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Abstract

Low-temperature superconductivity is treated at an introductory level. The

topics include Meissner-Ochsenfeld effect and London equations, thermody-

namic properties of the superconducting state, type I and II superconductors,

flux quantisation, superconductors in microwave fields and superconducting

quantum interference effects. Important experiments are discussed. The basic

ideas of the BCS theory and its implications are outlined.

1. INTRODUCTION

In these lectures I want to give an introduction into the physical principles of superconductivity and its

fascinating properties. More detailed accounts can be found in the excellent text books by W. Buckel

[1] and by D.R. Tilley and J. Tilley [2]. Superconductivity was discovered [3] in 1911 by the Dutch

physicist H. Kamerlingh Onnes, only three years after he had succeeded in liquefying helium. During his

investigations on the conductivity of metals at low temperature he found that the resistance of a mercury

sample dropped to an unmeasurably small value just at the boiling temperature of liquid helium. The

original measurement is shown in Fig. 1. Kamerlingh Onnes called this totally unexpected phenomenon

‘superconductivity’ and this name has been retained since. The temperature at which the transition took

place was called the critical temperature Tc. Superconductivity is observed in a large variety of materials

but, remarkably, not in some of the best normal conductors like copper, silver and gold, except at very

high pressures. This is illustrated in Fig. 2 where the resistivity of copper, tin and the ‘high-temperature’

superconductor YBa2Cu3O7 is sketched as a function of temperature. Table 1 lists some important

superconductors together with their critical temperatures at vanishing magnetic field.

Fig. 1: The discovery of superconductivity by Kamerlingh Onnes.



Fig. 2: The low-temperature resistivity of copper, tin and YBa2Cu3O7.

Table 1: The critical temperature of some common materials at vanishing magnetic fi eld.

material Ti Al Hg Sn Pb Nb NbTi Nb3Sn

Tc [K] 0.4 1.14 4.15 3.72 7.9 9.2 9.2 18

A conventional resistance measurement is far too insensitive to establish infinite conductivity,

a much better method consists in inducing a current in a ring and determining the decay rate of the

produced magnetic field. A schematic experimental setup is shown in Fig. 3. A bar magnet is inserted

in the still normal-conducting ring and removed after cooldown below Tc. The induced current should

decay exponentially

I(t) = I(0) exp(−t/τ)
with the time constant given by the ratio of inductivity and resistance, τ = L/R, which for a normal

metal ring is in the order of 100 µs. In superconducting rings, however, time constants of up to 105 years

have been observed [4] so the resistance must be at least 15 orders of magnitude below that of copper and

is indeed indistinguishable from zero. An important practical application of this method is the operation

of solenoid coils for magnetic resonance imaging in the short-circuit mode which exhibit an extremely

slow decay of the field of typically 3 · 10−9 per hour [5].

Fig. 3: Induction of a persistent current in a superconducting ring.



There is an intimate relation between superconductivity and magnetic fields. W. Meissner and R.

Ochsenfeld [6] discovered in 1933 that a superconducting element like lead completely expelled a weak

magnetic field from its interior when cooled below Tc while in strong fields superconductivity broke

down and the material went to the normal state. The spontaneous exclusion of magnetic fields upon

crossing Tc could not be explained in terms of the Maxwell equations and indeed turned out to be a

non-classical phenomenon. Two years later, H. and F. London [7] proposed an equation which offered

a phenomenological explanation of the Meissner-Ochsenfeld effect but the justification of the London

equation remained obscure until the advent of the Bardeen, Cooper and Schrieffer theory [8] of super-

conductivity in 1957. The BCS theory revolutionized our understanding of this fascinating phenomenon.

It is based on the assumption that the supercurrent is not carried by single electrons but rather by pairs of

electrons of opposite momenta and spins, the so-called Cooper pairs. All pairs occupy a single quantum

state, the BCS ground state, whose energy is separated from the single-electron states by an energy gap

which in turn can be related to the critical temperature. The BCS theory has turned out to be of enormous

predictive power and many of its predictions and implications like the temperature dependence of the en-

ergy gap and its relation to the critical temperature, the quantisation of magnetic flux and the existence

of quantum interference phenomena have been confirmed by experiment and, in many cases, even found

practical application.

A discovery of enormous practical consequences was the finding that there exist two types of

superconductors with rather different response to magnetic fields. The elements lead, mercury, tin, alu-

minium and others are called ‘type I’ superconductors. They do not admit a magnetic field in the bulk

material and are in the superconducting state provided the applied field is below a critical field Hc which

is a function of temperature. All superconducting alloys like lead-indium, niobium-titanium, niobium-tin

and also the element niobium belong to the large class of ‘type II’ superconductors. They are charac-

terized by two critical fields, Hc1 and Hc2. Below Hc1 these substances are in the Meissner phase with

complete field expulsion while in the range Hc1 < H < Hc2 a type II superconductor enters the mixed

phase in which magnetic field can penetrate the bulk material in the form of flux tubes. The Ginzburg-

Landau theory [9] provides a theoretical basis for the distinction between the two types. Around 1960

Gorkov [10] showed that the phenomenological Ginzburg-Landau theory is a limiting case of the BCS

theory. Abrikosov [11] predicted that the flux tubes in a type II superconductor arrange themselves in

a triangular pattern which was confirmed in a beautiful experiment by Essmann and Träuble [12]. In

1962 Josephson [13] studied the quantum theoretical tunnel effect in a system of two superconductors

separated by a thin insulating layer and he predicted peculiar and fascinating properties of such a Joseph-

son junction which were all confirmed by experiment and opened the way to superconducting quantum

interference devices (SQUID’s) with extreme sensitivity to tiny magnetic fields.

2. MEISSNER-OCHSENFELD EFFECT AND LONDON EQUATION

We consider a cylinder with perfect conductivity and raise a magnetic field from zero to a finite value H .

A surface current is induced whose magnetic field, according to Lenz’s rule, is opposed to the applied

field and cancels it in the interior. Since the resistance is zero the current will continue to flow with

constant strength as long as the external field is kept constant and consequently the bulk of the cylinder

will stay field-free. This is exactly what happens if we expose a lead cylinder in the superconducting

state (T < Tc) to an increasing field, see the path (a) → (c) in Fig. 4. So below Tc lead acts as a perfect

diamagnetic material. There is, however, another path leading to the point (c). We start with a lead

cylinder in the normal state (T > Tc) and expose it to a field which is increased from zero to H . Eddy

currents are induced in this case as well but they decay rapidly and after a few hundred microseconds

the field lines will fully penetrate the material (state (b) in Fig. 4). Now the cylinder is cooled down.

At the very instant the temperature drops below Tc , a surface current is spontaneously created and the

magnetic field is expelled from the interior of the cylinder. This surprising observation is called the



Meissner-Ochsenfeld effect after its discoverers; it cannot be explained by the law of induction because

the magnetic field is kept constant.

Fig. 4: A lead cylinder in a magnetic fi eld. Two possible ways to reach the superconducting fi nal state with H > 0 are sketched.

Ideally the length of the cylinder should be much larger than its diameter to get a vanishing demagnetisation factor.

In a (T,H) plane, the superconducting phase is separated from the normal phase by the curve

Hc(T ) as sketched in Fig. 5. Also indicated are the two ways on which one can reach the point (c). It

is instructive to compare this with the response of a ‘normal’ metal of perfect conductivity. The field

increase along the path (a) → (c) would yield the same result as for the superconductor, however the

cooldown along the path (b) → (c) would have no effect at all. So superconductivity means definitely

more than just vanishing resistance.

Fig. 5: The phase diagram in a (T, H) plane.

I have already used the terms ‘superconducting phase’ and ‘normal phase’ to characterize the

two states of lead. These are indeed phases in the thermodynamical sense, comparable to the different

phases of H2O which is in the solid, liquid or gaseous state depending on the values of the parameters

temperature and pressure. Here the relevant parameters are temperature and magnetic field (for some

materials also pressure). If the point (T,H) lies below the curve Hc(T ) the material is superconducting

and expels the magnetic field, irrespective of by which path the point was reached. If (T,H) is above

the curve the material is normal-conducting.

The first successful explanation of the Meissner-Ochsenfeld effect was achieved in 1935 by Heinz

and Fritz London. They assumed that the supercurrent is carried by a fraction of the conduction electrons

in the metal. The ‘super-electrons’ experience no friction, so their equation of motion in an electric field

is

me
∂~v

∂t
= −e ~E .



This leads to an accelerated motion. The supercurrent density is

~Js = −ens~v

where ns is the density of the super-electrons. This immediately yields the equation

∂ ~Js

∂t
=
nse

2

me

~E . (1)

Now one uses the Maxwell equation

~∇× ~E = −∂
~B

∂t

and takes the curl (rotation) of (1) to obtain

∂

∂t

(

me

nse2
~∇× ~Js + ~B

)

= 0 .

Since the time derivative vanishes the quantity in the brackets must be a constant. Up to this point the

derivation is fully compatible with classical electromagnetism, applied to the frictionless acceleration of

electrons. An example might be the motion of electrons in the vacuum of a television tube or in a circular

accelerator. The essential new assumption H. and F. London made is that the bracket is not an arbitrary

constant but is identical to zero. Then one obtains the important London equation

~∇× ~Js = −nse
2

me

~B . (2)

It should be noted that this assumption cannot be justified within classical physics, even worse, in

general it is wrong. For instance the current density in a normal metal will vanish when no electric field is

applied, and whether a static magnetic field penetrates the metal is of no importance. In a superconductor

of type I, on the other hand, the situation is such that Eq. (2) applies. Combining the fourth Maxwell

equation (for time-independent fields)
~∇× ~B = µ0

~Js

and the London equation and making use of the relation

~∇× (~∇× ~B) = −∇2 ~B

(this is valid since ~∇ · ~B = 0) we get the following equation for the magnetic field in a superconductor

∇2 ~B − µ0nse
2

me

~B = 0 . (3)

It is important to note that this equation is not valid in a normal conductor. In order to grasp the signifi-

cance of Eq. (3) we consider a simple geometry, namely the boundary between a superconducting half

space and vacuum, see Fig. 6a. Then, for a magnetic field parallel to the surface, Eq. (3) becomes

d2By

dx2
− 1

λ2
L

By = 0

with the solution

By(x) = B0 exp(−x/λL) .

Here we have introduced a very important superconductor parameter, the London penetration depth

λL =

√

me

µ0nse2
. (4)



So the magnetic field does not stop abruptly at the superconductor surface but penetrates into the material

with exponential attenuation. For typical material parameters the penetration depth is quite small, 20 –

50 nm. In the bulk of a thick superconductor there can be no magnetic field, which is just the Meissner-

Ochsenfeld effect. Here it is appropriate to remark that in the BCS theory not single electrons but pairs

of electrons are the carriers of the supercurrent. Their mass is mc = 2me, their charge −2e, their density

nc = ns/2. Obviously the penetration depth remains unchanged when going from single electrons to

Cooper pairs.

We have now convinced ourselves that the superconductor can tolerate a magnetic field only in a

thin surface layer (this is the case for type I superconductors). An immediate consequence is that current

flow is restricted to the same thin layer. Currents in the interior are forbidden as they would generate

magnetic fields in the bulk. The magnetic field and the current which are caused by an external field

parallel to the axis of a lead cylinder are plotted in Fig. 6b. Another interesting situation occurs if we

pass a current through a lead wire (Fig. 6c). It flows only in a very thin surface sheet of about 20 nm

thickness, so the overall current in the wire is small. This is a first indication that type I superconductors

are not suitable for winding superconducting magnet coils.

Fig. 6: (a) Exponential attenuation of a magnetic fi eld in a superconducting half plane. (b) Shielding current in a superconduct-

ing cylinder induced by a fi eld parallel to the axis. (c) A current-carrying wire made from a type I superconductor.

The penetration depth has a temperature dependence which can be calculated in the BCS theory.

When approaching the critical temperature, the density of the supercurrent carriers goes to zero, so λL

must become infinite:

λL → ∞ for T → Tc .

This is shown in Fig. 7. An infinite penetration depth means no attenuation of a magnetic field which is

just what one observes in a normal conductor.



Fig. 7: Temperature dependence of the London penetration depth.

3. THERMODYNAMIC PROPERTIES OF SUPERCONDUCTORS

3.1 The superconducting phase

A material like lead goes from the normal into the superconducting state when it is cooled below Tc and

when the magnetic field is less than Hc(T ). It has been mentioned already that this is a phase transition

comparable to the transition from water to ice at 0◦C and normal pressure. Phase transitions take place

when the new state is energetically favoured. The relevant thermodynamic energy is here the Gibbs free

energy (see Appendix A)

G = U − T S − µ0
~M · ~H (5)

where U is the internal energy, S the entropy and M the magnetisation of the superconductor (the

magnetic moment per unit volume). A measurent of the free energy of aluminium is shown in Fig. 8a.

Below Tc the superconducting state has a lower free energy than the normal state and thus the transition

normal → superconducting is associated with a gain in energy. The entropy of the superconducting state

is lower because there is a higher degree of order in this state. From the point of view of the BCS theory

this is quite understandable since the conduction electrons are paired and collect themselves in a single

quantum state. Numerically the entropy difference is small, though, about 1 milli-Joule per mole and

Kelvin, from which one can deduce that only a small fraction of the valence electrons of aluminium is

condensed into Cooper pairs. It should be noted, that also normal conduction is carried by just a small

fraction of the valence electrons, see sect. 4.1.

Fig. 8: (a) Free energy of aluminium in the normal and superconducting state as a function of T (after N.E. Phillips). The

normal state was achieved by exposing the sample to a fi eld larger than Hc while the superconducting state was measured at

H = 0. (b) Schematic sketch of the free energies Gnorm and Gsup as a function of the applied fi eld B = µ0H .



3.2 Energy balance in a magnetic field

We have argued that a lead cylinder becomes superconductive for T < Tc because the free energy is

reduced that way:

Gsup < Gnorm for T < Tc .

What happens if we apply a magnetic field? A normal-conducting metal cylinder is penetrated by the

field so its free energy does not change: Gnorm(H) = Gnorm(0). In contrast to this, a superconducting

cylinder is strongly affected by the field. It sets up shielding currents which generate a magnetic moment

~m antiparallel to the applied field. The magnetic moment has a positive potential energy in the magnetic

field

Epot = −µ0 ~m · ~H = +µ0 |~m| | ~H| . (6)

In the following it is useful to introduce the magnetisation M as the magnetic moment per unit volume.

The magnetisation of a superconductor inside a current-carrying coil resembles that of an iron core. The

‘magnetising’ fieldH is generated by the coil current only and is unaffected by the presence of a magnetic

material while the magnetic flux density1 B is given by the superposition of H and the superconductor

magnetisation M :

~B = µ0( ~H + ~M) . (7)

In the following I will call both H and B magnetic fields. For a type I superconductor we have

~M( ~H) = − ~H and ~B = 0 (8)

as long as H < Hc. The potential energy per unit volume is obtained by integration

Epot = −µ0

∫ H

0

~M ( ~H ′) · ~dH ′

= µ0

∫ H

0

H ′2dH ′ =
µ0

2
H2 . (9)

This corresponds to the increase in the Gibbs free energy that is caused by the magnetic field, see Fig.

8b.

Gsup(H) = Gsup(0) +
µ0

2
H2 . (10)

Here and in the following G denotes the Gibbs free energy per unit volume. The critical field is achieved

when the free energy in the superconducting state just equals the free energy in the normal state

µ0

2
H2

c = Gnorm −Gsup(0) . (11)

Since the energy density stored in a magnetic field is (µ0/2)H
2, an alternative interpretation of Eq. (11)

is the following: in order to go from the normal to the superconducting state the material has to push

out the magnetic energy, and the largest amount it can push out is the difference between the two free

energies at vanishing field. For H > Hc the normal phase has a lower energy, so superconductivity

breaks down.

1There is often a confusion whether the H or the B fi eld should be used. Unfortunately, much of the superconductivity

literature is based on the obsolete CGS system of units where the distinction between B and H is not very clear and the two

fi elds have the same dimension although their units were given different names: Gauss and Oerstedt.



3.3 Type II superconductors

For practical application in magnets it would be rather unfortunate if only type I superconductors existed

which permit no magnetic field and no current in the bulk material. Alloys and the element niobium are

so-called type II superconductors. Their magnetisation curves exhibit a more complicated dependence

on magnetic field (Fig. 9). Type II conductors are characterized by two critical fields, Hc1 and Hc2 ,

which are both temperature dependent. For fields 0 < H < Hc1 the substance is in the Meissner phase

with complete exclusion of the field from the interior. In the range Hc1 < H < Hc2 the substance enters

the mixed phase, often also called Shubnikov phase: part of the magnetic flux penetrates the bulk of the

sample. Above Hc2 , finally, the material is normal-conducting. The area under the curve M = M(H)
is the same as for a type I conductor as it corresponds to the free-energy difference between the normal

and the superconducting state and is given by (µ0/2)H
2
c .

Fig. 9: Magnetisation of type I and type II superconductors as a function of the magnetic fi eld.

It is instructive to compare measured data on pure lead (type I) and lead-indium alloys (type II) of

various composition. Figure 10 shows that the upper critical field rises with increasing indium content;

for Pb-In(20.4%) it is about eight times larger than the critical field of pure lead. Under the assumption

that the free-energy difference is the same for the various lead-indium alloys, the areas under the three

curves A, B, C in Fig. 10 should be identical as the diagram clearly confirms.



Fig. 10: The measured magnetisation curves [14] of lead-indium alloys of various composition, plotted against B = µ0H .

A remarkable feature, which will be addressed in more detail later, is the observation that the

magnetic flux does not penetrate the type II conductor with uniform density. Rather it is concentrated in

flux tubes as sketched in Fig. 11. Each tube is surrounded with a super-vortex current. The material in

between the tubes is field- and current-free.

Fig. 11: Flux tubes in a type II superconductor.

The fact that alloys stay superconductive up to much higher fields is easy to understand: magnetic

flux is allowed to penetrate the sample and therefore less magnetic field energy has to be driven out.

Figure 12 shows that a type II superconducting cylinder in the mixed phase has a smaller magnetic

moment than a type I cylinder. This implies that the curve Gsup(H) reaches the level Gsup(H) = Gnorm

at a field Hc2 > Hc .

In a (T,H) plane the three phases of a type II superconductor are separated by the curves Hc1(T )
and Hc2(T ) which meet at T = Tc, see Fig. 13a. The upper critical field can assume very large values

which make these substances extremely interesting for magnet coils (Fig. 13b).



Fig. 12: Top: Magnetic moment of a type I and a type II sc cylinder in a fi eld Hc1 < H < Hc. Bottom: The Gibbs free

energies of both cylinders as a function of fi eld.

Fig. 13: (a) The phase diagram of a type II superconductor. (b) The upper critical fi eld Bc2 = µ0Hc2 of several high-fi eld

alloys as a function of temperature.

3.4 When is a superconductor of type I or type II?

3.41 Thin sheets of type I superconductors

Let us first stick to type I conductors and compare the magnetic properties of a very thin sheet (thickness

d < λL) to those of a thick slab. The thick slab has a vanishing B field in the bulk (Fig. 14a) while in the



thin sheet (Fig. 14b) the B field does not drop to zero at the centre. Consequently less energy needs to be

expelled which implies that the critical field of a very thin sheet is much larger than theBc of a thick slab.

From this point of view it might appear energetically favourable for a thick slab to subdivide itself into an

alternating sequence of thin normal and superconducting slices as indicated in Fig. 14c. The magnetic

energy is indeed lowered that way but there is another energy to be taken into consideration, namely

the energy required to create the normal-superconductor interfaces. A subdivision is only sensible if the

interface energy is less than the magnetic energy.

Fig. 14: Attenuation of fi eld (a) in a thick slab and (b) in thin sheet. (c) Subdivision of a thick slab into alternating layers of

normal and superconducting slices.

3.42 Coherence length

At a normal-superconductor boundary the density of the supercurrent carriers (the Cooper pairs) does not

jump abruptly from zero to its value in the bulk but rises smoothly over a finite length ξ, the coherence

length, see Fig. 15.

Fig. 15: The exponential drop of the magnetic fi eld and the rise of the Cooper-pair density at a boundary between a normal and

a superconductor.

The relative size of the London penetration depth and the coherence length decides whether a

material is a type I or a type II superconductor. To study this in a semi-quantitative way, we first define

the thermodynamic critical field by the energy relation

µ0

2
H2

c = Gnorm −Gsup(0) . (12)



For type I this coincides with the known Hc , see Eq. (11), while for type II conductors Hc lies between

Hc1 and Hc2. The difference between the two free energies, Gnorm −Gsup(0), can be intepreted as the

Cooper-pair condensation energy.

For a conductor of unit area, exposed to a field H = Hc parallel to the surface, the energy balance

is as follows:

(a) The magnetic field penetrates a depth λL of the sample which corresponds to an energy gain since

magnetic energy must not be driven out of this layer:

∆Emagn =
µ0

2
H2

c λL . (13)

(b) On the other hand, the fact that the Cooper-pair density does not assume its full value right at the

surface but rises smoothly over a length ξ implies a loss of condensation energy

∆Econd = −µ0

2
H2

c ξ . (14)

Obviously there is a net gain if λL > ξ. So a subdivision of the superconductor into an alternating

sequence of thin normal and superconducting slices is energetically favourable if the London penetration

depth exceeds the coherence length.

A more refined treatment is provided by the Ginzburg-Landau theory [9]. Here one introduces the

Ginzburg-Landau parameter

κ = λL/ξ . (15)

The criterion for type I or II superconductivity is found to be

type I: κ < 1/
√

2

type II: κ > 1/
√

2.

In reality a type II superconductor is not subdivided into thin slices but the field penetrates the

sample in flux tubes which arrange themselves in a triangular pattern. The core of a flux tube is normal.

The following table lists the penetration depths and coherence lengths of some important superconduct-

ing elements. Niobium is a type II conductor but close to the border to type I, while indium, lead and tin

are clearly type I conductors.

material In Pb Sn Nb

λL [nm] 24 32 ≈ 30 32

ξ [nm] 360 510 ≈ 170 39

The coherence length ξ is proportional to the mean free path ℓ of the conduction electrons in the metal.

This quantity can be large for a very pure crystal but is strongly reduced by lattice defects and impurity

atoms. In alloys the mean free path is generally much shorter than in pure metals so alloys are always

type II conductors. In the Ginzburg-Landau theory the upper critical field is given by

Bc2 =
√

2κBc =
Φ0

2πξ2
(16)

where Φ0 is the flux quantum (see sect. 5.2). For niobium-titanium with an upper critical fieldBc2 = 10
T at 4.2 K this formula yields ξ = 6 nm. The coherence length is larger than the typical width of a grain

boundary in NbTi which means that the supercurrent can move freely from grain to grain. In high-Tc

superconductors the coherence length is often shorter than the grain boundary width, and then current

flow from one grain to the next is strongly impeded. There exists no simple expression for the lower

critical field. In the limit κ≫ 1 one gets

Bc1 =
1

2κ
(ln κ+ 0.08)Bc . (17)



3.5 Heat capacity and heat conductivity

The specific heat capacity per unit volume at low temperatures is given by the expression

CV (T ) = γ T +AT 3 . (18)

The linear term in T comes from the conduction electrons, the cubic term from lattice vibrations. The

coefficients can be calculated within the free-electron-gas model and the Debye theory of lattice specific

heat (see any standard textbook on solid state physics):

γ =
π2nk2

B

2EF
, A =

12π4NkB

5Θ3
D

. (19)

Here kB = 1.38 · 10−23 J/K is the Boltzmann constant, EF the Fermi energy, n the density of the free

electrons, N the density of the lattice atoms and ΘD the Debye temperature of the material. If one plots

the ratio C(T )/T as a function of T 2 a straight line is obtained as can be seen in Fig. 16a for normal-

conducting gallium [15]. In the superconducting state the electronic specific heat is different because the

electrons bound in Cooper pairs no longer contribute to energy transport. In the BCS theory one expects

an exponential rise of the electronic heat capacity with temperature

Ce, s(T ) = 8.5 γ Tc exp(−1.44Tc/T ) (20)

The experimental data (Fig. 16a, b) are in good agreement with this prediction. There is a resemblance

to the exponential temperature dependence of the electrical conductivity in intrinsic semiconductors and

these data can be taken as an indication that an energy gap exists also in superconductors.

Fig. 16: (a) Specifi c heat C(T )/T of normal and superconducting gallium as a function of T2 [15]. (b) Experimental verifi ca-

tion of Eq. (20).

The heat conductivity of niobium is of particular interest for superconducting radio frequency

cavities. Here the theoretical predictions are rather imprecise and measurements are indispensible. The

low temperature values depend strongly on the residual resistivity ratio RRR = R(300K)/R(10K) of

the normal-conducting niobium. Figure 17 shows experimental data [16].



Fig. 17: Measured heat conductivity in niobium samples with RRR = 270 and RRR = 500 as a function of temperature [16].

4. BASIC CONCEPTS AND RESULTS OF THE BCS THEORY

4.1 The ‘free electron gas’ in a normal metal

4.11 The Fermi sphere

In a metal like copper the positively charged ions form a regular crystal lattice. The valence electrons

(one per Cu atom) are not bound to specific ions but can move through the crystal. In the simplest

quantum theoretical model the Coulomb attraction of the positive ions is represented by a potential well

with a flat bottom, the periodic structure is neglected (taking into account the periodic lattice potential

leads to the electronic band structure of semiconductors). The energy levels are computed by solving the

Schrödinger equation with boundary conditions, and then the electrons are placed on these levels paying

attention to the Pauli exclusion principle: no more than two electrons of opposite spin are allowed on

each level. The electrons are treated as independent and non-interacting particles, their mutual Coulomb

repulsion is taken into account only globally by a suitable choice of the depth of the potential well. It

is remarkable that such a simple-minded picture of a ‘free electron gas’ in a metal can indeed reproduce

the main features of electrical and thermal conduction in metals. However, an essential prerequisite is

to apply the Fermi-Dirac statistics, based on the Pauli principle, and to avoid the classical Boltzmann

statistics which one uses for normal gases. The electron gas has indeed rather peculiar properties. The

average kinetic energy of the metal electrons is by no means given by the classical expression

me

2
v2 =

3

2
kBT

which amounts to about 0.025 eV at room temperature. Instead, the energy levels are filled with two

electrons each up to the Fermi energy EF . Since the electron density n is very high in metals, EF

assumes large values, typically 5 eV. The average kinetic energy of an electron is 3/5EF ≈ 3 eV and

thus much larger than the average energy of a usual gas molecule. The electrons constitute a system

called a ‘highly degenerate’ Fermi gas. The Fermi energy is given by the formula

EF =
~

2

2me
(3π2n)2/3 . (21)



Fig. 18: The allowed states for conduction electrons in the pxpy plane and the Fermi sphere. The occupied states are drawn as

full circles, the empty states as open circles.

The quantity ~ = h/2π = 1.05 · 10−34 Js = 6.58 · 10−15 eVs is Planck’s constant, the most

important constant in quantum theory. In order to remind the reader I will shortly sketch the derivation

of these results. Consider a three-dimensional region in the metal of length L = N a, where a is the

distance of neighbouring ions in the lattice and N ≫ 1 an integer. The Schrödinger equation with

potential V = 0 and with periodic boundary conditions ψ(x+ L, y, z) = ψ(x, y, z) etc. is solved by

ψ(x, y, z) = L−3/2 exp(i(k1x+ k2y + k3z)) (22)

where the components of the wave vector ~k are given by

kj = nj
2π

L
with nj = 0,±1,±2, ... (23)

The electron momentum is ~p = ~~k, the energy is E = ~
2~k2/(2me). It is useful to plot the allowed

quantum states of the electrons as dots in momentum space. In Fig. 18 this is drawn for two dimensions.

In the ground state of the metal the energy levels are filled with two electrons each starting from

the lowest level. The highest energy level reached is called the Fermi EF . At temperature T → 0 all

states belowEF are occupied, all states above EF are empty. The highest momentum is called the ‘Fermi

momentum’ pF =
√

2meEF , the highest velocity is the Fermi velocity vF = pF/me which is in the

order of 106 m/s. In the momentum state representation, the occupied states are located inside the ‘Fermi

sphere’ of radius pF , the empty states are outside.

What are the consequences of the Pauli principle for electrical conduction? Let us apply an electric

field ~E0 pointing into the negative x direction. In the time δt a free electron would gain a momentum

δpx = eE0 δt . (24)

However, most of the metal electrons are unable to accept this momentum because they do not find free

states in their vicinity, only those on the right rim of the Fermi sphere have free states accessible to them

and can accept the additional momentum. We see that the Pauli principle has a strong impact on electrical

conduction. Heat conduction is affected in the same way because the most important carriers of thermal

energy are again the electrons. An anomaly is also observed in the heat capacity of the electron gas. It



differs considerably from that of an atomic normal gas since only the electrons in a shell of thickness

kBT near the surface of the Fermi sphere can contribute. Hence the electronic specific heat per unit

volume is roughly a fraction kBT/EF of the classical value

Ce ≈
3

2
nkB · kBT

EF
.

This explains the linear temperature dependence of the electronic specific heat, see eq. (19).

4.12 The origin of Ohmic resistance

Before trying to understand the vanishing resistance of a superconductor we have to explain first why

a normal metal has a resistance. This may appear trivial if one imagines the motion of electrons in a

crystal that is densely filled with ions. Intuitively one would expect that the electrons can travel for very

short distances only before hitting an ion and thereby loosing the momentum gained in the electric field.

Collisions are indeed responsible for a frictional force and one can derive Ohm’s law that way. What is

surprising is the fact that these collisions are so rare. In an ideal crystal lattice there are no collisions

whatsoever. This is impossible to understand in the particle picture, one has to treat the electrons as

matter waves and solve the Schrödinger equation for a periodic potential. The resistance is nevertheless

due to collisions but the collision centres are not the ions in the regular crystal lattice but only the

imperfections of this lattice: impurities, lattice defects and the deviations of the metal ions from their

nominal position due to thermal oscillations. The third effect dominates at room temperature and gives

rise to a resistivity that is roughly proportional to T while impurities and lattice defects are responsible

for the residual resistivity at low temperature (T < 20 K). A typical curve ρ(T ) is plotted in Fig. 19.

In very pure copper crystals the low-temperature resistivity can become extremely small. The mean free

path of the conduction electrons may be a million times larger than the distance between neighbouring

ions which illustrates very well that the ions in their regular lattice positions do not act as scattering

centres.

Fig. 19: Temperature dependence of the resistivity of OFHC (oxygen-free high conductivity) copper and of 99.999% pure

annealed copper. Plotted as a dashed line is the calculated resistivity of copper without any impurities and lattice defects (after

M.N. Wilson [17]).

4.2 Cooper pairs

We consider a metal at T → 0. All states inside the Fermi sphere are filled with electrons while all

states outside are empty. In 1956 Cooper studied [18] what would happen if two electrons were added



to the filled Fermi sphere with equal but opposite momenta ~p1 = −~p2 whose magnitude was slightly

larger than the Fermi momentum pF (see Fig. 20). Assuming that a weak attractive force existed he was

able to show that the electrons form a bound system with an energy less than twice the Fermi energy ,

Epair < 2EF . The mathematics of Cooper pair formation will be outlined in Appendix B.

Fig. 20: A pair of electrons of opposite momenta added to the full Fermi sphere.

What could be the reason for such an attractive force? First of all one has to realize that the

Coulomb repulsion between the two electrons has a very short range as it is shielded by the positive

ions and the other electrons in the metal. So the attractive force must not be strong if the electrons are

several lattice constants apart. Already in 1950, Fröhlich and, independently, Bardeen had suggested

that a dynamical lattice polarization may create a weak attractive potential. Before going into details

let us look at a familiar example of attraction caused by the deformation of a medium: a metal ball is

placed on an elastic membrane and deforms the membrane such that a potential well is created. A second

ball will feel this potential well and will be attracted by it. So effectively, the deformation of the elastic

membrane causes an attractive force between the two balls which would otherwise not notice each other.

This visualisation of a Cooper-pair is well known in the superconductivity community (see e.g. [1]) but

it has the disadvantage that it is a static picture.

I prefer the following dynamic picture: suppose you are cross-country skiing in very deep snow.

You will find this quite cumbersome, there is a lot of ‘resistance’. Now you discover a track made by

another skier, a ‘Loipe’, and you will immediately realize that it is much more comfortable to ski along

this track than in any other direction. The Loipe picture can be adopted for our electrons. The first

electron flies through the lattice and attracts the positive ions. Because of their inertia they cannot follow

immediately, the shortest response time corresponds to the highest possible lattice vibration frequency.

This is called the Debye frequency ωD. The maximum lattice deformation lags behind the electron by a

distance

d ≈ vF
2π

ωD
≈ 100 − 1000 nm . (25)



Fig. 21: Dynamical deformation of the crystal lattice caused by the passage of a fast electron. (After Ibach, L üth [19]).

Obviously, the lattice deformation attracts the second electron because there is an accumulation of

positive charge. The attraction is strongest when the second electron moves right along the track of the

first one and when it is a distance d behind it, see Fig. 21. This explains why a Cooper pair is a very

extended object, the two electrons may be several 100 to 1000 lattice constants apart. For a simple cubic

lattice, the lattice constant is the distance between adjacent atoms.

In the example of the cross-country skiers or the electrons in the crystal lattice, intuition suggests

that the second partner should preferably have the same momentum, ~p2 = ~p1 although opposite momenta

~p2 = −~p1 are not so bad either. Quantum theory makes a unique choice: only electrons of opposite

momenta form a bound system, a Cooper pair. I don’t know of any intuitive argument why this is so.

(The quantum theoretical reason is the Pauli principle but there exists probably no intuitive argument

why electrons obey the Pauli exclusion principle and are thus extreme individualists while other particles

like the photons in a laser or the atoms in superfluid helium do just the opposite and behave as extreme

conformists. One may get used to quantum theory but certain mysteries and strange feelings will remain.)

The binding energy of a Cooper pair turns out to be small, 10−4−10−3 eV, so low temperatures are

needed to preserve the binding in spite of the thermal motion. According to Heisenberg’s Uncertainty

Principle a weak binding is equivalent to a large extension of the composite system, in this case the

above-mentioned d = 100 − 1000 nm. As a consequence, the Cooper pairs in a superconductor overlap

each other. In the space occupied by a Cooper pair there are about a million other Cooper pairs. Figure

22 gives an illustration. The situation is totally different from other composite systems like atomic nuclei

or atoms which are tightly bound objects and well-separated from another. The strong overlap is an

important prerequisite of the BCS theory because the Cooper pairs must change their partners frequently

in order to provide a continuous binding.



Fig. 22: Visualization of Cooper pairs and single electrons in the crystal lattice of a superconductor. (After Essmann and

Tr äuble [12]).

4.3 Elements of the BCS theory

After Cooper had proved that two electrons added to the filled Fermi sphere are able to form a bound

system with an energy Epair < 2EF , it was immediately realized by Bardeen, Cooper and Schrieffer

that also the electrons inside the Fermi sphere should be able to group themselves into pairs and thereby

reduce their energy. The attractive force is provided by lattice vibrations whose quanta are the phonons.

The highest possible phonon energy is

~ωD = kBΘD ≈ 0.01 − 0.02 eV . (26)

Therefore only a small fraction of the electrons can be paired via phonon exchange, namely those in

a shell of thickness ±~ωD around the Fermi energy. This is sketched in Fig. 23. The inner electrons

cannot participate in the pairing because the energy transfer by the lattice is too small. One has to keep

in mind though that these electrons do not contribute to normal conduction either. For vanishing electric

field a Cooper pair is a loosely bound system of two electrons whose momenta are of equal magnitude

but opposite direction. All Cooper pairs have therefore the same momentum ~P = 0 and occupy exactly

the same quantum state. They can be described by a macroscopic wave function Ψ in analogy with the

light wave in a laser in which the photons are all in phase and have the same wavelength, direction and

polarisation. The macroscopic photon wave function is the vector potential from which one can derive

the electric and magnetic field vectors (see sect. 5.2).



Fig. 23: Various Cooper pairs (~p,−~p), (~p ′,−~p ′), (~p ′′,−~p ′′), . . . in momentum space.

The reason why Cooper pairs are allowed and even prefer to enter the same quantum state is that

they behave as Bose particles with spin 0. This is no contradiction to the fact that their constituents are

spin 1/2 Fermi particles. Figure 23 shows very clearly that the individual electrons forming the Cooper

pairs have different momentum vectors ~p, ~p ′, ~p ′′, . . . which however cancel pairwise such that the pairs

have all the same momentum zero. It should be noted, though, that Cooper pairs differ considerably from

other Bosons such as helium nuclei or atoms: They are not ‘small’ but very extended objects, they exist

only in the BCS ground state and there is no excited state. An excitation is equivalent to breaking them

up into single electrons.

The BCS ground state is characterized by the macroscopic wave function Ψ and a ground state

energy that is separated from the energy levels of the unpaired electrons by an energy gap. In order to

break up a pair an energy of 2∆ is needed, see Fig. 24.

Fig. 24: (a) Energy gap between the BCS ground state and the single-electron states. (b) Reduction of energy gap in case of

current flow.

There is a certain similarity with the energy gap between the valence band and the conduction

band in a semiconductor but one important difference is that the energy gap in a superconductor is not

a constant but depends on temperature. For T → Tc one gets ∆(T ) → 0. The BCS theory makes

a quantitative prediction for the function ∆(T ) which is plotted in Fig. 25 and agrees very well with

experimental data.



Fig. 25: Temperature dependence of the energy gap according to the BCS theory and comparison with experimental data.

One of the fundamental formulae of the BCS theory is the relation between the energy gap ∆(0)
at T = 0, the Debye frequency ωD and the electron-lattice interaction potential V0 :

∆(0) = 2~ωD exp

(

− 1

V0 N (EF )

)

. (27)

Here N (EF ) is the density of single-electron states of a given spin orientation atE = EF (the other spin

orientation is not counted because a Cooper pair consists of two electrons with opposite spin). Although

the interaction potential V0 is assumed to be weak, one of the most striking observations is that the

exponential function cannot be expanded in a Taylor series around V0 = 0 because all coefficients vanish

identically. This implies that Eq. (27) is a truely non-perturbative result. The fact that superconductivity

cannot be derived from normal conductivity by introducing a ‘small’ interaction potential and applying

perturbation theory (which is the usual method for treating problems of atomic, nuclear and solid state

physics that have no analytical solution) explains why it took so many decades to find the correct theory.

The critical temperature is given by a similar expression

kBTc = 1.14 ~ωD exp

(

− 1

V0 N (EF )

)

. (28)

Combining the two equations we arrive at a relation between the energy gap and the critical temperature

which does not contain the unknown interaction potential

∆(0) = 1.76 kBTc . (29)

The following table shows that this remarkable prediction is fulfilled rather well.

element Sn In Tl Ta Nb Hg Pb

∆(0)/kBTc 1.75 1.8 1.8 1.75 1.75 2.3 2.15

In the BCS theory the underlying mechanism of superconductivity is the attractive force between

pairs of electrons that is provided by lattice vibrations. It is of course highly desirable to find experimental

support of this basic hypothesis. According to Eq. (28) the critical temperature is proportional to the

Debye frequency which in turn is inversely proportional to the square root of the atomic mass M :

Tc ∝ ωD ∝ 1/
√
M .

If one produces samples from different isotopes of a superconducting element one can check this relation.

Figure 26 shows Tc measurements on tin isotopes. The predicted 1/
√
M law is very well obeyed.



Fig. 26: The critical temperature of various tin isotopes.

4.4 Supercurrent and critical current

The most important task of a theory of superconductivity is of course to explain the vanishing resistance.

We have seen in sect. 4.1 that the electrical resistance in normal metals is caused by scattering processes

so the question is why Cooper pairs do not suffer from scattering while unpaired electrons do. To start

a current in the superconductor, let us apply an electric field ~E0 for a short time δt. Both electrons of a

Cooper pair receive an additional momentum δ~p = −e ~E0 δt so after the action of the field all Cooper

pairs have the same non-vanishing momentum

~P = ~ ~K = −2 ~E0 δt .

Associated with this coherent motion of the Cooper pairs is a supercurrent density

~Js = −nc
e~

me

~K . (30)

Here nc is the Cooper-pair density. It can be shown (see e.g. Ibach, Lüth [19]) that the Cooper-pair

wave function with a current flowing is simply obtained by multiplying the wave function at rest with

the phase factor exp(i ~K · ~R) where ~R = (~r1 + ~r2)/2 is the coordinate of the centre of gravity of the

two electrons. Moreover the electron-lattice interaction potential is not modified by the current flow.

So all equations of the BCS theory remain applicable and there will remain an energy gap provided the

kinetic-energy gain δEpair of the Cooper pair is less than 2∆, see Fig. 24b. It is this remaining energy

gap which prevents scattering. As we have seen there are two types of scattering centres: impurities

and thermal lattice vibrations. Cooper pairs can only scatter when they gain sufficient energy to cross the

energy gap and are then broken up into single electrons. An impurity is a fixed heavy target and scattering

cannot increase the energy of the electrons of the pair, therefore impurity scattering is prohibited for the

Cooper pairs. Scattering on thermal lattice vibrations is negligible as long as the average thermal energy

is smaller than the energy gap (that means as long as the temperature is less than the critical temperature

for the given current density). So we arrive at the conclusion that there is resistance-free current transport

provided there is still an energy gap present (2∆ − δEpair > 0) and the temperature is sufficiently low

(T < Tc(Js)).

The supercurrent density is limited by the condition that the energy gain δEpair must be less than

the energy gap. This leads to the concept of the critical current density Jc. The energy of the Cooper

pair is, after application of the electric field,

Epair =
1

2me

(

(~p+ ~P/2)2 + (−~p+ ~P/2)2
)

=
~p 2

me
+ δEpair



with δEpair ≈ pFP/me. From the condition δEpair ≤ 2∆ we get

Js ≤ Jc ≈ 2e nc ∆/pF . (31)

Coupled to a maximum value of the current density is the existence of a critical magnetic field. The

current flowing in a long wire of type I superconductor is confined to a surface layer of thickness λL, see

Fig. 6c. The maximum permissible current density Jc is related to the critical field:

Hc(T ) = λL Jc(T ) ≈ λL 2enc ∆(T )/pF . (32)

The temperature dependence of the critical field is caused by the temperature dependence of the gap

energy.

The above considerations on resistance-free current flow may appear a bit formal so I would like

to give a more familiar example where an energy gap prevents ‘resistance’ in a generalized sense. We

compare crystals of diamond and silicon. Diamond is transparent to visible light, silicon is not. So silicon

represents a ‘resistance’ to light. Why is this so? Both substances have exactly the same crystal structure,

namely the ‘diamond lattice’ that is composed of two face-centred cubic lattices which are displaced by

one quarter along the spatial diagonal. The difference is that diamond is built up from carbon atoms and

is an electrical insulator while a silicon crystal is a semiconductor. In the band theory of solids there

is an energy gap Eg between the valence band and the conduction band. The gap energy is around 7

eV for diamond and 1 eV for silicon. Visible light has a quantum energy of about 2.5 eV. A photon

impinging on a silicon crystal can lift an electron from the valence band to the conduction band and is

thereby absorbed. The same photon impinging on diamond is unable to supply the required energy of 7

eV, so this photon simply passes the crystal without absorption: diamond has no ‘resistance’ for light.

(Quantum conditions of this kind have already been known in the Stone Age. If hunters wanted to catch

an antelope that could jump 2 m high, they would dig a hole 4 m deep and then the animal could never

get out because being able to jump 2 m in two successive attempts is useless for overcoming the 4 m. The

essential feature of a quantum process, namely that the energy gap has to be bridged in a single event, is

already apparent in this trivial example).

Finally, I want to give an example for frictionless current flow. The hexagonal benzene molecule

C6H6 is formed by covalent binding and contains 24 electrons which are localised in σ bonds in the

plane of the molecule and 6 electrons in π bonds below and above this plane. The π electrons can

move freely around the ring. By a time-varying magnetic field a ring current is induced (benzene is

a diamagnetic molecule) which will run forever unless the magnetic field is changed. This resembles

closely the operation of a superconducting ring in the persistent mode (see Fig. 27).



Fig. 27: Persistent ring currents in a benzene molecule and in a superconducting ring which have been induced by a rising fi eld

Bz .

5. QUANTISATION OF MAGNETIC FLUX

Several important superconductor properties, in particular the magnetic flux quantisation, can only be

explained by studying the magnetic vector potential and its impact on the so-called ‘canonical momen-

tum’ of the charge carriers. Since this may not be a familiar concept I will spend some time to discuss

the basic ideas and the supporting experiments which are beautiful examples of quantum interference

phenomena.

5.1 The vector potential in electrodynamics

In classical electrodynamics it is often a matter of convenience to express the magnetic field as the curl

(rotation) of a vector potential
~B = ~∇× ~A .

The magnetic flux through an area F can be computed from the line integral of ~A along the rim of F by

using Stoke’s theorem:

Φmag =

∫ ∫

~B · ~dF =

∮

~A · ~ds . (33)

We apply this to the solenoidal coil sketched in Fig. 28.



Fig. 28: Magnetic fi eld and vector potential of a solenoid.

The magnetic field has a constant value B = B0 inside the solenoid and vanishes outside if we the

length of the coil is much larger than its radius R. The vector potential has only an azimuthal component

and can be computed using Eq. (33):

Aθ(r) =







1
2
B0 · r for r < R

1
2
B0

R2

r
for r > R .

Evaluating ~B = ~∇× ~A in cylindrical coordinates gives the expected result

Bz(r) =

{

B0 for r < R
0 for r > R .

What do we learn from this example?

(a) The vector potential is parallel to the current but perpendicular to the magnetic field.

(b) There are regions in space where the vector potential is non-zero while the magnetic field vanishes.

Here it is the region r > R. A circular contour of radius r > R includes magnetic flux, namely B0πR
2

for all r > R, so ~A must be non-zero, although ~B = 0.

The vector potential is not uniquely defined. A new potential ~A′ = ~A + ~∇χ with an arbitrary

scalar function χ(x, y, z) leaves the magnetic field ~B invariant because the curl of a gradient vanishes

identically. For this reason it is often said that the vector potential is just a useful mathematical quantity

without physical significance of its own. In quantum theory this point of view is entirely wrong, the

vector potential is of much deeper physical relevance than the magnetic field.

5.2 The vector potential in quantum theory

In quantum theory the vector potential is a quantity of fundamental importance:

(1) ~A is the wave function of the photons,

(2) in an electromagnetic field the wavelength of a charged particle is modified by the vector potential.

For the application in superconductivity we are interested in the second aspect. The de Broglie relation

states that the wavelength we have to attribute to a particle is Planck’s constant divided by the particle



momentum

λ =
2π~

p
. (34)

For a free particle one has to insert p = mv. It turns out that in the presence of an electromagnetic

field this is no longer correct, instead one has to replace the mechanical momentum m~v by the so-called

‘canonical momentum’

~p = m~v + q ~A (35)

where q is the charge of the particle (q = −e for an electron). The wavelength is then

λ =
2π~

mv + qA
.

If one moves by a distance ∆x, the phase ϕ of the electron wave function changes in free space by the

amount

∆ϕ =
2π

λ
∆x =

1

~
me~v · ~∆x .

In an electromagnetic field there is an additional phase change

∆ϕ′ = − e
~

~A · ~∆x .

This is called the Aharonov-Bohm effect after the theoreticians who predicted the phenomenon [20]. The

phase shift should be observable in a double-slit experiment as sketched in Fig. 29. An electron beam is

split into two coherent sub-beams and a tiny solenoid coil is placed between these beams. The sub-beam

1 travels antiparallel to ~A, beam 2 parallel to ~A. So the two sub-beams gain a phase difference

δϕ = δϕ0 +
e

~

∮

~A · ~ds = δϕ0 +
e

~
Φmag . (36)

Fig. 29: Schematic arrangement for observing the phase shift due to a vector potential.

Here δϕ0 is the phase difference for current 0 in the coil. The Aharonov-Bohm effect was verified

in a beautiful experiment by Möllenstedt and Bayh in Tübingen [21]. The experimental setup and the

result of the measurements are shown in Fig. 30. An electron beam is split by a metalized quartz

fibre on negative potential which acts like an optical bi-prism. Two more fibres bring the two beams

to interference on a photographic film. Very sharp interference fringes are observed. Between the sub-

beams is a 14 µm–diameter coil wound from 4 µm thick tungsten wire. The current in this coil is first

zero, then increased linearly with time and after that kept constant. The film recording the interference

pattern is moved in the vertical direction. Thereby the moving fringes are depicted as inclined lines. The

observed shifts are in quantitative agreement with the prediction of Eq. (36).



Fig. 30: Sketch of the M öllenstedt-Bayh experiment and observed interference pattern.

An interesting special case is the phase shift δϕ = π that interchanges bright and dark fringes.

According to Eq. (36) this requires a magnetic flux

Φmag = π
~

e
=

h

2e

which turns out to be identical to the elementary flux quantum in superconductors, see sect. 5.3. In

the Möllenstedt experiment however, continuous phase shifts much smaller than π are visible, so the

magnetic flux through the normal-conducting tungsten coil is not quantised (there is also no theoretical

reason for flux quantisation in normal conductors).

Although the magnetic field is very small outside the solenoid, and the observed phase shifts are in

quantitative agreement with the expectation based on the vector potential, there have nevertheless been

sceptics who tried to attribute the observed effects to some stray magnetic field. To exclude any such

explanation a new version of the experiment has recently been carried out by Tonomura et al. [22] making

use of electron holography (Fig. 31). A parallel electron beam is imaged by an electron microscope lens

on a photographic plate. To create a holographic pattern the object is placed in the upper half of the

beam while the lower half serves as a reference beam. A metalized quartz fibre (the bi-prism) brings the

two-part beam to an overlap on the plate. The magnetic field is provided by a permanently magnetised

ring of with a few µm diameter. The magnet is enclosed in niobium and cooled by liquid helium so the

magnetic field is totally confined. The vector potential, however, is not shielded by the superconductor.

The field lines of ~B and ~A are also drawn in the figure. The holographic image shows again a very

clear interference pattern and a shift of the dark line in the opening of the ring which is caused by the

vector potential. This experiment demonstrates beyond any doubt that it is the vector potential and not

the magnetic field which influences the wavelength of the electron and the interference pattern.



Fig. 31: Observation of Aharonov-Bohm effect using electron holography (after Tonomura [22]). The permanent toroidal

magnet, encapsuled in superconducting niobium, and the observed interference fringes are shown.

5.3 Flux quantisation

The Meissner-Ochsenfeld effect excludes magnetic field from the bulk of a type I superconductor. An

interesting situation arises if one exposes a superconducting ring to a magnetic field. Then one can

obtain a trapped flux, threading the hole of the ring as shown in Fig. 32. Both the London and the BCS

theory make the surprising prediction that the flux through the hole cannot assume arbitrary values but is

quantised, i.e. that it is an integer multiple of an elementary flux quantum

Φmag = nΦ0 , n = 0, 1, 2, . . . (37)

Fig. 32: Trapping of magnetic flux in a ring. First the normal-conducting ring (T > T c) is placed in a magnetic fi eld, then it is

cooled down (a) and fi nally the fi eld is switched off (b). The integration path is shown in part (c).

The flux quantum is Planck’s constant divided by the charge of the supercurrent carriers. The BCS

flux quantum is thus

Φ0 =
h

2e
(38)



while the London flux quantum is twice as big because the charge carriers in the London theory are single

electrons.

5.31 Derivation of flux quantisation

The Cooper-pair wave function in the ring can be written as

Ψ =
√
nc exp(iϕ) .

The density of Cooper pairs is denoted as nc. The phase ϕ = ϕ(s) has to change by n · 2π when going

once around the ring since Ψ must be a single-valued wave function. We choose a circular path in the

bulk of the ring (Fig. 31c). Then
∮

dϕ

ds
ds = n · 2π .

In other words: the circumference must be an integer number of wavelengths. In the bulk there is no

current allowed so the Cooper-pair velocity must be zero, ~v = 0. Therefore the integrand is

dϕ

ds
ds =

q

~

~A · ~ds .

Using Eq. (33) we see that the magnetic flux enclosed by the circular path is

Φmag =

∮

~A · ~ds =
~

q
· n · 2π = n · Φ0 ⇒ Φ0 =

2π~

q
. (39)

In the BCS theory we have q = −2e and hence Φ0 = h/(2e).

5.32 Experimental verification of flux quantisation

In 1961 two experiments on flux quantisation were carried out almost simultaneously, by Doll and

Näbauer [23] in München and by Deaver and Fairbank [24] in Stanford. I describe the Doll-Näbauer

experiment as it yielded the best evidence. The setup and the results are shown in Fig. 33. The supercon-

ducting ring is here a lead tube prepared by evaporation of lead on a 10 µm–thick quartz cylinder which

is then suspended by a torsion fibre. Magnetic flux is captured in the tube by exposing the warm tube to a

‘magnetising field’ Bmag parallel to the axis, cooling down and switching off the field. Then a transverse

oscillating fieldBosc is applied to induce forced oscillations which are observed by light reflection from a

small mirror. The resonant amplitude Ares is proportional to the magnetic moment of the tube and hence

to the captured magnetic flux. Without flux quantisation the relation between resonant amplitude and

magnetising field should be linear. Instead one observes a very pronounced stair-case structure which

can be uniquely related to frozen-in fluxes of 0, 1 or 2 flux quanta. Both experiments proved that the

magnetic flux quantum is h/2e and not h/e and thus gave strong support for the Cooper-pair hypothesis.



Fig. 33: Observation of flux quantisation [23].

The BCS theory is not directly applicable to high-Tc superconductors2 which are basically two-

dimensional superconductors. In Fig. 34 the flux through a YBa2Cu3O7 ring with a weak joint is shown.

Flux jumps due to external field variations occur in multiples of h/2e which is an indication that some

kind of Cooper pairing is also responsible for the superconductivity in these materials.

Fig. 34: Flux through an YBa2Cu3O7 ring with a weak link [26].

In another interesting experiment a lead strip was bent into ring shape and closed via an interme-

diate YBa2Cu3O7 piece. It was possible to induce a persistent ring current in this combined system of a

low-Tc and a high-Tc superconductor.

5.4 Fluxoid pattern in type II superconductors

Abrikosov predicted that a magnetic field penetrates a type II superconductor in the form of flux tubes

or fluxoids, each containing a single elementary quantum Φ0, which arrange themselves in a quadratic

or triangular pattern to minimize the potential energy related to the mutual repulsion of the flux tubes. A

schematic cross section of a fluxoid is presented in Fig. 35. The magnetic field lines are surrounded by

2For a review of high-Tc superconductors see ref. [25] and the lectures by R. Fluekiger.



a super-current vortex. The Cooper-pair density drops to zero at the centre of the vortex, so the core of a

flux tube is normal-conducting.

Fig. 35: Schematic cross section of a fluxoid.

Fig. 36: (a) Fluxoid pattern in niobium (courtesy U. Essmann). The distance between adjacent flux tubes is 0.2 µm. (b) Fluxoid

motion in a current-carrying type II superconductor.

The area occupied by a fluxoid is roughly given by πξ2 where ξ is the coherence length. An estimate of

the upper critical field is derived from the condition that the fluxoids start touching each other:

Bc2 ≈ Φ0

2πξ2
. (40)

An important experimental step was the direct observation of the fluxoid pattern. Essmann and

Träuble [12] developed a ‘decoration’ technique for this purpose. A superconductor sample was cooled

by a liquid helium bath with the surface sticking out of the liquid. Iron was evaporated at some distance

from the superconductor, and in the helium gas atmosphere the iron atoms agglomerated to tiny crystals

(about 20 nm) that were attracted by the magnetic field lines and stuck to the sample surface where the

fluxoids emerged. After warming up, a thin film was sprayed on the surface to allow the iron crystals to be

removed for subsequent observation in an electron microscope. The photograph in Fig. 36a shows indeed

the perfect triangular pattern predicted by Abrikosov. Similar pictures have been recently obtained with

high-temperature superconductors. The electron holography setup mentioned in the last section permits

direct visualization of the magnetic flux lines. Figure 37 is an impressive example of the capabilities of

this advanced method.



Fig. 37: Holographic image of the magnetic flux lines through a thin lead plate [22].

6. Hard Superconductors

6.1 Flux flow resistance and flux pinning

For application in accelerator magnets a superconducting wire must be able to carry a large current in

the presence of a field in the 5 – 10 Tesla range. Type I superconductors are definitely ruled out because

their critical field is less than a few tenths of a Tesla and their current-carrying capacity is very small

since the current is restricted to a thin surface layer (compare Fig. 6). Type II conductors appear quite

appropriate on first sight: they have a large upper critical field and high currents are permitted to flow in

the bulk material. Still there is a problem, called flux flow resistance. If a current flows through an ideal

type II superconductor which is exposed to a magnetic field one observes heat generation. The current

density ~J exerts a Lorentz force on the flux lines. The force per unit volume is

~F = ~J × ~B .

The flux lines begin to move through the specimen in a direction perpendicular to the current and to

the field (Fig. 36b). This is a viscous motion (~v ∝ ~F ) and leads to heat generation. So although the

current itself flows without dissipation the sample acts as if it had an Ohmic resistance. The statement

is even formally correct. The moving fluxoids represent a moving magnetic field. According to Special

Relativity this is equivalent to an electric field

~Eequiv =
1

c2
~B × ~v .

It is easy to see that ~Eequiv and ~J point in the same direction just like in a normal resistor. Flux flow

resistance was studied experimentally by Kim and co-workers [28].

To obtain useful wires for magnet coils the flux motion has to be inhibited. The standard method is

to capture them at pinning centres. The most important pinning centres in niobium-titanium are normal-

conducting Ti precipitates with a size in the 10 nm range. Flux pinning is discussed in detail in M.N.

Wilson’s lectures at this school. A type II superconductor with strong pinning is called a hard super-

conductor. Hard superconductors are very well suited for high-field magnets, they permit dissipationless

current flow in high magnetic fields. There is a penalty, however: these conductors exhibit a strong

magnetic hysteresis which is the origin of the very annoying ‘persistent-current’ multipoles in supercon-

ducting accelerator magnets.



6.2 Magnetisation of a hard superconductor

A type I superconductor shows a reversible response3 to a varying external magnetic field H . The

magnetization is given by the linear relation ~M( ~H) = − ~H for 0 < H < Hc and then drops to zero,

see Fig. 10. An ideal type II conductor without any flux pinning should also react reversibly. A hard

superconductor, on the other hand, is only reversible in the Meissner phase because then no magnetic

field enters the bulk, so no flux pinning can happen. If the field is raised beyond Hc1 magnetic flux enters

the sample and is captured at pinning centres. When the field is reduced again these flux lines remain

bound and the specimen keeps a frozen-in magnetisation even for vanishing external field. One has to

invert the field polarity to achieve M = 0 but the initial state (H = 0 and no captured flux in the bulk

material) can only be recovered by warming up the specimen to destroy superconductivity and release

all pinned flux quanta, and by cooling down again.

A typical hysteresis curve is shown in Fig. 38a. There is a close resemblence with the hysteresis

in iron except for the sign: the magnetisation in a superconductor is opposed to the magnetising field be-

cause the underlying physical process is diamagnetism. In an accelerator the field is usually not inverted

and then the hysteresis has the shape plotted in Fig. 38b.

Fig. 38: (a) Magnetic hysteresis of a hard superconductor. (b) Magnetisation hysteresis for the fi eld cycle of accelerator

magnets.

Detailed studies on superconductor magnetisation were performed in the HERA dipoles. The

sextupole component is a good measure of M . Immediately after cooldown a dipole was excited to

low fields. In Fig. 39 the sextupole field B3 at a distance of 25 mm from the dipole axis is plotted as

a function of the dipole field B1 = µ0H1 on the axis. One can see that the sextupole is a reversible

function of B1 up to about 25 mT (the lower critical field of NbTi is somewhat smaller, around 15 mT,

but in most parts of the coil the local field is less than the value B1 on the axis). The superconducting

cable is therefore in the Meissner phase. Increasing B1 to 50 mT already leads to a slight hysteresis so a

certain amount of magnetic flux enters the NbTi filaments and is captured there.

3This statement applies only for long cylindral or elliptical samples oriented parallel to the fi eld.



Fig. 39: Sextupole fi eld in a HERA dipole in the Meissner phase and slightly above.

With increasing field the hysteresis widens more and more and is eventually nearly symmetric to

the horizontal axis. The sextupole hysteresis observed in the standard field cycle at HERA is plotted in

Fig. 40a. A similar curve is obtained for the 12-pole in the quadrupoles.

Fig. 40: (a) The sextupole component in the HERA dipoles for the standard fi eld cycle 4.7 T → 0.05 T → 4.7 T. (b) Sextupole

fi eld for the fi rst beam test with positrons of 7 GeV.

Only in a ‘virgin’ magnet, that is right after cool-down, is there the chance to influence the width

of the hysteresis curve. This fact was used to advantage during the commissioning of the HERA proton

storage ring. The first beam test was made with positrons of only 7 GeV since the nominal 40 GeV

protons were not yet available. At the corresponding dipole field of 70 mT (coil current 42.5 A) the

persistent-current sextupole component would have been two orders of magnitude larger than tolerable

if the standard field cycle had been used. To eliminate the sextupole, all magnets were warmed to 20

K to extinguish any previous superconductor magnetisation and cooled back to 4.4 K. Then the current

loop 0 → 112 A → 42.5 A was performed which resulted in an almost vanishing sextupole (see Fig.

40b). A similar procedure was used in the first run with 40 GeV protons, this time with the loop 0 →
314 A → 245 A. The measured chromaticity indeed proved an almost perfect sextupole cancellation.



For the routine operation of HERA these procedures are of course not applicable because they require a

warm-up of the whole ring. Instead, sextupole correction coils must be used to compensate the unwanted

field distortions.

6.3 Flux creep

The pinning centres prevent flux flow in hard superconductors but some small flux creep effects remain.

At finite temperatures, even as low as 4 K, a few of the flux quanta may be released from their pinning

locations by thermal energy and then move out of the specimen thereby reducing the magnetisation. The

first flux creep experiment was carried out by Kim et al. [29] using a small NbZr tube. If one plots the

internal field at the centre of the tube as a function of the external field the well-known hysteresis curve

is obtained in which one can distinguish the shielding and the trapping branch, see Fig. 41a. Kim and

co-workers realized that on the trapping branch the internal field exhibited a slow logarithmic decrease

with time while on the shielding branch a similar increase was seen (Fig. 41b).

Fig. 41: (a) Hysteresis of the internal fi eld in a tube of hard superconductor. (b) Time dependence of the internal fi eld on the

trapping and the shielding branch [29].

A logarithmic time dependence is something rather unusual. In an electrical circuit with inductive

and resistive components the current decays exponentially like exp(−t/τ) with a time constant τ =
L/R. A theoretical model for thermally activated flux creep was proposed by Anderson [30]. The

pinning centres are represented by potential wells of average depth U0 and width a in which bundles of

flux quanta with an average flux Φav = nΦ0 are captured. At zero current the probability that flux leaves

a potential well is proportional to the Boltzmann factor

P0 ∝ exp(−U0/kBT ) .

When the superconductor carries a current density J the potential acquires a slope proportional to the

force density F ∝ ΦavJ . This slope reduces the effective potential well depth to U = U0 − ∆Uwith

∆U ≈ ΦavJa l, see Fig. 42. Here l is the length of the flux bundle. The probability for flux escape

increases

P = P0 exp(+∆U/kBT ) .



Fig. 42: Sketch of the pinning potential without and with current flow and fi eld profi le across the NbZr tube.

We consider now the tube in the Kim experiment at a high external field Bext on the trapping

branch of the hysteresis curve. The internal field is then slightly larger, namely by the amount B int −
Bmext = µ0Jcw where Jc is the critical current density at the given temperature and magnetic field

and w the wall thickness. Under the assumption Bint − Bext ≪ Bext both field and current density are

almost constant throughout the wall. The reduction in well depth ∆U is proportional to the product of

these quantities. If a bundle of flux quanta is released from its well, it will ‘slide’ down the slope and

leave the material. In this way space is created for some magnetic flux from the bore of the cylinder

which will migrate into the conductor and refill the well. As a consequence the internal field decreases

and with it the critical current density in the wall. Its time derivative is roughly given by the expression

dJc

dt
≈ −C exp

(

∆U

kBT

)

≈ −C exp

(

ΦavaJcl

kBT

)

(41)

where C is a constant. The solution of this unusual differential equation is

Jc(t) = Jc(0) −
kBT

Φava l
ln t . (42)

This result implies that for given temperature and magnetic field the critical current density is not really

a constant but depends slightly on time. What one usually quotes as Jc is the value obtained after the

decay rate on a linear time scale has become unmeasurably small.

A nearly logarithmic time dependence is also observed in the persistent-current multipole fields of

accelerator magnets, see e.g. [31]. So it seems tempting to attribute the effect to flux creep. Surprisingly,

the decay rates are generally much larger than typical flux creep rates and depend moreover on the

maximum field level in a preceding excitation, see Fig. 43a.



Fig. 43: (a) Decay of the sextupole coeffi cient in a HERA dipole at a fi eld of 0.23 T for different values of the maximum fi eld

in the initialising cycle 0 → Bmax → 0.04T → 0.23 T [32]. (b) Magnetisation decay at zero fi eld in a long sample of HERA

cable for different values of the maximum fi eld in the initialising cycle 0 → Bmax → 0 [33].

In cable samples this is not the case as is evident from Fig. 43b. The average magnetisation of a 5

m-long cable sample decays at low field (B = 0 in this case) by less than 1% per decade of time, and the

decay rate is totally independent of the maximum field Bmax in the preceding cycle. The observed rate

agrees well with other data on flux creep in NbTi.

From the data in Fig. 43 it is obvious that thermally activated flux creep can explain only part of

the time dependence of multipoles in magnets. The decay rates measured in magnets are usually much

larger than those in cable samples, and there is a considerable variation from magnet to magnet. In 1995

experimental results [34] and model calculations [35] were presented showing that the time dependence

is due to a complex interplay between magnetisation currents in the NbTi filaments and eddy currents

among the strands of the cable. Quantitative predictions are not possible because of too many unknown

parameters. For a more detailed discussion see [31].

Flux creep has become an important issue after the discovery of high-temperature superconduc-

tors. Figure 44 shows that the magnetisation of YBaCuO samples decays rapidly, in particular for single

crystals. One speaks of ‘giant flux creep’. This is a strong hint that flux pinning is insufficient at 77 K

and implies that the presently available materials are not yet suited for building magnets cooled by liquid

nitrogen.



Fig. 44: Comparison of superconductor magnetisation decay due to flux creep in NbTi at a temperature of 4.2 K, in oriented-

grained YBa2Cu3Ox at 77 K and in a YBa2Cu3Ox single crystal at 60 K [36].

7. SUPERCONDUCTORS IN MICROWAVE FIELDS

Superconductivity in microwave fields is not treated adequately in standard text books. For this reason

I present in this section a simplified explanation of the important concepts. A similar treatment can be

found in [37]. Superconductors are free from energy dissipation in direct-current (dc) applications, but

this is no longer true for alternating currents (ac) and particularly not in microwave fields. The reason

is that the high-frequency magnetic field penetrates a thin surface layer and induces oscillations of the

electrons which are not bound in Cooper pairs. The power dissipation caused by the motion of the

unpaired electrons can be characterized by a surface resistance. In copper cavities the surface resistance

is given by

Rsurf =
1

δσ
(43)

where δ is the skin depth and σ the conductivity of the metal.

The response of a superconductor to an ac field can be understood in the framework of the two-

fluid model 4. An ac current in a superconductor is carried by Cooper-pairs (the superfluid component)

as well as by unpaired electrons (the normal component). Let us study the response to a periodic electric

field. The normal current obeys Ohm’s law

Jn = σn E0 exp(−iωt) (44)

while the Cooper pairs receive an acceleration mc v̇c = −2eE0 exp(−iωt), so the supercurrent density

becomes

Js = i
nc 2 e2

meω
E0 exp(−iωt) . (45)

If we write for the total current density

J = Jn + Js = σE0 exp(−iωt) (46)

4A similar model is used to explain the unusual properties of liquid helium below 2.17 K in terms of a normal and a

superfluid component.



we get a complex conductivity:

σ = σn + iσs with σs =
2nce

2

me ω
=

1

µ0λ2
L ω

. (47)

The surface resistance is the real part of the complex surface impedance

Rsurf = Re

(

1

λL(σn + iσs)

)

=
1

λL
· σn

σ2
n + σ2

s

. (48)

Since σ2
n ≪ σ2

s at microwave frequencies one can disregard σ2
n in the denominator and obtains Rsurf ∝

σn/(λLσ
2
s). So we arrive at the surprising result that the microwave surface resistance is proportional to

the normal-state conductivity.

The conductivity of a normal metal is given by the classic Drude expression

σn =
nne

2ℓ

mevF
(49)

where nn is the density of the unpaired electrons, ℓ their mean free path and vF the Fermi velocity. The

normal electrons are created by thermal breakup of Cooper pairs. There is an energy gap Eg = 2∆(T )
between the BCS ground state and the free electron states. By analogy with the conductivity of an

intrinsic (undoped) semiconductor we get

σn ∝ ℓ exp(−Eg/(2kBT )) = ℓ exp(−∆(T )/(kBT )) . (50)

Using 1/σs = µ0λ
2
Lω and ∆(T ) ≈ ∆(0) = 1.76kBTc we finally obtain for the BCS surface resistance

RBCS ∝ λ3
L ω

2 ℓ exp(−1.76Tc/T ) . (51)

This formula displays two important aspects of microwave superconductivity: the surface resistance

depends exponentially on temperature, and it is proportional to the square of the radio frequency.

Eq. (51) applies if the mean free path ℓ of the unpaired electrons is much larger than the coherence

length ξ. In niobium this condition is usually not fulfilled and one has to replace λL in the above equation

by [38]

Λ = λL

√

1 + ξ/ℓ . (52)

Fig. 45: The surface resistance of a 9-cell TESLA cavity plotted as a function of Tc/T . The residual resistance of 3 nΩ

corresponds to a quality factor Q0 = 1011.



Combining equations (51) and (52) we arrive at the surprising statement that the surface resistance

does not assume its minimum value when the superconductor is of very high purity (ℓ ≫ ξ) but rather

in the range ℓ ≈ ξ. Experimental results [39] and theoretical models [40] confirm this prediction. The

effect is also observed in copper cavities with a thin niobium sputter coating in which the electron mean

free path is in the order of ξ. At 4.2 K the quality factors in the LEP cavities are indeed a factor of two

higher than in pure niobium cavities [41].

In addition to the BCS term there is a residual resistance caused by impurities, frozen-in magnetic

flux or lattice distortions.

Rsurf = RBCS +Rres . (53)

Rres is temperature independent and amounts to a few nΩ for a clean niobium surface but may readily

increase if the surface is contaminated.

For niobium the BCS surface resistance at 1.3 GHz amounts to about 800 nΩ at 4.2 K and drops

to 15 nΩ at 2 K, see Fig. 45. The exponential temperature dependence is the reason why operation at

2 K is essential for achieving high accelerating gradients in combination with very high quality factors.

Superfluid helium is an excellent coolant owing to its high heat conductivity.

8. JOSEPHSON EFFECTS

In 1962 B.D. Josephson made a theoretical analysis of the tunneling of Cooper pairs through a thin

insulating layer from one superconductor to another and predicted two fascinating phenomena which

were fully confirmed by experiment. A schematic experimental arrangement is shown in Fig. 46.

Fig. 46: Schematic arrangement for studying the properties of a Josephson junction.

DC Josephson effect. If the voltage V0 across the junction is zero there is a dc Cooper-pair current which

can assume any value in the range

−I0 < I < I0

where I0 is a maximum current that depends on the Cooper-pair densities and the area of the junction.

AC Josephson effect. Increasing the voltage of the power supply eventually leads to a non-vanishing

voltage across the junction and then a new phenomenon arises: besides a dc current which however is

now carried by single electrons there is an alternating Cooper-pair current

I(t) = I0 sin(2πfJ t+ ϕ0) (54)

whose frequency, the so-called Josephson frequency, is given by the expression

fJ =
2eV0

2π~
. (55)

For a voltage V0 = 1µV one obtains a frequency of 483.6 MHz. The quantity ϕ0 is an arbitrary phase.

Equation (55) is the basis of extremely precise voltage measurements.



8.1 Schrödinger equation of the Josephson junction

The wave functions in the superconductors 1 and 2 are called ψ1 and ψ2. Due to the possibility of

tunneling through the barrier the two Schrödinger equations are coupled

i~
∂ψ1

∂t
= E1ψ1 +Kψ2 , i~

∂ψ2

∂t
= E2ψ2 +Kψ1 . (56)

The quantity K is the coupling parameter. The macroscopic wave functions can be expressed through

the Cooper-pair densities n1, n2 and the phase factors

ψ1 =
√
n1 exp(iϕ1) , ψ2 =

√
n2 exp(iϕ2) . (57)

We insert this into (56) and obtain
(

ṅ1

2
√
n1

+ i
√
n1ϕ̇1

)

exp(iϕ1) = − i

~
[E1

√
n1 exp(iϕ1) +K

√
n2 exp(iϕ2)]

and
(

ṅ2

2
√
n2

+ i
√
n2ϕ̇2

)

exp(iϕ2) = − i

~
[E2

√
n2 exp(iϕ2) +K

√
n1 exp(iϕ1)] .

Now we multiply these equation with exp(−iϕ1) resp. exp(−iϕ2) and separate the real and imaginary

parts:

ṅ1 =
2K

~

√
n1n2 sin(ϕ2 − ϕ1) ,

ṅ2 =
2K

~

√
n1n2 sin(ϕ1 − ϕ2) = −ṅ1 ,

ϕ̇1 = −1

~

[

E1 +K

√

n2

n1

cos(ϕ2 − ϕ1)

]

, (58)

ϕ̇2 = −1

~

[

E2 +K

√

n1

n2

cos(ϕ1 − ϕ2)

]

.

For simplicity we consider the case where the two superconductors are identical, so n2 = n1. The

Cooper-pair energies E1 and E2 differ by the energy gained upon crossing the voltage V0 :

E2 = E1 − 2eV0 .

The equations simplify

ṅ1 =
2K

~
n1 sin(ϕ2 − ϕ1) = −ṅ2 ,

d

dt
(ϕ2 − ϕ1) = −1

~
(E2 − E1) =

2eV0

~
. (59)

Integrating the second equation (59) yields the Josephson frequency

ϕ2(t) − ϕ1(t) =
2eV0

~
· t+ ϕ0 = 2πfJ · t+ ϕ0 . (60)

The Cooper-pair current through the junction is proportional to ṅ1. Using (59) and (60) it can be written

as

I(t) = I0 sin

(

2eV0

~
t+ ϕ0

)

. (61)

There are two cases:

(1) For zero voltage across the junction we get a dc current

I = I0 sinϕ0

which can assume any value between −I0 and +I0 since the phase ϕ0 is not specified.

(2) For V0 6= 0 there is an ac Cooper–pair current with exactly the Josephson frequency.



8.2 Superconducting quantum interference

A loop with two Josephson junctions in parallel (Fig. 47) exhibits interference phenomena that are

similar to the optical diffraction pattern of a double slit. Assuming zero voltage across the junctions the

total current is

I = Ia + Ib = I0(sinϕa + sinϕb) .

When a magnetic flux Φmag threads the area of the loop, the phases differ according to Sec. 5 by

ϕb − ϕa =
2e

~

∮

~A · ~ds =
2e

~
Φmag .

With ϕ0 = (ϕa + ϕb)/2 we get

ϕa = ϕ0 +
e

~
Φmag, ϕb = ϕ0 −

e

~
Φmag

and the current is

I = I0 sinφ0 cos
( e

~
Φmag

)

. (62)

Fig. 47: A loop with two Josephson junctions and the observed interference pattern [42]. The amplitude modulation is caused

by the fi nite width of the junctions.

As a function of the magnetic flux one obtains a typical double-slit interference pattern as shown

in Fig. 47. Adjacent peaks are separated by one flux quantum ∆Φmag = Φ0, so by counting flux quanta

one can measure very small magnetic fields. This is the basic principle of the Superconducting Quantum

Interference Device (SQUID). Technically one often uses superconducting rings with a single weak link

which acts as a Josephson junction. Flux transformers are applied to increase the effective area and

improve the sensitivity.

A FREE ENERGY IN THERMODYNAMICS

To illustrate the purpose of the free energy I consider first an ideal gas. The internal energy is the sum of

the kinetic energies of all atoms

U =

N
∑

i=1

m

2
v2
i =

3

2
N kBT (63)

and depends only on temperature but not on volume. The first law of thermodynamics describes energy

conservation:

dU = δQ+ δW . (64)



The internal energy increases either by adding heat δQ or mechanical work δW = −p dV to the gas. For

a reversible process one has δQ = T dS where S is the entropy. Now consider an isothermal expansion

of the gas. Thereby the gas transforms heat into mechanical work:

dU = 0 for T = const ⇒ δQ = −δW = p dV . (65)

The gas produces mechanical work but its internal energy does not change, hence U is not an ade-

quate variable to describe the process. What is the correct energy variable? We will see that this is the

Helmholtz free energy, given by

F = U − T S ⇒ dF = dU − SdT − TdS = δW − SdT . (66)

For an isothermal expansion (dT = 0) we get dF = δW , i.e. −dF = pdV : the work produced by the

gas is identical to the reduction of its free energy.

Now we consider a magnetic material of permeability µ inside a coil which generates a field H .

The magnetization is ~M = (µ− 1) ~H . Its potential energy (per unit volume) in the magnetic field is

Epot = −µ0
~M · ~H . (67)

If the magnetization changes by ~dM the work is δW = µ0
~dM · ~H . Defining again the Helmholtz free

energy by eq. (66) we get by analogy with the ideal gas dF = δW , hence F can in fact be used to

describe the thermodynamics of magnetic materials in magnetic fields. One drawback is, however, that

the magnetization of a substance cannot be directly varied by the experimenter. What can be varied at

will is the magnetic fieldH , namely by choosing the coil current. For this reason another energy function

is more appropriate, the Gibbs free energy

G = F − µ0
~M · ~H = U − T S − µ0

~M · ~H . (68)

For an isothermal process we get dG = −µ0
~M · ~dH . Let us apply this to a superconductor in the

Meissner phase. Then µ = 0 and ~M = − ~H from which follows

dGsup = µ0M(H)dH =
µ0

2
d(H2) ⇒ Gsup(H) = Gsup(0) +

µ0

2
H2 . (69)

This equation is used in Sect. 3.

B THE FORMATION OF A COOPER PAIR

To illustrate the spirit of the BCS theory I will present the mathematics of Cooper-pair formation. Let us

consider a metal at T = 0. The electrons fill all the energy levels below the Fermi energy while all levels

above EF are empty. The wave vector and the momentum of an electron are related by

~p = ~~k .

In the three-dimensional k space the Fermi sphere has a radius kF =
√

2meEF /~. To the fully occupied

Fermi sphere we add two electrons of opposite wave vectors ~k1 = −~k2 whose energy E1 = E2 =
~

2k2
1/(2me) is within the spherical shell (see Figs. 20, 23)

EF < E1 < EF + ~ωD . (70)

From Sect. 4 we know that ~ωD is the largest energy quantum of the lattice vibrations. The interaction

with the ‘sea’ of electrons inside the Fermi sphere is neglected except for the Pauli Principle: the two

additional electrons are forbidden to go inside because all levels below EF are occupied. Under this

assumption the two electrons together have the energy 2E1 > 2EF . Now the attractive force provided



by the lattice deformation is taken into consideration. Following Cooper [18] we must demonstrate that

the two electrons then form a bound system, a ‘Cooper pair’, whose energy drops below twice the Fermi

energy

Epair = 2EF − δE < 2EF .

The Schrödinger equation for the two electrons reads

− ~
2

2me
(∇2

1 + ∇2
1)ψ(~r1, ~r2) + V (~r1, ~r2)ψ(~r1, ~r2) = Epairψ(~r1, ~r2) (71)

where V is the interaction potential due to the dynamical lattice polarisation. In the simple case of

vanishing interaction, V = 0, the solution of (71) is the product of two plane waves

ψ(~r1, ~r2) =
1√
L3

exp(i~k1 · ~r1) ·
1√
L3

exp(i~k2 · ~r2) =
1

L3
exp(i~k · ~r)

with ~k1 = −~k2 = ~k the k-vector, ~r = ~r1 − ~r2 the relative coordinate and L3 the normalisation volume.

The most general solution of Eq. (71) with V = 0 is a superposition of such functions

ψ(~r) =
1

L3

∑

~k

g(~k) exp(i~k · ~r) (72)

with the restriction that the coefficients g(~k) vanish unless EF ≤ ~
2k2/2me ≤ EF +~ωD. This function

is certainly not an exact solution of the equation (71) with V 6= 0 but for a weak potential it can be used

to obtain the energy Epair in first order perturbation theory. For this purpose we insert (72) into Eq. (71):

1

L3

∑

~k′

g(~k′)

[

~
2k′2

me
+ V (~r) − Epair

]

exp(i~k′ · ~r) = 0 .

This equation is multiplied by exp(−i~k · ~r) and integrated, using the orthogonality relations

1

L3

∫

exp
(

i(~k′ − ~k) · ~r
)

d3r = δ~k~k′
with δ~k~k′

=

{

1 for ~k = ~k′

0 otherwise .

Introducing further the transition matrix elements of the potential V

V~k~k′
=

∫

exp
(

−i(~k − ~k′) · ~r
)

V (~r)d3r (73)

one gets a relation among the coefficients of the expansion (72)

g(~k)

[

~
2k2

me
− Epair

]

= − 1

L3

∑

~k′

g(~k′)V~k~k′
. (74)

The matrix element V~k~k′
describes the transition from the state (~k,−~k) to any other state (~k′,−~k′) in

the spherical shell of thickness ~ωD around the Fermi sphere. Cooper and later Bardeen, Cooper and

Schrieffer made the simplest conceivable assumption on these matrix elements, namely that they are all

equal.

V~k~k′
= −V0 for EF <

~
2k2

2me
,
~

2k′2

2me
< EF + ~ωD (75)



and V~k~k′
= 0 elsewhere. The negative value ensures attraction. With this extreme simplification the

right-hand side of Eq. (74) is no longer ~k dependent but becomes a constant

− 1

L3

∑

~k′

g(~k′)V~k~k′
=
V0

L3

∑

~k′

g(~k′) = A . (76)

Then Eq. (74) yields for the coefficients

g(~k) =
A

~2k2/me − Epair
=

A

~2k2/me − 2EF + δE
.

The constant A is still unknown. We can eliminate it by summing this expression over all ~k and using

(76) once more
∑

~k

g(~k) = A
L3

V0

from which follows

A
L3

V0

=
∑

~k

A

~2k2/me − 2EF + δE
.

Dividing by A leads to the important consistency relation

1 =
V0

L3

∑

~k

1

~2k2/me − 2EF + δE
. (77)

The sum extends over all ~k vectors in the shell between EF and EF + ~ωD. Since the states are very

densely spaced one can replace the summation by an integration

1

L3

∑

~k

→ 1

(2π)3

∫

d3k →
∫

N (E)dE

where N (E) is the density of single-electron states for a definite spin orientation. (The states with

opposite spin orientation must not be counted because a Cooper pair consists of two electrons of opposite

spin). The integration spans the narrow energy range [EF , EF + ~ωD] so N (E) can be replaced by

N (EF ) and taken out of the integral. Introducing a scaled energy variable

ξ = E − EF =
~

2k2

2me
− EF

formula (77) becomes

1 = V0 N (EF )

∫

~ωD

0

dξ

2ξ + δE
. (78)

The integral yields
1

2
ln

(

δE + 2~ωD

δE

)

.

The energy shift is then

δE =
2~ωD

exp(2/(V0 N (EF )) − 1
.

For small interaction potentials (V0N (EF ) ≪ 1) this leads to the famous Cooper formula

δE = 2~ωD exp

(

− 2

V0 N (EF )

)

. (79)

Except for a factor of 2 the same exponential appears in the BCS equations for the energy gap and the

critical temperature.
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