
LC-TOOL-2009-001

MarlinKinfit: An Object–Oriented
Kinematic Fitting Package

Benno List, Jenny List

25.3.2009

Abstract

This note describes the core functionality of the MarlinKinfit package
for performing constrained kinematic fits. It provides a modular frame-
work in which particles and constraints among them can be combined in
a flexible way to describe any desired event hypothesis. The actual min-
imisation is done by a fit engine which can be exchanged independently
from the event hypothsis. The mathematics behind the basic fit engine in
the package is described in detail. In the end, an example application is
given.

1 Introduction

In a kinematic fit, a number of four–vectors, parametrized by parameters such
as φ, θ and E, are fitted such that they fulfill constraints such as transverse
momentum conservation or an invariant mass constraint, and minimize a χ2

that describes the deviations between measured and fitted quantities.

In general, we have a number V of four–vectors pv = (Ev, px,v, py,v, pz,v)
that depend on N parameters an (for instance, p1 depends on a1 = φ1, a2 = θ1,
and a3 = E1). In a more general case, we could also have parameters such as
an energy scale that affect more than one four-vector, so that in full generality
we should assume that each four-vector depends on any number of parameters.

If these parameters have been measured with a certain accuracy, as for jets
or charged leptons, deviations between the measured values yn and the fitted
values ηn lead to a χ2.

In addition, there may be J unmeasured parameters ξj, for example the
momentum components of a neutrino that escapes detection. So, in general the
fit problem involves N measured parameters and J unmeasured parameters.

In addition, there will be a number of K ≥ 0 constraints, which are expressed
by functions fk that depend on the N + J parameters:

fk = fk (η1...ηN, ξ1...ξJ),

where constraint k is given by the condition fk = 0. In practive, the constraints
will in most cases be expressed in terms of the four-vector components, such as
energy-momentum constraints or mass constraints.

1

Moreover, there may be additional χ2 contributions from “soft” constraints,
e. g. when one demands that the invariant mass of several four–vectors be com-
patible with a particle’s mass (e. g. Z0) within the particle’s width. However
the minimisation method decribed in this note cannot handle soft constraints
in the presence of unmeasured quantities. Therefore we will discuss soft con-
straints in detail in a later publication describing the second fitting engine in
the package, the NewtonFitter, based on the Newton–Raphson method, which
can treat them also in the presence of unmeasured parameters.

One seeks now a (global) minimum of the total χ2 (η1...ηN, y1...yN), under
the K conditions fk (η1...ηN, ξ1...ξJ) = 0.

This minimum is characterized by N conditions

∂χ2

∂ηn
= 0.

Using the method of Lagrange multipliers, one defines a new quantity

χ2
T = χ2 (η1...ηN, y1...yN) + 2 ·

K∑
k=1

λk · fk (η1...ηN, ξ1...ξJ),

where K additional unknown parameters are introduced, the Lagrange multi-
pliers λk.

This χ2
T depends on a total of N + J + K unknowns, plus N measured

parameters:
χ2

T = χ2
T (η1...ηN, ξ1...ξN, λ1...λK, y1...yN),

and one can write the minimum conditions as

∂χ2
T

∂ηn
=

∂χ2

∂ηn
+ 2 ·

K∑
k=1

λk · ∂fk

∂ηn
= Cηn + 2 ·

K∑
k=1

λk · ∂fk

∂ηn
= 0

∂χ2
T

∂λk
= fk = 0,

where we have introduced N functions

Cηn (η1...ηN, y1...yN) =
∂χ2

∂ηn

Note that while one seeks a global minumum of χ2 within the subspace spanned
by the constraints, one will not have a global minimum of χ2

T, which is not
bounded from below, even if one would express the constraints in a way that
the fk are always nonnegative. This excludes the use of minimization packages
like MINUIT [1] to solve the problem.

In the following, we will first introduce the basic abstractions which are
used in the MarlinKinfit package in order to allow to flexible configurations
of the constraints, the measured and unmeasured quantities independent of
the actual fitting engine. In section 3 we will describe the mathematics and

2

the implementation of the reference fit engine in the package, the so-called
OPALFitter, which is derived from the kinematic fitting software used by the
OPAL experiment. Sections 4 and 5 contain information about the currently
implemented constraints and particle parametrisations. Finally in section 6 an
example application to four jet events is presented.

2 MarlinKinfit

The kinematic fitting package presented here is incorporated into the Marlin
framework [2]. The source code is available within the MarlinReco package
from [3].

The purpose of this package is to provide an object-oriented framework for
kinematic fits. It provides a set of general base classes that are a priori not
dependent on the experiment or the event hypothesis under consideration. Al-
though a growing set of concrete cases is implemented, the actual parametrisa-
tion of the particles’ four-momenta and the formulation of different constraints
can easily be adapted by the user according to the desired physics process.

Also the actual fitting algorithm is exchangable. At the moment, two fit-
ters are available, the OPALFitter, which is described in detail below, and the
NewtonFitter, which is still under development and which will be described in
a later publication.

2.1 Basic Concepts

This fitting package is based on three concepts:

• A fitting engine,

• constraints, and

• fit objects.

These concepts are reprensented by different classes, with abstract base
classes that define the interfaces and concrete subclasses for the implementation.

Fit objects, which correspond to entities like jets, muons, or neutrinos, store
information on their parameters and encapsulate the details of the parametri-
sation. If parameters have been measured, two parameter sets are stored, the
measured and the fitted ones, together with their respective covariance matrices.
The fit objects provide information on the number of their internal parameters,
whether they are measured or unmeasured, and information on their physical
quantities, in particular four vector components, and values of derivatives of
the four vector components with respect to the various parameters.

Constraints between fit objects are formulated in terms of the physical quan-
tities, in particular four vector components, of the fit objects. A constraint is

3

a function of the physical quantities of several fit objects, which has to be zero
if the constraint is fulfilled. A constraint object is associated with several fit
objects, and communicates with them so that it can evaluate the value of the
constraint function and its derivatives with respect to the internal parameters
of the fit objects. These derivatives are evaluated according to the chain rule,
so that the constraint object contains only derivatives with respect to the phys-
ical quantities, which are then multiplied by the derivatives with respect to the
parameters that are provided by the fit objects.

The fit engine sets up and solves the system of equations of the fitting
problem. It maintains lists of constraints and fitting objects.

2.2 How to Perform a Fit

To set up a fitting problem, first the fit objects have to be created:

JetFitObject j1 (47., 0.84 , 0.64, 5.0, 0.1, 0.1, 0.);

JetFitObject j2 (45., 2.30 , 2.50, 5.0, 0.1, 0.1, 0.);

JetFitObject j3 (46., 0.996, 3.83, 5.0, 0.1, 0.1, 0.);

JetFitObject j4 (42., 2.21 , 5.82, 5.0, 0.1, 0.1, 0.);

Here, the first three arguments are energy, polar and azimutal angle of the
jet, the next three arguments are their errors, and the last argument is the jet
mass.

Then, constraint objects that express constraints such as

• sum of px = 0

• sum of py = 0

• invariant mass of two jet pairs is equal

are created

PxConstraint pxc; // sum(px)=0

PyConstraint pyc; // sum(py)=0

MassConstraint mc(0.); // mass(particle set 1)-mass (particle set 2)=0

and the fit objects are associated with them:

pxc.addToFOList (j1);

pxc.addToFOList (j2);

pxc.addToFOList (j3);

pxc.addToFOList (j4);

pyc.addToFOList (j1);

pyc.addToFOList (j2);

pyc.addToFOList (j3);

4

pyc.addToFOList (j4);

mc.addToFOList (j1, 1);

mc.addToFOList (j2, 1);

mc.addToFOList (j3, 2);

mc.addToFOList (j4, 2);

Finally, the fit engine is created, and the fit and constraint objects are passed
to the engine, which finally performs the fit:

OPALFitter fitter;

fitter.addFitObject (j1);

fitter.addFitObject (j2);

fitter.addFitObject (j3);

fitter.addFitObject (j4);

fitter.addConstraint (pxc);

fitter.addConstraint (pyc);

fitter.addConstraint (mc);

double prob = fitter.fit();

After the fit, the fit objects have their fitted parameters set to the fit result.

The fit engine has a list of fit objects. First it sets up a global list of
measured and unmeasured quantities, and each of the internal parameters of
the fit objects gets, in addition to its internal or local number, a global number.
These global parameter numbers are stored, for efficiency reason, within the fit
objects. Similarly, the constraints are numbered by the fit engine, and these
global constraint numbers are also stored in the constraint objects. Remember
that to each constraint there belongs a new parameter, its Lagrange multiplier.
Measured parameters, unmeasured parameters, and Lagrange multipliers are
globally numbered in consequitive order, starting at 0.

3 OPALFitter

The OPALFitter class reimplements the code originally implemented in the
package WWFIT of the OPAL collaboration. This package uses the algorithm
detailed in [4, 5], which is repeated here for convenience.

The notation here are those used by [4] and are the same in the code.

3.1 Mathematical Method

We have N measured quantities ηn, where the measured values are given by yn

with an N × N covariance matrix V , and J unmeasured quantities ξj, subject
to K constraints expressed as

fk (η1, ..., ηN , ξ1...ξJ) = 0, k = 1...K. (1)

5

For simplicity, we arrange these values and constrains functions in vectors �η, �y,
�ξ, and �f .

We introduce K additional unknowns λk, the Lagrange multipliers, that
form a vector �λ.

The total χ2
T that should be minimized is given by

χ2
T (�η, �ξ,�λ) = (�y − �η)T · V −1 · (�y − �η) + 2�λT · �f (�η, �ξ). (2)

Taking the various derivatives leads to the set of equations

∇ηχ
2
T = −2V −1 · (�y − �η) + 2�F T

η · �λ = �0, (N equations)
∇ξχ

2
T = �F T

ξ · �λ = �0, (J equations)
∇λχ2

T = 2�f (�η, �ξ) = �0, (K equations)
(3)

where Fη and Fξ are matrices of dimension K × N and K × J , respectively,
defined as

(Fη)kn =
∂fk

∂ηn
, (4)

(Fξ)kj =
∂fk

∂ξj
. (5)

(6)

Therefore, the equations to be solved are (after dropping the factors of 2):

�0 = V −1 · (�η − �y) + �F T
η · �λ, (7)

�0 = �F T
ξ · �λ, (8)

�0 = �f (�η, �ξ). (9)

Since the constraints �f (�η, �ξ) and their derivatives Fη and Fξ are in general
nonlinear functions, this system of equations has to be solved iteratively.

Let �ην and �ξν denote the values at iteration ν. Then we can make a Taylor
expansion around this point, and write (neglecting terms of 2nd and higher
order)

�f (�ην+1, �ξν+1) = f (�ην , �ξν) + F ν
η · (�ην+1 − �ην) + F ν

ξ · (�ξν+1 − �ξν). (10)

Now Eqs. (7) to (9) read

�0 = V −1 · (�ην+1 − �y) + (F ν
η)T · �λν+1, (11)

�0 = (F ν
ξ)T · �λν+1, (12)

�0 = �f ν + F ν
η · (�ην+1 − �ην) + F ν

ξ · (�ξν+1 − �ξν). (13)

This system of equations is now solved.

One can solve Eq. (11) for �ην+1:

�ην+1 = �y − V · (F ν
η)T · �λν+1 (14)

6

and insert that into Eq. (13) to get

�0 = �f ν + F ν
η ·
(
�y − V · (F ν

η)T · �λν+1 − �ην
)

+ F ν
ξ · (�ξν+1 − �ξν), (15)

which can be rewritten as

�r + F ν
ξ · (�ξν+1 − �ξν) = S · �λν+1, (16)

where we have introduced

�r = �f ν + F ν
η · (�y − �ην), (17)

S = F ν
η · V · (F ν

η)T . (18)

S is a symmetric K × K matrix that can be inverted, provided that each con-
straint depends on at least one measured parameter. Since V is symmetric and
positive definite, also S is symmetric and positive definite.

However, the definition of S in Eq. (18) leads to a singular matrix if some
constraints do not depend on any measured parameter. This is the case because
for such a constraint k we have (Fη)kn = 0 for all n = 1...N , and hence Skk′ =∑

n,n′(Fη)knVn,n′(Fη)k′n′ = 0 for this particular value of k.

The reason for this problem is that in our case Eqs. (11) and (13) alone are
not sufficient to determine �λν+1.

Therefore, we have to use Eq. (12) as well. We can take Eq. (12), which is
a set of J equations, and multiply it by F ν

ξ (which is a K × J matrix) to arrive
at this set of K equations:

�0 = F ν
ξ · (F ν

ξ)T · �λν+1. (19)

We subtract this from Eq. (15) to get

�0 = �f ν + F ν
η ·
(
�y − V · (F ν

η)T · �λν+1 − �ην
)

+ F ν
ξ · (�ξν+1 − �ξν)−F ν

ξ · (F ν
ξ)T ·�λν+1.

(20)
As before, we can rewrite this in the form given by Eq. 16, only now S is given
by

S = F ν
η · V · (F ν

η)T + F ν
ξ · (F ν

ξ)T . (21)

The new term F ν
ξ · (F ν

ξ)T is evidently symmetric and, because it is the
product of a matrix with its transpose, it is positive semidefinite, which means
it has only nonnegative eigenvalues. Therefore, S is still symmetric and positive
semidefinite. If the matrix S is still singular, the problem is ill defined.

For the same reason, also W1 = (F ν
ξ)T · S−1 · F ν

ξ is positive semidefinite.

Therefore we can multiply Eq. (16) with S−1 to get

S−1 ·
(
�r + F ν

ξ · (�ξν+1 − �ξν)
)

= �λν+1, (22)

which inserted in Eq. (12) yields

�0 = (F ν
ξ)T · S−1 ·

(
�r + F ν

ξ · (�ξν+1 − �ξν)
)

. (23)

7

This we can solve for �ξν+1−�ξν and insert the result back into Eq. (16). Finally,
we arrive at this set of equations:

�ξν+1 = �ξν − ((F ν
ξ)T · S−1 · F ν

ξ

)−1 · (F ν
ξ)T · S−1 · �r, (24)

λν+1 = S−1 · (�r + F ν
ξ · (ξν+1 − ξν)

)
, (25)

ην+1 = �y − V · (F ν
η)T · �λν+1. (26)

Since S is symmetric and positive definite for well-posed problems, so is S−1,
and therefore also W1 = (F ν

ξ)T · S−1 · F ν
ξ is symmetric and positive definite.

3.2 Description of the Code

Here, we describe the implementation in OPALFitter::fit().

Before the first iteration, in OPALFitter::initialize() some initializa-
tions are performed. All fit objects are asked for their number of measured
and unmeasured parameters, and are told the global parameter numbers. Also
the constraints are counted. At the end of OPALFitter::initialize(), the
variables npar, nmea, nunm and ncon correspond to correspond to N +J , N , J ,
and K, respectively.

Before the iterations start, the derivatives ∂ �f/∂�η and ∂ �f/∂�ξ are evaluated
and stored in dfeta. dfeta[k][n] then corresponds to ∂fk/∂ηn = (Fη)kn for
k = 0...K − 1, n = 0...N − 1, and ∂fk/∂ξj = (Fη)kN+j for j = 0...J − 1. Also,
vector y is filled with the measured values yn (n = 0...N − 1). Additionally,
the variable eta is initialized. It holds in eta[n] the current fit values of the
measured parameters ηn, and in eta[nmea+j] the values of the unmeasured
parameters ξj.

During each iteration, the global covariance matrix V is collected from the
fit objects in matrix V. The fact that this is repeated in each iteration makes
it possible to use a generalized χ2 that cannot be expressed through a fixed
covariance matrix. Then the inverse V −1 is calculated as VINV.

Now the vector �r is collected in variable R. Its calculation according to
Eq. (17) is straightforward. At the same time, the matrix S is built (in variable
S) according to Eq. (18). It is then inverted, so that hence S corresponds to
S−1.

Then, a matrix W1 is formed as (F ν
ξ)T · S−1 · F ν

ξ and inverted, so that it

corresponds to
(
(F ν

ξ)T · S−1 · F ν
ξ

)−1
.

Using this, the vector dxi corresponding to ξν+1 − ξν is calculated as

δξ = ξν+1 − ξν = −α
(
(F ν

ξ)T · S−1 · F ν
ξ

)−1 · (F ν
ξ)T · S−1 · �r (27)

= −αW1 · (F ν
ξ)T · S−1 · �r (28)

The quantity α (variable alph) is initially set to 1 and can be used to decrease
the step size if bad convergence is observed.

8

Then, new values of the unmeasured quantities ξj are calculated as ξν+1
j =

ξν
j + δξj .

Then the Lagrange multipliers are calculated in vector alam according to

λν+1 = S−1 · (�r + F ν
ξ · δξ) .

Now, new values for the fitted parameters are calculated according to Eq. (26).

Next, the derivatives ∂ �f/∂�η and ∂ �f/∂�ξ are reevaluated and stored again in
dfeta.

3.3 Convergence criteria and step size reduction

In order to establish convergence, the OPALFitter evaluates two quantities:

χ2 = (�y − �η)T V −1(�y − �η) (29)

χ2
K = 2 ·

∑
k

|λkfk| (30)

The OPALFitter assumes convergence if either of the following two condi-
tions is fulfilled:

• χK changes by less than 10−3 within one iteration, and
χ2 changes by less than 10−4 · χ2 within one iteration, and
χK < 10−2 · χ2, or

• all constraint functions have values fK < ε, and
all parameters have changed by less than ε = 10−6 within the last itera-
tion.

A bad step, which worsens the result instead of improving it, is detected by
the following condition:

• χK increases by more than 5% relative and by more than 10−10 absolute
within the step, and

• χK > 10−2 · χ2.

Each step is scaled by a factor α, which is initially set to α = 1. If a bad
step is detected, the step is repeated with a reduced value of α, which is set to
half its old value. This value of α is kept for subsequent steps, but is increased
by 0.1 after each successful step, until the value of α = 1 is reached again.

9

4 Constraints

All classes implementing constraints are derived from the BaseConstraint
class. Since the minimisation method of the OPALFitter is based on a first
order Taylor expansion, their main task is to determine the value of the con-
straint function and its first derivatives with respect to the parameters.

Let us consider the two main classes of constraints in turn:

• energy and momentum constraints, and

• mass constraints.

4.1 Energy and Momentum Constraints

Energy and momentum constraints are used to express energy and momentum
conservation in collisions.

In e+e− collisions, we’ll have typically four constraints:∑
i

px,i = 0

∑
i

py,i = 0

∑
i

pz,i = 0

∑
i

Ei =
√

s,

where
√

s is the e+e− center-of-mass energy, and the sum will run over all final-
state particles (including jets and neutrinos, and possibly (unmeasured) ISR
photons).

All these constraints can be written as

f =
∑

i

(cxpx,i + cypy,i + czpz,i + ceEi + d) ,

with suitable coefficients cx, cy, cz, ce, and d; the sum extends over those four-
vecors that are subjected to the constraint.

Then we have (using ∂f
∂px,i

= cx):

∂f

∂ηn
=
∑

i

(
cx

∂px,i

∂ηn
+ cy

∂py,i

∂ηn
+ cz

∂pz,i

∂ηn
+ ce

∂Ei

∂ηn

)
,

or, in case of unmeasured parameters:

∂f

∂ξj
=
∑

i

(
cx

∂px,i

∂ξj
+ cy

∂py,i

∂ξj
+ cz

∂pz,i

∂ξj
+ ce

∂Ei

∂ξj

)
.

The EnergyMomentumConstraint class can be used to implement a con-
straint on any linear combination of E, px, py and pz by specifying the appro-
priate c factors in the constructor.

10

4.2 Mass Constraints

Mass constraints fall into two categories:

• The sum of several four-vecors has to have a definite invariant mass m:

f =

(∑
i

Ei

)2

−
(∑

i

px,i

)2

−
(∑

i

py,i

)2

−
(∑

i

pz,i

)2

− m2

• Equal mass constraint: Two sets of four-vectors have the same invariant
mass:

f =

(∑
i

Ei

)2

−
(∑

i

px,i

)2

−
(∑

i

py,i

)2

−
(∑

i

pz,i

)2

−

∑

j

Ej




2

+


∑

j

px,j




2

+


∑

j

py,j




2

+


∑

j

pz,j




2

These two types can be summarized in one type of constraint:

f =

(∑
i

Ei

)2

−
(∑

i

px,i

)2

−
(∑

i

py,i

)2

−
(∑

i

pz,i

)2

−

∑

j

Ej




2

+


∑

j

px,j




2

+


∑

j

py,j




2

+


∑

j

pz,j




2

−m2.

Then we get1

∂f

∂ηn
= 2ΣEi ·

(∑
i

∂Ei

∂ηn

)
− 2Σpx,i ·

(∑
i

∂px,i

∂ηn

)
− 2Σpy,i ·

(∑
i

∂py,i

∂ηn

)
− 2Σpz,i ·

(∑
i

∂pz,i

∂ηn

)

−2ΣEj ·

∑

j

∂Ej

∂ηn


+ 2Σpx,j ·


∑

j

∂px,j

∂ηn


+ 2Σpy,j ·


∑

j

∂py,j

∂ηn


+ 2Σpz,j ·


∑

j

∂pz,j

∂ηn




4.3 Global Derivative Matrix of the Constraints

For reasons of efficiency, each constraint adds its own contribution to a global
matrix Fξη of dimension K × (N + J), defined as:

1of course there are the analoguos expression for the unmeasured quantities, which are not
explicitely listed here, since the partial derivatives do not depend on the parameters being
measured or unmeasured.

11

Fξη =




... ∂fk
∂η1

...

... ...

... ∂fk
∂ηN

...

... ∂fk
∂ξ ...

... ...

... ∂fk
∂ξJ

...




.

This is implemented in the method AddToGlobalDerivativeMatrix.

5 Fit Objects

All classes implementing fit objects for kinematic fitting are derived from the
ParticleFitObject class, which in turn is derived from the BaseFitObject
class.

These base classes define the minimal functionality any fit object must pro-
vide. The main task of a fit object, as define by BaseFitObject, is to keep
parameters (and errors) that define the physical quantities and encapsulate the
actually chosen parametrisation from the rest of the fitting machinery. The
ParticleFitObject provides as physical quantities the four-vector of a parti-
cle. For other applications it is also possible to define more general interfaces,
which e.g. provide also vertex positions or trajectory information, as needed
for decay chain fits.

Since for the fit a parametrisation where the distribution of the measured
values is as close to a normal distribution as possible is most favorable, different
kinds of particles (implying different kinds of measurements!) might require
different parametrisations. For each desired parametrisation a concrete class
should be derived from this abstract base class. It needs to be able to convert
its parameters to E, px, py, pz and to provide the derivatives of E, px, py, pz

with respect to the internal parameters.

Depending on the type of particle, some or all parameters might be unmea-
sured (neutrinos!). They are treated differently by the fit algorithm and are
thus flagged accordingly.

In order to insert its derivatives into the global covariance matrix of all
FitObjects in the event, each FitObject needs to know the position of its
parameters in the overall parameter list.

Currently, a JetFitObject parametrising a (measured) jet via its energy,
polar and azimutal angle as well as a NeutrinoFitObject parametrising missing
momentum via px, py and pz as unmeasured quantities are implemented 2. The
errors of the measured parameters have to be supplied by the user along with
the measured values.

2In addition, a dedicated PhotonFitObject for treating ISR and Beamstrahlung photons
escaping through the beam pipe is under development [6]

12

5.1 Implementation of new FitObjects

Depending on the experimental conditions, the measurement of a particle’s
or jet’s fourvector is parametrized differently. Typically, one will choose a
parametrization in terms of variables which are uncorrelated as far as possi-
ble, and which have approximately Gaussian errors.

If a parametrization in terms of a new set of variables is needed, the user
has to create a new class derived from ParticleFitObject.

This new class will generally have its own implementation of the following
methods:

• getChi2 returns the χ2 of the fit parameters w.r.t. the measured ones.
For this method, a default implementation is provided in the base class
ParticleFitObject; however, it may be necessary to provide a special
implementation which takes care of cases where e.g. azimuthal angles are
involved.

• getE, getPx, getPy, and getPz return the energy and the three-momentum
components of the FitObject.

• getDE, getDPx, getDPy, and getDPz return the derivative of the energy
and the three-momentum components of the FitObject w.r.t. one of the
internal parameters.

• addTo1stDerivatives adds the first derivatives

ce
∂E

∂ηi
+ cx

∂px

∂ηi
+ cy

∂py

∂ηi
+ cz

∂pz

∂ηi

w.r.t. each of its parameters ηi to a global derivative matrix; the coeffi-
cients ce, cx, cy and cz are provided (in this order) in a single array as an
argument. This method is in principle redundant, because getDE, getDPx,
getDPy, and getDPz also have to be defined; however, for efficiency rea-
sons this method has to be provided.

• addToGlobalChi2DerVector adds the λ times the first derivatives

λ ·
(

ce
∂E

∂ηi
+ cx

∂px

∂ηi
+ cy

∂py

∂ηi
+ cz

∂pz

∂ηi

)

w.r.t. each of its parameters ηi to a global derivative matrix; the coeffi-
cients ce, cx, cy and cz are provided (in this order) in a single array as an
argument, also λ is provided. Again, this method is provided for efficiency
reasons.

• getError2 returns the value of

(
∂fk

∂E, px, py, pz

)T

·
(

∂E, px, py, pz

∂�η

)T

·V −1·
(

∂E, px, py, pz

∂�η

)(
∂fk

∂E, px, py, pz

)
,

13

where the vector
(

∂fk
∂E,px,py,pz

)
is provided as an argument, and V −1 is the

covariance matrix of the local parameters �η. This method is needed to
perform an error propagation for the value of a constraint function.

For efficiency reasons, a method invalidateCache is called whenever a pa-
rameter is changed. This mechanism may be used to avoid repeated calculations
of various quantities during an iteration step. The user may look at the im-
plementation of class JetFitObject for an example how to use such a caching
mechanism.

A number of additional methods are needed for the NewtonFitter fit engine,
which also needs the second derivatives of the constraints and hence of the
FitObject’s fourvectors. These are called addTo2ndDerivatives. Again, the
user may look at the implementation of class JetFitObject for an example
how to implement this method, which is, however, not needed by the reference
fit engine OPALFitter.

6 Example

The performance of the fit has been tested on e+e− → ud̄dū events generated
by the matrix element based event generator Whizard [7] and passed through
the full detector simulation and reconstruction chain of the ILD detector [8]
proposed for the International Linear Collider. After forcing the event into
four jets using the Durham jet algorithm, applying a few basic reconstruction
quality cuts and correcting the overall jet energy scale by 1%, a kinematic fit
with the following five constraints is performed:

•
4∑

i=1
Ei = 500 GeV

•
4∑

i=1
px,i = 0 GeV,

4∑
i=1

py,i = 0 GeV,
4∑

i=1
pz,i = 0 GeV

• M(j1, j2) = M(j3, j4),

where (Ei, px,i, py,i, pz,i) denotes the four-vector of jet i and M(j1, j2) and
M(j3, j4) are the two invariant di-jet masses in each event. Since there are
three possibilities to combine the four jets into two di-jet systems, the fit is
repeated three times per event with a different jet permutation.

Figure 1 shows the di-jet masses for the permutation which yields the highest
fit probability. The shaded histogram shows the mass distribution obtained
using the measured quantities, while the hatched histogram is obtained from the
fitted momenta. The histograms are fitted with the sum of two non-relativistic
Breit-Wigner functions for the W+W− and the ZZ contribution which are
folded with a Gaussian resolution. The Z mass and width as well as the W
width are have been fixed to their literature values, while the W mass mW ,

14

Entries 50554
 / ndf 2χ 220.8 / 36

N 231± 5.137e+04
 Zfrac 0.00209± 0.06223

 Wm 0.0± 81.1
 σ 0.024± 3.304

Invariant dijet mass (best jet combination) [GeV]
40 50 60 70 80 90 100 110 120

o

f
en

tr
ie

s
/ 1

 G
eV

0

1000

2000

3000

4000

5000

6000

7000

8000

Entries 50554
 / ndf 2χ 220.8 / 36

N 231± 5.137e+04
 Zfrac 0.00209± 0.06223

 Wm 0.0± 81.1
 σ 0.024± 3.304

Entries 50554
 / ndf 2χ 1485 / 36

N 230± 5.05e+04
 Zfrac 0.00126± 0.02938

 Wm 0.01± 81.31
 σ 0.016± 1.659

Entries 50554
 / ndf 2χ 1485 / 36

N 230± 5.05e+04
 Zfrac 0.00126± 0.02938

 Wm 0.01± 81.31
 σ 0.016± 1.659

, 4jEno

unfitted

fitted

Figure 1: Invariant di-jet mass without and with kinematic fit
(plot: courtesy Moritz Beckmann [9]).

the overall normalisation N , the fraction of ZZ events fracZ and width σ of
the Gaussian are free parameters. It can clearly be seen that after kinematic
fitting the width of the Gaussian is significantly reduced by nearly a factor two
from σ = 3.3 GeV to σ = 1.7 GeV.

Figure 1 contains only events where less than 5 GeV of the total energy is lost
due to ISR and Beamstrahlung. Similar results can be obtained in the presence
of significant photon radiation when the photon(s) are taken into account in
the fit. Preliminary results of the fit including photon radiation can be found
in [6], a detailed publication is in preparation.

7 Summary

The MarlinKinfit package provides an object–oriented framework for constrained
kinematic fitting. It is based on the three main abstraction of fit objects, con-
straints and a fit engine. Thanks to generic interfaces, fit objects and constraints
can be combined in a flexible way to describe any desired event hypothesis, al-
lowing in addition an indepent exchange of the fit engine. The reference fit
engine of the package has been described in detail in this note and an example
of the performance on four-jet events without significant photon radiation is
given, where a fit requiring energy and momentum conservation with respect
to the initial state plus two equal di-jet masses improves the mass resolution
by nearly a factor of two.

MarlinKinfit contains additional classes which are still under development,
for instance a second fit engine, based on the Newton–Raphson method, which
can also handle soft constraints in the presence of unmeasured parameters, as

15

well as a photon fit object taking into account ISR and Beamstrahlung photons.
These will be described in future notes.

References

[1] F. James: “MINUIT. Function Minimization and Error Analysis. Reference
Manual, Version 94.1.” CERN Program Library Long Writeup D506,
http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html.

[2] F. Gaede, “Marlin and LCCD: Software tools for the ILC,” Nucl. Instrum.
Meth. A 559 (2006) 177.

[3] http://www-zeuthen.desy.de/lc-cgi-bin/cvsweb.cgi/MarlinReco/
?cvsroot=marlinreco

[4] Frodesen, Skjeggestad, Tøfte: “Probability and Statistics in Particle
Physics”, Chap.10.8.

[5] Louis Lyons: “Statistics for nuclear and particle physics.” 226 pp., Cam-
bridge (Cambridge Univ. Press) 1986.

[6] J. List, M. Beckmann and B. List, “Kinematic Fitting in the Presence of
ISR at the ILC,” arXiv:0901.4656 [hep-ex].

[7] W. Kilian, T. Ohl and J. Reuter, “WHIZARD: Simulating Multi-Particle
Processes at LHC and ILC,” arXiv:0708.4233 [hep-ph].

[8] ILD Detector Concept Study Group, “ILD Letter of Intent”, to be sub-
mitted (2009).

[9] M. Beckmann, diploma thesis in preparation.

16

