000646139 001__ 646139 000646139 005__ 20260218094805.0 000646139 0247_ $$2doi$$a10.1103/glnt-t93q 000646139 0247_ $$2INSPIRETeX$$aRoy:2025mqw 000646139 0247_ $$2inspire$$ainspire:2925696 000646139 0247_ $$2ISSN$$a2470-0010 000646139 0247_ $$2ISSN$$a2470-0037 000646139 0247_ $$2ISSN$$a2470-0029 000646139 0247_ $$2arXiv$$aarXiv:2505.20450 000646139 037__ $$aPUBDB-2026-00739 000646139 041__ $$aEnglish 000646139 082__ $$a530 000646139 088__ $$2arXiv$$aarXiv:2505.20450 000646139 088__ $$2DESY$$aDESY-25-050 000646139 1001_ $$00000-0002-7638-7454$$aRoy, Sandip$$b0 000646139 245__ $$aSearching for axion dark matter near relaxing magnetars 000646139 260__ $$aRidge, NY$$bAmerican Physical Society$$c2026 000646139 3367_ $$2DRIVER$$aarticle 000646139 3367_ $$2DataCite$$aOutput Types/Journal article 000646139 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1771337783_907079 000646139 3367_ $$2BibTeX$$aARTICLE 000646139 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000646139 3367_ $$00$$2EndNote$$aJournal Article 000646139 500__ $$acc-by, 38 pages, 13 figures 000646139 520__ $$aAxion dark matter passing through the magnetospheres of magnetars can undergo hyperefficient resonant mixing with low-energy photons, leading to the production of narrow spectral lines that could be detectable on Earth. Since this is a resonant process triggered by the spatial variation in the photon dispersion relation, the luminosity and spectral properties of the emission are highly sensitive to the charge and current densities permeating the magnetosphere. To date, a majority of the studies investigating this phenomenon have assumed a perfectly dipolar magnetic field structure with a near-field plasma distribution fixed to the minimal charge-separated force-free configuration. While this may be a reasonable treatment for the closed field lines of conventional radio pulsars, the strong magnetic fields around magnetars are believed to host processes that drive strong deviations from this minimal configuration. In this work, we study how realistic magnetar magnetospheres impact the electromagnetic emission produced from axion dark matter. Specifically, we construct charge and current distributions that are consistent with magnetar observations and use these to recompute the prospective sensitivity of radio and submillimeter telescopes to axion dark matter. We demonstrate that the two leading models yield vastly different predictions for the frequency and amplitude of the spectral line, indicating systematic uncertainties in the plasma structure are significant. Finally, we discuss various observational signatures that can be used to differentiate the local plasma loading mechanism of an individual magnetar, which will be necessary if there is hope of using such objects to search for axions. 000646139 536__ $$0G:(GEPRIS)390833306$$aDFG project G:(GEPRIS)390833306 - EXC 2121: Das Quantisierte Universum II (390833306)$$c390833306$$x0 000646139 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x1 000646139 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de 000646139 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000646139 7001_ $$00000-0001-9115-7844$$aPrabhu, Anirudh$$b1 000646139 7001_ $$aThompson, Christopher$$b2 000646139 7001_ $$0P:(DE-H253)PIP1113320$$aWitte, Samuel$$b3 000646139 7001_ $$00000-0001-8971-834X$$aBlanco, Carlos$$b4 000646139 7001_ $$00009-0007-5682-4956$$aZhang, Jonathan$$b5 000646139 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/glnt-t93q$$gVol. 113, no. 4, p. 043001$$n4$$p043001$$tPhysical review / D$$v113$$x2470-0010$$y2026 000646139 8564_ $$uhttps://bib-pubdb1.desy.de/record/646139/files/2505.20450v1.pdf$$yRestricted 000646139 8564_ $$uhttps://bib-pubdb1.desy.de/record/646139/files/2505.20450v1.pdf?subformat=pdfa$$xpdfa$$yRestricted 000646139 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1113320$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY 000646139 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0 000646139 9141_ $$y2026 000646139 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2022$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV D : 2022$$d2025-11-10 000646139 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3 000646139 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0 000646139 980__ $$ajournal 000646139 980__ $$aEDITORS 000646139 980__ $$aVDBINPRINT 000646139 980__ $$aI:(DE-H253)T-20120731 000646139 980__ $$aUNRESTRICTED