1

J. Phys.: Condens. Matter 19 (2007) 036202 (12pp)

Charge transfer luminescence of Yb^{3+} ions in $LiY_{1-x}Yb_xP_4O_{12}$ phosphates

G Stryganyuk^{1,2}, S Zazubovich³, A Voloshinovskii², M Pidzyrailo², G Zimmerer⁴, R Peters⁵ and K Petermann⁵

- ¹ HASYLAB at DESY, Notkestraße 85, 22607 Hamburg, Germany
- ² Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya Street, 79005 Lviv, Ukraine
- ³ Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia
- ⁴ Institute of Experimental Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- ⁵ Institute of Laser Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

Received 28 September 2006 Published 5 January 2007 Online at stacks.iop.org/JPhysCM/19/036202

Abstract

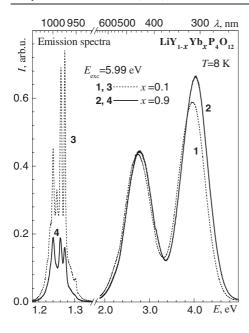
Spectral-kinetic studies have been performed for $\text{LiY}_{1-x} \text{Yb}_x \text{P}_4 \text{O}_{12}$ (x=0;0.1;0.9) phosphates at T=8--320~K using synchrotron radiation for excitation within the 5–17 eV energy range. Mechanisms for the excitation of Yb^{3+} charge transfer and f–f luminescence are discussed. The quasimolecular character of Yb^{3+} charge transfer luminescence (CTL) is pointed out. The central Yb^{2+} ion and hole delocalized over the surrounding ligands are proposed for consideration as a 'charge transfer cluster' (Yb²⁺ CT cluster). Possible mechanisms of Yb³⁺ CTL quenching are presumed.

1. Introduction

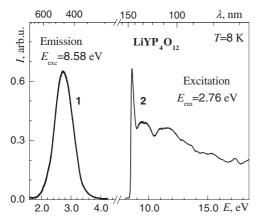
Charge transfer (CT) luminescence processes involving trivalent rare earth ions (RE³⁺) have not been widely considered until the last few years. Interest in Yb³⁺ CT luminescence has been renewed after the discovery of possible applications of Yb-containing compounds in the real-time spectroscopy of solar neutrinos [1]. For the first time this phenomenon was observed for Yb³⁺ ions in phosphates and oxysulfides [2, 3]. Charge transfer luminescence has also been reported for Ce⁴⁺ ions in Sr₂CeO₄ [4]. Comprehensive studies of Yb³⁺ charge transfer luminescence in phosphate, borate, aluminate, oxysulfide, oxyhalogenide, oxide and fluoride matrices have been carried out in [5]. The luminescence characteristics of Yb³⁺ doped garnets and perovskites were investigated in [6–8]. Variation of the CT absorption energy for lanthanide ions in a wide variety of host compounds has been studied in [9]. Yb-doped compounds are extensively studied as promising materials for use in neutrino detectors and fast scintillators [8–12].

In case of RE^{3+} ions the charge transfer occurs as an electron transition from a ligand to the impurity RE^{3+} ion. After electron transfer to RE^{3+} the hole appears to be distributed over

the ligands around the RE^{2+} ion. When discussing the relaxation of the Yb^{3+} CT state one should take into account that the RE^{2+} ion is formed after electron transfer, and 4f states of RE^{3+} can be realized only after the escape of an electron from RE^{2+} . This may occur via the recombination of an electron at RE^{2+} with the hole localized on a ligand. Such recombination can be radiative, giving rise to charge transfer luminescence (CTL).


The redistribution of charge density around impurity RE²⁺ ions occurs after electron transfer, making it difficult to consider the further relaxation of such a RE²⁺ centred system in the framework of a band model. Ion displacement may occur due to the interaction of polarized ligands with the central RE²⁺ ion. This may be the reason for the characteristic large Stokes shift (up to 2 eV) for CTL [9]. It makes sense to consider the formation involving the central RE²⁺ ion and the hole delocalized over the surrounding ligands as a 'charge transfer cluster'. CTL has a quasimolecular character and it is possibly better to use the cluster approach [13–15] to explain relaxation processes involving RE³⁺ CT state while the CT absorption can be considered using the band model.

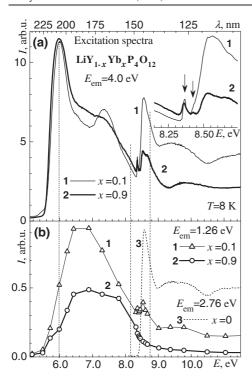
Charge transfer absorption may compete with the transitions within the RE^{3+} 4f shell or interconfigurational $4f^n\to 4f^{n-1}5d$ transitions. In the case of the Yb^{3+} ion the energy of charge transfer is sufficiently different from the energies of Yb^{3+} $4f^{13}\to 4f^{13}$ and $4f^{13}\to 4f^{12}5d$ transitions [16]. Thus, there is no competition between these processes and one may observe the intense VUV–UV absorption peaks corresponding to the electron transfer from the ligand to the Yb^{3+} ion. It is possible to realize the Yb^{3+} ground $^2F_{7/2}$ and excited $^2F_{5/2}$ states after the recombination of an electron at Yb^{2+} with the hole localized on the ligand. If such recombination appears to be radiative then two emission bands of Yb^{3+} CTL may be observed. The distance between two maxima of Yb^{3+} CTL corresponds to the energy difference (1.24 eV) between Yb^{3+} $^2F_{5/2}$ and $^2F_{7/2}$ states.


The CTL of Yb³⁺ ions in LiY_{1-x}Yb_xP₄O₁₂ (x = 0.1; 0.9) phosphates has been investigated in the present work. These compounds were chosen because of the low concentration quenching of the emission of RE³⁺ ions in a LiYP₄O₁₂ matrix due to the relatively large distance between the nearest Y³⁺ ions (\sim 5.5 Å), thus reducing the probability of nonradiative losses [17]. The highest efficiency of Nd³⁺ 4f²5d \rightarrow 4f³ emission in LiY_{1-x}Nd_xP₄O₁₂ stoichiometric phosphors has been reached at x = 0.8 [18]. Thus, reduced concentration quenching was also expected for the CTL of Yb³⁺ ions in LiY_{1-x}Yb_xP₄O₁₂ phosphors with a concentration of Yb³⁺ up to x = 1.

2. Experimental details

Polycrystalline samples of $LiY_{1-x}Yb_xP_4O_{12}$ (x=0; 0.1; 0.9) were grown using the melt-solution technique. The luminescent-kinetic studies were performed using synchrotron radiation from the DORIS storage ring at the Deutsches Elektronen Synchotron (DESY, Hamburg) and the SUPERLUMI station facility at HASYLAB [19]. The measurements were carried out within the temperature range 8–320 K. Emission spectra were measured with a resolution of 0.25–5 nm within a 250–1050 nm range using an ARC 'Spectra Pro 308' 30 cm monochromator-spectrograph in a Czerny–Turner mounting equipped with Princeton Instruments CCD detector. Luminescence excitation spectra were scanned with a resolution of 3.2 Å within the range 5–17 eV using a 2 m primary monochromator in a 15° McPherson mounting and a Hamamatsu R6358P photomultiplier at the secondary ARC monochromator. The luminescence decay kinetics was registered within a 200 ns time gate defined by the excitation pulse repetition upon the storage ring operation in five-bunch mode.

Figure 1. Emission spectra of $LiY_{1-x}Yb_xP_4O_{12}$ (x = 0.1; 0.9) at T = 8 K.

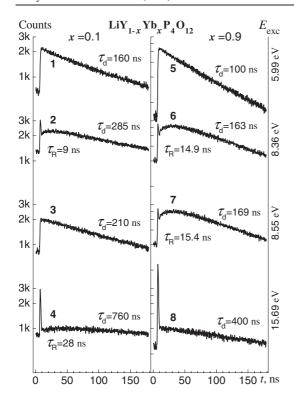

Figure 2. Emission (1) and excitation (2) spectra of the intrinsic luminescence of LiYP₄O₁₂ at T = 8 K.

3. Experimental results and discussion

3.1. Characteristics of Yb³⁺ charge transfer luminescence

Upon the excitation of $\text{LiY}_{1-x} \text{Yb}_x \text{P}_4 \text{O}_{12}$ (x = 0.1; 0.9) samples within 5.5–17 eV two broad emission bands were registered in the UV-visible (2.0–4.8 eV) range (figure 1, curves 1, 2) together with the characteristic infrared f–f emission of Yb³⁺ around 1.2–1.3 eV (curves 3, 4).

The low-energy UV–visible band (maximum around 2.8 eV) in the emission spectra of Yb-doped samples (figure 1, curves 1, 2) coincides with the band of intrinsic self-trapped exciton (STE) emission of pure LiYP₄O₁₂ (figure 2, curve 1). The excitation spectrum of LiYP₄O₁₂ intrinsic emission (figure 2, curve 2) has a threshold around 8.4 eV and a maximum at 8.55 eV corresponding to the excitonic absorption. The decay kinetics is long, possessing the time constant >10 μ s at 8 K. From the excitation spectrum of STE emission the band gap $E_{\rm g}$ can be roughly estimated for LiYP₄O₁₂ to be about 8.8 eV.


Figure 3. Excitation spectra of Yb^{3+} CT and f-f emission for $LiY_{1-x}Yb_xP_4O_{12}$ (x=0.1;0.9) at T=8 K. To plot the dependences of Yb^{3+} f-f excitation efficiency ((b) curves 1, 2) the integration of Yb^{3+} f-f emission spectra has been performed within the 1.17–1.34 eV range for each value of the excitation energy.

The excitation spectra are similar for both UV–visible emission bands of $\text{LiY}_{1-x} \text{Yb}_x \text{P}_4 \text{O}_{12}$ (x = 0.1; 0.9) samples and show the main maximum around 5.99 eV at 8 K (figure 3(a), curves 1, 2). The distance between two maxima of UV–visible emission bands is about 1.24 eV for both $\text{LiY}_{0.9} \text{Yb}_{0.1} \text{P}_4 \text{O}_{12}$ and $\text{LiY}_{0.1} \text{Yb}_{0.9} \text{P}_4 \text{O}_{12}$ samples (figure 1, curves 1, 2). This value is well matched with the energy of Yb^{3+} F term splitting. The decay kinetics of UV–visible emission (figure 4) reveals the exponential dependence with a time constant of 160 ns ($\text{LiY}_{0.9} \text{Yb}_{0.1} \text{P}_4 \text{O}_{12}$, curve 1) and 100 ns ($\text{LiY}_{0.1} \text{Yb}_{0.9} \text{P}_4 \text{O}_{12}$, curve 5) for the main decay component upon the excitation with a peak of 5.99 eV at 8 K. These decay time values are close to those reported in [2, 3] for the Yb³⁺ CT luminescence of LuPO₄:Yb and YPO₄:Yb at low temperatures.

Spectral-kinetic characteristics of UV-visible emission observed for $\text{LiY}_{1-x}\text{Yb}_x\text{P}_4\text{O}_{12}$ (x=0.1;0.9) samples allow us to attribute the emission to Yb^{3+} charge transfer luminescence (CTL). Thus, the 5.99 eV peak in the excitation spectra (figure 3(a), curves, 1, 2) corresponds to Yb^{3+} CT absorption, implicating the electron transfer from O^{2-} ligand to Yb^{3+} ion in $\text{LiY}_{1-x}\text{Yb}_x\text{P}_4\text{O}_{12}$ (x=0.1;0.9).

The relatively large (100–160 ns) decay time for the fully allowed CT transitions may be explained by the small overlap of the wavefunctions of the electron at Yb^{2+} and the hole delocalized over O^{2-} ligands [10]. The decrease of the decay time constant for the $LiY_{0.1}Yb_{0.9}P_4O_{12}$ sample may be caused by the nonradiative decay of Yb^{3+} CT states due to concentration quenching.

Upon excitation at 5.99 eV the respective emission bands of Yb³⁺ CTL have an almost equal intensity for both LiY_{1-x}Yb_xP₄O₁₂ (x=0.1;0.9) samples (figure 1, curves 1, 2). The only exception is the difference in the high-energy band peaked around 4.0 eV where the LiY_{0.1}Yb_{0.9}P₄O₁₂ sample reveals a slightly higher intensity. The high-energy emission band of Yb³⁺ CTL is more intense for both Yb-doped samples. The intensity ratio for two

Figure 4. Decay kinetic curves for the Yb³⁺ CT emission of LiY_{1-x}Yb_xP₄O₁₂ (x = 0.1; 0.9) upon the different excitations at T = 8 K.

CTL bands is 1.35 for LiY_{0.9}Yb_{0.1}P₄O₁₂ and 1.49 for LiY_{0.1}Yb_{0.9}P₄O₁₂. These ratio values are constant upon excitation in the 5.6–17 eV range at T=8–320 K. One may conclude the different probabilities of realization of Yb³⁺ ²F_{5/2} and ²F_{7/2} states for LiY_{0.9}Yb_{0.1}P₄O₁₂ and LiY_{0.1}Yb_{0.9}P₄O₁₂ samples after Yb²⁺ CT cluster decay. The higher ratio (1.49) for the LiY_{0.1}Yb_{0.9}P₄O₁₂ sample may imply the higher probability for the radiative relaxation of Yb²⁺ CT cluster down to the Yb³⁺ ²F_{7/2} state. The lower intensity of Yb³⁺ f–f emission can be regarded as a consequent result for the LiY_{0.1}Yb_{0.9}P₄O₁₂ sample (figure 1, curve 4) upon excitation in the 5.6–17 eV range. However, concentration quenching may also have an effect in the decrease of Yb³⁺ f–f emission for such a high concentration (x=0.9) of Yb³⁺ ions.

3.2. Characteristics of Yb^{3+} f-f luminescence

The infrared Yb³⁺ f–f emission is about three times more efficient for the LiY $_{0.9}$ Yb $_{0.1}$ P $_4$ O $_{12}$ sample upon excitation at 5.99 eV (figure 1, curves 3, 4). Lines in the infrared emission spectra of Yb³⁺ 2 F $_{5/2}$ – 2 F $_{7/2}$ are rather broad for both Yb-doped samples. This may occur due to some disorder in position of the impurity ion.

Maximum of the excitation efficiency for $Yb^{3+}\ ^2F_{5/2}-^2F_{7/2}$ infrared emission has been registered around 6.7 eV for both Yb-doped samples (figure 3(b), curves 1, 2). To plot the excitation spectra for Yb^{3+} f-f emission the luminescence spectra measured upon the corresponding excitation were integrated within the 1.17–1.34 eV range. It is not quite clear why the maximum in the excitation spectra of Yb^{3+} f-f emission (6.7 eV) does not coincide with the Yb^{3+} CT absorption peak (5.99 eV). Interconfigurational Yb^{3+} 4f $^{13} \rightarrow 4f^{12}$ 5d absorption transitions may also give rise to Yb^{3+} 4f $^{13} \rightarrow 4f^{13}$ infrared emission, but they are expected in the higher energy range (8.5–10 eV). A possible explanation may

be based on the presence of the different competing branches for the transformation of the excitation energy. One cannot exclude the defect origin of the 6.7 eV excitation peak observed for Yb^{3+} infrared emission. The defect-related absorption may compete with Yb^{3+} CT absorption causing the dip clearly revealed at around 6.7 eV in the excitation spectrum of Yb^{3+} CTL for the $LiY_{0.9}Yb_{0.1}P_4O_{12}$ sample (figure 3(a), curve 1). The second maximum in the excitation spectrum of Yb^{3+} CTL is observed at 7.35 eV (figure 3(a), curves 1, 2). It is more pronounced for the $LiY_{0.9}Yb_{0.1}P_4O_{12}$ sample (curve 1) and may appear due to the etching of the single CT absorption band (5.6–8.2 eV) by the defect-related absorption around 6.7 eV.

One may consider the excitation of Yb³⁺ CTL in the 5.6-8.2 eV range to be due to the Yb3+ CT absorption. However, the full width at half maximum (FWHM) of about 2 eV is rather large for a single Yb³⁺ CT absorption band. For most Yb-doped materials the FWHM of CTL and CT absorption band have been found to be comparable, and the top of the valence band (VB) is consequently considered as the initial state for the charge transfer [9]. Perhaps for the case of the investigated LiY_{1-x}Yb_xP₄O₁₂ phosphates the electron transfer takes place not only from the levels near the top of the valence band but also from some deep VB levels. On the other hand, the FWHM of the first maximum (5.99 eV) in the excitation spectrum of Yb³⁺ CTL (figure 3(a), curves 1, 2) is about 0.7 eV, being close to the FWHM (\approx 0.8 eV) of the CTL emission bands (figure 1, curves 1, 2). The energy distance (1.35 eV) between two excitation peaks (5.99 and 7.35 eV; figure 3(a), curve 1) is larger by 0.11 eV than the splitting of the Yb³⁺ ²F term (1.24 eV). Here one can only suppose that the second maximum at 7.35 eV in the excitation spectra of Yb³⁺ CTL (figure 3(a), curve 1) originates from electron transfer from the O^{2-} ligand to Yb^{3+} in the excited $^2F_{5/2}$ state. However, such an alternative explanation for the origin of the second 7.35 eV peak in the excitation spectra of Yb3+ CTL has to be proved by further investigation. The absorption peak at 7.35 eV is possibly not well resolved for LiY_{0.1}Yb_{0.9}P₄O₁₂ (figure 3(a), curve 2) because the efficiency of the Yb^{3+ 2}F_{5/2} state population is lower in this sample (figure 3(b), curve 2).

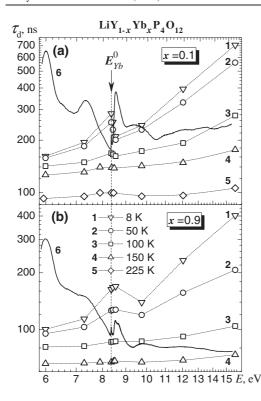
The excitation spectrum of Yb^{3+} f-f emission plotted for the $LiY_{0.9}Yb_{0.1}P_4O_{12}$ sample (figure 3(b), curve 1) reproduces the features of the respective Yb^{3+} CTL excitation spectrum (figure 3(a), curve 1) within the 8.2–10.5 eV range. Infrared Yb^{3+} f-f emission is quite efficient for the $LiY_{0.9}Yb_{0.1}P_4O_{12}$ sample in the range of excitonic transitions, whereas its intensity decreases dramatically for $LiY_{0.1}Yb_{0.9}P_4O_{12}$ when the excitation energy exceeds 8.3 eV.

3.3. Excitonic mechanisms of excitation

The excitation spectra of Yb^{3+} CTL (figure 3(a), curves 1, 2) reproduce the peak of exciton absorption transitions at 8.55 eV revealed for a pure $LiYP_4O_{12}$ matrix (figure 3(b), curve 3). Two peaks at 8.36 eV and 8.43 eV appear as an extra feature for Yb-doped samples (figure 3(a), inset). The higher energy (8.43 eV) peak is not well resolved for the $LiY_{0.9}Yb_{0.1}P_4O_{12}$ sample (curve 1) due to overlap with the exciton absorption peak (8.55 eV) which is more intense compared to the case of $LiY_{0.1}Yb_{0.9}P_4O_{12}$ (curve 2).

The decay kinetics of Yb³⁺ CTL registered for the LiY_{0.9}Yb_{0.1}P₄O₁₂ sample shows the rise component ($\tau_R = 9$ ns) upon excitation in the 8.36 eV peak (figure 4, curve 2). Such a rise effect is not revealed for the LiY_{0.9}Yb_{0.1}P₄O₁₂ sample upon excitation in the exciton transition peak (8.55 eV) (curve 3). The rise component ($\tau_R \approx 15$ ns) is also revealed for LiY_{0.1}Yb_{0.9}P₄O₁₂, but upon excitation in both 8.36 and 8.55 eV peaks (figure 4, curves 6, 7). The decay kinetics curves of Yb³⁺ CTL are similar for LiY_{0.1}Yb_{0.9}P₄O₁₂ upon excitation in the 8.36, 8.55 eV peaks and reveal the same temperature dependence in the 8–320 K temperature range. This similarity may be considered as evidence for the excitonic nature of both 8.36 and

8.55 eV peaks in the Yb³⁺ CTL excitation spectrum. The peak at 8.36 eV can be attributed to the near-activator exciton, and the rise component, revealed in the decay kinetics of Yb³⁺ CTL upon excitation at 8.36 eV, may correspond to the formation of a Yb²⁺ CT cluster due to the nonradiative decay of the near-activator exciton on the impurity Yb³⁺ ion.

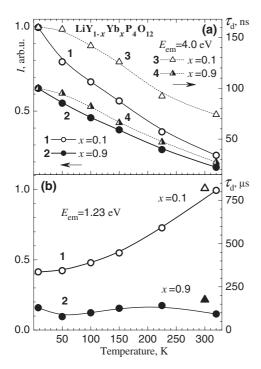

Thus, there is no time difference in the energy transfer from the regular ($E_{\rm exc}=8.55~{\rm eV}$) or near-activator ($E_{\rm exc}=8.36~{\rm eV}$) excitons to a Yb³⁺ ion in the LiY_{0.1}Yb_{0.9}P₄O₁₂ sample due to the high concentration of Yb³⁺ providing the small distance between impurity ions. Therefore, the value of the rise time τ_R constant is almost the same (about 15 ns) for Yb³⁺ CTL of LiY_{0.1}Yb_{0.9}P₄O₁₂ upon excitation in the regular and near-activator exciton peaks (figure 4, curves 6, 7). For the LiY_{0.9}Yb_{0.1}P₄O₁₂ sample the time of migration of a regular exciton to Yb³⁺ is longer because of the larger distance between Yb³⁺ impurity ions. Therefore, the rise component is not revealed in the decay kinetics of Yb³⁺ CTL for the LiY_{0.9}Yb_{0.1}P₄O₁₂ sample upon excitation in the regular exciton peak at 8.55 eV (figure 4, curve 3).

3.4. Fast decay component

The short decay time of Yb³⁺ CTL and the possible elaboration of fast Yb-doped scintillators have already been reported in [8] for example. The fast decay component (<1 ns) is also revealed for Yb³⁺ CTL of LiY_{1-x}Yb_xP₄O₁₂ (x=0.1;0.9) samples upon excitation in the 8.3–17 eV range at T=8 K (see figure 4). The only exception is the case of the LiY_{0.9}Yb_{0.1}P₄O₁₂ sample upon excitation in the regular exciton absorption (8.55 eV) peak (figure 4, curve 3), when most electrons are bounded with the localized holes forming regular self-trapped excitons (STE). The influence of the localization processes is reduced for the LiY_{0.1}Yb_{0.9}P₄O₁₂ sample due to the smaller distance between Yb³⁺ impurity ions. The fast decay component is therefore more pronounced for LiY_{0.1}Yb_{0.9}P₄O₁₂ (figure 4, curves 6–8), being revealed even upon excitation in the regular exciton absorption (8.55 eV) peak (curve 7).

One may presume that the fast decay component of Yb^{3+} CTL originates from the consequent recombination of a Yb^{3+} ion with a free electron and hole. This recombination may give rise to a very fast emission since the probability of such collision processes is rather high for free carriers. Fast emission may also appear from the non relaxed or partly relaxed Yb^{3+} CT states. The fast decay component of Yb^{3+} CTL is better revealed for the $LiY_{0.1}Yb_{0.9}P_4O_{12}$ sample. However, the efficiency of CTL for $LiY_{0.1}Yb_{0.9}P_4O_{12}$ becomes about two times lower than one for $LiY_{0.9}Yb_{0.1}P_4O_{12}$ upon the excitation at $E_{\rm exc}>8.5$ eV (figure 3(a), curves 1, 2), whereas the respective efficiencies are almost equal in the 5.6–8.3 eV excitation range. The appearance of the fast decay component of Yb^{3+} CTL that is observed together with a decrease in its efficiency for the $LiY_{0.1}Yb_{0.9}P_4O_{12}$ sample upon band-to-band excitation implies the quenching of Yb^{3+} CTL. Thus, the fast component of Yb^{3+} CTL decay is most likely caused by the nonradiative decay of Yb^{3+} CT excited states.

The fast component of Yb³⁺ CTL decay may result from the recombination of free carriers with a Yb²⁺ CT cluster. Due to the smaller distance between impurity Yb³⁺ ions in LiY_{0.1}Yb_{0.9}P₄O₁₂ the free carriers have a higher probability of recombining with the hole or electron involved into a Yb²⁺ CT cluster, and in this way cause the fast decay of Yb³⁺ CTL. In the case of the LiY_{0.9}Yb_{0.1}P₄O₁₂ sample the recombination of Yb²⁺ CT clusters with free carriers is reduced since most electrons are bounded with localized holes forming regular self-trapped excitons. Therefore: (i) the efficiency of Yb³⁺ CTL is higher for LiY_{0.9}Yb_{0.1}P₄O₁₂ (figure 3(a), curve 1) in comparison with LiY_{0.1}Yb_{0.9}P₄O₁₂ (figure 3(a), curve 2) at $E_{\rm exc}$ > 8.5 eV, (ii) the fast decay component is absent for the LiY_{0.9}Yb_{0.1}P₄O₁₂ sample upon excitation at 8.55 eV (figure 4, curve 3) and (iii) its contribution at $E_{\rm exc}$ = 15.69 eV is lower (curve 4) than for LiY_{0.1}Yb_{0.9}P₄O₁₂ (curve 8).


Figure 5. Dependence of the decay time of Yb³⁺ CT emission of LiY_{1-x} Yb_x P₄O₁₂ (x = 0.1; 0.9) on the energy of excitation quanta in the temperature range 8–320 K.

3.5. High-energy excitation

In the case of the high-energy excitation $E_{\rm exc} > E_{\rm g} + E_{\rm CT} \approx 15$ eV the CT states of Yb³⁺ can be formed due to electron impact. The impact excitation mechanism is possible when fast photoelectrons in the conduction band excite the emission centres directly (via impact) [20]. Such impact excitation should be more efficient for the case of higher impurity concentrations [20]. However, the expected increase of Yb³⁺ CTL efficiency upon the excitation of LiY_{0.1}Yb_{0.9}P₄O₁₂ sample at $E_{\rm exc} > E_{\rm g} + E_{\rm CT} \approx 15$ eV (figure 5(b), curve 6) may possibly be completely annihilated by the nonradiative decay of Yb³⁺ CT states due to the recombination of a free electron with the hole involved into a Yb²⁺ CT cluster.

Thus, upon excitation within the energy range of band-to-band transitions the relaxation of free electrons causes the formation of (i) Yb^{2+} CT clusters due to the electron impact $(E_{\rm exc} > E_{\rm g} + E_{\rm CT} \approx 15~{\rm eV})$ and a (ii) Yb^{2+} ion after electron recombination with a Yb^{2+} CT cluster (causes the fast decay of CTL). Hole thermalization may result in the formation of a Yb^{2+} CT cluster after hole localization around a Yb^{2+} ion, but formation of a self-trapped exciton is most probable for the case of a small concentration of Yb^{3+} impurities. Exciton decay on the impurity Yb^{3+} ion may also result in the formation of Yb^{3+} CT excited state, but for this case the decay time increases and the rise component may appear in the decay kinetics of Yb^{3+} CTI.

The considerable difference in the slow decay components of Yb³⁺ CTL is observed for LiY_{0.9}Yb_{0.1}P₄O₁₂ ($\tau_d=760$ ns) and LiY_{0.1}Yb_{0.9}P₄O₁₂ ($\tau_d=400$ ns) samples upon excitation at 15.69 eV (figure 4, curves 4 and 8, respectively). The efficiency of formation of Yb²⁺ is rather high for the LiY_{0.1}Yb_{0.9}P₄O₁₂ sample at $E_{\rm exc}=15.69$ eV due to the impact excitation accompanied by nonradiative Yb²⁺ CT cluster decay (cluster recombination with

Figure 6. Temperature dependences of (a) Yb³⁺ CTL efficiency (curves 1, 2, resulted from the integration of excitation spectra in 5.5–17 eV range) and decay time (curves 3, 4) upon $E_{\rm exc}=5.99$ eV; (b) decay time (triangles) and intensity of infrared Yb³⁺ f–f emission (circles) excited at $E_{\rm exc}=5.99$ eV.

a free electron). Thus, the slow component (400 ns) of Yb^{3+} CTL decay registered for the $LiY_{0.1}Yb_{0.9}P_4O_{12}$ sample upon excitation at 15.69 eV (figure 4, curve 8) mostly characterizes the processes of hole migration and hole localization around the Yb^{2+} ion. The respective decay kinetics of the $LiY_{0.9}Yb_{0.1}P_4O_{12}$ sample (figure 4, curve 4) has a more complex profile and reveals a larger (760 ns) time constant for the slow decay component since both the electrons and holes are involved in energy transfer from the host to the impurity Yb^{3+} ion.

3.6. Temperature dependence

Dependence of the decay time constant of Yb^{3+} CTL on the excitation energy has been examined in the temperature range 8-225 K for the $LiY_{0.9}Yb_{0.1}P_4O_{12}$ sample (figure 5(a)) and within the 8-150 K range for $LiY_{0.1}Yb_{0.9}P_4O_{12}$ (figure 5(b)). The time constant increases while the energy of excitation quanta is changed from 6 eV up to 16 eV. An extra increase in the decay time constant is observed for the $LiY_{0.9}Yb_{0.1}P_4O_{12}$ sample upon excitation in the 8.36 eV peak corresponding to near-activator exciton formation. In the case of the $LiY_{0.1}Yb_{0.9}P_4O_{12}$ sample such an extra increase is observed upon excitation in both the near-activator (8.36 eV) and the regular (8.55 eV) exciton-related peaks. The general increase in the decay time for the higher excitation energies shows the delay in energy transfer from the host to the impurity Yb^{3+} ion at low temperatures. Carrier trapping is reduced at higher temperatures and the decay time upon $E_{\rm exc} = 6-16$ eV appears to be almost constant, being about 100 ns for $LiY_{0.9}Yb_{0.1}P_4O_{12}$ at 225 K (figure 5(a), curve 5) and 65 ns for $LiY_{0.1}Yb_{0.9}P_4O_{12}$ already at 150 K (figure 5(b), curve 4).

Temperature dependences of the decay time and the efficiency of Yb^{3+} CTL are presented for both Yb-doped samples in figure 6(a). To plot the efficiency dependences (curves 1, 2) integration of the CTL excitation spectra was performed within the 5.5–17 eV range

for each temperature in order to include the recombinational mechanisms of excitation. Dependences of the decay time constant (curves 3, 4) are presented only for the excitation of the Yb³⁺ CTL in the CT absorption peak (5.99 eV). In this way two quenching temperatures, ${}^{I}T_{q}$ and ${}^{\tau}T_{q}$, have been estimated from the dependences of efficiency and decay time, respectively. The temperature values at corresponding half-maxima have been considered for this purpose. A large difference between $^{I}T_{q}$ (175 K) and $^{\tau}T_{q}$ (290 K) has been revealed for the $LiY_{0.9}Yb_{0.1}P_4O_{12}$ sample due to the exciton thermal decay up to 180 K. The contribution from the recombinational excitation of Yb³⁺ CTL is reduced when the concentration of impurity Yb³⁺ ions is higher (figure 5(b), curve 6). Therefore, the value of ${}^{I}T_{q}$ (205 K) is not too different from ${}^{\tau}T_{q}$ (215 K) for the LiY_{0.1}Yb_{0.9}P₄O₁₂ sample. The thermostimulated decay of the Yb²⁺ CT cluster is characterized by the parameter ${}^{\tau}T_{\rm q}$ corresponding to excitation directly in the CT absorption peak (5.99 eV). Therefore, the quenching temperature of the Yb³⁺ CTL has been estimated to be about 290 K and 215 K for $LiY_{0.9}Yb_{0.1}P_4O_{12}$ and $LiY_{0.1}Yb_{0.9}P_4O_{12}$ samples, respectively. The lower quenching temperature (215 K) for the LiY_{0.1}Yb_{0.9}P₄O₁₂ sample is most likely caused by the intensification of interaction between Yb²⁺ CT clusters due to the smaller distance between Yb³⁺ impurity ions.

The temperature dependence of the intensity of infrared Yb3+ f-f emission excited in the Yb $^{3+}$ CT absorption peak (5.99 eV) is presented in figure 6(b) (curves 1, 2). As the temperature goes up from 8 K up to 320 K, the intensity of infrared Yb³⁺ f-f emission increases more than twice for the LiY_{0.9}Yb_{0.1}P₄O₁₂ sample (curve 1) but remains almost constant for LiY_{0.1}Yb_{0.9}P₄O₁₂ (curve 2). Such changes in the temperature dependence of Yb³⁺ f-f emission efficiency with concentration (figure 6(b), curves 1, 2) may be explained by different mechanisms of Yb^{2+} CT cluster decay dominating for $LiY_{0.9}Yb_{0.1}P_4O_{12}$ and $LiY_{0.1}Yb_{0.9}P_4O_{12}$ samples. At the lower concentration of impurity Yb^{3+} ions both the electron and the hole may escape from the Yb^{2+} CT cluster. The Yb^{3+} ion appearing in this way may still be in the ${}^2F_{5/2}$ excited state and Yb³⁺ f-f emission is observed for this case. There should be no possibility of observing Yb³⁺ f-f emission when the decay of the Yb²⁺ CT cluster appears mostly due to hole escape and consequent formation of Yb²⁺ ions. An increase in the impurity concentration of Yb³⁺ reduces the distance between Yb³⁺ ions. Therefore, in the case of LiY_{0.1}Yb_{0.9}P₄O₁₂ the cross-recombination of electrons and holes from the different Yb²⁺ CT clusters may be thermally stimulated, thus implying the appearance of Yb2+ and a reduced probability of occurrence of Yb³⁺ ²F_{5/2}. Such cross-recombination may be the reason for the low efficiency of infrared Yb^{3+} f-f emission in the $LiY_{0.1}Yb_{0.9}P_4O_{12}$ sample upon excitation at E > 8.3 eV, even at T = 8 K (figure 3(b), curve 2).

The value of the intensity ratio for Yb³⁺ f-f emission is roughly reproduced by its decay time constants measured for LiY_{0.9}Yb_{0.1}P₄O₁₂ (820 μ s) and LiY_{0.1}Yb_{0.9}P₄O₁₂ (175 μ s) at T=300 K upon direct f-f excitation (figure 6(b), triangles). The decay kinetics for Yb³⁺ f-f emission was measured using an optical parametric oscillator OPO LP 601 from SOLAR Laser Systems (Minsk, Belarus) as an excitation source. The excitation wavelength $\lambda_{\rm exc}$ was about 975 nm (i.e. into the O-phonon line) and was adjusted for the maximum fluorescence signal at $\lambda_{\rm em}=1020$ nm. The duration of the excitation pulse δt was about 6 ns. A series of glycerin solutions (down to 0.3 wt%) of Yb-doped powders were studied in order to suppress the reabsorption resulting in decay delay. The minimum decay time constant was reached at 0.5 wt% for the LiY_{0.1}Yb_{0.9}P₄O₁₂ sample and at 1 wt% for the LiY_{0.9}Yb_{0.1}P₄O₁₂.

4. Conclusions

When discussing the relaxation of the Yb^{3+} CT state one should take into account that after charge transfer occurs RE^{2+} is formed and $4f^n$ states of RE^{3+} can be realized only after RE^{2+}

CT cluster decay via electron escape from RE²⁺ or its recombination with the hole localized on the ligand.

The excited Yb³⁺ CT state may appear after:

- electron transfer from the surrounding ligand to a Yb³⁺ ion;
- exciton decay on the impurity Yb³⁺ ion;
- hole localization around the Yb²⁺ ion;
- electron impact $(E_{\rm exc} > E_{\rm g} + E_{\rm CT})$.

The fast decay component of Yb³⁺ CTL upon band-to-band excitation may be caused by the quenching of Yb3+ CTL due to the recombination of free carriers with the hole or electron involved in the Yb²⁺ CT cluster. This quenching mechanism comes to be more pronounced for $LiY_{1-x}Yb_xP_4O_{12}$ when the impurity concentration increases.

A thermostimulated increase of infrared Yb³⁺ f-f emission intensity may be observed in the case of Yb²⁺ CT cluster decay via the escape of an electron from Yb²⁺ or its recombination with the hole localized on a ligand around Yb2+. When a Yb2+ CT cluster decays due to the escape of its hole component then Yb²⁺ ion formation reduces the probability of the appearance of $Yb^{3+}\ ^2F_{5/2}$ and the intensity of Yb^{3+} f-f emission is low. Impurity concentration may influence the dominant mechanism of Yb^{2+} CT cluster decay. For a high-concentration system the cross-recombination of electrons and holes from the different Yb²⁺ CT clusters may occur leading to formation of Yb^{2+} .

Let us consider the possible relaxation processes in materials doped with a trivalent A³⁺ ion. Upon excitation in the A³⁺ CT absorption band the transfer of an electron from ligands (i.e. from the valence band) to a trivalent A^{3+} impurity ion takes place and a mobile hole remains in the valence band. Further behaviour of this hole defines the relaxation processes that may result in the appearance of the three following types of luminescence:

(1) $e^- + A^{3+} \rightarrow (A^{2+})^* \rightarrow A^{2+} + \text{emission characteristic for the } A^{2+} \text{ centres};$ (2) $e^- + A^{3+} \rightarrow \{A^{2+}, V_K\} \rightarrow A^{3+} \text{ex}^o \rightarrow A^{3+} + \text{ the emission of an exciton localized near } A^{3+} + A$

(3)
$$e^- + A^{3+} \rightarrow A^{3+}e^- = A^{2+} \cdots e_L^+ \rightarrow A^{3+} + \text{the CT luminescence}.$$

 $(A^{2+})^*$ —excited state of A^{2+} ion;

 $\begin{aligned} &\{A^{2+},\,V_K\} \text{---self-trapped hole } (V_K\text{--centre}) \text{ near } A^{2+} \text{ ion}; \\ &A^{3+}\text{ex}^o \text{----exciton localized near } A^{3+}; \end{aligned}$

 $A^{2+} \cdots e_L^+$ —hole distributed over the ligands around A^{2+} ion.

In all these cases the optically released electron is trapped by the impurity A³⁺ ion. Thus, the probabilities of these three processes depend mainly on the behaviour of the optically released hole in the material studied: (1) immediate self-trapping of the hole or its trapping at some defect; (2) fast migration of a mobile hole along the lattice and its self-trapping close to an electron impurity centre A^{2+} ; (3) delocalization of the hole over ligands around the electron impurity A^{2+} centre.

Process (1) is the trapping of an electron by the impurity A³⁺ ion or the recombination of an electron with the A³⁺ ion. This process can be realized under excitation in the charge transfer absorption band only in the case when the optically released mobile holes are immediately self-trapped in the crystal lattice or trapped by some defects, i.e. in the case when the holes are removed from the process. As a result of this process, the same emission appears as that observed under direct excitation in the absorption bands of the A^{2+} centre. Process (2) is similar to that observed, e.g., in CsI:Tl [21] and results in the appearance of localized exciton luminescence. In this case both the electron and the hole take part in the process. For that, the probability of recombination of an electron from an A²⁺ ion with the hole self-trapped close to the electron A^{2+} centre should be large enough. Only process (3) results in the creation of the CT excited state, where the electron is located at A^{3+} and the hole (e_L^+) is localized at the ligands around A^{2+} . The electron transition from A^{2+} to e_L^+ results in the appearance of the CT luminescence.

In some systems there may be the competition between the processes mentioned above. The CT luminescence should be intense in the systems where process (3) is preferable to processes (1) and (2), i.e. where the self-trapping of holes is not possible and where an A³⁺ ion prefers to take an electron from the valence band, but the electron is not bonded very strongly with the A^{3+} ion (i.e. the A^{2+} centre is not too stable) and prefers to return to e_L^+ . In this case the hole cannot be self-trapped and it cannot recombine immediately with the electron but prefers to be distributed over all the ligands around the impurity ion. This means that the ligands should be able to keep the hole at some distance from the electron located at A^{3+} . The state of the hole (e_L⁺) delocalized at the ligands should be far enough from the top of the valence band (VB) to avoid the escape of the hole to the VB [5, 22] and thermal quenching of the CT luminescence at very low temperatures. For that, the relaxation of the hole state should be large enough. The energy distance between the top of the valence band and the e_L level increases with increasing hole binding energy, i.e. (1) as the lattice constant increases, (2) as the polarizability of the nearest neighbouring anions decreases, and (3) as the size of the substituting host cation increases (in isostructural compounds with the same anions). The thermally stimulated nonradiative transitions from the excited CT state to the 4fⁿ ground state of RE³⁺ [22] may also be responsible for the strong quenching of the CT luminescence.

References

- [1] Raghavan R S 1997 Phys. Rev. Lett. 78 3618
- [2] Nakazawa E 1978 Chem. Phys. Lett. 56 161
- [3] Nakazawa E 1979 J. Lumin. 18/19 272
- [4] Danielson E et al 1998 Science 279 837
- [5] van Pieterson L, Heeroma M, de Heer E and Meijerink A 2000 J. Lumin. 91 177
- [6] Kamenskikh I A et al 2003 Opt. Mater. 24 267
- [7] Kamenskikh I A et al 2005 J. Phys.: Condens. Matter 17 5587
- [8] Nikl M et al 2004 Appl. Phys. Lett. 84 882
- [9] Dorenbos P 2003 J. Phys.: Condens. Matter 15 8417
- [10] Guerassimova N, Garnier N, Dujardin C, Petrosyan A G and Pedrini C 2001 J. Lumin. 94/95 11
- [11] Chipaux R et al 2002 Nucl. Instrum. Methods Phys. Res. A 486 228
- [12] Antonini P, Bressi G, Carugno G and Iannuzzi D 2001 Nucl. Instrum. Methods Phys. Res. A 460 469
- [13] Adachi H, Tsukada M and Satoko C 1978 J. Phys. Soc. Japan 45 875
- [14] Rodnyi P A 1992 Sov. Phys.—Solid State 34 1053
- [15] Ikeda T, Kobayashi H, Ohmura Y, Nakamatcu H and Mukoyama T 1997 J. Phys. Soc. Japan 66 1079
- [16] Shionoya S and Yen W M 1999 Phosphore Handbook (New York: CRC Press) pp 180-4
- [17] Danielmayer H G and Weber H P 1972 IEEE J. Quantum. Electron. 8 805
- [18] Voloshinovskii A S et al 2003 HASYLAB Annual Report 2002 p 445
- [19] Zimmerer G 1991 Nucl. Instrum. Methods A 308 178
- [20] Makhov V N et al 2000 J. Lumin. 87-89 1005
- [21] Babin V, Kalder K, Krasnikov A and Zazubovich S 2002 J. Lumin. 96 75
- [22] van Pieterson L 2001 Charge transfer and 4fⁿ-4dⁿ⁻¹5d luminescence of lanthanide ions PhD Thesis Utrecht University