001     646139
005     20260218094805.0
024 7 _ |a 10.1103/glnt-t93q
|2 doi
024 7 _ |a Roy:2025mqw
|2 INSPIRETeX
024 7 _ |a inspire:2925696
|2 inspire
024 7 _ |a 2470-0010
|2 ISSN
024 7 _ |a 2470-0037
|2 ISSN
024 7 _ |a 2470-0029
|2 ISSN
024 7 _ |a arXiv:2505.20450
|2 arXiv
037 _ _ |a PUBDB-2026-00739
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2505.20450
|2 arXiv
088 _ _ |a DESY-25-050
|2 DESY
100 1 _ |a Roy, Sandip
|0 0000-0002-7638-7454
|b 0
245 _ _ |a Searching for axion dark matter near relaxing magnetars
260 _ _ |a Ridge, NY
|c 2026
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1771337783_907079
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a cc-by, 38 pages, 13 figures
520 _ _ |a Axion dark matter passing through the magnetospheres of magnetars can undergo hyperefficient resonant mixing with low-energy photons, leading to the production of narrow spectral lines that could be detectable on Earth. Since this is a resonant process triggered by the spatial variation in the photon dispersion relation, the luminosity and spectral properties of the emission are highly sensitive to the charge and current densities permeating the magnetosphere. To date, a majority of the studies investigating this phenomenon have assumed a perfectly dipolar magnetic field structure with a near-field plasma distribution fixed to the minimal charge-separated force-free configuration. While this may be a reasonable treatment for the closed field lines of conventional radio pulsars, the strong magnetic fields around magnetars are believed to host processes that drive strong deviations from this minimal configuration. In this work, we study how realistic magnetar magnetospheres impact the electromagnetic emission produced from axion dark matter. Specifically, we construct charge and current distributions that are consistent with magnetar observations and use these to recompute the prospective sensitivity of radio and submillimeter telescopes to axion dark matter. We demonstrate that the two leading models yield vastly different predictions for the frequency and amplitude of the spectral line, indicating systematic uncertainties in the plasma structure are significant. Finally, we discuss various observational signatures that can be used to differentiate the local plasma loading mechanism of an individual magnetar, which will be necessary if there is hope of using such objects to search for axions.
536 _ _ |a DFG project G:(GEPRIS)390833306 - EXC 2121: Das Quantisierte Universum II (390833306)
|0 G:(GEPRIS)390833306
|c 390833306
|x 0
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Prabhu, Anirudh
|0 0000-0001-9115-7844
|b 1
700 1 _ |a Thompson, Christopher
|b 2
700 1 _ |a Witte, Samuel
|0 P:(DE-H253)PIP1113320
|b 3
700 1 _ |a Blanco, Carlos
|0 0000-0001-8971-834X
|b 4
700 1 _ |a Zhang, Jonathan
|0 0009-0007-5682-4956
|b 5
773 _ _ |a 10.1103/glnt-t93q
|g Vol. 113, no. 4, p. 043001
|0 PERI:(DE-600)2844732-3
|n 4
|p 043001
|t Physical review / D
|v 113
|y 2026
|x 2470-0010
856 4 _ |u https://bib-pubdb1.desy.de/record/646139/files/2505.20450v1.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/646139/files/2505.20450v1.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1113320
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2026
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2025-11-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV D : 2022
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-11-10
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-11-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV D : 2022
|d 2025-11-10
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-H253)T-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21