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4.1 Die tiefere Ursache spontaner Quantenübergänge . . . . . . . . . . . . . . . . . . 25
4.2 Das Problem der Nullpunktsenergien . . . . . . . . . . . . . . . . . . . . . . . . . 26

2



Kapitel 1

Algebraische Behandlung des harmonischen Oszillators

In diesem Artikel möchte ich einige Grundzüge der Quantisierung des elektromagnetischen Strah-
lungsfeldes besprechen. Das Ziel ist es, für die Begriffe spontane Emission, stimulierte Emission
und Absorption von Strahlung eine solide theoretische Grundlage zu schaffen. In der zuerst von
Paul Dirac entwickelten Quantentheorie des elektromagnetischen Feldes spielt die Quantenme-
chanik des harmonischen Oszillators eine herausragende Rolle. Aus diesem Grund wird der Os-
zillator in Kapitel 1 in aller Ausführlichkeit behandelt, jedoch nicht durch analytische Lösung der
Schrödingergleichung, da diese Gleichung zwar schwingende Atome in Molekülen oder Kristallen
sehr gut beschreiben kann, aber ungeeeignet ist, die Schwingungsmoden eines Strahlungsfeldes
zu behandeln. Stattdessen werden wir algebraische Methoden betrachten, die sich auf Strah-
lungsfelder übertragen lassen. Kapitel 2 ist der Quantentheorie des elektromagnetischen Feldes
gewidmet. In Kapitel 3 wird die Absorption und Emission von Strahlung durch Atome mit
den Methoden der quantenmechanischen Störungsrechnung analysiert und mit den Ausagen der
Quantenfeldtheorie verglichen. Die Wahrscheinlichkeit für spontane Emission wird auf der Ba-
sis der Quantenfeldtheorie berechnet. Die Strahlungsleistung einer schwingenden Ladung wird
quantentheoretisch berechnet, sie stimmt mit der klassischen Larmorformel überein. Daran
anschließend werden die quantentheoretischen Aspekte der Undulatorstrahlung behandelt. In
Kap. 4 wird auf die Rolle der Vakuumfluktuationen und das Problem der Nullpunktsenergien
des quantisierten Strahlungsfeldes eingegangen.

1.1 Aufsteige- und Absteigeoperatoren

Als Beispiel eines harmonischen Oszillators wählen wir eine Masse m, auf die eine rücktreibende
Federkraft Fx = −κx wirkt. Dies trifft auf Atome in Molekülen oder Kristallen zu. Die klassische
Hamiltonfunktion ist die Summe von kinetischer und potentieller Energie.

H =
p2

2m
+
κ

2
x2 =

p2

2m
+

1

2
mω2x2 , ω2 =

κ

m
. (1.1)

Um die im folgenden beschriebene algebraische Methode auch auf andere Fälle anwenden zu
können, beispielsweise auf elektromagnetische Strahlungsfelder, erweist es sich als nützlich, die
Masse zu eliminieren. Das wird gemacht, indem wir verallgemeinerte Koordinaten und Impulse
einführen:

Q =
√
mx , P =

p√
m
. (1.2)

Damit lautet die Hamiltonfunktion

H =
1

2
(P 2 + ω2Q2) . (1.3)
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Die Hamiltonschen Gleichungen sind erfüllt:

Q̇ =
∂H

∂P
= P ⇔ mẋ = p ,

Ṗ = −∂H
∂Q

= −ω2Q ⇔ ṗ = Fx = −κx .

Der Übergang zur Quantentheorie wird gemacht, indem man die verallgemeinerten Koordinaten
und Impulse durch Operatoren ersetzt, die den quantenmechanischen Vertauschungsregeln von
Orts- und Impulsoperator genügen:

Q̂ P̂ − P̂ Q̂ = (
√
mx̂)

p̂√
m
− p̂√

m
(
√
mx̂) = x̂ p̂− p̂ x̂ = i ~ . (1.4)

Zur Erinnerung : In der Quantenmechanik bedeutet die Anwendung des Ortsoperators die Multiplika-
tion der Wellenfunktion mit der Ortskoordinate, die Anwendung des Impulsoperators die Ableitung der
Wellenfunktion:

x̂ ψ = xψ , p̂ ψ = −i ~ ∂ψ
∂x

.

Diese Operatoren sind nicht vertauschbar, der Kommutator ist

[x̂ p̂− p̂ x̂]ψ = i ~ψ .

Aus Gl. (1.3) folgt für den Hamiltonoperator

Ĥ =
1

2
(P̂ 2 + ω2 Q̂2) . (1.5)

Impuls- und Ortsoperator treten hier quadratisch auf. Unser Ziel ist es, Ĥ als Produkt von zwei Opera-
toren darzustellen, die linear in p̂ und x̂ sind. Bei komplexen Zahlen ist eine solche Umformung einfach:
u2 + v2 = (iu+ v)(−iu+ v). Mit Operatoren wird es komplizierter, da Q̂ und P̂ nicht kommutieren. Wir
definieren die folgenden Operatoren

Ĉ+ =
1√
2~ω

(−i P̂ + ω Q̂) , Ĉ− =
1√
2~ω

( i P̂ + ω Q̂) . (1.6)

Diese Operatoren sind reell, da i P̂ = (~/
√
m)∂x reell ist. Weiterhin gilt: Ĉ+ ist der adjungierte Operator1

zu Ĉ− und umgekehrt. Dies folgt aus der Definitionsgleichung (1.6) und der Tatsache, dass Q̂ und P̂

selbstadjungierte Operatoren sind: Q̂† = Q̂ und P̂ † = P̂ . Wir berechnen (Ĉ+)† explizit:

(Ĉ+)† =
1√
2~ω

(−i P̂ + ω Q̂)† =
1√
2~ω

(+i P̂ † + ω Q̂†) = Ĉ− .

Ganz entsprechend beweist man die Beziehung

(Ĉ−)† = Ĉ+ .

1Zu einem Operator Â definiert man den adjungierten Operator Â† durch die Gleichung∫ +∞

−∞
φ∗(x)(Âψ(x)) dx =

∫ +∞

−∞
(Â†φ(x))∗ψ(x) dx .

Ein Operator heißt selbstadjungiert oder hermitesch, wenn Â† = Â gilt. Die Eigenwerte selbstadjungierter Ope-
ratoren sind reell. Für weitere Details siehe [1], Anhang C.
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Jetzt bilden wir das Produkt der Operatoren (1.6).

Ĉ+Ĉ− =
1

2~ω
(−i P̂ + ω Q̂)(+i P̂ + ω Q̂)

=
1

2~ω

(
P̂ 2 + ω2 Q̂2

)
+

i

2~
(Q̂ P̂ − P̂ Q̂)︸ ︷︷ ︸

i~

.

Daraus folgen die wichtigen Darstellungen des Hamilton-Operators durch Produkte der linearen C-
Operatoren:

Ĥ = ~ω
(
Ĉ+Ĉ− +

1

2

)
= ~ω

(
Ĉ−Ĉ+ − 1

2

)
=

~ω
2

(
Ĉ+Ĉ− + Ĉ−Ĉ+

)
. (1.7)

Der Kommutator von Ĉ+ und Ĉ− ergibt sich zu

[ Ĉ−, Ĉ+] = Ĉ−Ĉ+ − Ĉ+Ĉ = 1 . (1.8)

Wir werden sehen, dass Ĉ+ dem Aufsteigeoperator Ĵ+ im Drehimpulsformalismus entspricht und Ĉ−

dem Absteigeoperator Ĵ−.
Sei ψ eine Eigenfunktion des Hamiltonoperators mit dem Eigenwert E. Jetzt kommt der entscheidende
Schritt.

Behauptung :
(1) φ = Ĉ+ψ ist eine Eigenfunktion von Ĥ mit dem Eigenwert E + ~ω,

(2) χ = Ĉ−ψ ist eine Eigenfunktion von Ĥ mit dem Eigenwert E − ~ω (sofern Ĉ−ψ 6= 0 ist).

Beweis :
Wir wenden den Hamiltonoperator (1.7) auf φ = Ĉ+ψ an.

Ĥ φ = ~ω Ĉ+ Ĉ−Ĉ+︸ ︷︷ ︸
Ĉ+Ĉ−+1

ψ +
~ω
2
Ĉ+ψ = Ĉ+ ~ω

(
Ĉ+Ĉ− +

1

2

)
ψ︸ ︷︷ ︸

Eψ

+~ω Ĉ+ψ

= (E + ~ω) Ĉ+ψ . (1.9)

Es gilt also wie behauptet
Ĥ φ = (E + ~ω)φ .

Ganz entsprechend beweist man
Ĥ χ = (E − ~ω)χ .

Der Absteigeoperator Ĉ− vermindert die Energie des Oszillators in diskreten Schritten von ~ω. Die
Energie darf aber nicht negativ werden, denn der Minimalwert der potentiellen Energie V (x) = (κ/2)x2 ist
V (0) = 0, und die kinetische Energie ist immer ≥ 0. Es muss daher eine minimale Energie E0 existieren,

und die Anwendung von Ĉ− auf die zugehörige Eigenfunktion ψ0 darf keine weitere Eigenfunktion von
Ĥ mit noch niedrigerer Energie ergeben. Das ist gewährleistet, wenn

Ĉ−ψ0 = 0

wird, denn damit hört die Absteigeleiter auf. Was bedeutet diese Bedingung? Wir multiplizieren die
Gleichnung Ĉ−ψ0 = 0 von links mit ~ω Ĉ+ und erhalten

0 = ~ω Ĉ+Ĉ−ψ0 =

(
Ĥ − ~ω

2

)
ψ0 .

Daraus folgt

Ĥψ0 =
~ω
2
ψ0 = E0ψ0 . (1.10)

Damit ist bewiesen, dass die minimale Energie des harmonischen Oszillators den Wert E0 = ~ω/2 hat
und dass die Energiewerte allgemein durch die Formel

En =

(
n+

1

2

)
~ω , n = 0, 1, 2, 3 . . . (1.11)

gegeben sind.
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1.2 Die Wellenfunktionen des Oszillators

Die Wellenfunktion des Grundzustands lässt sich leicht berechnen. Aus

Ĉ−ψ0 =
1√
2~ω

(
~√
m

d

dx
+
√
mω x

)
ψ0 = 0

folgt die Differentialgleichung
dψ0

dx
= −mω

~
xψ0

mit der Lösung

ψ0(x) = A0 exp
(
−mω

2~
x2
)
.

Wendet man wiederholt den Aufsteigeoperator an, so ergeben sich aus ψ0 die Eigenfunktionen ψ1(x), ψ2(x), ψ3(x), ...,
allerdings nicht mit der korrekten Normierung.

ψ1(x) ∝ Ĉ+ψ0(x) , ψ2(x) ∝ Ĉ+ψ1(x) ψ3(x) ∝ Ĉ+ψ2(x) , . . .

Die korrekt normierten Eigenfunktionen lauten

ψn(x) =
(mω

π~

)1/4 1√
2nn!

Hn(u) exp(−u2/2) mit u =

√
mω

~
x . (1.12)

Die Hn(u) sind die Hermite’schen Polynome

H0(u) = 1 , H1(u) = 2u , (1.13)

H2(u) = 4u2 − 2 , H3(u) = 8u3 − 12u , . . .

Alle diese Funktionen haben die Norm 1

〈ψn|ψn〉 =

∫ ∞
−∞

ψ∗n(x)ψn(x) dx = 1 . (1.14)

Anwendung der Leiteroperatoren
Wir wollen nun die Wirkung der Leiteroperatoren auf die Wellenfunktionen (1.12) quantitativ analysieren.

Wir wissen bereits, dass Ĉ+ψn proportional zu ψn+1 ist und Ĉ−ψn proportional zu ψn−1, aber die
Proportionalitätskonstanten sind noch unbekannt.

Behauptung :

Ĉ+ψn =
√
n+ 1ψn+1 , Ĉ−ψn =

√
nψn−1 . (1.15)

Beweis :
Um die erste Relation zu beweisen, machen wir den Ansatz

φ ≡ Ĉ+ψn = cn ψn+1

mit einer unbekannten reellen Zahl2 cn. Zur Bestimmung von cn berechnen die Norm von φ auf zwei
Wegen.

(1) 〈φ|φ〉 = |cn|2〈ψn+1|ψn+1〉 = c2n .

(2) 〈φ|φ〉 = 〈Ĉ+ψn|Ĉ+ψn〉 =

∫ ∞
−∞

(Ĉ+ψn(x))∗ Ĉ+ψn(x) dx .

2Der Koeffizient cn ist reell, weil Ĉ+ ein reeller Operator ist.
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Jetzt wird ausgenutzt, dass Ĉ+ der adjungierte Operator zu Ĉ− ist, um den Ausdruck (2) umzuformen.∫ ∞
−∞

(Ĉ+ψn(x))∗ Ĉ+ψn(x) dx =

∫ ∞
−∞

((Ĉ+)†Ĉ+ψn(x))∗ ψn(x) dx

=

∫ ∞
−∞

(Ĉ−Ĉ+ψn(x))∗ ψn(x) dx .

Aus Gl. (1.7) folgt

Ĉ−Ĉ+ =
1

~ω
Ĥ +

1

2
⇒ Ĉ−Ĉ+ψn = (n+ 1)ψn .

Die Kombination der Auswertungen (1) und (2) ergibt cn =
√
n+ 1, was zu beweisen war. Der Beweis

der Relation
Ĉ−ψn =

√
nψn−1

verläuft ganz analog. Aus der ersten Gleichung (1.15) folgt, dass man die normierten Wellenfunktionen
ψn mit Hilfe der Formel

ψn =
1√
n!

(Ĉ+)nψ0 (1.16)

aus der Wellenfunktion des Grundzustands berechnen kann.

1.3 Quantenübergänge

In [1], Kapitel 10, werden die optischen Dipolübergänge in Atomen behandelt. Auch bei einer schwingen-
den Ladung q kann es Dipolübergänge unter Emission oder Absorption von Strahlung geben. Wir wollen
untersuchen, wie sich dabei die Quantenzahl n ändert, und das Dipol-Matrixelement berechnen.

Behauptung :
Es gilt die Auswahlregel

∆n = ±1 . (1.17)

Beweis :
Bei einem Dipolübergang müssen wir das Übergangs-Matrixelement des elektrischen Dipolmoments q x
zwischen dem Anfangszustand ψn und dem Endzustand ψm berechnen:

q xmn = q 〈ψm|x̂|ψn〉 =
q√
m
〈ψm|Q̂|ψn〉 .

Aus Gl. (1.6) folgt

Q̂ =

√
~

2ω
(Ĉ+ + Ĉ−) ,

d.h. wir müssen uns die Übergangs-Matrixelemente der Aufsteige- und Absteigeoperatoren ansehen. Die
Gleichungen (1.15) zeigen, dass diese nur für m = n± 1 von null verschieden sind.

Das Matrixelement für einen Übergang vom Anfangszustand (initial state) ψi = ψn in den Endzustand
(final state) ψf = ψn−1 unter Emission eines Photons hat den Wert

xfi = xn−1, n =

√
n ~

2mω
. (1.18)
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Kapitel 2

Quantisierung des elektromagnetischen Feldes

Dieser Abschnitt ist ein kurze Einführung in die Quantentheorie des elektromagnetischen Feldes im Va-
kuum. Sie basiert auf einem hervorragenden Phyics Today Artikel von V. Weisskopf [2]. In der mathe-
matischen Formulierung folge ich den Lehrbüchern von L. D. Landau und E. M. Lifschitz [3], W. Heitler
[4] und R. Becker [5]. In diesen Büchern wird das Gauß’sche Maßsystem verwendet, ich schreibe die
Formeln in SI-Einheiten um.

Sei A das Vektorpotential des freien elektromagnetischen Wellenfeldes, das der Coulomb-Eichung

∇ ·A = 0

genügt. Das skalare Potential ist Φ = 0. Das Vektorpotential erfüllt die Wellengleichung

∇2A− 1

c2
∂2A

∂t2
= 0 . (2.1)

Um den Formalismus der Quantentheorie anwenden zu können, geht man von den kontinuierlichen Varia-
blen der klassischen Elektrodynamik zu diskreten Variablen über, indem man die Felder nur in einem sehr
großen, aber endlichen Kasten mit dem Volumen V = L3 betrachtet und periodische Randbedingungen
stellt. Dass bedeutet, jede Feldgröße f(x, y, z) muss die Bedingungen

f(x, y, z) = f(x+ L, y, z) = f(x, y + L, z) = f(x, y, z + L) (L� λ) (2.2)

erfüllen. Die Kantenlänge L sollte extrem groß im Vergleich zur Wellenlänge λ sein. Die allgemeine
Lösung der Wellengleichung (2.1) kann dann als Fourierreihe dargestellt werden

A(r, t) =
∑
k, s

ek,s [ ak(t) exp(ik · r) + a∗k(t) exp(−ik · r)] , k = |k| = ωk
c
. (2.3)

Die komplexen Koeffizienten ak enthalten die Zeitabhängigkeit des Vektorpotentials, ak(t) ∝ exp(−iωkt).
Die Polarisation der Wellen wird durch die Einheitsvektoren ek,1 und ek,2 beschrieben, die wegen der
Coulomb-Eichung ∇ ·A = 0 senkrecht auf den zugehörigen Wellenzahlvektoren stehen (elektromagneti-
sche Wellen im Vakuum sind transversal) und die zueinander orthogonal sind

k·ek,s = 0 , ek,1·ek,2 = 0 .

Um die Periodizität des Vektorpotentials zu gewährleisten, müssen die Komponenten jedes der Wel-
lenvektoren wie folgt berechnet werden

k1 = m1
2π

L
, k2 = m2

2π

L
, k3 = m3

2π

L
, (2.4)

wobei die mi beliebige ganze Zahlen sind. Es gibt unendlich viele k-Vektoren, aber wegen Gl. (2.4) ist
ihre Menge abzählbar. Im Frequenzbereich lautet die Zustandsdichte der Photonen (siehe [1], Anhang B)

ρ(ω) =
L3ω2

π2c3
. (2.5)

Dabei ist ρ(ω) ∆ω die Zahl der im Normierungsvolumen L3 enthaltenen Eigenzustände des elektroma-
gnetischen Feldes im Frequenzintervall [ω, ω+∆ω]. Die Zustandsdichte als Funktion der Energie E = ~ω
ist

ρ(E) =
L3(~ω)2

~3π2c3
=

L3ω2

~π2c3
. (2.6)
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2.1 Hamilton-Formalismus

Für den Übergang zur Quantentheorie ist es sinnvoll, kanonische Variable Qk, Pk einzuführen, damit die
Energie des elektromagnetischen Feldes als Hamiltonfunktion geschrieben werden kann. Diese Variablen
werden wie folgt definiert

Qk(t) =
√
ε0L3 ( ak + a∗k) , Pk(t) = −i ωk

√
ε0L3 ( ak − a∗k) . (2.7)

Sie sind offensichtlich reell.
Die zeitlichen Ableitungen sind wegen ak(t) ∝ exp(−iωkt)

∂Qk

∂t
= Pk ,

∂Pk

∂t
= −ω2

kQk . (2.8)

Das Vektorpotential wird damit

A =
1√
ε0L3

∑
k, s

ek,s

[
Qk cos(k · r)− 1

ωk
Pk sin(k · r)

]
. (2.9)

Um die weiteren Schritte und Gedankengänge zu verdeutlichen und die Nomenklatur zu vereinfachen,
greife ich zunächst einen Term aus der Fouriersumme heraus, der eine in positiver z-Richtung laufende
ebene Welle mit horizontaler Polarisation beschreibt. Dann hat A nur eine x-Komponente

Ax(z, t) =
1√
ε0L3

[
Q cos(k z)− 1

ω
P sin(k z)

]
.

Die verallgemeinerten Koordinaten und Impulse werden mit Q und P bezeichnet; der Index k ist hier
unnötig und wird weggelassen, und auch die Zeitabhängigkeit wird nicht explizit hingeschrieben. Die
Felder E und B werden wie folgt berechnet:

E = −∂A
∂t

, B =∇×A

und ergeben sich zu

Ex = − 1√
ε0L3

[P cos(k z)− ωQ sin(k z)] ,

By =
1√
ε0L3

[
− k Q sin(k z)− k

ω
P cos(k z)

]
.

Die Feldenergie ist identisch mit der Hamiltonfunktion des elektromagnetischen Feldes

H =

∫ (
ε0
2
E2 +

1

2µ0
B2

)
d3r =

ε0
2

∫ (
E2 + c2B2

)
d3r. (2.10)

Die Integration erstreckt sich über das Volumen L3 des Kastens. Wenn wir die obigen Felder einsetzen
und quadrieren, so treten Produkte der Cosinus- und Sinusfunktionen auf, die wir im Integral durch ihre
Mittelwerte ersetzen können:

cos2(k z) = sin2(k z) = 1/2 , sin(k z) cos(k z) = 0 .

Damit wird die Hamiltonfunktion

H =
1

2
(P 2 + ω2Q2) . (2.11)

Dies ist ein außerordentlich wichtiges Resultat:

Die Hamiltonfunktion einer elektromagnetischen Welle ist identisch mit der Hamiltonfunktion eines har-
monischen Oszillators.

Die Gleichungen (2.8) stimmen mit den Hamilton-Gleichungen überein:

Q̇ =
∂H

∂P
, Ṗ = −∂H

∂Q
. (2.12)
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Diese Resultate lassen sich problemlos auf den allgemeinen Fall übertragen, bei dem das Vektorpotential
durch die Fourierreihe (2.3) beschrieben wird. Beim Quadrieren der Felder treten viele gemischte Terme
der Form cos(ki · r) cos(kj · r) oder sin(ki · r) sin(kj · r) auf, die sich aber bei der Integration über den
Raum alle wegmitteln:

cos(ki·r) cos(kj · r) = sin(ki · r) sin(kj · r) = 0 wenn ki 6= kj .

Daher erhalten wir das einfache Resultat

H =
∑
k, s

1

2
(P 2

k + ω2
kQ

2
k) . (2.13)

Diese Hamiltonfunktion beschreibt ein Ensemble von abzählbar vielen harmonischen Oszillatoren, die
unabhängig voneinander schwingen und nicht gekoppelt sind.

2.2 Übergang zur Quantentheorie

Der Hamiltonformalismus erlaubt es, die Resultate direkt in eine quantentheoretische Form zu überführen.
Zur Vereinfachung der Schreibweise betrachten wir zunächst wieder den Fall, dass nur eine Schwingungs-
mode vorliegt. Die verallgemeinerten Koordinaten und Impulse Q und P werden durch die Operatoren
Q̂ und P̂ ersetzt, und die Hamiltonfunktion (2.11) geht in den Hamiltonoperator Ĥ über

Ĥ =
1

2
(P̂ 2 + ω2 Q̂2) . (2.14)

Der Index k ist hier unnötig und wird weggelassen. Gleichung (2.14) zeigt, dass wir den quantenmecha-
nischen Formalismus des harmonischen Oszillators anwenden können. Inbesonders gibt es äquidistante
Energieniveaus

En = n ~ω + ~ω/2 , n = 0, 1, 2, ..... (2.15)

Die ganze Zahl n gibt die Zahl der Photonen an, die alle die Energie ~ω haben, und ~ω/2 ist die
Nullpunktsenergie des elektromagnetischen Feldes.
Die Eigenzustände von Ĥ werden in Dirac-Schreibweise mit |n 〉 benannt.

Ĥ |n 〉 = (n+ 1/2) ~ω |n 〉 .

Der Grundzustand, auch Vakuum genannt, ist |0 〉.
Die Leiteroperatoren des harmonischen Oszillators sind auch hier nützlich

Ĉ+ =
1√

2 ~ω
(−i P̂ + ω Q̂) , Ĉ− =

1√
2 ~ω

( i P̂ + ω Q̂) . (2.16)

Wenden wir diese Operatoren auf einen Zustand |n 〉 an, so folgt aus Gl. (1.15)

Ĉ+|n 〉 =
√
n+ 1 |n+ 1 〉 , Ĉ−|n 〉 =

√
n |n− 1 〉 . (2.17)

Man nennt Ĉ+ den Erzeugungsoperator eines Photons, weil er die Zahl der Photonen um 1 erhöht, und Ĉ−

heisst Vernichtungsoperator. Der Zustand |n 〉 kann durch n-fache Anwendung des Erzeugungsoperators
aus dem Vakuumzustand gewonnen werden. Korrekt normiert lautet er

|n 〉 =
(Ĉ+)n√

n!
|0 〉. (2.18)

Im allgemeinen Fall mit unendlich vielen Schwingungsmoden lauten der Hamiltonoperator und die Ei-
genzustände

Ĥ =
∑
k, s

1

2
(P̂ 2

k + ω2
k Q̂

2
k) , | . . . , nk, . . . , nk′ , . . . 〉 . (2.19)
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Der Grundzustand (das absolute Vakuum) ist |0, 0, 0 . . .〉.
Die Erzeugungs- und Vernichtungsoperatoren werden für jede Schwingungsmode definiert und erfüllen
die Vertauschungsrelation (1.8)

Ĉ−k Ĉ
+
k − Ĉ

+
k Ĉ
−
k = 1 . (2.20)

Die zu verschiedenen k-Vektoren gehörigen Leiteroperatoren sind vertauschbar

Ĉ−k Ĉ+
k′ − Ĉ

+
k′ Ĉ

−
k = 0 wenn k 6= k′ . (2.21)

Der allgemeine Eigenzustand des Hamiltonoperators wird durch wiederholte Anwendung der Erzeugungs-
operatoren aus dem Vakuumzustand gewonnen

| . . . , nk, . . . , nk′ , . . . 〉 =
∏
k, s

(Ĉ+
k )nk

√
nk!

|0, 0, 0 . . .〉 . (2.22)
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Kapitel 3

Emission und Absorption von Strahlung

Als Modellsystem betrachten wir ein Wasserstoff-Atom und beschränken uns auf die beiden niedrigsten
Energieniveaus E1 = E1s und E2 = E2p. Wenn sich das Elektron im Grundzustand ψ1 befindet, kann es
durch Absorption eines Photons (Lichtquants) der Energie ~ω` = E2−E1 in den angeregten Zustand ψ2

übergehen. Für den Übergang vom angeregten Zustand ψ2 in den Grundzustand ψ1 unter Emission eines
Photons gibt es zwei Möglichkeiten: die spontane Emission, die “von selbst” abläuft, und die stimulierte
Emission, die durch ein bereits vorhandenes Strahlungsfeld induziert wird. In Abb. 3.1 sind die drei mit
Photon-Emission oder Photon-Absorption verknüpften Prozesse schematisch dargestellt.

Abbildung 3.1: Absorption, spontane Emission und stimulierte Emission von Photonen. In allen drei

Fällen ist ~ω` = E2 − E1.

Die Absorption und die stimulierte Emission können mit der quantenmechanischen Störungsrech-
nung quantitativ berechnet werden. Dies wird im nächsten Abschnitt gezeigt. Die nichtrelativistische
Schrödingergleichung ist jedoch nicht imstande, die spontane Emission zu beschreiben, und selbst die re-
lativistische Diracgleichung ist dafür ungeeignet. Die Eigenzustände des ungestörten Hamiltonoperators
sind stationär : wenn sich das Elektron in einem angeregten Zustand befindet, so wird es - laut Quanten-
mechanik - für ewige Zeiten dort bleiben, es sei denn, eine externe Störung bewirkt die Rückkehr in den
Grundzustand.

Um die spontane Emission zu erkären, muss man nicht nur die Teilchen quantentheoretisch behandeln,
sondern auch noch das elektromagnetische Strahlungsfeld (diese von Paul Dirac eingeführte Methode
wurde 2. Quantisierung genannt).

3.1 Absorption und stimulierte Emission in der Quantenmechanik

In der nichtrelativistischen Quantenmechanik wird die zeitabhängige Störungsrechnung angewandt, um
den Übergang eines Elektrons von einem atomaren Energieniveau auf ein anderes unter dem Einfluss
elektromagnetischer Strahlung zu berechnen. Optische Übergänge werden durch eine “semi-klassische”
Methode erfasst: die Elektronen im Atom werden quantentheoretisch durch die Eigenfunktionen ψ des
Hamiltonoperators Ĥ0 beschrieben, während das elektromagnetische Strahlungsfeld als klassisches os-
zillierendes Feld behandelt wird. Zur Vereinfachung betrachten wir ein elektrisches Wechselfeld in x-
Richtung, beispielsweise eine stehende Lichtwelle im optischen Resonator eines Lasers. Das Atom befinde
sich im Nullpunkt des Koordinatensystems. Das elektrische Feld am Ort des Atoms lautet

Ex(t) = E0 cosω`t =
E0
2

(eiω`t + e−iω`t) . (3.1)

12



Der zeitabhängige Wechselwirkungsterm Ŵ (t) ist in diesem Fall die potentielle Energie des Elektrons im
Feld Ex(t):

Ŵ (t) = e Ex(t) x̂ =
e E0
2

(eiω`t + e−iω`t) x̂ , (3.2)

so dass der Hamilton-Operator nun lautet

Ĥ(t) = Ĥ(0) + Ŵ (t) mit Ĥ(0) = − ~2

2me
∇2 − e2

4πε0r
. (3.3)

Zum Zeitpunkt t = 0 sei das Elektron im Zustand ψi (initial state, i ≡ (n, l,ml)i).

Im Zeitbereich 0 < t < T erfüllt die Wellenfunktion die Schrödinger-Gleichung

i~
∂ψ

∂t
= (Ĥ(0) + Ŵ (t))ψ (3.4)

und ist daher keine Eigenfunktion von Ĥ(0). Wir können sie aber (bei einer “kleinen” Störung) als
Linearkombination der Eigenfunktionen mit zeitabhängigen Koeffizienten ansetzen:

ψ(r, t) = ci(t)ψi(r, t) +
∑
j 6=i

cj(t)ψj(r, t) (3.5)

mit der Anfangsbedingung ci(0) = 1, cj(0) = 0. Der gewünschte Endzustand (final state) ψf befindet
sich unter den ψj .

Damit der Übergang ψi → ψf mit einer signifikanten Wahrscheinlichkeit eintreten kann, muss die
Frequenz eine Resonanzbedingung erfüllen

ω` ≈ |Ef − Ei|/~ , (3.6)

wobei eine gewisse Unschärfe zugelassen ist in Einklang mit der Unschärferelation. Diese Unschärfe
ergibt sich automatisch, wenn das Feld nur für eine kurze Zeit 0 < t < T einwirkt. Die Begrenzung
auf ein endliches Zeitintervall hat zur Folge, dass die elektromagnetische Strahlung nicht mehr exakt
monochromatisch ist, sondern ein endliches Frequenzband ω` ± δω überstreicht mit δω ≈ π/T .

Aufgrund der Resonanzbedingung dominiert in der Summe (3.5) der Term j = f so stark, dass man
die übrigen Terme weglassen kann. Unsere vereinfachte Wellenfunktion lautet für t > 0

ψ(r, t) = ci(t)ψi(r, t) + cf (t)ψf (r, t) . (3.7)

Einsetzen in die Schrödinger-Gleichung ergibt unter Benutzung der Gleichungen

i~
∂ψi
∂t

= Ĥ(0)ψi , i~
∂ψf
∂t

= Ĥ(0)ψf

die folgende Differentialgleichung für die Koeffizienten ci und cf

i~ ċi |ψi〉 + i~ ċf |ψf 〉 = ci(t) Ŵ (t) |ψi〉 + cf (t) Ŵ (t) |ψf 〉 . (3.8)

Hier wird die Dirac-Schreibweise benutzt. Um die zeitliche Entwicklung der Amplitude cf (t) des End-
zustands zu ermitteln, wird die Gleichung skalar mit 〈ψf | multipliziert und die Orthogonalität und
Normierung der ψj ausgenutzt

i~ ċf = ci(t)〈ψf |Ŵ |ψi〉 + cf (t)〈ψf |Ŵ |ψf 〉 . (3.9)

Nun gilt für dies spezielle Potential

〈ψf |Ŵ |ψf 〉 ∼
∫
|ψf (r)|2 x d3r = 0 ,

da der Integrand eine ungerade Funktion in x ist. Daher folgt

i~ ċf = ci(t) 〈ψf |Ŵ |ψi〉 . (3.10)
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Wenn die Störung W schwach ist und nur für kurze Zeit wirkt, gilt |ci(t)| ≈ 1 und |cf (t)| � 1 im Intervall
0 < t < T , und wir erhalten die vereinfachte Gleichung

i~ ċf = ci(0) 〈ψf |Ŵ |ψi〉 = 〈ψf |Ŵ |ψi〉 . (3.11)

Wir schreiben das sog. Übergangs-Matrixelement des Störterms Ŵ explizit hin

〈ψf |Ŵ |ψi〉 =
E0
2
e xfi [ei(ωfi+ω`)t + ei(ωfi−ω`)t] mit ωfi = ωf − ωi . (3.12)

Dabei ist

e xfi = e 〈ψf | x̂ |ψi〉 = e

∫
ψ∗f (r)xψi(r)d3r (3.13)

das Übergangs-Matrixelement des elektrischen Dipolmoments. Die Integration über das Zeitintervall
0 < t < T ergibt

i~cf (T ) =
E0
2
e xfi

[
ei(ωfi+ω`)T − 1)

i(ωfi + ω`)
+
ei(ωfi−ω`)T − 1

i(ωfi − ω`)

]
. (3.14)

Diese Gleichung beschreibt die Absorption von Strahlung für den Fall Ef > Ei und die stimulierte
Emission für Ef < Ei.

Absorption von Strahlung
Der Absorptionsprozess tritt auf, wenn die Energie der Endzustands höher als die des Anfangszustands
ist

Ef > Ei ⇒ ωfi > 0 .

Der zweite Term in der eckigen Klammer von Gl. (3.14) hat einen Resonanznenner bei ω` = ωfi und
dominiert bei dieser Frequenz. Die Wahrscheinlichkeit, das Elektron nach Abschalten der Wechselwirkung
im Endzustand ψf zu finden, ist durch das Absolutquadrat des Koeffizienten cf (T ) gegeben

|cf (T )|2 =
E20
4~2

e2 |xfi|2
|ei(ωfi−ω`)T − 1|2

(ωfi − ω`)2
=
π e2 E20

2~2
S(ω` − ωfi) |xfi|2 T (3.15)

mit der Funktion

S(ω` − ωfi) =
sin2 [(ω` − ωfi)T/2]

(ω` − ωfi)2 π T/2
, (3.16)

die für große T eine sehr schmale Kurve ist, deren Maximum bei ω`−ωfi = 0 liegt (siehe Abb. 3.2). Für
T → ∞ geht sie in die Deltafunktion δ(ω` − ωfi) über. Diese “Energieerhaltungs-Funktion” garantiert
die Erhaltung der Energie beim Strahlungsprozess in Einklang mit der Unschärferelation:

~ω` = |Ef − Ei| ±∆E mit ∆E ≤ ~
T
. (3.17)

Die Wahrscheinlichkeit |cf (T )|2 ist proportional zur Zeitdauer T der Wechselwirkung. Dividiert man
durch T und integriert über das schmale Frequenzband der Lichtwelle, so ergibt sich die Übergangswahr-
scheinlichkeit pro Zeiteinheit. Wir erhalten das wichtige Resultat:

wabs =
π e2 E20

2~2
|xfi|2 . (3.18)

Stimulierte Emission von Strahlung
Stimulierte Emission tritt auf, wenn die Energie der Endzustands niedriger als die des Anfangszustands
ist

Ef < Ei ⇒ ωfi < 0 .

Der erste Term in der eckigen Klammer von Gl. (3.14) hat einen Resonanznenner bei ω` = −ωfi = |ωfi|
und dominiert bei dieser Frequenz. Wiederum ist die Wahrscheinlichkeit, das Elektron nach Abschalten
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Abbildung 3.2: Die Energieerhaltungs-Funktion S(ω` − ωfi), aufgetragen gegen ∆ω = ω` − ωfi in

willkürlichen Einheiten. Die Höhe der Kurve wächst linear mit T an, die Breite skaliert mit 1/T ; für

T ′ = 2T beispielsweise wird das Maximum doppelt so hoch, und die Breite halbiert sich. Im Limes

T →∞ strebt S(ω` − ωfi) gegen die Deltafunktion δ(ω` − ωfi).

der Wechselwirkung im Endzustand ψf zu finden, durch das Absolutquadrat des Koeffizienten cf (T )
gegeben

|cf (T )|2 =
E20
4~2

e2 |xfi|2
|ei(ωfi+ω`)T − 1|2

(ωfi + ω`)2
=
π e2 E20

2~2
sin2 [(ω` − |ωfi|)T/2]

(ω` − |ωfi|)2 π T/2
|xfi|2 T (3.19)

Wir erhalten das dasselbe Resultat wie in Gl. (3.18)

wstim =
π e2 E20

2~2
|xfi|2 . (3.20)

Die Wahrscheinlichkeiten für Absorption und stimulierte Emission sind exakt gleich, und beide sind
poportional zum Absolutquadrat des Matrixelements des elektrischen Dipolmoments und zum Quadrat der
elektrischen Feldstärke.

Wie schon erwähnt, gibt es keine spontane Emission in der Quantenmechanik.

3.2 Absorption und Emission in der Quantenfeldtheorie

Die quantenfeldtheoretische Behandlung der Absorption oder Emission von Licht beim Übergang eines
atomaren Elektrons von einem Energieniveau auf ein anderes Niveau erfordert im Prinzip die Lösung der
Dirac-Gleichung. Da die Elektronen in den äußeren Schalen der Atome nichtrelativistisch sind, kann man
in guter Näherung mit der Schrödingergleichung in Kombination mit der zeitabhängigen Störungstheorie
arbeiten. Die wesentliche Neuerung im Vergleich zum vorhergehenden Abschnitt ist, dass die Lichtwelle
nicht mehr als klassische Welle angesetzt wird, sondern dass das quantisierte elektromagnetische Feld
verwendet wird.

Zur Vereinfachung nehmen wir wieder an, dass sich das in Atom in einem monochromatischen Licht-
wellenfeld befindet, dessen Frequenz so gewählt wird, dass in sehr guter Näherung ~ω` = |Ef − Ei| ist.
Die Wellenfunktionen des ungestörten Atoms erfüllen die zeitunabhängige Schrödingergleichung

Ĥ0 ψi = Eiψi , Ĥ0ψf = Efψf mit Ĥ0 =
p̂2

2me
+ V (r) (3.21)

Um im Hamiltonformalismus die Kopplung zwischen dem Elektron und dem elektromagnetischen Feld
zu erfassen, ersetzt man Impuls p = me v des Elektrons durch den kanonischen Impuls p + eA. Die
Hamiltonfunktion des Atoms im Strahlungsfeld lautet

H1 =
(p + eA)2

2me
+V (r) =

1

2me

(
p2 + p ·A + A · p + e2A2

)
+V (r) ≈ p2

2me
+

e

2me
(p ·A+A · p)+V (r) .
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Der Term e2A2/(2me) ist normalerweise in der Atomphysik vernachlässigbar und wird hier weggelassen
(dieser Term ist für Zwei-Photon-Emission verantwortlich). Bevor man den Übergang zur Quantentheorie
macht, ist es sinnvoll, das Skalarprodukt von Impuls und Vektorpotential umschreiben1:

p ·A = me v ·A .

Der Hamiltonoperator des Atoms im Strahlungsfeld wird damit

Ĥ1 =
p̂2

2me
+ V (r) + e v̂ · Â = Ĥ0 + e v̂ · Â = Ĥ0 + Ŵ . (3.22)

Zu beachten ist, dass die Operatoren p̂ und v̂ nur auf die Wellenfunktion ψ des Elektrons wirken, während
der Operator Â nur auf die Quantenzustände des Photonenfeldes wirkt. Aus diesem Grund sind v̂ und
Â vertauschbar.

Wie schon gesagt betrachten wir den Spezialfall, dass nur eine einzige Welle vorhanden ist, beschrieben
durch den Operator des Vektorpotentials

Âx(z, t) =
1√
ε0L3

[
Q̂ cos(k z)− 1

ω`
P̂ sin(k z)

]
. (3.23)

Dann ist v̂·Â = v̂ Â, wobei wir zur Vereinfachung der Schreibweise den Index x bei v̂x und Âx weglassen.
Das Atom befinde sich am Ort r = 0. Die Wellenlänge des Lichtes ist im allgemeinen sehr groß gegen
den Atomdurchmesser, daher gilt innerhalb des Atoms k z � 1, also cos(k z) ≈ 1 und sin(k z) ≈ 0. Damit
wird der Operator des Vektorpotentials

Â =
1√
ε0L3

Q̂ =
1√
ε0L3

√
~

2ω`
(Ĉ+ + Ĉ−) . (3.24)

Der Wechselwirkungsterm hat die einfache Gestalt

Ŵ = e v̂ Â = e

√
~

2ω` ε0L3
v̂ (Ĉ+ + Ĉ−). (3.25)

Der Hamiltonoperator der Lichtwelle hat die Form (2.14)

Ĥ2 =
1

2
(P̂ 2 + ω2

` Q̂
2) . (3.26)

Seine Eigenzustände schreiben wir als Dirac-Ket-Vektoren

Ĥ2 |n〉 = (n+ 1/2) ~ω` |n〉.

Der Hamiltonoperator des Gesamtsystems ist die Summe der Hamiltonoperatoren des Atoms und der
Lichtwelle

Ĥ = Ĥ1 + Ĥ2 = Ĥ0 + Ĥ2 + Ŵ , (3.27)

und die gesamte Zustandsfunktion ist das Produkt der Wellenfunktion des Elektrons und des Dirac-Kets
der Lichtwelle. Anfangs- und Endzustand schreiben wir in der Form

Φi = ψi |ni〉 , Φf = ψf |nf 〉 . (3.28)

Ohne den Wechselwirkungsterm gilt

Ĥ Φi = (Ĥ0 ψi) |ni〉+ ψi (Ĥ2 |ni〉) = [Ei + ~ω`(ni + 1/2)] Φi ,

1In der klassischen Elektrodynamik kann man die magnetische Energiedichte als Skalarprodukt der elektrischen
Stromdichte und des Vektorpotentials umzuschreiben: J · A = ρ v · A. Die Skalarprodukte p · A und me v · A
bedeuten in der klassischen Physik dasselbe, aber nach Substitution der Operatoren ergeben sich verschiedene
Resultate: me v̂·Â ist die korrekte Form der Kopplung in der Quantenfeldtheorie. Dies ist ein Beispiel dafür, dass
der Klassik-Quanten-Übergang seine Tücken hat.
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und analog für Φf . Beide Zustände sind stationär für Ŵ = 0, es gibt weder Emission noch Absorption.

Wenn man jedoch die Wechselwirkung einschaltet (Ŵ 6= 0), sind diese Zustände nicht mehr stationär.
Selbst der Grundzustand |0〉 des Lichtwellenfeldes erweist sich als nichtstationär, wenn er mit der Wellen-
funktion eines angeregten Atoms kombiniert wird. Genau hier liegt die Quelle der spontanen Abstrahlung.

Jetzt wird der Übergang Φi → Φf betrachtet. Die Übergangswahrscheinlichkeit pro Zeiteinheit ist

proportional zum Absolutquadrat des Übergangsmatrixelements des Wechselwirkungsoperators Ŵ :

w(i→f) ∝ |〈Φf |Ŵ |Φi〉|2 .

Das Übergangsmatrixelement kann man als Produkt von zwei Matrixelementen schreiben

〈Φf |Ŵ |Φi〉 =

√
e2~

2ω` ε0L3
〈ψf | v̂ |ψi〉 ·

(
〈nf |Ĉ+|ni〉+ 〈nf |Ĉ−|ni〉

)
. (3.29)

Das erste Matrixelement betrifft den atomaren Übergang ψi → ψf . Das hier auftretende Matrixelement
des Geschwindigkeitsoperators ist gleich der zeitlichen Ableitung des Matrixelements des Ortsoperators:

〈ψf | v̂ |ψi〉 =
d

dt
〈ψf | x̂ |ψi〉 =

d xfi
dt

. (3.30)

Aus ψi ∝ exp(−i ωit) und ψ∗f ∝ exp(+i ωf t) folgt

〈ψf | v̂ |ψi〉 = i (ωf − ωi)〈ψf | x̂ |ψi〉 = i ωfi xfi . (3.31)

Damit das Dipolmatrixelement e xfi von null verschieden ist, müssen die bekannten Auswahlregeln der
Atomphysik ∆` = ±1 und ∆m` = 0,±1 erfüllt sein. Darauf wollen wir hier nicht weiter eingehen.

Wichtig für unsere jetzige Diskussion ist das zweite Matrixelement. Nach Gl. (2.17) gilt

Ĉ+|ni 〉 =
√
ni + 1 |ni + 1 〉 , Ĉ−|ni 〉 =

√
ni |ni − 1 〉 .

Das zweite Übergangsmatrixelement ist also genau dann von null verschieden, wenn nf = ni + 1 oder
nf = ni − 1 ist. Das bedeutet, dass nur solche Prozesse auftreten, bei denen genau ein Photon erzeugt
wird (nf = ni + 1) oder vernichtet wird (nf = ni − 1).

Zur Berechnung der Übergangswahrscheinlichkeit gehen wir auf Gl. (3.11) zurück:

i~ ċf = ci(0) 〈Φf |Ŵ |Φi〉 = 〈Φf |Ŵ |Φi〉 . (3.32)

Die Integration über das Zeitintervall 0 < t < T der Wechselwirkung ergibt

i ~ cf (T ) = i

√
e2~

2ω` ε0L3
ωfi xfi

√ni + 1 · e
i(ωfi+ω`)T − 1)

i(ωfi + ω`)︸ ︷︷ ︸
Emission

+
√
ni ·

ei(ωfi−ω`)T − 1

i(ωfi − ω`)︸ ︷︷ ︸
Absorption

 . (3.33)

Absorption von Strahlung
Wenn das Energieniveau Ef des Atoms höher liegt als Ei, kann der Übergang ψi → ψf durch Absorption
eines Photons der Energie ~ω = Ef −Ei erfolgen. Die Wahrscheinlichkeit, das Elektron nach Abschalten
der Wechselwirkung im Endzustand ψf zu finden, ist durch das Absolutquadrat des Koeffizienten cf (T )
gegeben

|cf (T )|2 =
e2

2~ω` ε0L3
ω2
fi |xfi|2

|ei(ωfi−ω`)T − 1|2

(ωfi − ω`)2
· ni =

π e2 ω2
fi

~ω` ε0L3
S(ω` − ωfi) |xfi|2 T · ni . (3.34)
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Dividiert man durch T und integriert über das schmale Frequenzband der Lichtwelle, so ergibt sich wegen
ωfi ≈ ω` für die Übergangswahrscheinlichkeit pro Zeiteinheit:

wabs =
π e2 ω`
~ ε0L3

|xfi|2 · ni . (3.35)

In dieser Gleichung bedeutet ni die Anzahl der Photonen im Volumen L3. Die Energiedichte der elek-
tromagnetischen Welle ist demnach

ni ~ω`
L3

≡ ε0
2
E20 ⇒ ni =

ε0 E20L3

2 ~ω`
. (3.36)

Setzt man dies in Gl. (3.35) ein, so erhält man

wabs =
π e2 E20

2~2
|xfi|2 , (3.37)

in perfekter Übereinstimmung mit der quantenmechanischen Formel (3.18).

Emission von Strahlung
Wenn Ef < Ei ist, kann der Übergang ψi → ψf durch Emission eines Photons der Energie ~ω = Ei−Ef
erfolgen. Für das Photonenfeld bedeutet dies die Erzeugung eines Photons. Das Matrixelement des
Störoperators lautet in diesem Fall

〈Φf | Ŵ |Φi〉 =

√
e2~

2ω ε0L3
i ωfi xfi ·

√
ni + 1 bei Emission von Strahlung . (3.38)

Die Emission ist wird ähnlich wie die Absorption berechnet, und man findet in Analogie zu Formel (3.35)

wem =
π e2 ω`
~ ε0L3

|xfi|2 · (ni + 1) =
π e2 ω`
~ ε0L3

|xfi|2 · ni︸ ︷︷ ︸
stim. Em.

+
π e2 ω`
~ ε0L3

|xfi|2 · 1︸ ︷︷ ︸
spont. Em

. (3.39)

Der erste Summand ergibt genau die Formel (3.20). Das bedeutet: die quantenfeldtheoretischen Resultate
stimmen mit den quantenmechanischen überein, und auch in der Quantenfeldtheorie erweisen sich die
Wahrscheinlichkeiten für Absorption und stimulierte Emission als exakt gleich.

Es gibt in Gl. (3.39) den wichtigen Zusatzterm π e2 ω`/(~ ε0L3) |xfi|2 · 1 , welcher die spontane Emis-
sion beschreibt. Jetzt kommt ein spannendes Ergebnis. Im Anfangszustand sei überhaupt kein Photon
vorhanden, also ni = 0. Wenn ein elektromagnetisches Feld kein Photon enthält, verschwindet die Ener-
giedichte und damit auch die elektrische Feldstärke, und dann ist die Emission von Strahlung in der
Quantenmechanik ausgeschlossen. Die Gleichung (3.39) zeigt uns aber, dass in der Quantenfeldtheorie
dann immer noch Emission auftreten kann. Dies ist die spontane Emission, die “von selbst”, ohne äußeres
Feld, abläuft. Die Wahrscheinlichkeit für spontane Emission wird

wspon ∝ |〈ψf | x̂ |ψi〉|2 |〈1 |Ĉ+|0 〉|2 = |xfi|2 · 1 . (3.40)

Der Faktor |〈1 |Ĉ+|0 〉|2 beschreibt die Erzeugung eines Photons aus dem Vakuum.

Charakteristische Eigenschaften der stimulierten Emission
Damit die Emission eines Photons als stimuliert im Sinn der Quantenfeldtheorie genannt werden darf,
müssen 2 Kriterien erfüllt sein:

Kriterium I Die Wahrscheinlichkeit für stimulierte Emission ist proportional zur Zahl ni der bereits
vorhandenen Photonen in diesem Quantenzustand.

Kriterium II Das emittierte Photon nimmt den gleichen Quantenzustand ein wie die Photonen der
anregenden Welle: es hat exakt die gleiche Frequenz, die gleiche Richtung, die gleiche Polarisation und
die gleiche Phase. Diese perfekte Identität ist eine Konsequenz der Bose-Einstein-Statistik.
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3.3 Feldtheoretische Berechnung der spontanen Emission

Zur Berechnung der Wahrscheinlichkeit für spontane Emission wird eine bekannte Formel der zeitabhängi-
gen Störungsrechnung benutzt, die von Enrico Fermi wegen ihrer zentralen Bedeutung die “Goldene Re-
gel” genannt wurde. Die Wahrscheinlichkeit pro Zeiteinheit für einen spontanen Übergang Φi → Φf
ist

wspon =
2π

~
|Wfi|2 ρ(Ef ) . (3.41)

Hierin ist Wfi das in Gl. (3.38) aufgeführte Übergangsmatrixelenent des Störoperators Ŵ , und ρ(Ef ) ist
die Dichte der Endzustände gemäss Formel (2.6). Durch Einsetzen dieser Gleichungen erhält man

wspon =
e2

π ε0~ c3
|xfi|2 |ωfi|3 . (3.42)

Die spontane Emission erfolgt isotrop in alle Raumrichtungen. Daher gilt

|xfi|2 = |yfi|2 = |zfi|2 =
|rfi|2

3
,

und es folgt die aus der Literatur bekannte Formel für die Wahrscheinlichkeit der spontanen Emission

wspon =
e2

3π ε0 ~ c3
|rfi|2 ω3 mit ω =

Ei − Ef
~

, (3.43)

die für einen Dipolübergang eines Atoms von einem Anfangsniveau Ei auf ein Endniveau Ef < Ei gilt.

Die Gleichnung (3.43) ist außerordentlich wichtig. Sie zeigt, dass die spontane Emission nur von den
spezifischen Eigenschaften des betrachteten Atoms abhängt, dem Dipol-Matrixelement e rfi und der
Energiedifferenz Ei − Ef . Es gibt keinerlei Abhängigkeiten von externen Parametern, die vom Expe-
rimentator variiert werden könnten, wie z.B. Magnetfeld, Temperatur, Druck etc. Das bedeutet, dass
die spontane Emission nicht von außen beeinflusst oder kontrolliert werden kann (ausgenommen in sehr
speziellen Versuchsanordnungen, die im nächsten Abschnitt diskutiert werden). Dadurch unterscheidet
sich die spontane Emission in fundamentaler Weise von der stimulierten Emission.

Ein wichtiges Charakteristikum ist die ω3-Abhängigkeit: die spontane Emission hat eine verschwin-
dend kleine Wahrscheinlichkeit bei niedrigen Frequenzen, sie wird aber sehr wichtig bei hohen Frequenzen.

3.4 Beziehungen zwischen stimulierter und spontaner Emission

3.4.1 Nur eine Schwingungsmode

In Kap. 3.2 haben wir den Spezialfall betrachtet, dass nur eine Schwingungsmode des elektromagnetischen
Feldes vorliegt. Wenn es bereits n Photonen im Strahlungsfeld gibt, ist die stimulierte Emission n-mal
wahrscheinlicher als die spontane Emission:

wstim = nwspon (nur eine Mode). (3.44)

Diese Beziehung ist für die Funktion des Lasers von entscheidender Bedeutung, aber in allen Lasern tritt
als Konkurrenzprozess zur stimulierten Emission auch die spontane Emission auf. Die Gleichung (3.44)
gilt dann nur für die spezielle Schwingungsmode, die zum Laserübergang führt. Sie gilt nicht für die
anderen Schwingungsmoden.

3.4.2 Strahlung im thermischen Gleichgewicht mit Materie

Von Albert Einstein wurde schon im Jahr 1917, lange vor Entstehung der Quantenmechanik, ein Zusam-
menhang zwischen Emissions- und Absorptionsvorgängen im thermodynamischen Gleichgewicht gefun-
den. Um konsistente Resultate zu erhalten, musste Einstein dabei den Prozess der stimulierten (induzier-
ten) Emission “erfinden”, der zu dieser Zeit unbekannt war. Wir betrachten elektromagnetische Strahlung
im thermodynamischen Gleichgewicht mit erhitzter Materie der absoluten Temperatur T (Beisp. Sonne,
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das Innere eines Hochofens, näherungsweise eine Glühlampe). Es wird dann ein kontinuierliches Fre-
quenzspektrum emittiert, dessen spektrale Energiedichte durch die Plancksche Strahlungsformel (4.10)
gegeben ist. Die Photonen können beliebige Frequenzen, Richtungen und Polarisation haben. Es gibt
daher außerordentlich viele verschiedene Zustände für die Photonen. Nehmen wir an, wir hätten Atome
mit zwei Niveaus E1 und E2, die sich zusammen mit der Strahlung in einem Kasten befinden. Die
Wahrscheinlichkeit pro Zeiteinheit für Absorption E1 → E2 ist proportional zur Energiedichte ρth(ω) der
Strahlung bei der Frequenz ω = (E2 − E1)/~

wabs = B12 ρth(ω) . (3.45)

Die Emission hat zwei Anteile: die stimulierte Emission ist proportional zu ρth(ω), die spontane Emission
ist unabhängig von der vorhandenen Strahlungsdichte

wem = wstim + wspon = B21 ρth(ω) +A21 . (3.46)

Die Zahl N2 der Atome im oberen Niveau erhöht sich durch Absorption und vermindert sich durch
Emission von Photonen:

dN2

dt
= wabsN1 − wemN2 = B12 ρth(ω)N1 − (B21 ρth(ω) +A21)N2 . (3.47)

Im thermodynamischen Gleichgewicht ist dN2/dt = 0, und gemäß der Boltzmannverteilung gilt

N1

N2
= exp

(
E2 − E1

k
B
T

)
= exp

(
~ω
k

B
T

)
. (3.48)

Setzen wir dies in (3.47) ein, so folgt B12 ρth(ω) exp[~ω/(k
B
T )] = A21 +B21 ρth(ω) und daher

ρth(ω) =
A21/B12

exp[~ω/(k
B
T )]−B21/B12

. (3.49)

Durch Vergleich mit der Planck-Strahlungsformel (4.10) finden wir:

B21 = B12 und A21 =
~ω3

π2c3
B21 . (3.50)

Die erste Gleichung besagt, dass die Wahrscheinlichkeiten für Absorption und stimulierte Emission gleich
sind. Wie wir wissen, folgt dies auch aus der quantentheoretischen Behandlung. Die zweite Gleichung
stellt einen Zusammenhang zwischen der stimulierten und spontanen Emission im thermodynamischen
Gleichgewicht her:

wstim

wspon
=
B21ρth(ω)

A21
=

1

exp[~ω/(k
B
T )]− 1

. (3.51)

Die Lichtwellen im Kasten werden durch optische Eigenschwingungen dargestellt. Jede Eigenschwingung
verhält sich wie ein harmonischer Oszillator, dessen Energie den Wert (n+ 1/2)~ω hat, wobei n die Zahl
der Photonen in dieser Eigenschwingung ist. Im thermodynamischen Gleichgewicht ist die mittlere Zahl
dieser Photonen

n =
1

exp[~ω/(k
B
T )]− 1

, (3.52)

und die mittlere Energie eines harmonischen Oszillators (abzüglich der Nullpunktsenergie ~ω/2) ist

E =
~ω

exp[~ω/(k
B
T )]− 1

≡ n ~ω . (3.53)

Damit können wir schreiben
wstim = nwspon . (3.54)
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Zwei Fälle sollen betrachtet werden.

(a) Hohe Frequenzen: ~ω � k
B
T bei Raumtemperatur, T = 293 K. Dies gilt für sichtbares Licht und

Röntgen- oder γ-Strahlung. Die mittlere Zahl der Photonen in einem definierten Quantenzustand ist im
thermodynamischen Gleichgewicht sehr klein, n� 1. Die spontane Emission ist viel wahrscheinlicher als
die stimulierte Emission, was auch sofort aus Gl. (3.51) folgt.

Der Laser ist ein Gegenbeispiel, dort ist die Besetzungszahl eines bestimmten Photonzustands sehr
groß gegen 1. Man muss sich aber klarmachen, dass der Laser ein System darstellt, welches extrem weit
vom thermodynamischen Gleichgewicht entfernt ist, da eine Besetzungsinversion vorliegt. Die Gleichun-
gen (3.52) und (3.54) dürfen daher nicht auf Laser angewandt werden.

(b) Niedrige Frequenzen, ~ω � k
B
T . Das gilt im Hochfrequenz- und Mikrowellenbereich. Dann ist

n� 1, und die stimulierte Emission dominiert völlig. Ein wichtiges Beispiel mit praktischer Bedeutung ist
die magnetische Kernresonanz, die genaueste Methode zur Messung von Magnetfeldern und die Grundlage
der Kernspin-Tomographie. Ein Proton hat in einem Magnetfeld B zwei Energieniveaus E1 = −µB und
E2 = +µB. Durch Einstrahlen von Hochfrequenz mit ~ω = 2µB kann man Umklappen der Spins
erreichen. Für B = 1 Tesla erhält man eine Frequenz f = ω/(2π) = 42,6 MHz. Bei Raumtemperatur
ist ~ω/(k

B
T ) ≈ 10−5, d.h. die spontane Emission ist im Vergleich zur stimulierten Emission völlig

vernachlässigbar.

Für die beiden diskutierten Fälle gilt die Beziehung

wstim =
π2c2 I(ω)

~ω3
wspon , (3.55)

wobei I(ω) die spektrale Intensität der einfallenden Strahlung ist. Der Beweis ist eine lehrreiche Übungs-
aufgabe. Die Formel (3.55) gilt allgemein, wenn die Strahlung isotrop und unpolarisiert ist, siehe Ref.
[3], Gl. (44.10).

3.5 Strahlung einer periodisch schwingenden Ladung

Larmor-Formel
Ein Teilchen der Masse m und Ladung q führe eine harmonische Schwingung aus

x(t) = x0 cos(ω t) .

Wodurch diese Schwingung verursacht wird, soll zunächst ignoriert werden. Die Geschwindigkeit und
Beschleunigung sind

v(t) = −ω x0 sin(ω t) , a(t) = −ω2 x0 cos(ω t) ≡ a0 cos(ω t) . (3.56)

Die klassische Schwingungsenergie ist

Eklass =
m

2
x20 =

m

2ω2
a20 . (3.57)

Das elektrische Dipolmoment der Ladung ist

p(t) = q x(t)ex . (3.58)

Die beschleunigte Ladung strahlt eine elektromagnetische Welle der Frequenz ω aus. Die abgestrahlte
Intensität hängt vom Winkel θ zwischen dem Dipolmoment p und dem Wellenvektor k ab, I(θ) ∝ sin2 θ.
Nach Integration über den Raumwinkel findet man für die gesamte Strahlungsleistung

Pklass =
q2 a2

6πε0c3
. (3.59)

Hierin ist a2 = a20/2 der zeitliche Mittelwert des Quadrats der Beschleunigung. Gleichung (3.59) ist die
Larmorformel der klassischen Elektrodynamik.
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Quantentheoretische Herleitung der Strahlungleistung
Jetzt wollen wir dies Problem mit der Quantentheorie behandeln. Die oszillierende Ladung ist ein
harmonischer Oszillator mit den in Kap. 1 angegebenen Wellenfunktionen ψν und den Energiewerten
Eν = (ν + 1/2) ~ω (die Quantenzahl des Oszillators wird hier mit ν bezeichnet, um Verwechslungen mit
der Photonenzahl n zu vermeiden). Um die Formel (3.59) quantentheoretisch herzuleiten, multiplizieren
wir Gl. (3.42) mit ~ω, denn die abgestrahlte Leistung ist das Produkt der Übergangswahrscheinlichkeit
pro Zeiteinheit und der Photonenenergie.

Pquan = wspon ~ω =
e2

π ε0 c3
|xfi|2 ω4 .

Diese Formel ist noch nicht ganz korrekt, man muss die sin2 θ-Abhängigkeit der abgestrahlten Intensität

berücksichtigen. Der über den Raumwinkel gemittelte Wert von sin2 θ ist sin2 θ = 1/3. Damit wird

Pquan = wspon ~ω =
e2

3π ε0 c3
|xfi|2 ω4 . (3.60)

Die Abstrahlung eines Photons ist gekoppelt mit einem Übergang ψi = ψν → ψf = ψν−1. Das Matrix-
element für diesen Übergang ist nach Gl. (1.18)

xfi = xν−1, ν =

√
ν ~

2mω
, |xfi|2 =

ν ~ω
2mω2

. (3.61)

Nun ist ν ~ω = Eν − ~ω/2 die Anregungsenergie des Anfangszustands ψi = ψν , die wir gleichsetzen
müssen mit der klassischen Energie des Oszillators vor der Abstrahlung:

ν ~ω = Eklass =
ma20
2ω2

=
ma2

ω2
.

Setzt man dies in (3.60) ein, so folgt

Pquan = Pklass =
q2 a2

6πε0c3
. (3.62)

Das quantentheoretische Ergebnis stimmt perfekt mit dem klassischen überein. Bei Landau-Lifschitz [3]
findet man den kryptischen Satz, dass diese Übereinstimmung ein Zufall sei.

Dipolstrahlung als erzwungene Strahlung
Die obige Behandlung der Dipolstrahlung hat Tradition, man findet sie in Lehrbüchern der Quantenme-
chanik wie z.B. [6]. Sie beschreibt aber im Grunde nur die halbe Wahrheit. Die Ursache der Oszillation
wird in dieser Modellrechnung ignoriert, und deswegen kann die Abstrahlung auch nur “spontan” sein,
da in dem Modell keine anregenden Kräfte existieren. Nun ist völlig klar, dass eine periodische Anre-
gung unverzichtbar ist. Eine Senderantenne kann nur dann Radiowellen emittieren, wenn ihr von einem
Hochfrequenzverstärker permanent Leistung zugeführt wird. Es ist daher naheliegend zu fragen, ob die
Dipolstrahlung auch einen Beitrag von der stimulierten Emission erhält. Die Antwort ist ja, aber wie groß
dieser Beitrag ist, hängt von der Frequenz ab und auch von der Art, wie die Dipolschwingung angeregt
wird.

Die Beziehung (3.55)
wstim

wspon
=
π2c2 I(ω)

~ω3
(3.63)

zeigt, dass die stimulierte Emission im Bereich sehr hoher Frequenzen (sichtbares Licht, UV- oder Rönt-
genstrahlung) normalerweise stark unterdrückt ist, außer im FEL. Regen wir ein Elektron durch Laserlicht
zu einer harmonischen Schwingung an, so ist die stimulierte Emission noch zusätzlich unterdrückt, weil
die Abstrahlungscharakteristik eines Dipols völlig anders aussieht als die annähernd ebene Lichtwelle des
Lasers.

Die stimulierte Emission dominiert bei niedrigen Frequenzen, sofern die spektrale Intensität I(ω) der
einfallenden Strahlung hinreichend groß ist. Das ist in Radio- oder Fernsehsendern generell der Fall. Eine
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wesentliche Eigenschaft eines Radio- oder Fernsehsenders ist, dass makroskopische elektromagnetische
Wellen ausgestrahlt werden, die eine hohe Intenstät haben und nahezu monochromatisch sind. Dies
erfordert eine feste Phasenkorrelation zwischen den ungeheuer vielen Photonen in der Welle. Jedes
Photon muss also mit einer starren Phasenbeziehung relativ zum erregenden Feld emittiert werden. Mit
dem Mechanismus der spontanen Emission ist das unmöglich. Ein Fernsehsender basiert deswegen auf
der stimulierten Emission.

Der Prototyp eines Hertzschen Dipols ist eine Stabantenne der Länge λ/2, in der ein periodischer Strom
fliesst

I(t) = I0 cos(ωt) .

Die Antenne sendet Kugelwellen aus, deren Amplitude mit sin(θ) moduliert ist. Der Strom I(t) wird
nicht durch eine ebene Welle der Frequenz f = ω/(2π), sondern durch einen Hochfrequenzverstärker
erzeugt. Man könnte sich vorstellen, dass an Stelle des HF-Verstärkers einlaufende Kugelwellen zur
Anregung benutzt werden. Die für dies Problem relevanten Photonen-Zustände sind daher nicht die
in der Quantenfeldtheorie (QFT) verwendeten ebenen Wellen, sondern Kugelwellen. Eine in diesem
Sinn konstruierte QFT könnte möglicherweise zu dem Ergebnis führen würde, dass die Emission eines
Hertzschen Dipols stimuliert ist. Ich schlage dies nicht ernsthaft vor, es ist nur eine Gedankenspielerei.

3.6 Quantentheoretische Aspekte der Undulatorstrahlung

Die Elektronen der Energie We � mec
2 durchlaufen den Undulator auf einer Wellenbahn. Ihre mittlere

Geschwindigkeit in z-Richtung ist nach Ref. [9]

v̄z =

(
1− 1

2γ2

(
1 +

K2

2

))
c ≡ β̄ c mit γ =

We

mec2
=

1√
1− β2

, β = v/c (3.64)

und dem Undulatorparameter

K =
eB0

mec ku
=

eB0λu
2πmec

.

In einem mitbewegten Koordinatensystem (x′, y′, z′), das die Geschwindigkeit v̄z entlang der Undula-
torachse hat, wird das statische periodische Magnetfeld des Undulators in ein oszillierendes elektromagne-
tisches Feld Lorentz-transformiert. Dieses Wechselfeld regt die Elektronen zu harmonischen transversalen
Schwingungen an und bewirkt auf diese Weise die Emission von Dipolstrahlung, die wir in Kap. 3.5 quan-
tentheoretisch berechnet haben. Die Strahlungsleistung im mitbewegten Koordinatensystem ist durch die
Larmorformel (3.59) gegeben. In Ref. [9] wird die Beschleunigung des Elektrons auf seiner Wellenbahn
berechnet. Die Strahlungsleistung lässt sich damit wie folgt schreiben

P ′ =
e2c γ2K2k2u

2πε0(1 +K2/2)2
. (3.65)

Das Undulatorfeld im mitbewegten System ist B′ = γB0, also zeigt Gl. (3.65), dass die abgestrahlte
Leistung proportional zur Energiedichte B′2/(2µ0) des elektromagnetischen Wechselfeldes ist

P ′ ∝ B′2

2µ0
=
n ~ω′

L3
. (3.66)

Die Emissionswahrscheinlichkeit ist proportional zur Zahl n der im Feld vorhandenen Photonen. Dies ist
das Kriterium I der stimulierten Emission. Das Kriterium II ist jedoch nicht erfüllt, denn es besteht nur
eine geringe Wahrscheinlichkeit, dass das Photon in den Quantenzustand der einlaufenden Welle, also
genau in z-Richtung, emittiert wird. In den meisten Fällen wird es andere Richtungen haben.

Bei der Analyse der Undulatorstrahlung befinden wir uns in einer Zwittersituation. Wenn wir als gege-
ben hinnehmen, dass die Elektronen im mitbewegten Korrdinatensystem wie harmonische Oszillatoren
schwingen, und nicht fragen warum sie das tun, so können wir die Strahlungsleistung mit der Formel
für spontane Emission berechnen, siehe Gl. (3.60). Aber wie ich schon in Kap. 3.5 gesagt habe, ist dies
nur die halbe Wahrheit. Die Anregung der Oszillation im mitbewegten System ist “stimuliert”. Ohne
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das Undulatorfeld würden die relativistischen Elektronen geradlinig durch das Vakuumrohr fliegen und
könnten aus kinematischen Gründen (Energie/Impuls-Erhaltung) keine Strahlung emittieren.

Die Undulatorstrahlung ist also mittelbar ein erzwungener Prozess: die Wellenbahn wird den Elektro-
nen durch das Feld des Undulators aufgezwungen, die nachfolgende Abstrahlung ist vorwiegend spontan
(man müsste mal numerisch untersuchen, wie groß der Beitrag der stimulierten Emission ist). Durch
Ändern der Feldstärke des Undulators können wir die Intensität der Strahlung in weiten Grenzen variie-
ren.

Undulatorstrahlung als Bremsstrahlung im Magnetfeld des Undulators
Man kann die Strahlung auch durch Bremsstrahlung der einlaufenden Elektronen am periodischen Ma-
gnetfeld des Undulatorfeldes erklären und sogar quantitativ berechnen, siehe die Pionierarbeit von John
Madey Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field [10]. Die Reaktionsrate ist
selbstverständlich proportional zum Quadrat des Magnetfeldes: dies ist ganz klar ein erzwungener Pro-
zess. Die Abstrahlung erfolgt aber nicht nur in Vorwärtsrichtung, sondern auch unter endlichen Winkeln.
Die emittierten Photonen nehmen also nicht alle den gleichen Quantenzustand ein, d.h. unser Kriterium
II ist verletzt, die Emission muss als spontan eingestuft werden. Madey zeigt weiterhin, dass die FEL-
Strahlung auf der stimulierten Emission beruht.
Ich habe die Arbeit von Madey noch nicht genau studiert.

Für die Erzeugung von Bremsstrahlung verwendet man üblicherweise Schwermetalle mit hoher Kernla-
dung wie Blei oder Uran, da die Reaktionsrate proportional zu Z2 ist. Die Atomkerne übernehmen dabei
einen Rückstoßimpuls. Ohne Rückstoßpartner wäre die Emission eines Photons durch ein relativistisches
Elektron verboten, denn der Prozess e → e + γ würde den Energie-Impuls-Erhaltungssatz verletzen.
Als Rückstoßpartner kommen aber nicht nur einzelne Atomkerne in Frage, sondern auch Einkristalle
wie Diamant. Wenn die Kristallachsen mit hoher Präzision relativ zum einlaufenden Elektronenstrahl
einjustiert werden, so dass der Rückstoßimpuls mit einem reziproken Gittervektor übereinstimmt (an-
ders ausgedrückt, wenn man sich in einem Laue-Reflex befindet), übernimmt der gesamte Kristall den
Rückstoßimpuls. Mit dieser Methode sind in den 1960er Jahren bei DESY mit 6 GeV Elektronen linear
polarisierte und nahezu monochromatische Gammastrahlen mit einer Energie von 3.4 GeV erzeugt wor-
den, mit denen international beachtete Experimente zur Erzeugung von geladenen Mesonen durchgeführt
wurden.
Die Bremsstrahlung im periodischen Magnetfeld eines Undulators hat vermutlich Ähnlichkeiten mit der
Bremsstrahlung im periodischen Gitter eines Einkristalls. Darüber muss ich noch nachdenken.
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Kapitel 4

Weitere Betrachtungen zur Quantenfeldtheorie

4.1 Die tiefere Ursache spontaner Quantenübergänge

Wir haben gesehen, dass ein angeregtes Atom auf zwei Weisen in den Grundzustand übergehen kann,
durch stimulierte oder spontane Emission eines Photons. Die stimulierte Emission ist die Grundlage des
Lasers und wird durch ein bereits vorhandenes Strahlungsfeld induziert. Dieses Strahlungsfeld kann vom
Experimentator nach Belieben ein- und ausgeschaltet werden und auch in seiner Stärke variiert werden.
Die spontane Emission hingegen läuft von selbst ab, aber was ist die Ursache dafür?

Die spontane Emission ist eine durch Vakuumfluktuationen erzwungene Emission.

Diese Einsicht habe ich aus dem Physics Today Artikel von Victor Weisskopf [2] gewonnen, und ich
möchte einige Sätze aus diesem Artikel zitieren:

According to equation 5 spontaneous emission appears as a forced emission caused by the zero-point
oscillations of the electromagnetic field, which are always present, even in a space without any photons.
This was the start of an interesting development in theoretical physics. After Einstein had put an end to
the concept of aether, the field-free and matter-free vacuum was considered as a truly “empty space”. The
introduction of quantum mechanics changed this situation and the vacuum gradually became “populated”.
In quantum mechanics an oscillator cannot be exactly at its rest position except at the expense of an infinite
momentum, according to Heisenberg’s uncertainty relation. The oscillatory nature of the radiation field
therefore requires zero-point oscillations of the electromagnetic fields in the vacuum state, which is the
state of lowest energy. The spontaneous emission process can be interpreted as a consequence of these
oscillations.

Im tiefsten Energiezustand des elektromagnetischen Feldes, dem “Vakuum”, sind keine reellen Photonen
vorhanden, aber die Nullpunktsschwingungen existieren für alle zulässigen Werte von ω. Die Energie-Zeit-
Unschärferelation erlaubt einem Oszillator, für eine sehr kurze Zeit in einen Anregungszustand überzuge-
hen und danach in den Grundzustand zurückzukehren. Die bei diesen kurzlebigen Prozessen auftretenden
virtuellen Photonen sind es, die die angeregten Atome zu ihren “spontanen” Übergängen veranlassen. Die
Vakuumfluktuationen sind statistischer Natur, und mit der hier aufgeführten Deutung wird die statisti-
sche Natur der quantenmechanischen Übergänge auf die statistischen Fluktuationen des “leeren Raums”
zurückgeführt.

Wie kann man diese Vorhersagen der Quantenfeldtheorie experimentell beweisen? Die Idee ist, ange-
regte Atome in eine Art “Faraday-Käfig” zu sperren, der die Vakuumfluktuationen abschirmt, und dann
zu überprüfen, ob die Atome länger als normal im Anregungszustand bleiben. Ein Experiment dieser
Art ist von Serge Haroche und Mitarbeitern mit einem Cäsium-Atomstrahl durchgeführt worden. Als
Abschirmung dienten zwei sehr ebene parallele Metallplatten oberhalb und unterhalb des Atomstrahls
(Abb. 4.1), deren Abstand d = 1,1µm kleiner als die halbe Wellenlänge der beim Übergang 5d → 6s
emittierten Strahlung war (λ = 3,5µm). Eine elektromagnetische Welle der Wellenlänge λ = 3,5µm kann
sich im Raum zwischen den Platten ungehindert ausbreiten, sofern ihr elektrischer Vektor senkrecht auf
den Platten steht. Ist aber der E-Vektor parallel zu den Platten, so wird die Welle exponentiell abge-
schwächt und dringt weniger als eine Wellenlänge in den Zwischenraum ein. Mit einem Detektor wurde
die Zahl der angeregten Cs-Atome als Funktion des Winkels zwischen dem E-Vektor und den Platten
gemessen. Bei paralleler Ausrichtung (0◦, 180◦) wurde eine hohe Zählrate gemessen, bei senkrechter
Ausrichtung (90◦) erreichte kein einziges angeregtes Atom den Detektor. Die Auswertung des Experi-
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Abbildung 4.1: Unterdrückung der spontanen Emission durch “Abschirmung” der Vakuumfluktuatio-

nen. Links wird ein Schema des Experiments gezeigt, rechts ist die Zählrate der angeregten Cs-Atome A∗

als Funktion des Winkels zwischen dem E-Vektor und den Platten aufgetragen. Gezeichnet nach einer

Skizze von S. Haroche mit freundlicher Genehmigung des Urhebers.

ments ergab, dass bei der parallelen Ausrichtung eine 13-fache Verlängerung der natürlichen Lebensdauer
gemessen wurde.

Es sind auch Experimente mit angeregten Atomen in metallischen Hohlräumen (cavities) durchgeführt
worden, die Vakuumfluktuationen jeglicher Polarisation abschirmten (siehe [7], [8]). Der spontane Zerfall
konnte komplett zum Erliegen gebracht werden.

Diese experimentellen Befunde sind ganz offensichtlich in Widerspruch zu Formel (3.43). Diese Formel
wird jedoch falsch, wenn man das Atom in einen metallischen Hohlraum einsperrt, dessen Dimensionen in
der Größenordnung der Lichtwellenlänge liegen. Die periodischen Randbedingungen (2.2) werden außer
Kraft gesetzt, wodurch sich die Zustandsdichte und die Emissionswahrscheinlichkeit drastisch verringern.

Spontane Übergänge in der Kern- und Teilchenphysik
Es gibt viele weitere Typen spontaner Quantenübergänge, die ohne Einwirkung eines Experimentators
ablaufen und die keiner Weise von außen beeinflusst werden können. Dazu zählen vor allem die radio-
aktiven Zerfälle von Atomkernen und instabilen Elementarteilchen. Beim β−-Zerfall wandelt sich ein im
Atomkern gebundenes Neutron in ein Proton, ein Elektron und ein Neutrino um. Dies ist der Prototyp
eines spontanen Zerfalls. Man hat bis heute keine Möglichkeit gefunden und wird sie wahrscheinlich auch
niemals finden, diesen Prozess zu stoppen oder zu beschleunigen. Diese Nichtkontrollierbarkeit führt
zu schwerwiegenden Problemen. Die bei der Kernspaltung in einem Reaktor entstehenden Tochterkerne
haben einen Neutronenüberschuss und sind alle radioaktiv. Es wäre außerordentlich nützlich, wenn man
den langlebigen radioaktiven Müll durch geeignete Massnahmen zur schnellen Abstrahlung stimulieren
und ihn dadurch unschädlich machen könnte.

Warum geht das prinzipiell nicht? Die Feldquanten der (geladenen) schwachen Wechselwirkung sind
die W+- und W−-Bosonen mit Spin 1, die sich von den Photonen in zweierlei Hinsicht unerscheiden:
(1) sie haben eine sehr hohe Ruhemasse von 90 Protonenmassen und (2) sie zerfallen mit extrem kurzer
Lebendauer. Es erscheint völlig ausgeschlossen, ein dem optischen Laser analoges Gerät zu konstruieren
mit einem kohärenten W -Bosonen-Strahl, der die radioaktiven Kerne zur Abregung stimuliert.

4.2 Das Problem der Nullpunktsenergien

Werden alle Wellen in Gl. (2.3) zugelassen, erhalten wir den Hamiltonoperator (2.19), dessen Energieni-
veaus durch folgende Formel beschrieben werden

E =
∑
k, s

(
nk +

1

2

)
~ωk nk = 0, 1, 2, .... (4.1)
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Die Zahl nk gibt die Anzahl der Photonen mit Wellenzahlvektor k an. Der Grundzustand des elektro-
magnetischen Feldes, auch Vakuumzustand genannt, liegt vor wenn alle nk = 0 sind. Das Problem ist
jedoch, dass jede Schwingungsmode dann immer noch eine Nullpunktsenergie von ~ωk/2 hat. Da die mi

in Gl. (2.4) alle ganzen Zahlen durchlaufen können, gibt es unendlich viele k-Vektoren, und sieht es so
aus, als habe der Vakuumzustand eine unendlich große Nullpunktsenergie. Dies ist eine der Divergenzen
der Quantenelektrodynamik, die zeigt, dass die Theorie noch nicht vollständig ist (s. Landau-Lifschitz).

W. Heitler argumentiert, dass die vermeintliche Unendlichkeit der Nullpunktsenergie des Vakuums
formaler Natur sei. Er zeigt, dass der Übergang von der klassischen Theorie zur Quantentheorie nicht
eindeutig ist. Die Hamiltonfunktion (2.13) kann auch durch die Feldamplituden ak und a∗k ausgedrückt
werden, siehe Gl. (2.7).

H = ε0L
3
∑
k, s

ω2
k (aka

∗
k + a∗kak) (4.2)

Die Amplituden ak und a∗k sind komplexe Zahlen, die vertauschbar sind. Also darf man mit gleicher
Berechtigung schreiben

H ′ = ε0L
3
∑
k, s

ω2
k 2 a∗kak , (4.3)

und es gilt H ′ = H. Macht man den Übergang zur Quantentheorie, so ergeben H und H ′ jedoch
verschiedene Hamiltonoperatoren

Ĥ = ε0L
3
∑
k, s

ω2
k (âkâ

∗
k + â∗kâk) , Ĥ ′ = ε0L

3
∑
k, s

ω2
k 2 â∗kâk . (4.4)

Es gilt Ĥ ′ 6= Ĥ, weil die Operatoren âk und â∗k nicht vertauschbar sind. Rechnet man auf die Operatoren

auf die Q̂k und P̂k um, so nimmt Ĥ wie erwartet die Gestalt (2.19) an, aber Ĥ ′ sieht anders aus:

Ĥ ′ =
∑
k, s

[
1

2
(P̂ 2

k + ω2 Q̂2
k)− 1

2
~ωk

]
. (4.5)

Dieser Hamiltonoperator hat die Eigenwerte

E =
∑
k, s

nk~ωk nk = 0, 1, 2, .... (4.6)

Das Problem der unendlich großen Nullpunktsenergie des Vakuums wäre damit beseitigt.
Ich finde diese Argumentation nicht überzeugend, sie erscheint mir wie ein Taschenspielertrick. Wenn

es durch Herumbasteln an der klassischen Hamiltonfunktion möglich ist, unterschiedliche quantenmecha-
nische Resultate zu erhalten, ist dies meiner Meinung nach ein Hinweis, dass die gängige Methode zur
“Herleitung” der Quantentheorie aus dem klassischen Hamiltonformalismus, die darin besteht, die kano-
nischen Variablen durch die betreffenden Operatoren zu ersetzen, nur mit Vorsicht und einer gewissen
Skepsis angewandt werden sollte.

Die Notwendigkeit der Nullpunktsenergie
Der Trick, die problematischen Nullpunktsenergien des quantisierten Strahlungsfeldes unter den Tep-
pich zu kehren, könnte meiner Ansicht nach auch auf den ganz normalen harmonischen Oszillator der
Quantenmechanik angewandt werden. Dazu gehen wir von dritten Darstellung des Hamiltonoperators in
Gl. (1.7) aus

Ĥ =
~ω
2

(
Ĉ+Ĉ− + Ĉ−Ĉ+

)
.

Geht man jetzt einen Schritt zurück in den klassischen Hamiltonformalismus und ersetzt die Operatoren
Ĉ+ und Ĉ− durch die entsprechend definierten komplexen Koeffizienten:

C+ =
1√

2 ~ω
(−i P + ωQ) , C− =

1√
2 ~ω

( i P + ωQ) ,

so lautet die Hamiltonfunktion

H =
~ω
2

(
C+C− + C−C+

)
.
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Da die komplexen Zahlen C+ und C− vertauschbar sind, kann man die Hamiltonfunktion auch in folgender
Form schreiben

H = ~ω C+C−

Der Übergang in die Quantentheorie ergibt dann einen modifizierten Hamiltonoperator

Ĥ ′ = ~ω Ĉ+Ĉ− , (4.7)

der die Eigenwerte En = n ~ω hat. Die Nullpunktsenergie tritt nicht mehr auf.
Das ist völlig unakzeptabel. Ein harmonischer Oszillator ohne Nullpunktsenergie wäre eine Kata-

strophe für die Quantentheorie: die Heisenberg’sche Unschärferelation wäre in eklatanter Weise verletzt,
denn aus E0 = 0 folgt ∆x ·∆p = 0.

Es gibt aber nicht nur theoretische Argumente für die Existenz der Nullpunktsenergie, es gibt auch
experimentelle Beweise. Ein schönes Beispiel findet man in den Vibrationsbewegungen zweiatomiger
Moleküle. Infolge der kovalenten Bindung besteht eine anziehende Wechselwirkung zwischen den beiden
H-Atomen im Wasserstoffmolekül. Die potentielle Energie ist in Abb. 4.2 als Funktion des Kernabstands
aufgetragen. In der Nähe des Gleichgewichtsabstands R0 hat das Potential einen annähernd parabelförmi-

Molekülphysik Die Kovalente Bindung
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Abbildung 4.2: Die potentielle Energie des H2-Moleküls als Funktion des Kernabstands R.

gen Verlauf, und man erhält die äquidistanten Energieniveaus eines quantenmechanischen harmonischen
Oszillators, was durch die Messung der Vibrationsspektren leicht nachweisbar ist. (Mit wachsendem
Kernabstand flacht das Potential ab im Vergleich zu einer Parabel, und der Abstand der Niveaus wird
geringer). Als Dissoziationsenergie Ediss bezeichnet man die Energie, die aufgewendet werden muss, um
das Molekül in zwei getrennte, weit voneinander entfernte Atome zu zerlegen. Man könnte vermuten,
dass Ediss = V (∞)− V (R0) ist, also gleich der Differenz zwischen der potentiellen Energie von zwei weit
voneinander entfernten Atomen und der potentiellen Energie am Gleichgewichtsabstand. Diese einfache
Beziehung muss durch die Nullpunktsenergie modifiziert werden, denn der energetisch tiefste Zustand ist
nicht V (R0), sondern V (R0) + ~ω/2. Es gilt also

Ediss = V (∞)− [V (R0) + ~ω/2] . (4.8)

Wenn man sich auf den normalen Wasserstoff beschränkt, hilft diese Gleichung nicht allzuviel, da das
Potential V (R) nicht mit hinreichender Genauigkeit bekannt ist. Zusätzlich muss man die mit schwerem
Wasserstoff (Deuterium) gebildeten Moleküle HD und D2 analysieren. Der Potentialverlauf V (R) hängt
nur von den Kernladungen und der Elektronenwolke ab und ist identisch bei den drei Molekültypen H2,
HD und D2, der Gleichgewichtsabstand ist R0 = 0 74·10−10m in allen drei Fällen. Die Vibrationsfrequen-
zen hängen dagegen von den reduzierten Massen der drei Moleküle ab und unterscheiden sich deutlich
:

ωD2
=

1√
2
ωH2

, ωHD =

√
3

2
ωH2

Die gemessenen Dissoziationsenergien der Moleküle H2, HD und D2 sind in der Tat verschieden und
erlauben die Bestimmung der Nullpunktsenergien. Damit ist deren Existenz zweifelsfrei bewiesen.
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Gibt es einen Unterdrückungsmechanismus extrem hoher Frequenzen?
Die Formel (2.5) zeigt, dass die Zahl der elektromagnetischen Eigenschwingungen in einem Kasten qua-
dratisch mit der Frequenz anwächst. Demnach sollte es eine Million mal mehr γ-Quanten mit 1 GeV als
mit 1 MeV geben, eine Million mal mehr γ-Quanten mit 1 TeV als mit 1 GeV, eine Million mal mehr
γ-Quanten mit 1000 TeV als mit 1 TeV.... und so weiter, bis ins Unendliche. Ich halte diese Sichtweise
für völlig absurd, und eine Theorie, die darauf beruht, kann gar nicht richtig und in sich konsistent sein.

Die kritiklose Anwendung der Formel (2.5) führte zur sog. “Ultraviolettkatastrophe” der Strahlung
des schwarzen Körpers1, die Ende des 19. Jahrhunderts das Weltbild der klassischen Physik erschütterte.
Die klassische Rayleigh-Jeans-Formel für die spektrale Energiedichte ergab sich, indem man die Zustands-
dichte (2.5) mit der mittleren thermischen Energie eines harmonischen Oszillators multiplizierte, die nach
dem Gleichverteilungssatz der Thermodynamik den Wert kBT hat

uklass(ω) dω = ρ(ω) kBT dω =
ω2

π2c3
kBT dω . (4.9)

Diese Formel widerspricht dem Energiesatz und allen experimentellen Beobachtungen.

Der 14. Dezember 1900 war gewissermaßen der Geburtstag der Quantentheorie: Max Planck stellte auf
der Tagung der Deutschen Physikalischen Gesellschaft seine Theorie der Strahlung des schwarzen Körpers
vor, mit der ihm eine quantitative Beschreibung gelang. Der Preis dafür war hoch. Planck musste den
Boden der klassischen Physik verlassen und die Annahme machen, dass die Schwingungsenergie der
beteiligten Atome oder Moleküle quantisiert und proportional zur Frequenz ist: E = h ν mit einer neuen
Naturkonstanten h, dem Planckschen Wirkungsquantum. Die von Planck hergeleitete Strahlungsformel
lautet

uPlanck(ω) dω = ρ(ω)
~ω

e~ω/(kBT ) − 1
dω =

ω2

π2c3
~ω

e~ω/(kBT ) − 1
dω . (4.10)

Was ist neu im Vergleich zur Rayleigh-Jeans-Formel? Die mittlere thermische Energie eines Quantenos-
zillators ist nicht kBT , sondern

E =
~ω

e~ω/(kBT ) − 1
. (4.11)

Die Nullpunktsenergie ~ω/2 ist hier subtrahiert worden, die Gleichung beschreibt also präzise gesagt die
thermische Anregungsenergie. Bei niedrigen Frequenzen (~ω � kBT ) strebt E gegen den klassischen
Wert kBT , aber bei hohen Frequenzen geht E gegen null. Mit anderen Worten: hohe Frequenzen werden
durch die Quantentheorie stark unterdrückt, und der Grenzfall ω →∞ tritt überhaupt nicht auf.

Meine Vermutung ist, dass für die Nullpunktsschwingungen ein ähnlicher Unterdrückungsmechanismus
extrem hoher Frequenzen existieren sollte, aber man braucht wohl einen Physiker vom Format Max
Plancks, um dies theoretisch zu rechtfertigen. Sollte die Vermutung richtig sein, so wäre die Energie des
Vakuumzustands endlich, und die Nullpunktsenergien der Schwingungsmoden mit endlicher Frequenz
könnten beibehalten werden.

1Unter einem schwarzen Körper versteht man einen Körper, der alle einfallende Strahlung zu 100% absorbiert.
Eine mattschwarz gefärbte Metall- oder Kunststoff-Oberfläche erfüllt dies Kriterium nur unvollkommen. Die beste
Approximation ist ein Hohlraum mit dunklen Wänden, in den die Strahlung durch ein kleines Loch eintritt. Durch
vielfache Absorption und Reflexion im Innern wird die Strahlung immer weiter abgeschwächt, und es besteht nur
eine sehr geringe Wahrscheinlichkeit, dass Strahlung durch das Loch wieder entweicht. Diese Öffnung sieht also
sehr “schwarz” aus.
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