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| ntroduction

® Neutrinos are the most enigmatic particles of the Standard Model.

® They were postulated by Pauli to explain the continuous spectrum of
electrons in nuclear decay. He realized that they had to be electrically

neutral, very light and very weakly interacting.
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® Neutrinos are the most enigmatic particles of the Standard Model.

® They were postulated by Pauli to explain the continuous spectrum of
electrons in nuclear decay. He realized that they had to be electrically
neutral, very light and very weakly interacting.

® If one projects light on a block of glass, it would be necessary a few
centimeters to reduce the intensity to one half. The same experiment
with neutrinos would require a block of lead ten light-years thick! (six
hundred thousand times the distance from the Earth to the Sun)
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| ntroduction

Neutrinos are the most enigmatic particles of the Standard Model.

They were postulated by Pauli to explain the continuous spectrum of
electrons in nuclear decay. He realized that they had to be electrically
neutral, very light and very weakly interacting.

If one projects light on a block of glass, it would be necessary a few
centimeters to reduce the intensity to one half. The same experiment
with neutrinos would require a block of lead ten light-years thick! (six
hundred thousand times the distance from the Earth to the Sun)

Neutrinos were discovered in 1956 (the electron neutrino). Later, in
1962 a different type of neutrino was discovered (the muon neutrino),
and another different type in 2000 (the tau neutrino). We believe that
the list is now complete.
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Neutrinos are abundantly produced in the Sun and reach us. Every
second, six hundred billion neutrinos go through any of us. Only one
will interact with us... in our whole life!

Neutrinos are also produced in the atmosphere by cosmic rays. There
IS one atmospheric neutrino going through the tip of my finger every
second.

Neutrinos are ubiquous in the Universe: they are also produced in the
early Universe, in supernovas, in the mantle and the nucleus of the
Earth, and even inside us!

But they are so weakly interacting that neutrino experiments require
huge detectors and a lot of patience.
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® Another important feature of neutrinos is that they have tiny masses.
Experiments indicated that the mass of the electron neutrino had to be

at least one hundred thousand times smaller than the mass of the
electron.

® A massless neutrino was also compatible with experiments, so
theorists assumed this possibity as a fact. This is one of the
ingredients of the Standard Model of Particle Physics.
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® Another important feature of neutrinos is that they have tiny masses.
Experiments indicated that the mass of the electron neutrino had to be
at least one hundred thousand times smaller than the mass of the
electron.

® A massless neutrino was also compatible with experiments, so
theorists assumed this possibity as a fact. This is one of the
ingredients of the Standard Model of Particle Physics.

® However, one piece of the jigsaw was not fitting... The number of
neutrinos coming from the Sun was around one third smaller than the
prediction from Bahcall's solar model. Either we didn’t understand the
Sun or we didn’t understand neutrino properties.
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® The solar neutrino puzzle could be solved if neutrinos had mass. If this
IS the case, they would “oscillate” and they would change flavour as
they propagate. The Sun produces electron neutrinos, but in their way
part of them are converted into muon neutrinos that were not detected.

® Furthermore, interactions of cosmic rays in the atmosphere produce
muon neutrinos, that as they propagate are partly converted into tau
neutrinos. This deficit of atmospheric neutrinos has also been
observed.

®» Two independent pieces of evidence that neutrinos have mass and mix
In flavour. The Standard Model of Particle Physics is incomplete!!
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There are overwhelming evidences that neutrinos have mass and

oscillate. Moreover, data are getting so good that we are entering the era
of neutrino precision data!
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Compare with the experimental situation just four years ago!
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From the theorist’s point of view it suffices to know that:

parameter best fit | 20 range
Am2, [107°eV?] | 7.9 7.3-8.5
Amz,, [107° eV?] | 2.6 2.2-3.0
sin? oy 0.30 | 0.26-0.36
sin? Oa¢m 0.50 | 0.38-0.63
sin® 013 0.000 | < 0.025

Unfortunately, no information yet about the spectrum
or C'P violation.
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Even with this limited information, we can already notice some features:
* Neutrino masses are tiny, m, < O(0.1eV)
* Two large mixing angles (0atm ~ 7/4, 0501 >~ 7/6)
One small mixing angle (613 ~ 0)
V2/3 V130
Ulep = | =/1/6  /1/3  —+/1/2
~VIF§ VI3 Vi

* The two heaviest neutrinos present a mild mass hierarchy
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Even with this limited information, we can already notice some features:
* Neutrino masses are tiny, m, < O(0.1eV)
* Two large mixing angles (0atm ~ 7/4, 0501 >~ 7/6)
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* Compare with the quark sector:

m. = 1.5 10 3.0(MeV N
me = 1.25 4 0.0 ﬁ} me/me = 140
me = 1742+ 3.3 GevJ e/ = 550

VS. m3/me < 6 In v sector

mp/ms =~ 44

ms = 95 £ 25 MeV me/ma ~ 19

mqyg = 3t07 MeV }
mp = 4.20 £ 0.07 GeV

0.97 0.23  0.004 0.82  0.56 0
Uckm ~ | 023 0.973  0.04 VS. Ujep >~ | —0.41  0.56 —0.71
0.008  0.04 1 —0.41 056 0.71

* Compare also with the charged-lepton sector

m,/m, ~ 17

my =106 MeV ¢ Tl T

m, = 1.78 GeV

me = 0.51 MeV
} VS. ms/mso < 6 In v sector
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The neutrino sector presents a completely different pattern!!

The neutrino conundrum

Merriam-Webster OnLine
Merriam-
Webst

MernamWebster FOR KiDs | Encyclopzdia BRITANNICA

. Merrlam-Webster ONLINE | Merrlam-Webster COLLEGIATE® MerrlamWebster UNABRIDGED

conundrum

One entry found for conundrum.

Main Entry: co-nun-drum &
Pronunciation: k&- "nEn—dr&m
Function: noun
Etymology: origin unknown
1: ariddle whose answer is or involves a pun
CE a : a question or problem having only a conjectural

answer b : an intricate and difficult problem

Physics Beyond the SM
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ORIGIN OF v MASSES

e Dirac masses?
—Type I (with SM singlets)

—Type Il (with a SU(2) triplet)

e See-saw mechanisms

e R-parity violation in SUSY models
e Radiative models (Zee model)

e Large extra dimensions

e Tetrahedral symmetry, A4

e Permutation symmetry, Ss

e Anarchy
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A model of neutrino masses should address the following questions:

e Why tiny masses?
¢ Why mild mass hierarchy?

e Why large mixing angles?

And preferably, the model has to be testable.
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Dirac masses?

The rest of the known fermions are Dirac particles. Why not neutrinos too? This
would require the existence of a right-handed neutrino v .

The leptonic Lagrangian would read:
—Liep =€ YL - H' + 05" Y, L - H +h.c.
* Why tiny masses? Neutrino masses of O(0.1 eV) require Y,, ~ 10~ 2.
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Dirac masses?

The rest of the known fermions are Dirac particles. Why not neutrinos too? This
would require the existence of a right-handed neutrino v .

The leptonic Lagrangian would read:
—Liep =€ YL - H' + 05" Y, L - H +h.c.
: : . \
* Why tiny masses? Neutrino masses of O(0.1 eV) reNQl{ll\r@(\}maXL—“T()—u.
(0]
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Dirac masses?

The rest of the known fermions are Dirac particles. Why not neutrinos too? This
would require the existence of a right-handed neutrino v .

The leptonic Lagrangian would read:

—Liep =€ YL - H' + 05" Y, L - H +h.c.
* Why tiny masses? Neutrino masses of O(0.1 eV) I’eNqu{Ii\r@(\}ma’;\V“T\()—m.
* Why mild hierarchy?
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Dirac masses?

The rest of the known fermions are Dirac particles. Why not neutrinos too? This
would require the existence of a right-handed neutrino v .

The leptonic Lagrangian would read:
—Liep =€ YL - H' + 05" Y, L - H +h.c.
: : _ \
* Why tiny masses? Neutrino masses of O(0.1 eV) requtJU@(\}max\vﬂTo—lz_
(0]

> 2=

Yu Ygq Ye Y, Y, — % ~ 20 — 150

* Why mild hierarchy?

Y

hier.  hier. hier. 777 hier. but experimentally 23 < 6
m
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Dirac masses?

The rest of the known fermions are Dirac particles. Why not neutrinos too? This
would require the existence of a right-handed neutrino v .

The leptonic Lagrangian would read:
—Liep =€ YL - H' + 05" Y, L - H +h.c.
: \
* Why tiny masses? Neutrino masses of O(0.1 eV) requN@(\}m a8 Tp—12.
(0]

> 2=

Yu Yq Yo Yy Y, — 52~ 20 ke

m2

hier.  hier.  hier. 777 hier. N mgyp%nmema”y_ 6

* Why mild hierarchy?
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Dirac masses?

The rest of the known fermions are Dirac particles. Why not neutrinos too? This
would require the existence of a right-handed neutrino v .

The leptonic Lagrangian would read:
—Liep =€ YL - H' + 05" Y, L - H +h.c.
: \
* Why tiny masses? Neutrino masses of O(0.1 eV) requN@(\}m a8 Tp—12.
(0]
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* Why mild hierarchy?

* Why large angles? This is possible — no guidance from the other sectors.
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Dirac masses?

The rest of the known fermions are Dirac particles. Why not neutrinos too? This
would require the existence of a right-handed neutrino v .

The leptonic Lagrangian would read:
—Liep =€ YL - H' + 05" Y, L - H +h.c.
: \
* Why tiny masses? Neutrino masses of O(0.1 eV) requN@(\}m a8 Tp—12.
(0]

e o
e
— e=—mn ::l
’ ——
@

Yu Yq Yo Yy Y, — 52~ 20 ke

m2

hier.  hier.  hier. 777 hier. N mgyp%nmema”y_ 6

* Why mild hierarchy?

* Why large angles? This is possible — no guidance from the other sectors.

Dirac neutrino masses have ugly features, but are not excluded!!
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Thesmoking gun: 0023

If neutrinos are Majorana particles, the nuclear
process (A, Z)— (A, Z 4+ 2)+e~ +e~ is allowed.

Not observed yet. Lifetime > 1024 — 102%y
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The rate for 023 depends crucially on the spectrum
If neutrinos are degenerate or inverse hierarchical,
Ov23 could be observed in the next generations

of experiments (CUORE, GERDA,

EXO, MOON, Super-NEMO...)

Bahcall, Murayama
Pefia-Garay
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Minkowski
Yanagida

Typel see-saw i s s

Mohapatra, Senjanovic

Add to the Standard model particle content at least two singlets (right-handed
neutrinos)

The most general lagrangian compatible with the gauge symmetries is:

~Liep =€ YeL -H +v3" Y, L-H — vi" M vi + hec.
i M > (HO)

~Lepr=¢e3 ' YeL -H' — L(L-H)'Y," M 'Y, (L- H) + h.c.

After the EWSB,
MI/ — YVTM_lYV <H0>2
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“Most standard extension of the Standard Model”

e Natural, simple and elegant.

e The particle content is left-right symmetric.
e Nicely compatible with GUTSs.

e Could account for the observed baryon asymmetry of the Universe.
(leptogenesis)
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Can the type | see-saw accommodate a mild hierarchy, ms/ms < 6?

12 real
{Y.,, M} depend on 18 parameters 6 phases

6 real
{M,} depends on 9 parameters 3 phases

There is a lot of freedom at high energies

It would not be surprising that the see-saw can accommodate ms/ma < 6
In fact, the see-saw can accommodate anything...
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To show that the see-saw can accommodate anything at low energies, we choose
to work in the basis where
M=D p=diag( M, M2, M3)
Then, it can be checked that
Y. = oy VDm R VD UL, o
is the most general matrix that satisfies the see-saw formula:
M, = U, DUl =Y, " MY, (H)?

ep

Here, R is an orthogonal matrix (in general, complex)

CaC3 —C183 — 8152C3 5183 — C152C3
R: 62§3 6163 —§1§2§3 —§163 —61§2§3
52 51C2 C1C2

There is an infinite set of Yukawa couplings that can accommodate the low energy

observations. But there is a price...
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The price is that the resulting Yukawa coupling could be “weird”.

* For example, taking M1 = 10°GeV, Ms = 101 GeV, M3 = 10'3GeV, and
R(z1 = 2i, 29 = 0, z3 = 0) the matrix

1.9 x 104 ~8.6 X 10~° 8.6 X 10~°
Y, = 0.011 0.012 — 0.0317¢ —0.012 — 0.031 14
0.11 4 0.32 4+ 0.124 0.32 — 0.12 4

is guaranteed by construction to be compatible with present experiments, using
Yy = goyVDrm R VDm UL,

Other inputs: ms3 = 0.05eV, ma = 0.0083eV, sin? 012 = 0.3, sin? fa3 = 1

(and m; = m2/6, 813 = 0 and no C P violation).
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The price is that the resulting Yukawa coupling could be “weird”.

* For example, taking M1 = 10°GeV, Ms = 101 GeV, M3 = 10'3GeV, and
R(z1 = 2i, 29 = 0, z3 = 0) the matrix

1.9 x 104 ~8.6 X 10~° 8.6 X 10~°
Y, = 0.011 0.012 — 0.0317¢ —0.012 — 0.031 14
0.11 4 0.32 4+ 0.124 0.32 — 0.12 4

is guaranteed by construction to be compatible with present experiments, using
Yy = goyVDrm R VDm UL,

Other inputs: ms3 = 0.05eV, ma = 0.0083eV, sin? 012 = 0.3, sin? fa3 = 1

(and m; = m2/6, 813 = 0 and no C P violation).

* But the eigenvalues are:

_ . il 115 o 1 bl 2
y3 — 0.50 o [} 2 @8 L]
— ——f == == =] = —

y2 = 1.3 X 10—3} ya/y2 = 379 o | :\ | 2

Y1 = 2.2 x 10~4 y2/y1 =6 - —
’ Yu Yg Ye Y,
hier.  hier. hier. 7
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Can the type | see-saw accommodate a mild hierarchy, ms/ms < 6, if the neutrino
Yukawa eigenvalues have a reasonable hierarchy?

Not so easy... The see-saw mechanism tends to produce large neutrino mass hierarchies.

e “Naive see-saw”

2 2 2 2
yi .2 ) Y3 .2 ms Y3 Mo
mi ~ - m2 ~ FU m3 ~ Fi-v Then, 2~ y2 M

The Yukawa couplings are hierarchical: y1 : y2 : y3 = 1: 20 : 202 or
y1 Y2 :y3 = 1 :300 : 3002

The right-handed neutrino masses, we don’t know
hierarchical vg degenerate vy
ms3 <
m3 90 — 300 ma ., 400 — 90000 [ fOM 5 X6

mo ma
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Can the type | see-saw accommodate a mild hierarchy, ms/ms < 6, if the neutrino
Yukawa eigenvalues have a reasonable hierarchy?

Not so easy... The see-saw mechanism tends to produce large neutrino mass hierarchies.

e “Naive see-saw”
2

2 2 2
¥yl .2 Y3 2 Yz 2 ms Y3 Mo
mi ~ U m2 ~ FU m3 ~ Fi-v Then, e ™ 2 M

The Yukawa couplings are hierarchical: y1 : y2 : y3 = 1: 20 : 202 or
y1 Y2 :y3 = 1 :300 : 3002

The right-handed neutrino masses, we don’t know

hierarchical v degenerate vy
mg <
™3 20 — 300 ma 400 — 90000 MMy 6
2 ma

e A more rigurous analysis shows that generically,

>, 0(10%77)
>, 0(10%77)

5 . . _
hierarchical v g: again far from ™3 < 6
mo

SEEE

mg ™~ y3 My degenerate v R:
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Right-handed mixing at rescue!

Another useful parametrization of the Yukawa couplings is the singular value
decomposition:

Y, = VgDyV/
Then, the neutrino mass matrix
M, =Y, "DY, (H2)? = Vi Dy VE D Ve Dy Vi (HO)?
depends on V;, and Vg, but the neutrino mass eigenvalues depend only on V.
For example, for the case with two neutrinos:

e 0 cosOr sin Or

0 1 —sinfrg cosfOgr

Changing the angle 0z and the phase «, the mass hierarchy between the two
neutrinos mz/m, change.
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y1 :y2 = 1:300 (Inspired by the hierarchy in the
My : M, =1:300 up quark sector)

a=0 a=0

Neutrino Physics Beyond the Standard Model — p.26/36



y1 :y2 = 1:300 (Inspired by the hierarchy in the
My : M, =1:300 up quark sector)

o=1v4 o=174
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y1 :y2 = 1:300 (Inspired by the hierarchy in the
My : M, =1:300 up quark sector)

0=0.7 102 0=0.7 102
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y1 :y2 = 1:300 (Inspired by the hierarchy in the
My : M, =1:300 up quark sector)

0=0.9 /2 0=0.9 172
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y1 :y2 = 1:300 (Inspired by the hierarchy in the
My : M, =1:300 up quark sector)

0=0.97 102 0=0.97 /2
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y1 :y2 = 1:300 (Inspired by the hierarchy in the
My : M, =1:300 up quark sector)

o=m/2 a=1v2

The see-saw mechanism (with two neutrinos) can accommodate the mild hierarchy
and this essentially fi xes the parameters in the right-handed sector!

szg—Mly%

~ 2
My+Mos)(y2—y%)’ a=m/

cos? Op ~ (
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Three generation case

y1 :y2 :y3 = 1:300:3002  (Inspired by the hierarchy in the
My : Mz : Mz =1:300:300% up quark sector)

0 0.2 0.4 0.6 0.8 1

1 1 1

0.8 . 0.8 0.8

_m0.6 _m0.6 _m0.6
> > >

04 4 0.4 0.4

E
0.2 0.2 0.2
[V12|=0 [V12]=0.2 IV12|=0.4
0 0 0
0 002 004 006 008 01 0 002 004 006 008 01 0 002 004 006 008 01
V13l V13l V13l

1 1 1

0.8 0.8 0.8

_m0.6 _m0.6 _m0.6
> > >

04 04 04

0.2 0.2 0.2

|V 12]=0.6 |V 12]=0.8 |V 12]=0.95
0 0 0
0 002 004 006 008 01 0 002 004 006 008 01 0 002 004 006 008 01
V13l V13l V13l

The see-saw mechanism (with three neutrinos) can accommodate the mild hierarchy
and this constrains severely the parameters in the right-handed sector!
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* What about the mixing angles?

The observed mixing matrix can always be accommodated, even if the
neutrino Yukawa eigenvalues are hierarchical.

Unfortunately, here we cannot get any guidance from the quark sector:

the CKM matrix has small mixing angles, but the matrices that diagonalize
the Yukawa couplings could have large or small mixing angles.
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| sthe see-saw mechanism testable?

* The physics responsible for » masses is not directly accessible to experiments.

1 TeV Linear Collider ~ 100 MW
10*2GeV Linear Collider ~ 10'* MW
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| sthe see-saw mechanism testable?

* The physics responsible for » masses is not directly accessible to experiments.

1 TeV Linear Collider ~ 100 MW
10'2GeV Linear Collider ~ 10** MW
annual power consumption in the world ~ 107 MW
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| sthe see-saw mechanism testable?

* The physics responsible for » masses is not directly accessible to experiments.

1 TeV Linear Collider ~ 100 MW
10'2GeV Linear Collider ~ 10** MW
annual power consumption in the world ~ 107 MW

* Indirect tests.

¢ In the Standard Model, hopeless.
Part of the information is lost in the decoupling process and there is
no way of recovering it.

¢ In the Minimal Supersymmetric Standard Model, there could be
indirect tests

The observation of processes involving supersymmetric particles
could provide indications of neutrino Yukawa couplings

Neutrino Physics Beyond the Standard Model — p.29/36



present bound

future sensitivity

process
BR(p — e) < 1.2 x 10~ (MEGA) 10~ 14 (MEG)
3.1 x 107 (Belle
BR(T — pv) < o (Belle) 10~8 — 10~ 9 (SuperB-fact)
< 6.8 x 10~ © (BaBar)
BR(T — e7) < 3.9 x 1077 (Belle) 10~8 — 10~ ?(SuperB-fact)

R(p~Ti — e Ti)

< 6.1 x 10713 (SINDRUM II)

10~ 18 (PRISM/PRIME)
10~ 19 (CERN v-fact)
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*

At future colliders, it could be possible to determine the mass splitting between
selectron and stau, so disentangling the effect of the radiative corrections from

the tau and the heaviest RH neutrino (but what about the other mass splitting?)
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*

At future colliders, it could be possible to determine the mass splitting between

selectron and stau, so disentangling the effect of the radiative corrections from

the tau and the heaviest RH neutrino (but what about the other mass splitting?)

*

EDM present bound future sensitivity
10729 e cm (Yale group, 3 years)
de < 1.6 x 10727 e cm (Berkeley group) 1031 e cm (Yale group, 5 years)
107 3% e cm (LANL group)
dy, <7x10719 ecm 10:2: e cm (BNL)
10 e cm (v-fact)
dr —2.2 < Re(d;) < 4.5(x107 ") e cm —
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*

At future colliders, it could be possible to determine the mass splitting between

selectron and stau, so disentangling the effect of the radiative corrections from

the tau and the heaviest RH neutrino (but what about the other mass splitting?)

*
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L eptogenesis

® In the Universe there is more matter than antimatter, to be precise
ng = (np —ng)/s~ (0.3 —0.9) x 10710

® The decay of the right-handed neutrinos in the early Universe can
explain this number, through the mechanism of leptogenesis (Fukugita,
Yanagida)

® The leptogenesis mechanism relies on the physics of right-nanded
neutrinos, that is not directly accessible to experiments. However, the
observed mass splittings in oscillations experiments constrain the
leptogenesis mechanism:

o M, > 10°GeV — ¢t < 10~ 1°s (Davidson, A.l)

$ M3 5 0.1eV (Buchmiiller, di Bari, Plumacher)

Neutrino Physics Beyond the Standard Model — p.32/36



e The type | see-saw mechanism can accommodate naturally the small
neutrino masses, the mild mass hierarchy and the observed pattern of
mixing angles. As a bonus, it can also explained the observed baryon
asymmetry of the Universe.

e Also, if SUSY exists in nature, new phenomena due to the see-saw
could be observed, like rare decays and electric dipole moments.

e But, is it type | see-saw or something else? Unfortunately, no smoking

gun for the type | see-saw has been found. More work in this direction is
needed.

Neutrino Physics Beyond the Standard Model — p.33/36



Typell see-saw mechanism

Add to the Standard model particle content one Higgs triplet:

0 _ 1+
L (7 LT
1t —+

vt S

T couples to the lepton doublets
—Liep DY LiTL; =Y v Tv — V2T e —er T ey
If 7° acquires a vev, neutrinos become massive.
* Small neutrino masses?
The most general Higgs potential with one doublet and one triplet (without
Imposing any lepton number conservation):
V=myHH+iNHH)?+M;T'"T + i :(T'"T)? + Xs(H'H)(T'T) + 1y H'TH'
When M+t > mg, the minimum of the potential lies at:

02 ., —m3 0y o, —Hp{H?)?
<H > — A1—2 h;M% <T > — M2,

Another seesaw!
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* Mild mass hierarchy?
This Yukawa coupling is not really analogous to Y, Yy, Y.. The naturalness
of the mild mass hierarchy remains unanswered. (But a mild hierarchy can be
accommodated)
* Large mixing angles?
Again, no guidance from Y,, Yy, Y.. (Butlarge mixing angles can be accommodated)
* |s it testable?
Without SUSY, hopeless. With SUSY, promising.

4 2 _
BR(T_V'L’Y) ~ m3 sin 29atm BR(T_)'L“/T V,u) ~ 103
BR(pu—evy) ~ \m2 sin 20541 cos Oqtm BR(NﬁeVuﬂe) ™~

BR(T—ey) . 2 BR(T—ev,Ue) -
BR(p—evy) tan® farm BR(u—ev,ve) ~ 0.1

The observation of these correlations would point to the type Il see-saw
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Conclusions

® Many new proposals to explain the recent neutrino oscillation
experiments. These proposals have to address the following questions:

o Why neutrino masses are tiny

# Why the mass hierarchy is mild

# Why there are two large mixing angles

And if possible, they should be testable in future experiments.
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Conclusions

® Many new proposals to explain the recent neutrino oscillation
experiments. These proposals have to address the following questions:

o Why neutrino masses are tiny

# Why the mass hierarchy is mild

# Why there are two large mixing angles

And if possible, they should be testable in future experiments.

® Some possibilities:

tiny masses | mild hierarchy large angles testability
Dirac unnatural unnatural v063
type | see-saw natural natural
type Il see-saw natural ratios of BRS (SuUsY)
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Conclusions

® Many new proposals to explain the recent neutrino oscillation
experiments. These proposals have to address the following questions:

o Why neutrino masses are tiny
# Why the mass hierarchy is mild
# Why there are two large mixing angles

And if possible, they should be testable in future experiments.
® Some possibilities:

tiny masses | mild hierarchy large angles testability
Dirac unnatural unnatural v063
type | see-saw natural natural [ )
type Il see-saw natural ratios g’ B RS (SUSY)

More work needed!
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