
Light Higgsinos as Heralds of Higher-Dimensional Unification

Felix Brümmer DESY

Based on arXiv:1105.0802 (with W. Buchmüller)

Light higgsinos...

... from higher-dimensional unification

- GUT-scale compactifications contain many vector-like exotics (often in incomplete GUT multiplets)
- They decouple near M_{GUT}...
- ... and act as (old-fashioned, minimal) gauge mediation messengers
- Gauge mediation gives soft masses ≥ 500 GeV
- Gravity mediation gives μ term \sim 100 GeV
- ⇒ higgsinos light, other superparticles heavy

Possible settings:

heterotic orbifolds, field-theoretic orbifold GUTs, F-theory GUTs...

Motivations

- Find theoretically well-motivated, non-standard soft term patterns
- Find TeV scale signatures pointing towards GUT-scale compactifications
- Solve μ problem of gauge mediation

Motivations

- Find theoretically well-motivated, non-standard soft term patterns
- Find TeV scale signatures pointing towards GUT-scale compactifications
- Solve μ problem of gauge mediation
- (For those working on SUSY and getting cold feet: Hide SUSY from early LHC?)

Motivations

- Find theoretically well-motivated, non-standard soft term patterns
- Find TeV scale signatures pointing towards GUT-scale compactifications
- Solve μ problem of gauge mediation
- (For those working on SUSY and getting cold feet: Hide SUSY from early LHC?)

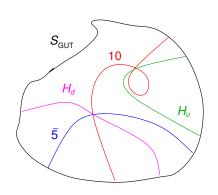
Not necessarily (yet):

 Work out precise phenomenology of some concrete UV model Examples meant to be qualitative for now

Higher-dimensional unification

MSSM predicts gauge coupling unification:

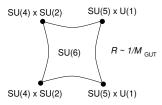
4D SUSY GUTs typically also predict light Higgs triplets, proton decay, wrong fermion mass relations


- Models of unification in higher dimensions can solve these problems...
- ...while maintaining prediction of unification
- Added bonus: Stringy models provide UV completion
- This talk: They also contain messenger sector for gauge mediation
 - → interesting consequences

5/17

Messengers from F-theory

Cartoon of a semi-local F-theory GUT model:


→ Beasley/Heckman/Vafa '08, Donagi/Wijnholt '08

- GUT symmetry on complex surface: "GUT brane"
- matter and Higgs fields on curves
- Hypercharge flux on 2-cycle: non-trivial in S_{GUT}, trivial in compactification
- U(1)_Y flux restricts nontrivially to Higgs curves
 - ⇒ doublet-triplet splitting
- Then U(1)_Y flux also restricts nontrivially to some 10-curves
 - ⇒ exotics in split multiplets
 - → Marsano et al. '09, Dudas/Palti '10

Messengers from heterotic orbifolds Ingredients:

- $E_8 \times E_8$ heterotic compactified on T^6/\mathbb{Z}_N
- Discrete Wilson lines break gauge group to $G_{\rm SM} imes G_{\rm hidden}$
- Computer searches → Buchmüller/Hamaguchi/Lebedev/Ratz '05-'06, Lebedev/Nilles/Raby/Ramos-Sanchez/Ratz/Vaudrevange/Wingerter '06-'08 reveal many models with
 - Chiral matter content = 3 generations of quarks and leptons
 - In general many exotics, can be decoupled by coupling to singlet VEVs
 - Can have one pair of Higgs doublets massless (realistic μ term from discrete R-symm. \to FB/Kappl/Ratz/Schmidt-Hoberg '10, \to talks by G. Ross, H.-M. Lee)
- Anisotropic limit → 5d or 6d field-theoretic orbifold GUTs

Sample spectrum from a heterotic model

→ Buchmüller, Hamaguchi, Lebedev, Ratz '05

 $E_8 \times E_8$ heterotic on T^6/\mathbb{Z}_6 with Wilson lines

Massless spectrum:

- 3 SM generations
- 1 pair of massless Higgs doublets
- O(100) SM singlets {S₁}
- vector-like exotics {Σ_i}:

field	representation	multiplicity
d	$(3,1)_{-1/3}$	4
ã	$(\overline{\bf 3},{\bf 1})_{1/3}$	4
ℓ	$(1,2)_{1/2}$	4
$ ilde{\ell}$	$(1,2)_{-1/2}$	4
m	$(1,2)_0$	8
s^+	$(1,1)_{1/2}$	16
s^-	$(1,1)_{-1/2}$	16

Messenger couplings

$$W = \sum_{i} M_{\text{Pl}} \mathcal{P}_{i} \left(\frac{S_{I}}{M_{\text{Pl}}} \right) \Sigma_{i} \widetilde{\Sigma}_{i} + \dots$$

 $S_i = SM \text{ singlets}; \Sigma_i, \widetilde{\Sigma}_i = \text{vector-like exotics}; \mathcal{P}_i = \text{polynomials}$

- Assume there is a vacuum with $\langle S_I \rangle \sim M_{\text{GUT}}$ \Rightarrow messengers Σ_I will decouple close to M_{GUT} Appearance of GUT scale motivated by FI term / moduli stabilisation
- Assume also that $\langle F_{S_l} \rangle \neq 0$ (for some *l*) from couplings to hidden sector \Rightarrow SUSY mass splittings for messengers

Unusual features:

- Messengers in split multiplets ⇒ non-universal gaugino masses
- Messenger numbers large ⇒ gauginos heavier than scalars
- Messenger scale = GUT scale ⇒ gravity mediation not negligible (but still subdominant)

Messenger couplings

$$W = \sum_{i} M_{\text{Pl}} \, \mathcal{P}_{i} \left(\frac{S_{I}}{M_{\text{Pl}}} \right) \Sigma_{i} \widetilde{\Sigma}_{i} + \dots$$

 $S_i = \text{SM singlets}; \Sigma_i, \widetilde{\Sigma}_i = \text{vector-like exotics}; \mathcal{P}_i = \text{polynomials}$

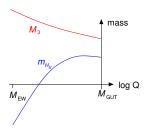
Assume there is a vacuum with ⟨S_I⟩ ~ M_{GUT}
 ⇒ messengers Σ_i will decouple close to M_{GUT}
 "FI term"

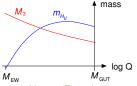
Appearance of GUT scale motivated by Elterm / moduli stabilisation

• Assume also that $\langle F_{S_l} \rangle \neq 0$ (for some *l*) from couplings to hidden sector \Rightarrow SUSY mass splittings for messengers

Unusual features:

- Messengers in split multiplets ⇒ non-universal gaugino masses
- ullet Messenger numbers large \Rightarrow gauginos heavier than scalars
- Messenger scale = GUT scale ⇒ gravity mediation not negligible (but still subdominant)


Why split messenger multiplets are useful


- Gaugino masses scale as ∼ N_{mess}
- Scalar soft masses scale as $\sim \sqrt{N_{\rm mess}}$, grow more slowly with $N_{\rm mess}$

• $M_3 \gg m_{H_u}$ at GUT scale with μ small \Rightarrow realistic EWSB difficult:

 M_3 feeds into $m_{\tilde{t}}$, $m_{\tilde{t}}$ decreases $m_{H_u}^2$ in RG running

• Split messenger multiplets can fix this Specifically: Need $N_2 \gg N_3$, where N_2 =# of weak doublet messengers, N_3 =# of colour triplets

Non-universal gauginos might also reduce fine-tuning

Horton/Ross '09

Simplifications

- In BHLR model, selection rules prevent (d, ℓ)-type messengers from coupling to same singlets as (m, s)-type messengers
- Next simplest parametrisation of messenger superpotential:

$$W = S_1(d\tilde{d} + \ell\tilde{\ell}) + S_2(mm + s^+s^-)$$

with

$$\begin{split} \langle \mathcal{S}_1 \rangle &= \mathit{M}_m + \mathit{F}_1 \theta^2, \qquad \langle \mathcal{S}_2 \rangle = \mathit{M}_m + \mathit{F}_2 \theta^2, \\ \mathit{F}_1 &= \mathit{F} \cos \phi, \quad \mathit{F}_2 = \mathit{F} \sin \phi, \quad \mathit{m}_{3/2} = \mathit{F} / \sqrt{3} \mathit{M}_{Pl} \end{split}$$

Choose equal messenger masses (for simplicity) but allow for different couplings to hidden sector

GUT-scale soft terms

(for
$$m_{3/2}=$$
 100 GeV, $M_{\rm mess}=5\cdot 10^{15}$ GeV, $an\phi=$ 1.9)

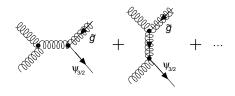
Mainly gauge-mediated:

mass parameter	value [GeV]
M_1	1771
M_2	1583
M_3	644
m_Q	786
m_U	599
m_D	478
$m_L = m_{H_u} = m_{H_d}$	736
m_E	643

Gravity-mediated:

μ	150
$\sqrt{B_{\mu}}$	240
A_0	150

Low-scale superparticle spectrum


particle	mass [GeV]
h_0	117
χ_1^0	137
χ_1^{\pm}	140
$\begin{array}{c} \chi_{1}^{0} \\ \chi_{1}^{\pm} \\ \chi_{0}^{0} \\ \chi_{0}^{0} \\ \chi_{3}^{0} \\ \chi_{4}^{\pm} \\ \chi_{2}^{\pm} \end{array}$	144
χ_3^0	799
χ_4^0	1296
	1296
H_0	856
A_0	857
H^\pm	861
$ ilde{g}$	1453
$ ilde{ au}_{ extsf{1}}$	713
other sleptons	910 – 1290
squarks	950 — 1750

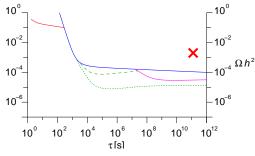
$$\tan \beta = 41$$

Cosmology

Gravitino LSP is natural dark matter candidate

Gravitinos produced thermally during reheating at large T_R :

$$\Omega_{\psi_{3/2}} h^2 pprox 0.21 \left(rac{T_R}{10^{10} \ \mathrm{GeV}}
ight) \left(rac{100 \ \mathrm{GeV}}{m_{3/2}}
ight) \left(rac{m_{ ilde{g}}}{1 \ \mathrm{TeV}}
ight)^2$$
 see e.g. o Bolz et al. '00


$T_R \approx 10^{10} \text{ GeV}$:

- Nicely compatible with leptogenesis
- Right order of magnitude for DM abundance

Cosmology

Problem: χ_1^0 NLSP long-lived, decays after BBN

Energetic decay products destroy nuclei, distorting light element abundances

Bounds from → Jedamzik '06: NLSP relic density vs. lifetime (assuming large hadronic BR)

• Our NLSP relic density is low due to coannihilation with χ_1^\pm (recall $m_{\chi_1^0}=$ 137 GeV, $m_{\chi_1^\pm}=$ 140 GeV):

$$\Omega_{\chi^0_1} h^2 = 3 \cdot 10^{-3}$$

- ...but still in conflict with BBN bounds
- (Small) R-parity violation? (Moderate) additional entropy production?

Collider phenomenology

Somewhat similar to "lopsided gauge mediation"

(→ De Simone, Giudice, Francescini, Pappadopulo, Rattazzi '11):

SUSY cascade decays rare @ early LHC: coloured superparticles heavy Higgsino production predominantly in Drell-Yan

Higgsino decays:

- χ_1^0 long-lived, decays outside detector
- $\chi_1^\pm \to \chi_1^0+$ (hadrons or leptons) via virtual W exchange Suppressed by 3-body final state; (slightly) displaced vertex
- ...

Work in progress

→ Brobovskyi, FB, Buchmüller, Hajer; to appear

Conclusions

Models of higher-dimensional unification often predict

- vector-like exotics
- in incomplete GUT representations
- with GUT scale masses

Conclusions

Models of higher-dimensional unification often predict

- vector-like exotics
- in incomplete GUT representations
- with GUT scale masses

Therefore they naturally lead to

- GUT-scale gauge mediation
- with unconventional soft term patterns
- in particular: small μ (from gravity mediation)

Conclusions

Models of higher-dimensional unification often predict

- vector-like exotics
- in incomplete GUT representations
- with GUT scale masses

Therefore they naturally lead to

- GUT-scale gauge mediation
- with unconventional soft term patterns
- in particular: small μ (from gravity mediation)

The physical spectrum contains

- light Higgsinos
- a gravitino LSP
- otherwise heavy superpartners