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Introduction
Surface treated 100Cr6 steel samples were analysed concerning their residual stresses. The 
aim of the project is the development of measurement and evaluation strategies for 
determining stress gradients by energy and angle dispersive X-ray diffraction. The main 

problem of conventional Laplace methods is that they only determine real stress values σ(z) if 
no gradient of the residual stresses within the X-ray penetration depth τ occurs. Otherwise the 
measured Laplace profiles σ(τ) have to be recalculated by inverse Laplace transform to obtain 
the residual stresses in real space being those from practical relevance for engineering 
applications.

Furthermore sin²ψ measurements using Crkα radiation were carried out and combined with 
successive layer removal down to 1µm increments to determine the residual stress state σ(z) 
in real space. Due to the small penetration depth τ0 of 3.28µm for the {110} and 5.69µm for 
the {211} lattice plane, the calculated stress values can be taken as references for those 
calculated from the synchrotron measurements by inverse Laplace transform (ILT).

The diagram in Figure 4 illustrates the evaluated stress profiles of a shot peened specimen. 
Five different trail functions were fitted to the experimentally obtained Laplace profile and 
afterwards transformed in real space. The resulting stress distributions are strongly dependent 
on the applied fit function. It can be seen that even if in Laplace space a sufficient approxima-
tion of the measured data exists, the transformed residual stress may tend to oscillate. This 
behaviour typically increases with higher order polynomials. Another reason can be assigned 
to scattering strain values determined very close to the surface which are probably affected by 
the sample topography. Due to the high density of measurement points here the transformed 
curves might be falsified by these values and should be discarded up to the roughness Ra.
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Material and sample preparation
As sample material the roller bearing steel 100Cr6 in hardened and tempered state was used. 
The heat treatment yields a fine grained microstructure of martensite, highly dispersed 
carbides (e.g. Cr-carbides) and residual austenite. From micrographs and phase analyses by 
X-rays can be concluded that the grain size is in sub-µ-range and the volume fractions of 
austenite and carbides (M23C6) are 7-9% and 9-10% respectively.

Experimental setup and results
Strain distributions of the surface treated samples were measured by the energy dispersive 
method at the EDDI beamline at BESSY up to X-ray energies of approximately 80keV. The 
used setup allows the analysis of several lattice planes in one measurement and realises 
penetration depths of more than 100µm. The surface near regions were additionally analysed 
by monochromatic synchrotron radiation at the HASYLAB beamline G3 at DESY in Hamburg. 

The applied X-ray energy was equivalent to Cukα and Mokα wavelengths and the samples 
were measured at the {110} and the {431/510} lattice plane respectively to affirm the energy 
dispersive results.

Conclusions
� Both Laplace and real space methods yield accurate residual stress depth profiles in their 

respective spaces.

� The Laplace space method is non-destructive and the results are obtained with an 
expenditure of time that is short compared to the real space method.

� Direct access to the real space stress profiles σ(z) is only possible by means of real 
space methods. However layer removal leads to a (partial) destruction of the sample.

� It was shown that the inverse Laplace transform (ILT) of the discrete Laplace stress profiles 

leads to reasonable results for σ(z) in case of experimental data being of excellent quality.

� Further work is necessary to improve the stability of the ILT solutions and to find appropriate 

ways that ensure a quantitative assessment of the goodness of the calculated σ(z) profiles.
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Figure 2: Laplace residual stresses σ(τ) determined by energy dispersive diffraction at BESSY (left).

Real space stress distributions σ(z) measured by successive layer removal in Kassel (right).
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In the diagrams above longitudinal and transverse stress gradients of deep ground samples 

are presented. Left hand side shows the Laplace values σ(τ) calculated via Universal plot 
method from the measured strain ε(τ), whereas the real space stresses σ(z) are plotted on the 
right. Both diagrams show steep stress gradients and considerably higher amounts in σ22

(transverse) direction.

The combination of all measured Laplace values σ22(τ) yields the left diagram in figure 3
which shows a very good agreement between energy and angle dispersive methods. To 

compare Laplace stresses with those in real space the combined σ22(τ) profile was  
transformed via ILT applying different fit functions. The blue curve in the right diagram 

represents the real space stress σ22(z) fitted by an exponentially damped 3rd order polynomial 
which approximates the residual stress distribution from layer removal very well.

Figure 4: Applied exponential damped trail functions where n describes the order of polynomial (left)

Real space stress values σ11(z) determined by layer removal (red dots) versus calculated ones 
by ILT. Influence of various Laplace trail functions σ11(τ) on the transformed stress profiles.
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Ra = 517nm

Two kinds of surface treatments, each with two different process parameters, were applied to 

the tempered samples to induce highly varying residual stress distributions σ(z).  For long 
range residual stress gradients shot peening processes with low and high Almen intensity 
were carried out whereas deep grinding with small and large chipping volume was used to 
induce steep stress gradients in the first few micron from surface. After specimen processing 
the surface topography was analyzed and is displayed in Figure 1 for a shot sample.

Figure 1:

Surface roughness 
analysis by optical profiling: 
Shot peened sample (left), 
Ra=517nm, Rt=4.90µm.

SEM image (right) showing 
martensitic microstructure.15µm
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Figure 3: Laplace stress values σ22(τ) determined by energy and angle dispersive diffraction at 
BESSY and DESY respectively (left).

Comparison of real space stresses σ22(z) measured by successive layer removal and σ22(z) 
profiles calculated from σ22(τ) applying of inverse Laplace transform (right).
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