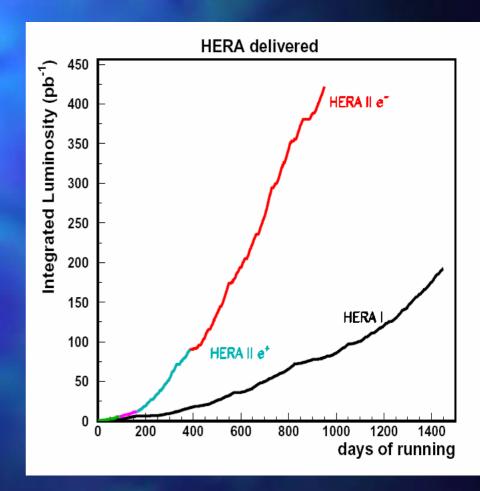
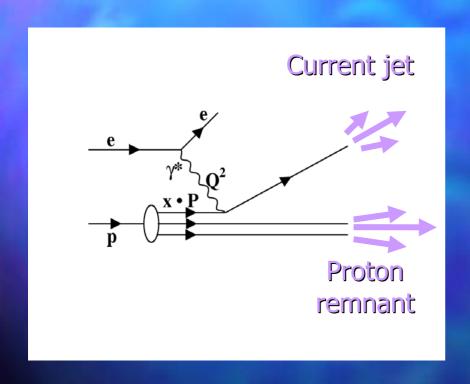
The Hadronic Final State at HERA

Rainer Mankel
DESY
for the H1 & ZEUS
collaborations


HERA

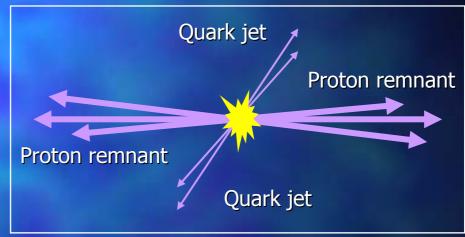
- HERA ep collider at DESY: a unique machine
- Presently the only operating high energy collider in Europe
- HERA collides protons and electrons/positrons at √s=318 GeV
- HERA-II run features upgraded luminosity and polarization
- Colliding beam experiments: H1 and ZEUS



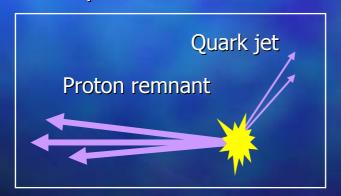
HERA Luminosity

- HERA-II has been surpassing all previous luminosity achievements
- Already the HERA-II erp run (Dec 04-Jun 06) has delivered more collisions than six years of HERA-I (1995-2000)
- Since end Jun 06, machine has switched back to e+p (~40 pb-1 since)
- O(500 pb⁻¹) per expt expected by end of data-taking in mid 2007
- Also analysis of HERA-I data is still going strong

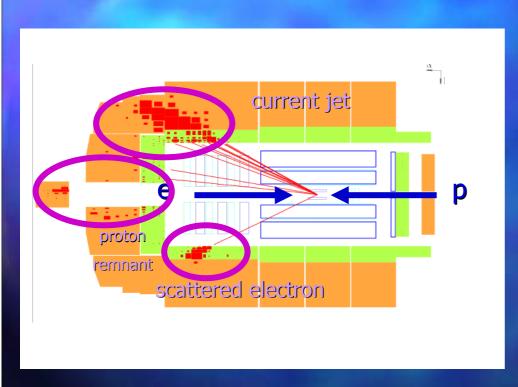
Typical Structure of Hadronic Final States at HERA


- Q²: virtuality of exchanged photon (boson)
 - Q² > 1 GeV² : deepinelastic scattering (DIS)
 - Q² < 1 GeV² : photoproduction (PHP)
- x (x_{Bj}): fraction of proton momentum carried by struck quark

Comparison of Hadronic Final State Structure


e+e- interaction

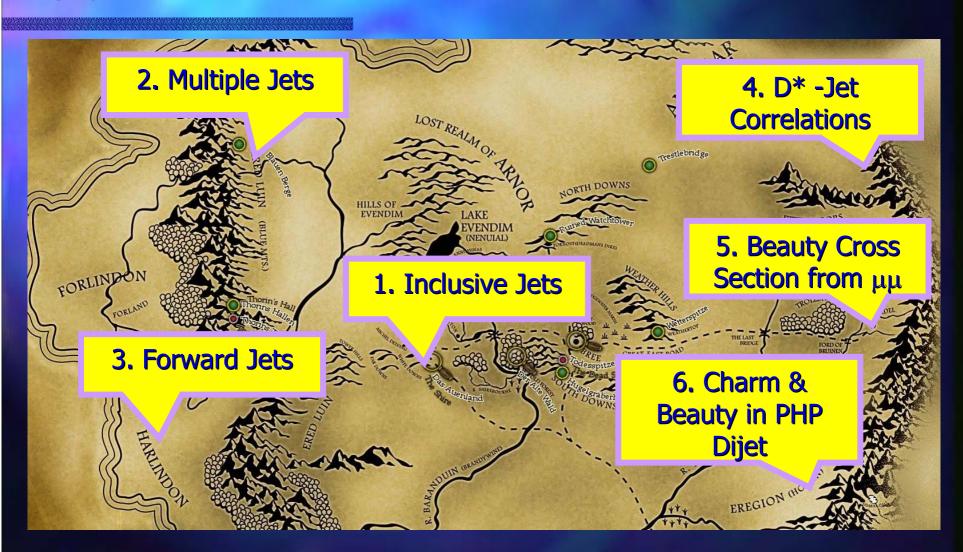
hadron-hadron interaction



e[±]p interaction

- contains main features of energetic hadron interaction (proton remnant)
- → less complex than hadron-hadron interaction
- clean reconstruction of kinematic variables
- ideal laboratory for studying QCD

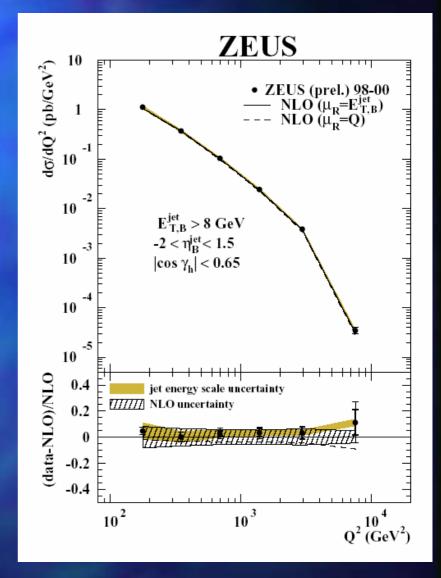
Colliding Beam Detectors



- Colliding mode detectors can generally measure current jet & scattered electron very well ("central region")
 - in these areas, also theoretical approaches are tested & tuned best
 - in PHP, the scattered electron usually escapes along the beam pipe
- The proton remnant emerges close to beam pipe & is less accessible
 - these areas also pose big challenges to theory
- Additional jets can arise from more complex processes

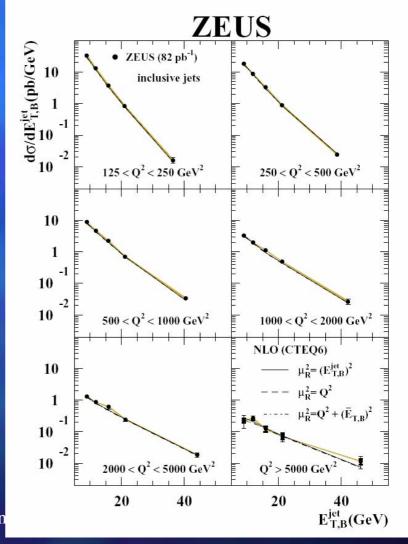
Some "Frontier" Questions Related to Hadronic Final State

- How relevant are higher orders in perturbative QCD?
- How well do we understand the workings of QCD in the forward area?
- Can we distinguish evolution schemes in parton cascades?
- At which accuracy can we describe production of heavy flavor?

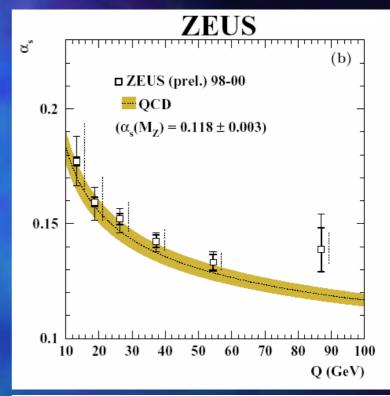

Outline

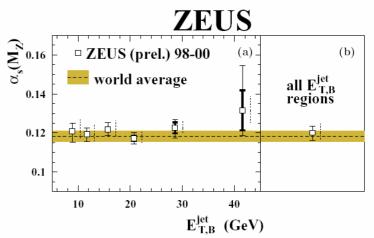
1. Inclusive Jets

Inclusive Jet Production in NC DIS


- Jet search in Breit frame
 - virtual photon purely space-like, defines longitudinal direction
 - optimal separation of proton remnant & recoiling parton
- High E^{jet}_{T,B}
 - → mainly sensitive to hard QCD processes
 - → ideal testing ground for pQCD
- → Experiment and NLO calculations agree over five orders (!) of magnitude in the Q² spectrum
- → Impressive success for QCD theory
- → Experimental uncertainty (mainly jet energy scale) tends to be smaller than theoretical uncertainly of NLO calculations

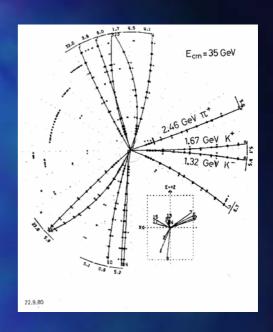
Inclusive Jet Production in NC DIS (cont'd)

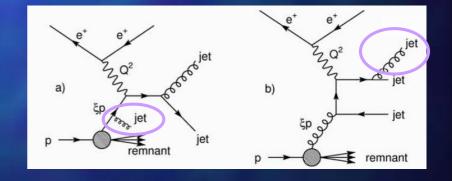

 E^{jet}_{T,B} dependence becomes less steep as Q² increases


Measurements well described by NLO QCD

Inclusive Jet Production (cont'd)

- Differential cross sections vs
 E_{T,B}^{jet} and Q² can be used to
 extract strong coupling constant
- \rightarrow Running of α_s clearly seen
- Shape agrees with theoretical expectation
- Value of α_s(M_Z) in accord with world average
 - → competitive precision
- Measuring whole Q range in one analysis avoids systematic uncertainties that arise when combining different experiments

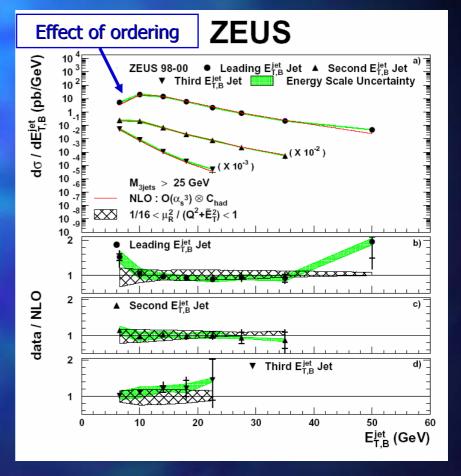




2. Multi-Jet Final States

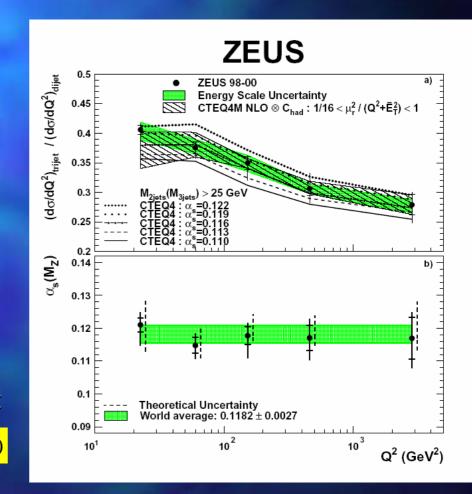
Multijet Final States

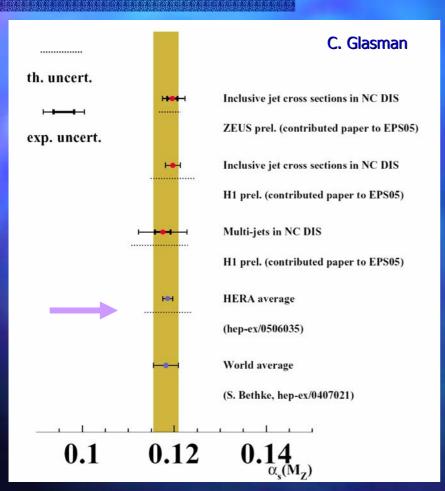
- Historical note: in 1979, the first direct observation of the gluon was made at DESY, as a third jet in e+e- annihilation
 - resulting from hard gluon radiation
 - could estimate α_s from relative rate
- Three-jet signatures can be seen as the modern HERA equivalent of this measurement
 - in Breit frame similar quite picture as in e+e-
 - one jet emerging from hard gluon radiation
 - can measure α_s from ratio of 3-jet : 2-jet production



Tri-Jet Final State: Jet Energy Spectra

- Jets classified according to decreasing transverse energy E_{T,B}^{jet}
- ⇒ Good description by NLO* in $O(\alpha_s^3)$, even at low $E_{T,B}^{jet}$

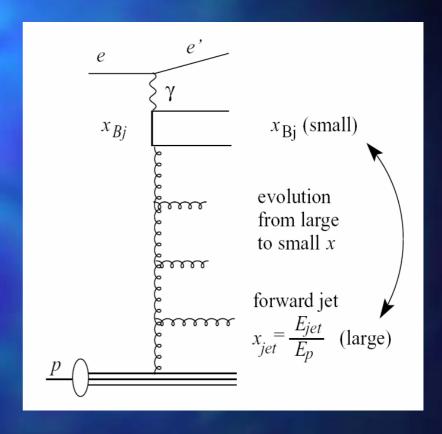

*NLOJET with CTEQ6


Ratio of Tri-Jet to Di-Jet Production

- Correlated uncertainties largely cancel in ratio
- Ratio decreases with increasing Q²
 - reflects decreasing strength of coupling
 - well described by theory
- Absolute ratio can be used to determine $\alpha_s(m_z)$
 - systematics complementary to inclusive jet measurement

 $\alpha_s = 0.1179 \pm 0.0013(stat.) {}^{+0.0028}_{-0.0046}(exp.) {}^{+0.0064}_{-0.0046}(th.)$

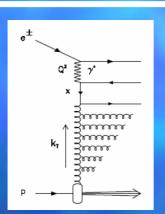
as Summary



- α_s measurements from HERA have reached an impressive level of precision
 - need help from theory
- Consistent both internally& with other experiments
- With more data to come from HERA-II → further improvement expected

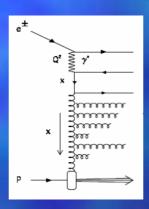
3. Forward Jets

Forward Jets


- Forward area is particularly sensitive to details in evolution of parton cascade
- At low x, we do not probe the valence structure of the proton, but rather see universal structure of QCD radiation at work
 - signature: forward jet
- This enables us to examine different mechanisms of parton cascade evolutions

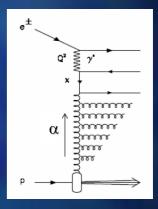
Dynamics of Parton Evolution

DGLAP


Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

- Evolution in powers of ln Q²
- Strongly orderered in k_T
- Well established at high x and Q², but expected to break down at low x

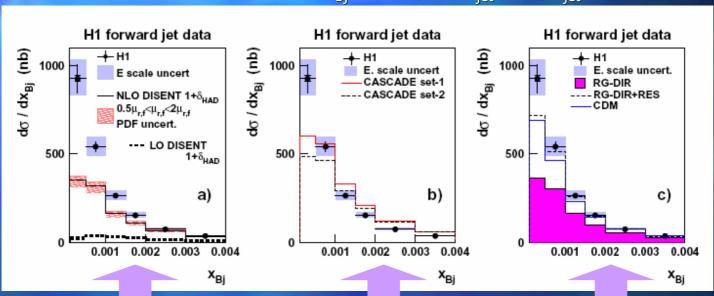
BFKL


Balitsky-Fadin-Kuraev-Lipatov

- Evolution in powers of In 1/x
- Strongly orderered in x
- May be applicable at low x

CCFM

Ciafaloni-Catani-Fiorani-Marchesini



- Evolution in both In Q² and In 1/x
- Bridge between DGLAP and BFKL
- Angular ordering
- May be applicable at low x

Forward Jet Measurements (DIS)

Cuts designed to enhanceBFKL effects

DGLAP

- leading order suppressed by kinematics
- even with NLO, factor 2 below data at low x
- need for higher orders?

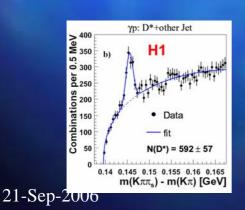
CCFM

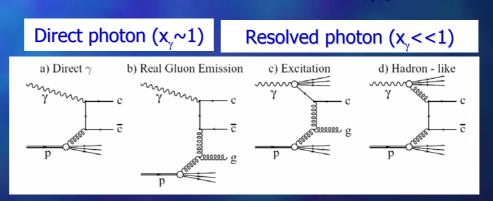
- distribution too hard
- comparatively poor description of the data

CDM (similar to BFKL)

generally good

DGLAP with resolved virtual photon similar to CDM, but fails to describe forward+dijet sample

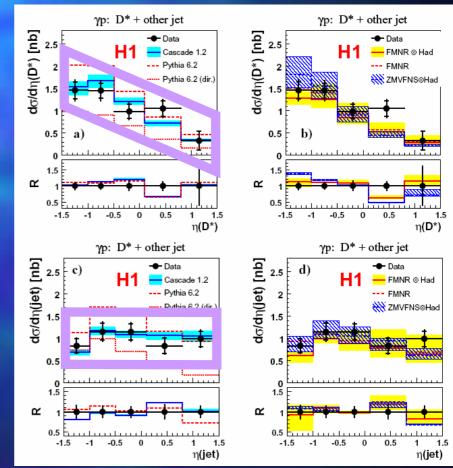

Forward Jets Summary


- Limitations of the pure DGLAP approach clearly seen in the forward area
 - higher order parton emissions break ordering scheme
- Calculations which include such processes (CDM) achieve better description of the data

4. Charm & Jets in Photo-Production

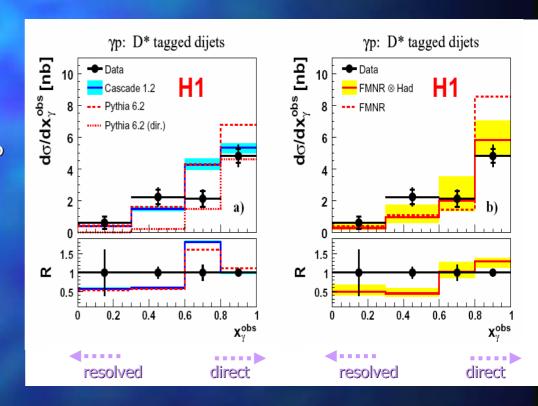
D*-Jet Correlations in Photo-Production

- Charm quark mass provides hard scale even for quasi-real photon (Q²~0)
 - perturbative QCD (pQCD) applicable over full phase space
- Several basic processes expected to contribute to photoproduction of charm
- Correlations between D* and a separate additional jet, or between two jets (one of them tagged by a D*) allow a very fine-grained comparison of different theoretical approaches

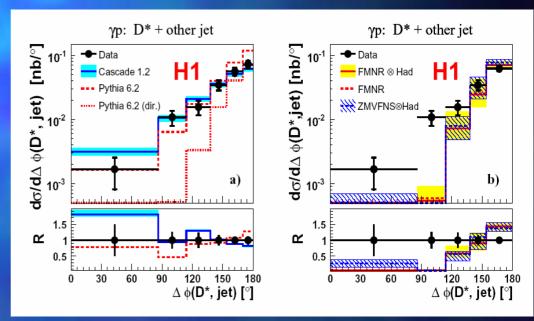

How Models Treat Charm Production

- PYTHIA: LO direct photon-gluon fusion, charm excitation & hadron-like. Higher order contributions simulated with leadinglog parton showers in collinear approach.
- CASCADE: LO in k_T factorization approach. Higher order corrections simulated with initial state parton showers (CCFM evolution)
- FMNR (Frixione-Mangano-Nason-Ridolfi): NLO calculation (O(α_s^2)), massive scheme in collinear factorization approach
- ZMVFNS (Zero mass variable flavor number scheme): NLO calculation $(O(\alpha_s^2))$ in collinear approach, neglecting charm mass

D*-Jet Correlations: η Spectra


- Data show marked difference in shape: jets on average more forward than D*
 - indicates presence of a hard non-charm parton in the forward direction
 - dominant mechanism: hard gluon radiation from proton
 - [a PYTHIA variant with only direct photon does not show this difference]
- All models include this & describe effect well

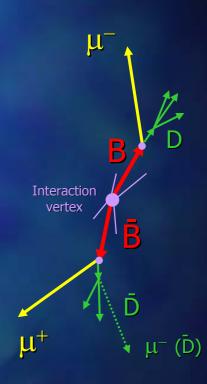
$$R = \frac{\frac{1}{\sigma_{vis}^{\text{calc}}} \frac{d\sigma^{\text{calc}}}{dY}}{\frac{1}{\sigma_{vis}^{\text{data}}} \frac{d\sigma^{\text{data}}}{dY}}$$


D*-Tagged Dijets: Transition from Resolved to Direct PHP

- x_y obs = fraction of photon energy participating in hard interaction
 - X_v^{obs} ~1: direct PHP
 - $x_v^{\text{obs}} << 1 : resolved PHP$
- Sensitive to gluon emission in initial state
- All calculations underestimate relative contribution in $x_{\gamma}^{\text{obs}} < 0.6$ region

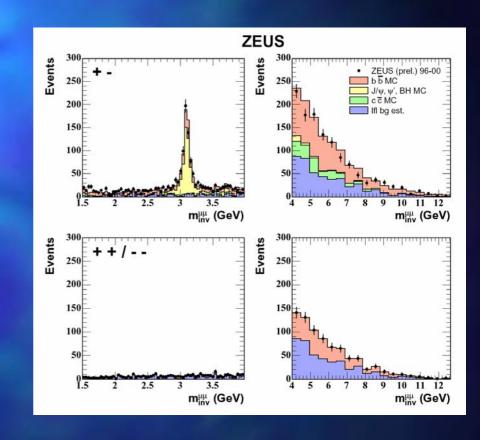
D*-Jet Correlations: Relative Azimuth Angle

- In collinear approximation, process γg→cc should lead to back-to-back topology
- But data show: only 25% of cross section are strictly backto-back
- Remainder can only be described with significant contributions from higher order QCD radiation
- → Neither PYTHIA nor CASCADE describe full range
- NLO calculation too low for Δφ<120° → relevance of higher order contributions

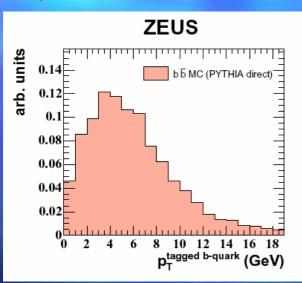


 Rich testing ground for QCD, challenging for theory

5. Total Beauty Cross Section


Total Beauty Cross Section

- Very stringent QCD test
 - large m_b → pQCD reliable in full phase space?
- Measurements in pp, γγ, πN and pN have shown large discrepancies
- Experimental challenge:
 - beauty often tagged with high p_T electron or muon (secondary vertex, or p_T relative to jet)
 - measurement restricted to high p_T b quark → extrapolation uncertainty
- Alternative: correlation signature
 - example: di-muon
- Study of di-muon event signatures allows to use low p_t^µ thresholds
 - → measure the total bb cross section


Extraction of Beauty Signal

- Light flavor background similar in (+-) and (±±) mass spectra → exploit for subtraction
- Bethe-Heitler and quarkonia background suppressed by non-isolation requirement
- Bethe-Heitler, quarkonia and cc background subtracted using MC (PYTHIA, RAPGAP, HERWIG, GRAPE)

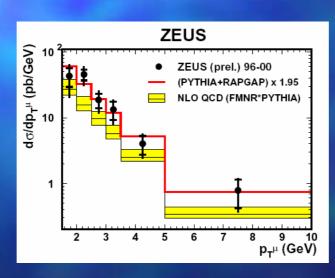
Beauty from Di-Muons: Accessible Quark p_T Range

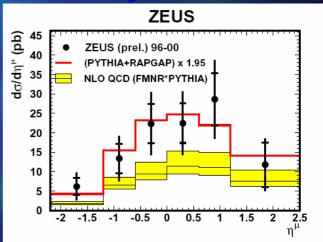
p_T distribution of tagged b quarks

- Method is sensitive down to p_T(b)~0
- Small extrapolation uncertainty

bb Cross Section from Di-Muon Events

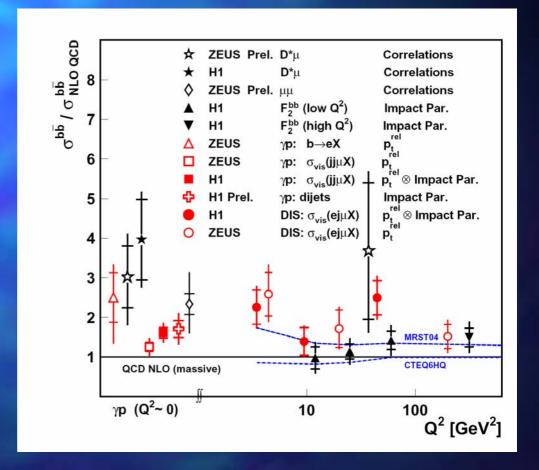
$$\sigma_{tot}(ep \to b\bar{b}X)(\sqrt{s} = 318\,GeV) = 16.1 \pm 1.8(stat) + 5.3 +$$


NLO QCD prediction: $6.8^{+3.0}_{-1.7}$ nb

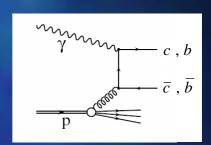

PHP: 5.8 nb (FMNR,CTEQ5M)
DIS: 1.0 nb (HVQDIS,CTEQ5F4)

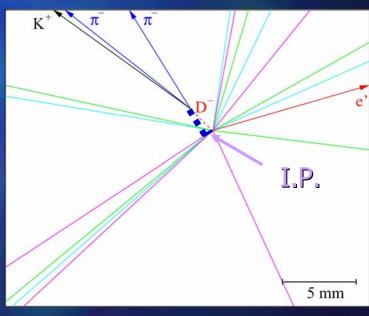
Note: PYTHIA+RAPGAP scaled by 1.95x

For muons from b decays

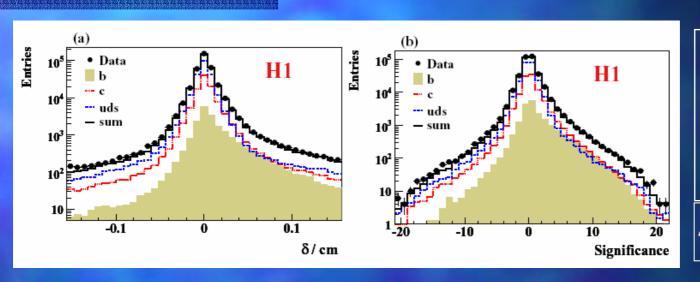

- → Wide phase space
- Good agreement in shape
- Normalization underestimated by theory

HERA bb Cross Section vs Theory


- Wide range of measurements available
- Measurements tend to be larger than NLO



6. Charm & Beauty Di-Jet

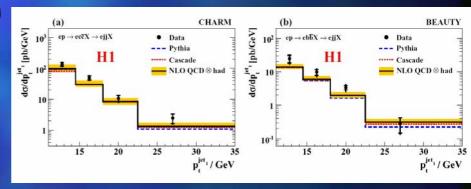

Charm & Beauty Di-Jet Cross Sections in PHP

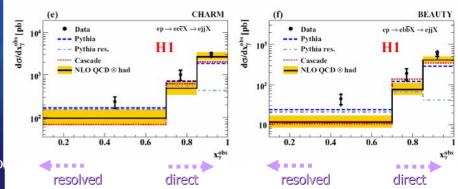
- Typical topology for charm & beauty production: ≥2 jets
- A very elegant way to identify heavy quark production is to use lifetime tags
 - c+b lifetime leads to significantly positive values of impact parameter
 δ of charged tracks
 - can be measured with high resolution silicon vertex detectors
 - signed according to jet direction
- Allows simultaneous determination of charm & beauty rates in PHP

Charm & Beauty in PHP Di-Jet (cont'd)

Tracks with $p_T>0.5$ GeV, $30^{\circ}<\theta<150^{\circ}$, #CST hits $(r\phi)\geq 2$

$$Significance = \frac{\delta}{\sigma(\delta)}$$


- → Clear excess at positive impact parameter (significance)
- Since m_b>>m_c, decays of beauty hadrons have significantly higher number of tracks on average
- Divide into 2 samples according to tracks associated to jet:
 - #tracks=1 : charm enriched
 - #tracks>1 : beauty enriched


Charm & Beauty in PHP Di-Jet: Cross Sections Q²<1 GeV², 0.15<y<0.8,

- Cross section:
 - NLO (FMNR) agrees for charm, but factor 1.8 too low for beauty
 - PYTHIA, CASCADE similar
- Shapes of p_T^{jet} and n^{jet} (not shown) reasonably well described
- x, obs = fraction of photon energy participating in hard interaction
- At low x obs (resolved photon regime), NLO calculation strongly underestimates the beauty cross section
 - PYTHIA agrees in shape
- At $x_{\gamma}^{\text{obs}} > 0.85$ (direct photon regime), models work generally well (\leftrightarrow photon gluon fusion)

Q²<1 GeV², 0.15<y<0.8, p_T^{jet1(2)}>11(8) GeV, - 0.9< η ^{jet1(2)}<1.3

	Charm [pb]	Beauty [pb]
Data	$702 \pm 67(stat.) \pm 95(syst.)$	$150 \pm 17(stat.) \pm 33(syst.)$
FMNR	500^{+173}_{-99}	83 ⁺¹⁹ ₋₁₄
PYTHIA	484	76
CASCADE	438	80

21-Sep-2006

R. Mankel: The Hadro

Summary

- Wealth of measurements from HERA on structure of hadronic final state
 - only a small selection presented
 - unique facility for QCD studies
- NLO largely successful in describing experimental data
- Some challenging frontiers identified
 - QCD dynamics in vicinity of proton remnant (low x regime)
 - resolved photo-production
 - beauty cross section
- With large HERA-II data sample, and improvements in theory, expect further insights in QCD frontiers regarding the hadronic final state