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Abstract. Hard x-ray photoelectron spectroscopy (HAXPES) is a new variant
of the well-established photoemission technique, which extends its range to
much higher photoelectron energies up to 10 keV and thus to enhanced probing
depths of the order of 10 nm and beyond. This not only facilitates direct access
to the intrinsic bulk electronic structure of solids, but also allows extended
depth profiling and the study of buried interfaces not possible by conventional
photoemission. Here, we present two HAXPES case studies on transition metal
hybrid and heterostructures demonstrating the potential of the method. We also
discuss a new HAXPES setup at the high-brilliance hard x-ray synchrotron
radiation source PETRA III at DESY (Hamburg) currently under construction.
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1. Introduction

Ever since the Nobel prize-awarded work by Kai Siegbahn, photoelectron spectroscopy (PES)
has evolved into a well-established and powerful method for the investigation of atoms,
molecules and solids. In particular for the latter, PES allows a detailed elucidation of the
microscopic electronic structure, as it provides direct access to the density of states, the band
structure and the Fermi surface of solids [1]–[3]. PES on the core levels can yield additional
information on chemical composition and bonding as well as on local structure. Unfortunately,
these applications have remained limited largely to the study of surfaces due to the rather small
escape depth of the photoelectrons.

The photon radiation required for excitation of the photoelectrons has to be of sufficient
energy to overcome the materials work function, and at the same time to be of high enough
intensity to allow for a decent signal-to-noise ratio in the photoelectron current as well as
for reasonable monochromatization. Using various types of laboratory light sources as well
as synchrotron radiation these requirements are well met in the spectral range from the
vacuum ultraviolet (VUV) up to the soft x-ray regime, resulting in kinetic energies of the
photoelectrons of typically ∼15–1500 eV. Under such conditions, the inelastic mean free path
of the photoelectrons is limited to a few nanometers or even below, depending on their kinetic
energy but largely irrespective of the actual material (‘universal curve’) [1]. This restricts the
information obtained by PES to a very thin layer of atomic dimensions at the solid–vacuum
interface, rendering it a truly surface-sensitive technique. Indeed, PES has been (and still is) an
important methodical cornerstone of modern surface science.

However, when interested in the genuine bulk electronic structure of solids, the small
information depth can become a major obstacle. The breaking of lattice translation symmetry
at the surface often leads to structural relaxations or reconstructions with subsequent effects
on electronic states at and near the surface. In these cases, the electronic structure probed by
conventional PES can strongly deviate from the bulk, except for special situations where the
surface termination represents only a minor disturbance, e.g. in quasi-two-dimensional (2D) or
1D materials with van der Waals gaps.
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With the advent of high brilliance synchrotron-based light sources in the hard x-ray regime
(up to ∼10 keV and beyond) and parallel development of suitable high-energy electron energy
analyzers, these shortcomings have recently been overcome [4]. According to the universal
curve, hard x-ray PES (HAXPES) allows probing depths of up to 10 nm, in some cases even
20 nm have been demonstrated. Bearing in mind that surface relaxations typically decay on a
length scale of a lattice constant and that the unit cell dimension of even complex materials
rarely exceed ∼1 nm, HAXPES has the potential to access the intrinsic electronic structure of
the bulk. Over the past 5–6 years intense activities in Japan, but also in Europe, have pushed
forward the development of the technique and produced numerous examples of its power.
A very comprehensive and up-to-date overview of the field, including instrumental and technical
aspects of HAXPES as well as various examples of applications from basic science to industrial
research, has very recently been given by Kobayashi [5].

Beyond the access to the bulk, the enhanced probing depth of HAXPES also allows
for extended depth profiling of ultrathin films and, in particular, for the study of the
buried interface between overlayer and substrate, i.e. between different materials. A case in
point is heterostructures consisting of transition metal oxides (TMO). Due to the complex
interplay between various microscopic degrees of freedom (charge, spin, orbital and lattice)
in TMOs, already the pure materials display a plethora of highly interesting many-body effects
and cooperative phenomena, ranging from correlation-induced metal–insulator transitions to
high-temperature superconductivity (see e.g. [6]). Due to the enormous progress in molecular
beam epitaxy (MBE) and pulsed laser deposition (PLD) of complex oxides, it has recently
become possible to grow epitaxial films and oxide heterostructures of unprecedented quality [7].
It turns out that the combination of different oxides can lead to unexpected new phenomena
which cannot be anticipated from the properties of each constituent alone. This opens the door
for tailoring novel functionalities through the appropriate choice of materials.

In this paper, we will discuss two examples for HAXPES studies of oxide hybrid and
heterostructures. The first one concerns depth profiling of hybrid structures made of ultrathin
magnetite (Fe3O4) films grown on III–V semiconductors, which can be viewed as a prototypical
model system for a spin injection electrode in spintronics. In the second example, we study the
formation of a 2D electron gas (2DEG) which is formed at the interface between two otherwise
insulating TMOs. Both case studies serve to demonstrate the potential and possibilities of
HAXPES. Finally, we will give a short description of a new HAXPES set-up presently under
construction at the new high-brilliance hard x-ray synchrotron light source PETRA III at DESY
(Hamburg), which will aim especially at the study of magnetic systems.

2. Experimental

The HAXPES experiments presented here have been performed at two separate synchrotron
beamlines. One is the bending magnet crystal monochromator beamline KMC-1 of
BESSY (Berlin) using their high kinetic energy (HIKE) photoemission endstation [8]. The
monochromator operates in the (n, −n) double crystal arrangement with constant beam offset.
For tuning the photon energy from the soft x-ray regime (1.7 keV) up to the hard x-ray regime
(12 keV), four sets of crystals, InSb(111), Si(111), Si(311) and Si(422) are available. The photon
flux depends on the chosen set of crystals and is about 1011–1012 photons s−1. The photoelectron
spectrometer of the HIKE endstation is a Gammadata Scienta R-4000 hemispherical analyzer,
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Figure 1. Measurement geometry used for angle-dependent photoemission
experiments. φ denotes the angle of incidence, α is defined as the angle between
incoming beam and spectrometer and θ is the emission angle with respect to the
surface normal.

which is optimized for HIKE electrons up to 10 keV. The total energy resolution using the
Si(111) crystal for 3 keV photons amounts to 500 meV.

The other experimental site is the BW2 beamline of the DORIS III storage ring at
DESY (Hamburg), which employs a high heat-load Si(111) double crystal monochromator. The
intrinsic resolution for the used Si(111) crystal pair is 1E/E ≈ 1.5 × 10−4 with a corresponding
energy bandpass of 450 meV at 3000 eV. Due to the wiggler beamline the photon flux at
this energy is about 3 × 1012 photons s−1. The focus size on the sample amounts to 0.3 mm
(vertical) × 2 mm (horizontal). The photoelectrons are detected by a SCIENTA SES-200
electron spectrometer optimized for photoemission in the hard x-ray regime [9].

One of the most prominent features of HAXPES is its possibility to perform depth profiling
measurements. Due to the inelastic mean free path’s dependence on the excitation energy depth
profiling is possible by varying the excitation energy at constant photoelectron emission angle.
The escape depth as a function of excitation energy basically shows a logarithmic slope in the
hard x-ray regime. Therefore, it is possible to tune the information depth without changing the
measurement geometry. An inevitable side effect is the non-negligible energy dependence of
the photoelectron cross-sections. Alternatively, one can use angle-dependent HAXPES at
constant excitation energy. This conventional method of depth profiling is based on the
angle-dependence of the effective escape depth λeff = λ cos θ of the photoelectrons.

A third method for depth profiling exploits the effective angle-dependence of the
x-ray penetration depth in grazing incidence geometry, or more precisely: at and near the
angle of total external x-ray reflection. In this case, one makes use of the excitation of
the photoelectrons by an evanescent wave near the sample surface. By changing the incidence
angle φ around the critical angle φc, it is possible to tune the x-ray penetration depth (see
figure 1).
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3. Fe3O4 thin films on semiconductor substrates

3.1. Motivation: magnetite for spintronics

In recent years, the ferrimagnetic iron oxide magnetite (Fe3O4) has received much attention,
because its properties make it a highly interesting material for applications in the currently
developing field of spintronics [10]. The basic concept of spintronics consists in the design of
integrated circuits, which use the electron spin for storage and processing of information [11].
The spin-transistor proposed by Datta and Das [12] is one example of a spintronic device.
A general problem for the development of such devices is the combination of semiconduct-
ing materials, that are commonly used in conventional charge-based electronic chips, and
room-temperature ferromagnetic materials that are currently employed in storage devices. For
example, a key element of the spin transistor is the injection of a spin current into a semi-
conductor using a highly spin-polarized electrode. Therefore, a key element is to understand
the material science of the growth of magnetic materials like oxidic half-metallic ferrimagnets
on substrates used in existing semiconductor technology such as Si, GaAs or InAs.

In this context magnetite stands out from other feasible magnetic materials due to the
following bulk material characteristics: a very high Curie temperature of 858 K, a predicted
spin-polarization of 100% at the Fermi level [13] and a conductivity of 2.5 × 104 (�m)−1 at
room temperature [14], which matches quite well the value of semiconducting materials. For
a film-substrate structure without buffer layer, the latter two features are crucial to facilitate
efficient spin-injection into the semiconducting host via an ohmic contact [15].

Hence, there exists a clear need to study the growth behavior and thin film properties of
magnetite on semiconducting substrates like GaAs and InAs. Moreover, a detailed knowledge
of the actual interface structure and stoichiometry is desirable in order to correlate them with
the magnetic and spin transport properties. Interface issues as the occurrence of mixed phases
could prevent a successful growth or at least influence material properties in an undesired way,
e.g. limit the degree of spin-polarization at near-interface layers or surfaces. To give numbers,
the experimentally determined spin-polarization of Fe3O4 ranges from −55% [16]–[18] for the
free (100) surface to −80% [19] for the free (111) surface.

Experimental reports on the growth of Fe3O4 on semiconducting substrates are still
scarce [20]–[22]. Moreover, the problem of interface formation (including the occurrence of
interface phases and interface reactions) of these hybrid structures is poorly understood [21, 23].
Here, we present HAXPES data that allow us to characterize Fe3O4/semiconductor interfaces
through identification of all relevant chemical species, their qualitative and quantitative analysis,
and correlating interface quality and depth profile with the preparation conditions (see also [24]).

3.2. Sample fabrication and experimental

The InAs substrates were cut from a Zn-(p-)doped wafer and wet-chemical etched prior to
loading into the UHV growth chamber. The GaAs substrate consisted of a commercial Si-doped
wafer with an MBE grown undoped GaAs buffer layer and an amorphous As cap layer. As an
in situ treatment the GaAs substrate was decapped by heating, sputtered (Ar+, energy 0.6 keV)
and annealed to 700 K, while the InAs substrate was annealed only to 770 K prior to actual
film growth. As we verified by in situ x-ray photoelectron spectroscopy (XPS) measurements
these substrate treatments result in clean GaAs and InAs without their native oxides. The good
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substrate quality was in both cases confirmed by sharp low energy electron diffraction (LEED)
patterns.

Fe3O4/GaAs(100) was fabricated by pure Fe film growth at room temperature and
post-oxidation at 600 K and p(O5) = 1 × 10−5 mbar for 12 min following the method applied by
Lu et al [20]. The deposited Fe film thickness was about 60 Å as derived from angle-resolved
(conventional) XPS measurements.

Fe3O4/InAs(100) samples were grown by reactive oxide MBE, i.e. a simultaneous
deposition of Fe arriving from an electron-beam evaporator and O2 from an appropriate
molecular oxygen background pressure. Here, the Fe3O4 film thickness was about 60 Å as
derived from XPS measurements, as well.

HAXPES experiments were carried out at room temperature and without further surface
treatment to avoid a change in chemical composition. The shown spectra have been shifted to
correct for charging by setting the O 1s binding energy to 530.1 eV, which is known to be the
same in all Fe oxides [25].

3.3. Results

3.3.1. Fe3O4/InAs. In the case of InAs, Fe and O2 were co-deposited onto the substrate (i.e.
by reactive oxide MBE) comparable to the procedure in [22]. The lattice mismatch between
Fe3O4(100) and InAs(100) faces is only −1.6% assuming that one Fe3O4 unit cell with lattice
constant 8.397 Å grows on two InAs surface unit cells with single lattice constants of 4.27 Å.
This corresponds to an in-plane rotation of the Fe3O4(100) face against the InAs(100) face
by 45◦. However, in a PLD growth study [23] other orientations have been proposed as well.
The absence of clear LEED patterns of the Fe3O4/InAs thin films prepared in our study suggests
that the growth result is rather polycrystalline or textured with in-plane random orientation, but
not epitaxial.

The Fe oxidation state of the thin film can be derived from the Fe 2p spectra in figure 2(a).
The Fe 2p3/2 and 2p1/2 main line peak positions are 710.5 and 724.0 eV, respectively, in excellent
agreement with literature values for magnetite (e.g. [26]). In addition, the occurrence and
intensity of the so-called 2p3/2 charge-transfer satellites, which appear additionally to the 2p3/2

main line indicate the oxidation state of different iron oxides. In the case, of Fe2O3, the Fe3+

charge-transfer satellite should occur at 719 eV, while for divalent FeO, the Fe2+ satellite appears
at 715.5 eV. For the mixed valence state of Fe3O4 (Fe3+ : Fe2+

= 2 : 1), both satellites add up in
such a way that the spectral region between the 2p3/2 and 2p1/2 main lines becomes smooth and
structureless. The Fe 2p spectra in figure 2(a) exhibit this structureless line shape characteristic
for magnetite, thus suggesting that the magnetite film is nearly stoichiometric. Moreover, there
is no significant difference between spectra taken at different emission angle showing that
the oxidation state at different probing depths is essentially the same. We thus conclude that
reactive codeposition of Fe and O2 with suitable Fe/O2 ratio for each deposition stage yields
well-oxidized magnetite even on a problematic substrate such as InAs.

We add that the small feature at 703 eV just next to the Fe 2p3/2 main line originates from
the In p1/2 level. As signal from the substrate it is notedly suppressed for larger electron emission
angle θ and hence smaller probing depth, as one would expect.

The study of the other substrate core levels As 2p3/2 (see figure 2(b)) and In 3d5/2 (not
shown) permits us to estimate the degree of substrate oxidation and interdiffusion at the interface
during growth of the iron oxide. The main As 2p3/2 component at a binding energy of 1322.2 eV
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Figure 2. (a) Angle-resolved HAXPES spectra of the Fe 2p core-level in a
Fe3O4/InAs thin film. The spectra are offset for better clarity. (b) Corresponding
As 2p3/2 spectra, normalized to same integral spectral weight.

Table 1. Fe3O4/InAs: HAXPES spectral weight (given in per cent) for the
various atomic species in sample 1 (Tgrowth = 580 K) and sample 2 (Tgrowth =

650 K). The probing depth decreases with the cosine of the emission angle, which
is taken with respect to the surface normal.

Sample No. 1 No. 2

emission angle θ 0◦ 60◦ 0◦ 45◦

In (overall) 3.3 1.2 8.8 8.2
As (InAs) 1.8 1.0 1.1 0.5
As (As2O3) 1.4 1.7 2.0 1.8
Fe (Fe3O4) 34.6 35.7 29.6 30.1
O (overall) 49.4 45.4 52.3 51.3
C (surf. cont.) 9.4 15.1 6.2 8.1

is readily assigned as intrinsic substrate signal, i.e. to In–As bonding. In contrast, a second
component at higher binding energy (1326.4 eV) can clearly be attributed to the As oxides
As2O3 and As2O5. This oxide fraction increases considerably with respect to the intrinsic InAs
signal for larger electron emission angle θ , which implies smaller probing depth and thus higher
interface sensitivity (see table 1). It should be emphasized here that such interface-sensitive
depth profiling has only become possible due to the overall high photoelectron mean free path
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Figure 3. HAXPES Fe 2p (a) and As 2p3/2 (b) spectra of an Fe3O4/GaAs thin
film for various photon energies. λeff = λ cos θ , where λ is the calculated inelastic
mean free path of the photoelectron corresponding to its kinetic energy [28].

at the relevant HAXPES energies. No substrate signal was detectable in conventional XPS with
Al–Kα radiation on the same sample.

The amount of As oxides did not vary significantly when changing the film growth
temperature from 575 to 650 K. In contrast, the In 3d5/2 signal was considerably stronger at the
same nominal Fe3O4 film thickness for the higher growth temperature, indicating pronounced In
diffusion toward the sample surface (table 1). The chemical shift of the In 3d5/2 binding energy
between InAs and In2O3 is at most 0.2 eV according to [27] and therefore cannot be resolved
with our energy resolution.

3.3.2. Fe3O4/GaAs. The method of post-oxidation of an elemental Fe film was chosen for the
GaAs substrate, since this procedure was successfully applied for the production of a magnetite
thin film by Lu et al [20]. It is known from the literature that Fe grows epitaxially on GaAs [29]
and that the growth mode depends on substrate temperature and reconstruction. The growth is
e.g. 3D on Ga-rich GaAs(100)-c(8 × 2) with islands coalescing above four monolayers [30] or
predominantly layer-by-layer on As-rich GaAs(100)-(2 × 4) [31]. This is in the first order due
to the small lattice mismatch of 1.4% between Fe and GaAs. Therefore, it can be assumed that
the initial Fe layer covers the substrate completely. In contrast the lattice mismatch between the
designated Fe3O4 layer and GaAs is 5.0% and therefore considerably larger. LEED results on
Fe3O4/GaAs indicate mono-crystalline growth of the initial Fe layer and the post-oxidized film.

Post-oxidation of the initial Fe layer results in a near-stoichiometric magnetite layer at the
surface and a deeper-lying elemental Fe layer obviously localized at the interface, as inferred
from the photon-energy-dependent HAXPES spectra in figure 3(a). Note that in these data
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the HAXPES probing depth increases by nearly one order of magnitude from hν = 1.486 to
5 keV (see values for the inelastic mean free path in the figure). The overall Fe 2p spectrum
is a superposition of the broad spin–orbit-split peaks at 710.5 and 724.0 eV with smaller and
narrower peaks corresponding at 706.5 and 719.5 eV, which are characteristic of metallic Fe.
From the spectra it is obvious that the spectral weight of the elemental Fe component is
enhanced for increasing photon energy, i.e. for increasing probing depth and hence interface
sensitivity. Moreover, the metallic Fe signal is suppressed in conventional and hence more
surface-sensitive XPS spectra (measured with Al–Kα radiation). This behavior strongly suggests
that an elemental Fe layer is situated right at the interface to GaAs.

Generally, the post-oxidation procedure is expected to introduce a vertically varying
oxidation state profile in the film, resulting in a high oxidation state at the film surface and lower
oxidation state toward the interface. This behavior can be attributed to the limited permeabi-
lity of the Fe oxide layer for O2 molecules. The film thickness, which can be produced via
this method, is therefore restricted to only a few nanometers. However, higher film thicknesses
beyond can, in principle, be attained with repeated Fe evaporation and post-oxidation cycles.

As 2p3/2 (see figure 3(b)) and Ga 2p3/2 (not shown) display considerably less oxide layer
formation than observed in the Fe3O4/InAs system. A small As oxide component at 1325.6 eV
is observed for small photon energy and hence probing depth, but strongly suppressed at
much higher excitation energies. From these photon energy-dependent depth profiling data, we
conclude that the small As and Ga oxide signal originates from the interface. The initially grown
Fe layers act as barrier for the O2 molecules and protect the substrate surface from unintentional
oxidation deeper in the bulk. With decreasing probing depth (i.e. smaller photon energy) the
intrinsic As 2p3/2 peak appears to shift to higher binding energy. This behavior is presently not
yet understood and requires further investigation. One may speculate that it could be related to
band bending at the interface, or reflect an increasing contribution by covalent Fe–As bonds in
the more interface-sensitive spectra.

We thus find that depth profiling with HAXPES, either by varying the photoelectron
escape angle or by tuning the photon energy, is a valuable tool for the characterization of
oxide films on semiconductor substrates. The above HAXPES data provide helpful guidance
for the optimization of the film growth parameters and, in particular, important information
on composition and chemistry of the interface. The latter is essential for the efficiency of spin
injection from the magnetite electrode into the semiconductor substrate. It will be interesting to
correlate the spectroscopic findings with actual spin transport experiments. Another important
aspect is the actual spin polarization in the magnetite film, and its possible vertical variation
from surface to interface. This could, in principle, be determined by magnetic circular dichroism
in HAXPES or by spin-resolved HAXPES. While the former has already been shown to be a
feasible method [32], the latter requires the development of novel types of spin detectors with
enhanced efficiency.

4. LaAlO3/SrTiO3 (LAO/STO) heterostructures

4.1. Motivation: Novel conducting interface phase between band insulators

The system LAO/STO is probably the most intensively studied oxide heterostructure since the
first theoretical proposals [33] and experimental reports [34] that novel metallic interface phases
can be induced in such systems, although the constituent materials are insulating. In the case
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Figure 4. (a) Sketch of an LAO/STO heterostructure with a 2D interface
electron gas. (b) Ti 2p spectra LAO/STO samples with various numbers of LAO
overlayers and a bare STO substrate, measured at a fixed emission angle of 50◦

off normal emission (NE). The Ti3+ signal is a direct manifestation of additional
electrons in the Ti 3d states and hence of the interface 2DEG. Samples from the
University of Augsburg (A). (c) Close-up of the Ti3+ weight of the spectra in (b).

of LAO and STO, both compounds are wide-gap semiconductors with perovskite structure. An
artistic view of an LAO/STO heterostructure with a 2D electron gas (2DEG) at the interface is
shown in figure 4(a).

The 2DEG has a number of fascinating properties. First of all, it only exists in interfaces on
TiO2-terminated STO, while no metallic interface phase has been observed on SrO-terminated
STO [34]. Also, the 2DEG only occurs, if the LAO overlayer equals or exceeds a critical
thickness. Furthermore, the 2DEG can be controlled by field effect, i.e. by applying a gate
voltage the interface can be driven from conducting to insulating or vice versa [35]. At
low temperatures, many-body effects drive the 2DEG into a new symmetry-broken phase,
although quite different types of groundstates have been observed: while some groups found
2D superconductivity below 200 mK, others reported on indications for ferromagnetism below
1 K [36]–[38].

Besides these highly interesting observations, the very reason for the formation of a 2DEG
between the two band insulators LAO and STO is still an open question. Both extrinsic and
intrinsic explanations have been put forward. For example, it has been found that a low oxygen
partial pressure during PLD film growth results in oxygen vacancies, which act as donors and
create n-type mobile charge carriers in the STO substrate [38]. Likewise, off-stoichiometry as a
result of Sr/La mixing [39] can induce interface conductivity. On the other hand, conventional
band-bending [40], accounting for the band discontinuity of the two materials, has been
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suggested to trap electrons in a narrow region at the inner LAO/STO interface. However, none
of these models is capable of explaining the threshold behavior with growing LAO overlayer
thickness.

An alternative explanation for 2DEG formation, which takes into account the ionic
character of the involved perovskites, has been at issue under the notion of ‘electronic
reconstruction’. In this picture, owing to the polar nature of the stacked LAO crystal planes, an
electrostatic potential is piled up with increasing number of LAO overlayers [41]. A so-called
polar catastrophe can be avoided by charge transfer from the LAO surface to the LAO/STO
interface, in the simplest description by half an elementary charge per 2D unit mesh. The
probably most striking experimental fact in support of this scenario is indeed the existence
of a critical LAO thickness, which was first reported by Thiel et al [35] by transport and
Hall measurements. They found that at an overlayer thickness of four LAO unit cells the
conductivity jumps from a value below the measuring limit to a constant value, indicative
of metallic coherent charge transport. This observation cannot easily be reconciled with any
of the other above explanations. In the following, we will show how HAXPES can provide
valuable information on two key quantities, namely the thickness and the charge density of the
2DEG [42]. Furthermore, we demonstrate the power of HAXPES in total reflection geometry,
which allows depth profiling at considerably higher count rate than by conventional angle- or
photon energy-dependent spectroscopy.

4.2. Results

Figure 4(b) displays Ti 2p3/2 core-level spectra at a fixed emission angle of 50◦ for samples from
Augsburg with a varying number of LAO overlayers in comparison to a bare STO spectrum. The
spectra are normalized to equal integral intensity. As can be seen, the peak maximum decreases
with increasing number of LAO unit cells (uc). In contrast, at the foot of the peak at lower
binding energies, there is a corresponding increase of spectral weight. This is better assessed
from the close-up of this region in figure 4(c). The energy difference of 2.2 eV between the
main peak and the weight occurring at its foot corresponds well to the chemical shift between
Ti4+ and Ti3+. This is further corroborated by the conservation of their total spectral weight, in
agreement with a scenario in which more and more Ti atoms at or near the interface accept an
extra electron, turning its valence from 4+ (as in pure STO) to 3+. Thus the ratio of the areas
under the two lines is a measure for the 3d charge carrier concentration for a certain probing
depth (determined by the emission angle and the chosen photon energy). From a quantitative
analysis of these HAXPES spectra one can thus estimate absolute values for the interface charge
density per unit area [42].

Despite the overall agreement with the results from transport regarding the size of the
charge carrier density, there are two remarkable points to note: firstly, the increase in charge
density is continuous, at variance with the transport data. Secondly, there is nonzero charge
already for the 2 uc sample, again in contradiction to conductivity measurements in which it
is found to be insulating. Probably several factors contribute to this seemingly contradictory
results. There might be a certain amount of localized charge carriers at the STO interface,
irrespective of the number of LAO overlayers. This amount is seen in HAXPES but does not
contribute to conductivity. Partly, the absence of a sharply defined critical LAO thickness in
the HAXPES data might be traced back to charge carriers which are photogenerated upon the
irradiation with x-rays. Due to the large penetration depth such carriers are created deep in the
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Figure 5. (a) Ti 2p spectra of a 4 uc sample for various grazing angles φ about
the critical angle of total reflection φc. Sample from the Paul-Scherrer-Institute
(PSI). (b) Close-up of the Ti3+ weight of the spectra in (a). (c) Relation between
the grazing angle, φ, and the angle off normal emission (NE), θ , in a non-
grazing emission geometry, corresponding to equal effective electron escape
depths (calculated for α = 45◦). See figure 1 for definition of angles.

substrate. With increasing LAO thickness and hence increasing electrostatic potential gradually
more and more of these carriers might be collected at the interface. Finally, our quantitative
analysis [42] yields a 2DEG thickness of the order of 1 uc, in agreement with density-functional
calculations [43]. For such a situation, substrate terraces might hinder electron conduction until
a large enough density is reached.

As touched upon above, a quantitative analysis based on a simple model for the
heterostructure is straightforward, if one uses the variation of the electron emission angle for
depth profiling. It essentially involves only knowledge of the electron inelastic mean free path.
An example for depth profiling by means of external total reflection in a grazing incidence
geometry is given in figures 5(a) and (b). In these plots, Ti 2p core-level spectra and the
corresponding close-ups of the Ti3+ related weight, respectively, on a 4 uc sample fabricated
at the PSI are shown for various grazing angles around the critical angle for total external
reflection. Qualitatively the same results are obtained as by the conventional depth profiling
method, i.e. with increasing sensitivity to the interface (smaller φ) an increase of the relative Ti3+

weight is observed. However, a quantitative analysis is more intricate, since in addition to the
mean electron scattering length also the optical constants of the material and the experimental
geometry with respect to both electron emission and light incidence have to be taken into
account. If these aspects are properly considered, one can calculate the functional relationship
between the electron emission angle θ in standard depth profiling geometry and the grazing
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Figure 6. Schematic arrangement of the x-ray optical elements used for
HAXPES at undulator beamline P09 of PETRA III.

angle φ for equal effective probing depths. This highly nonlinear curve is plotted in figure 5(c)
for a fixed angle α between light incidence and electron emission (here α = 45◦). Note that,
coming from larger angles, the critical angle φc marks the onset below which a change in φ

most sensitively results in a variation of the effective probing depth.

5. Perspectives

Currently there are about 12 HAXPES instruments in operation at various synchrotron radiation
facilities worldwide (see [5] for details). The technique has rapidly developed over the past few
years, with widespread applications from basic research to applied materials science. In order
to meet the growing demand and to meet special requirements, a number of new dedicated
HAXPES set-ups are currently being planned or already under construction.

New perspectives for high-resolution HAXPES will arise at DESY with the availability
of a dedicated station at PETRA III, which is designed to become the highest brilliance hard
x-ray storage ring source worldwide. Source brilliance is one of the key ingredients for high-
resolution hard x-ray spectroscopy on nano-sized materials. Not only does the brilliant beam
allow for high-energy resolution with appreciable photon flux but also the small photon source
size can be effectively utilized to reach µm focusing.

A new HAXPES instrument is currently being built as an endstation at beamline P09
of PETRA III. The photon source is a spectroscopy undulator covering an energy range
of 2.4–10 keV in the first harmonic with high flux of the order of 1013 photons s−1 into a
band width of 1ν/ν = 10−4. The beamline comprises a number of x-ray optical elements
(figure 6) facilitating a range of interesting options for HAXPES experiments. The energy
resolution obtained from the primary Si(311) high heat-load monochromator is expected
to be 100–200 meV in the range from 4.2 to 7 keV photon energy. Higher resolution well
below 100 meV may be obtained by optionally using a Bartels-type post monochromator with
interchangeable crystal sets. Due to the high source brilliance, the monochromator throughput
will be large, resulting in a photon flux of typically >1011 photons s−1 within a ∼40 meV energy
bandpass.

Moderate focusing down to about 200 µm2 is obtained by a pair of pre-focusing mirrors.
For laterally resolving experiments on nanostructures by photon beam scanning, post-focusing
by a Kirkpatrick–Baez (KB) mirror system close to the experiment will result in a focal spot
of 1–5 µm2 on the sample. It is noted that the HAXPES experiment is located 95 m from the
source allowing for convenient focal distances. For studies on magnetic materials, a double-
stage diamond phase retarder may be optionally placed into the monochromatic beam providing
variable circular polarization for, e.g. core level XMCD experiments. Its usable energy range for
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HAXPES is from about 4.5 to 10 keV with diamond plates of different thicknesses yielding an
overall transmission of 30–40%. Note that by also using the second stage a half-wave plate
condition is realized, which allows continuous rotation of the linear polarization as well.

The HAXPES instrument itself uses a SPECS Phoibos 225 electron analyzer reaching
up to 15 keV kinetic energy with a design energy resolution well below 100 meV. Since the
counting rates of valence band spectra may be low in HAXPES experiments, the instrument
uses a delayline detector that can optionally be combined with a micro-Mott spin detector for
photoelectron spin analysis. The samples can be precisely aligned with a motorized five-axis
manipulator with integrated LHe-cryostat (T < 18 K).

This set-up is currently being tested and commissioned in parallel to the assembly of the
PETRA III beamline. It is planned to perform initial HAXPES experiments in summer 2009.
After commissioning, this new HAXPES instrument will provide interesting new opportunities
for the study of bulk electronic properties of complex correlated and, in particular, magnetic
materials, embedded interfaces and nanostructures, multifunctional composite materials as well
as magnetic devices.
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