.251 | 0.999
30 | 0.0055 | 0.0080 | £0.0036 | T390 | To00 | 0.189 | 1.000
130 | 0.0025 | 0.0489 | £0.0105 | To0058 | F0:55%% | 0.300 | 0.962
130 | 0.0055 | 0.0175 | £0.0064 | *390%2 | £-0907 | 0.319 | 0.994
130 | 0.0130 | 0.0149 | £0.0039 | T00957 | T5-9907 | 0.281 | 0.999
1000 | 0.0300 | 0.0104 | £0.0061 | T5:9528 | +0-0004 | 0.420 | 0.983

O J O Ut = W N =

Table 4: The structure function FQI)B(SL’, Q?). The last two columns show the muon
kinematic acceptance, A, and the correction for the longitudinal structure function,

Cr.
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Figure 1: Distributions of (a) p?lssllu, (b) &, (c) Pt for the selected sample of
muons in DIS, and of (d) pi! for a signal-enriched subsample with pgﬁlss”“ > 2 GeV
and either a muon in FMUON or § > 0.01 ¢m. The data (points) are compared
to the MC expectation (solid line) with the normalisation of the ¢ (dotted line), b
(shaded histogram) and light flavours (dashed line), LF, components obtained from
the global fit. The error bars correspond to the square root of the number of entries.
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Figure 3: Differential muon cross sections for ¢ and b as a function of (a) pf,
(b) n*, (c) Q* and (d) x. The inner error bars show the statistical uncertainty
while the outer error bars show the systematic and statistical uncertainties added in
quadrature. The bands show the NLO QQCD predictions obtained with the HvQDIS
program and the corresponding uncertainties. The differential cross sections from
RAPGAP, scaled by the factors corresponding to the result of the global fit (1.04 for
¢ and 2.27 for b), are also shown.
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(open symbols) and to the NLO QCD predictions in the FFNS using the ZEUS-S
PDF fit. The inner error bars are the statistical uncertainty while the outer bars
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ture. The band represents the uncertainty on the NLO QCD prediction. Previous
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Figure 5: The structure function F2° (filled symbols) compared to previous results
(open symbols) and to the NLO QCD predictions in the FFNS using the ZEUS-S
PDF fit. The inner error bars are the statistical uncertainty while the outer bars
represent the statistical, systematic and theoretical uncertainties added in quadra-
ture. The band represents the uncertainty on the NLO QCD prediction. Previous
data have been corrected to the reference Q? values used in this analysis: 25 — 30,
200 — 130, 650 — 1000 GeV>.
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Figure 6: The structure function F5¢ (filled symbols) plotted as a function of Q? for
fized x values. The curves represent the NLO QCD predictions in the FFNS using
the ZEUS-S PDF fit. The inner error bars are the statistical uncertainty while the
outer bars represent the statistical, systematic and theoretical uncertainties added
in quadrature. The band represents the uncertainty on the NLO QCD prediction. A
selection of previous data (open symbols) is also shown, corrected to the reference
x wvalues used in this analysis: ZEUS D*: 0.001 — 0.0008, 0.0015 — 0.0016,
0.003 — 0.0025, 0.006 — 0.0055, 0.012 — 0.013; HI VTX: 0.0005 — 0.0008,
0.002 — 0.0025, 0.005 — 0.0055, 0.032 — 0.030.
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Figure 7: The structure function F2° (filled symbols) plotted as a function of Q* for
fized x values. The curves represent the NLO QCD predictions in the FFNS using
the ZEUS-S PDF fit. The inner error bars are the statistical uncertainty while the
outer bars represent the statistical, systematic and theoretical uncertainties added
in quadrature. The band represents the uncertainty on the NLO QCD prediction.
All the previous data (open symbols) are also shown, corrected to the reference x
values used in this analysis: 0.0005 — 0.0008, 0.002 — 0.0025, 0.005 — 0.0055,
0.032 — 0.030.
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Appendix

Tables of systematic and theoretical uncertainties
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The first

column gives the systematic variation number as reported in Section 8, with “a”

Systematic uncertainties of the F5¢ and F§° measurements.

Table 5:

and “b” corresponding to variations in opposite directions. The other columns list

the effect of each variation on the measurements in percent.
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Syst. FX° bin Fb bin

wr X 2 4 3 1 2 1 1 0 0 1

/2| -1 0 2 6 1 2 5 3] -1 1 1

mg+ | -8 -5 -3 -2 -3 -1 -1 -2|-2 -1 -1 -1 -1 -1

— ) 4 3 3 2 1 2 2 1 1 1 2 0

PDF + -1 -1 0 0 0 1 -1 -1 0 0o -1 -1

— | -1 1 -2 -1 -1 0 0 0 1 0 0 0 1 0
CTEQ 4 1 -1 1 1 0 2 0 1 -1 0 1 2

e+ | 16 17 17 17 13 12 12 7 2 4 2 3 3 3 2

E+P ) 6 4 4 3 3 2 0 3 5) 3 2 3 3 2 0

Table 6: Theoretical uncertainties of the F5° and Fs° measurements. The first
column gives the parameter varied in the calculation as reported in Sections 2 and
10. The other columns list the effect of each wvariation on the measurements in
percent.
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