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Kapitel 1

Algebraische Behandlung des harmonischen Oszillators

In diesem Artikel mochte ich einige Grundziige der Quantisierung des elektromagnetischen Strah-
lungsfeldes besprechen. Das Ziel ist es, fiir die Begriffe spontane Emission, stimulierte Emission
und Absorption von Strahlung eine solide theoretische Grundlage zu schaffen. In der zuerst von
Paul Dirac entwickelten Quantentheorie des elektromagnetischen Feldes spielt die Quantenme-
chanik des harmonischen Oszillators eine herausragende Rolle. Aus diesem Grund wird der Os-
zillator in Kapitel 1 in aller Ausfiihrlichkeit behandelt, jedoch nicht durch analytische Losung der
Schrodingergleichung, da diese Gleichung zwar schwingende Atome in Molekiilen oder Kristallen
sehr gut beschreiben kann, aber ungeeeignet ist, die Schwingungsmoden eines Strahlungsfeldes
zu behandeln. Stattdessen werden wir algebraische Methoden betrachten, die sich auf Strah-
lungsfelder iibertragen lassen. Kapitel 2 ist der Quantentheorie des elektromagnetischen Feldes
gewidmet. In Kapitel 3 wird die Absorption und Emission von Strahlung durch Atome mit
den Methoden der quantenmechanischen Stérungsrechnung analysiert und mit den Ausagen der
Quantenfeldtheorie verglichen. Die Wahrscheinlichkeit fiir spontane Emission wird auf der Ba-
sis der Quantenfeldtheorie berechnet. Die Strahlungsleistung einer schwingenden Ladung wird
quantentheoretisch berechnet, sie stimmt mit der klassischen Larmorformel iiberein. Daran
anschliefend werden die quantentheoretischen Aspekte der Undulatorstrahlung behandelt. In
Kap. 4 wird auf die Rolle der Vakuumfluktuationen und das Problem der Nullpunktsenergien
des quantisierten Strahlungsfeldes eingegangen.

1.1 Aufsteige- und Absteigeoperatoren

Als Beispiel eines harmonischen Oszillators wéhlen wir eine Masse m, auf die eine riicktreibende
Federkraft F, = —k x wirkt. Dies trifft auf Atome in Molekiilen oder Kristallen zu. Die klassische
Hamiltonfunktion ist die Summe von kinetischer und potentieller Energie.

2 2 1
H:p—+ﬁx2:p—+fmw2x2, w? =

A (1.1)
2m 2 2m = 2 m

Um die im folgenden beschriebene algebraische Methode auch auf andere Fille anwenden zu
konnen, beispielsweise auf elektromagnetische Strahlungsfelder, erweist es sich als niitzlich, die
Masse zu eliminieren. Das wird gemacht, indem wir verallgemeinerte Koordinaten und Impulse
einfiihren:

Q=+vmz, P= (1.2)

Bl

Damit lautet die Hamiltonfunktion

H= % (P? +42Q?). (1.3)



Die Hamiltonschen Gleichungen sind erfiillt:

. oH o
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Der Ubergang zur Quantentheorie wird gemacht, indem man die verallgemeinerten Koordinaten
und Impulse durch Operatoren ersetzt, die den quantenmechanischen Vertauschungsregeln von
Orts- und Impulsoperator geniigen:

QP - PQ=(Vmi) =~ —= (Ym&) =2p—pr =ih. (1.4)

Zur Erinnerung: In der Quantenmechanik bedeutet die Anwendung des Ortsoperators die Multiplika-
tion der Wellenfunktion mit der Ortskoordinate, die Anwendung des Impulsoperators die Ableitung der
Wellenfunktion:

o

Oz

Diese Operatoren sind nicht vertauschbar, der Kommutator ist

Fo=av, po=—ihon
G5 —palv = ihv.

Aus GI. (1.3) folgt fiir den Hamiltonoperator
m_Lise a0
H:§(P +w Q). (1.5)

Impuls- und Ortsoperator treten hier quadratisch auf. Unser Ziel ist es, H als Produkt von zwei Opera-
toren darzustellen die linear in p und Z sind. Bei komplexen Zahlen ist eine solche Umformung einfach:
u? +0v? = (iu+ v)( iu+v). Mit Operatoren wird es komplizierter, da Q und P nicht kommutieren. Wir
definieren die folgenden Operatoren

Q)
€
o
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|
o

(1.6)

Diese Operatoren sind reell, da i P = (h//m)d, reell ist. Weiterhin gilt: C'* ist der adjungierte Opcrator
zu C~ und umgekehrt. Dies folgt aus der Definitionsgleichung (1.6) und der Tatsache, dass Q und P
selbstadjungierte Operatoren sind: Qf = @ und Pt = P. Wir berechnen (C+) explizit:

1 ~ ~
= (i Pl+wQl) =

Ganz entsprechend beweist man die Beziehung

(CHF=C.

17Zu einem Operator A definiert man den adjungierten Operator A" durch die Gleichung
+oo B - +oo ~ .
| e @@= [ (@) v ds.

Ein Operator heifit selbstadjungiert oder hermitesch, wenn At =4 gilt. Die Eigenwerte selbstadjungierter Ope-
ratoren sind reell. Fiir weitere Details siehe [1], Anhang C.



Jetzt bilden wir das Produkt der Operatoren (1.6).

o 1 . . . .
+ — — _-P .P
crtc —%w( iP+wQ)(+iP+wQ)
_ 1 52 2 A2 A5 5A
- %W(P tw Q)+2h(QP PO).

Daraus folgen die wichtigen Darstellungen des Hamilton-Operators durch Produkte der linearen C-
Operatoren:

~ o~ 1 PPN 1 L~ o
H = hw <C+c— + ) = hw (c—c+ - ) _ e (c+c— + c—o+) . (1.7)
2 2 2
Der Kommutator von C+ und O~ ergibt sich zu
[C~,Ct]=C~C*-C*C=1. (1.8)

Wir werden sehen, dass C* dem Aufsteigeoperator j+ im Drehimpulsformalismus entspricht und C-

dem Absteigeoperator J_.
Sei ¥ eine Eigenfunktion des Hamiltonoperators mit dem Eigenwert E. Jetzt kommt der entscheidende
Schritt.

Behauptunyg : R
(1) ¢ = C T ist eine Eigenfunktion von H mit dem Eigenwert E + hw,
(2) x = C~ 7 ist eine Eigenfunktion von H mit dem Eigenwert E — fiw (sofern C~ 1 # 0 ist).

Beweis : R
Wir wenden den Hamiltonoperator (1.7) auf ¢ = C 4 an.

Py PO hw ~ . PPN 1 ~
— + A-0+ WA+ — A+ +o- 4 2 +
H¢ = hwC FC w+201/) C hw(CC +2)w+thw
Cc+

O-+1
Ey

= (E+hw)Cry. (1.9)
Es gilt also wie behauptet

-~

H¢=(E+hw)d.
Ganz entsprechend beweist man R
Hx=(E-hw)x.

Der Absteigeoperator C~ vermindert die Energie des Oszillators in diskreten Schritten von Aw. Die
Energie darf aber nicht negativ werden, denn der Minimalwert der potentiellen Energie V (z) = (k/2)z? ist
V(0) = 0, und die kinetische Energie ist immer > 0. Es muss daher eine minimale Energie Fy existieren,
und die Anwendung von O~ auf die zugehorige Eigenfunktion ¢y darf keine weitere Eigenfunktion von
H mit noch niedrigerer Energie ergeben. Das ist gewéhrleistet, wenn

C™Po=0

wird, denn damit hért die Absteigeleiter auf. Was bedeutet diese Bedingung? Wir multiplizieren die
Gleichnung C~ )y = 0 von links mit Aw CT und erhalten

~ A ~  w
OZMC+C_w0: (H—2> 'l/]o.
Daraus folgt

Hyy = %1/)0 = Eoto . (1.10)

Damit ist bewiesen, dass die minimale Energie des harmonischen Oszillators den Wert Fy = fw/2 hat
und dass die Energiewerte allgemein durch die Formel

1
En:<n+2>hw7 n=0,1,23... (1.11)

gegeben sind.



1.2 Die Wellenfunktionen des Oszillators

Die Wellenfunktion des Grundzustands lasst sich leicht berechnen. Aus

~_ 1 h d
c woz\/%(\/mder\/ﬁwx)wo:O

folgt die Differentialgleichung

mit der Losung

Wendet man wiederholt den Aufsteigeoperator an, so ergeben sich aus 1 die Eigenfunktionen ¢ (x), ¥a(x), ¥3(x), ...

allerdings nicht mit der korrekten Normierung.
b1(x) o< CF o (), a(x) oc CFepy(x)  ha(x) ox CHpa(a) ...

Die korrekt normierten Eigenfunktionen lauten

() = (%)1/4 \/;Tn' Hy(u) exp(—u?/2) mit u= % z. (1.12)
Die H,,(u) sind die Hermite’schen Polynome
Hoy(u) = 1, Hy(u) =2u, (1.13)
Hy(u) = 4u® -2, Hs(u) = 8u® — 12u,...
Alle diese Funktionen haben die Norm 1
ki) = [~ wnla)inte) o = 1. (1.14)

Anwendung der Leiteroperatoren

Wir wollen nun die Wirkung der Leiteroperatoren auf die Wellenfunktionen (1.12) quantitativ analysieren.
Wir wissen bereits, dass 6“‘1% proportional zu 41 ist und 6‘1% proportional zu ,_1, aber die
Proportionalitéitskonstanten sind noch unbekannt.

Behauptung :

6+1/)n =vn+ 1¢n+1 ) 5_1% = ﬁ¢n—1 . (1.15)

Beweis :
Um die erste Relation zu beweisen, machen wir den Ansatz

¢ = 6+1/)n = Cn wn—kl

mit einer unbekannten reellen Zahl? ¢,. Zur Bestimmung von ¢, berechnen die Norm von ¢ auf zwei
Wegen.

(1) (¢lo) = ‘Cn‘2<'¢)n+l‘7/]n+1>zcgz'
@) (@) = (CHalC ) = [ (€ un(@) CFunla)do.

2Der Koeffizient ¢, ist reell, weil C ein reeller Operator ist.



Jetzt wird ausgenutzt, dass C+ der adjungierte Operator zu C- ist, um den Ausdruck (2) umzuformen.

/ T (G (@) () da / () E n(2)* () du

_ / (G~ CF b (@) W (2) da .
Aus Gl (1.7) folgt
o0t =LA+l o G0ty =t 1)

w2
Die Kombination der Auswertungen (1) und (2) ergibt ¢, = v/n + 1, was zu beweisen war. Der Beweis
der Relation

a_wn = ﬁ¢n—1

verlduft ganz analog. Aus der ersten Gleichung (1.15) folgt, dass man die normierten Wellenfunktionen

1, mit Hilfe der Formel
1

Vn!

aus der Wellenfunktion des Grundzustands berechnen kann.

Un (C*)"o (1.16)

1.3 Quanteniiberginge

In [1], Kapitel 10, werden die optischen Dipoliibergéinge in Atomen behandelt. Auch bei einer schwingen-
den Ladung ¢ kann es Dipoliibergéinge unter Emission oder Absorption von Strahlung geben. Wir wollen
untersuchen, wie sich dabei die Quantenzahl n dndert, und das Dipol-Matrixelement berechnen.

Behauptung :
Es gilt die Auswahlregel
An =+1. (1.17)

Beweis :
Bei einem Dipoliibergang miissen wir das Ubergangs-Matrixelement des elektrischen Dipolmoments ¢z
zwischen dem Anfangszustand ,, und dem Endzustand ,, berechnen:

qTmn = ¢ <¢m|§f‘¢n> = % <¢m|@|¢n> .

~ I h ~ ~
Q: E(O++C )7

d.h. wir miissen uns die Ubergangs-Matrixelemente der Aufsteige- und Absteigeoperatoren ansehen. Die
Gleichungen (1.15) zeigen, dass diese nur fiir m = n £ 1 von null verschieden sind.

Aus GL. (1.6) folgt

Das Matrixelement fiir einen Ubergang vom Anfangszustand (initial state) v; = v, in den Endzustand
(final state) 1y = ¢,—1 unter Emission eines Photons hat den Wert

nh
2mw

(1.18)

Tfi = Tn—1,n =



Kapitel 2

Quantisierung des elektromagnetischen Feldes

Dieser Abschnitt ist ein kurze Einfiihrung in die Quantentheorie des elektromagnetischen Feldes im Va-
kuum. Sie basiert auf einem hervorragenden Phyics Today Artikel von V. Weisskopf [2]. In der mathe-
matischen Formulierung folge ich den Lehrbiichern von L. D. Landau und E. M. Lifschitz [3], W. Heitler
[4] und R. Becker [5]. In diesen Biichern wird das Gaufi’sche Maflsystem verwendet, ich schreibe die
Formeln in SI-Einheiten um.

Sei A das Vektorpotential des freien elektromagnetischen Wellenfeldes, das der Coulomb-Eichung

V-A=0
geniigt. Das skalare Potential ist ® = 0. Das Vektorpotential erfiillt die Wellengleichung
1 92A
VA - - =0. 2.1
c? Ot? (2.1)

Um den Formalismus der Quantentheorie anwenden zu kénnen, geht man von den kontinuierlichen Varia-
blen der klassischen Elektrodynamik zu diskreten Variablen iiber, indem man die Felder nur in einem sehr
groBen, aber endlichen Kasten mit dem Volumen V = L2 betrachtet und periodische Randbedingungen
stellt. Dass bedeutet, jede Feldgréfie f(z,y, z) muss die Bedingungen

fx,y,2) = flx+ Ly,2) = fe,y + L,2) = f(x,y, 2+ L) (L>N) (2.2)

erfiillen. Die Kantenldnge L sollte extrem grofl im Vergleich zur Wellenldnge A sein. Die allgemeine
Losung der Wellengleichung (2.1) kann dann als Fourierreihe dargestellt werden

A(r,t) =3 en Lan(t) exp(ik - 7) + af,(t) exp(—ik - )] , k= |k| = %’f . (2.3)
k,s

Die komplexen Koeffizienten a;, enthalten die Zeitabhéingigkeit des Vektorpotentials, ay(t) « exp(—iwyt).
Die Polarisation der Wellen wird durch die Einheitsvektoren ey ; und eg o beschrieben, die wegen der
Coulomb-Eichung V - A = 0 senkrecht auf den zugehorigen Wellenzahlvektoren stehen (elektromagneti-
sche Wellen im Vakuum sind transversal) und die zueinander orthogonal sind

k°€k’3 = 0, €k,1'€k2 = 0.

Um die Periodizitdt des Vektorpotentials zu gewéhrleisten, miissen die Komponenten jedes der Wel-
lenvektoren wie folgt berechnet werden

2T 2 2T
k1=m1f, kzzmzf, k3:m377 (2.4)

wobei die m; beliebige ganze Zahlen sind. Es gibt unendlich viele k-Vektoren, aber wegen Gl. (2.4) ist
ihre Menge abzihlbar. Im Frequenzbereich lautet die Zustandsdichte der Photonen (siehe [1], Anhang B)

L3w?
pw) =
Dabei ist p(w) Aw die Zahl der im Normierungsvolumen L3 enthaltenen Eigenzustinde des elektroma-

gnetischen Feldes im Frequenzintervall [w,w+ Aw]. Die Zustandsdichte als Funktion der Energie F = hw
ist

o (2.5)

L3(hw)?  L3w?
F) = — = .
P(E) h3m2ce3 hm2c3

(2.6)



2.1 Hamilton-Formalismus

Fiir den Ubergang zur Quantentheorie ist es sinnvoll, kanonische Variable Qg, Py einzufithren, damit die
Energie des elektromagnetischen Feldes als Hamiltonfunktion geschrieben werden kann. Diese Variablen
werden wie folgt definiert

Qr(t) = Vel (ap +ay), Pr(t)=—iwrVeol3(ar —ap). (2.7)

Sie sind offensichtlich reell.
Die zeitlichen Ableitungen sind wegen a(t) x exp(—iwyt)

0Qk 0Py 9
= P, =5 . 2.
8t k > 8t kak ( 8)
Das Vektorpotential wird damit
1 1 .
A = ﬁ kg - ek7s |:Qk COS(k . T) — Jkpk Sln(k . T'):| . (29)

Um die weiteren Schritte und Gedankenginge zu verdeutlichen und die Nomenklatur zu vereinfachen,
greife ich zunéchst einen Term aus der Fouriersumme heraus, der eine in positiver z-Richtung laufende
ebene Welle mit horizontaler Polarisation beschreibt. Dann hat A nur eine xz-Komponente

Ag(z,t) =

1 1
cos(kz) — —Psin(kz2)| .
s Qo) - Gpsntes)
Die verallgemeinerten Koordinaten und Impulse werden mit ¢ und P bezeichnet; der Index k ist hier
unnotig und wird weggelassen, und auch die Zeitabhéngigkeit wird nicht explizit hingeschrieben. Die
Felder £ und B werden wie folgt berechnet:

E = _%, B=VxA
ot
und ergeben sich zu
1
E = D [Pcos(kz) —w@sin(k z)] ,

1
vV EoLS

Die Feldenergie ist identisch mit der Hamiltonfunktion des elektromagnetischen Feldes
€0 o2 L 2\ 53 €0 2 2132\ 13
H= — — d’r=— d’r. 2.1
/(28+2u03) r 2/(5+CB) T (2.10)

Die Integration erstreckt sich iiber das Volumen L3 des Kastens. Wenn wir die obigen Felder einsetzen
und quadrieren, so treten Produkte der Cosinus- und Sinusfunktionen auf, die wir im Integral durch ihre
Mittelwerte ersetzen kénnen:

B, [ kQsin(k z) — chos(k: z)} .

cos?(kz) =sin?(kz) =1/2, sin(kz)cos(kz) =0.
Damit wird die Hamiltonfunktion )
H=3 (P? +w?Q?). (2.11)
Dies ist ein auflerordentlich wichtiges Resultat:

Die Hamiltonfunktion einer elektromagnetischen Welle ist identisch mit der Hamiltonfunktion eines har-
monischen Oszillators.

Die Gleichungen (2.8) stimmen mit den Hamilton-Gleichungen iiberein:

. OH . OH



Diese Resultate lassen sich problemlos auf den allgemeinen Fall iibertragen, bei dem das Vektorpotential
durch die Fourierreihe (2.3) beschrieben wird. Beim Quadrieren der Felder treten viele gemischte Terme
der Form cos(k; - r) cos(k; - r) oder sin(k; - 7) sin(k; - r) auf, die sich aber bei der Integration iiber den
Raum alle wegmitteln:

cos(k;+r) cos(kj - r) =sin(k; - r) sin(k; -+ r) =0 wenn k; # k; .

Daher erhalten wir das einfache Resultat

1
H=>Y" 3 (P2 +wiQ}). (2.13)
k,s

Diese Hamiltonfunktion beschreibt ein Ensemble von abzdhlbar vielen harmonischen Oszillatoren, die
unabhéngig voneinander schwingen und nicht gekoppelt sind.

2.2 Ubergang zur Quantentheorie

Der Hamiltonformalismus erlaubt es, die Resultate direkt in eine quantentheoretische Form zu iiberfithren.
Zur Vereinfachung der Schreibweise betrachten wir zunéchst wieder den Fall, dass nur eine Schwingungs-
mode vorliegt. Die verallgemeinerten Koordinaten und Impulse () und P werden durch die Operatoren
Q@ und P ersetzt, und die Hamiltonfunktion (2.11) geht in den Hamiltonoperator H iiber

~ 1 ~ N
H= 5(P?+w2 Q%) . (2.14)
Der Index k ist hier unnétig und wird weggelassen. Gleichung (2.14) zeigt, dass wir den quantenmecha-
nischen Formalismus des harmonischen Oszillators anwenden kénnen. Inbesonders gibt es dquidistante
Energieniveaus
E,=nhw+hw/2, n=0,1,2,... (2.15)

Die ganze Zahl n gibt die Zahl der Photonen an, die alle die Energie fiw haben, und hw/2 ist die
Nullpunktsenergie des elektromagnetischen Feldes.
Die Eigenzusténde von H werden in Dirac-Schreibweise mit |n) benannt.

Hln)=(n+1/2)hw|n).

Der Grundzustand, auch Vekuum genannt, ist |0).
Die Leiteroperatoren des harmonischen Oszillators sind auch hier niitzlich

1 1
vV2hw vV2hw

Wenden wir diese Operatoren auf einen Zustand |n) an, so folgt aus Gl. (1.15)

Cct= (—iP+wQ), C = (iP+wQ). (2.16)

Ctiny=vn+1iln+1), Cln)=nln—1). (2.17)

Man nennt C* den Erzeugungsoperator eines Photons, weil er die Zahl der Photonen um 1 erhoht, und c-
heisst Vernichtungsoperator. Der Zustand |n) kann durch n-fache Anwendung des Erzeugungsoperators
aus dem Vakuumzustand gewonnen werden. Korrekt normiert lautet er

(CH)

In) = Wi

0). (2.18)

Im allgemeinen Fall mit unendlich vielen Schwingungsmoden lauten der Hamiltonoperator und die Ei-
genzustinde

N 1 - R
HZZ§(P,3+LU%Q2), |3nk77nk/7> (219)
k,s

10



Der Grundzustand (das absolute Vakuum) ist |0, 0, 0...).
Die Erzeugungs- und Vernichtungsoperatoren werden fiir jede Schwingungsmode definiert und erfiillen
die Vertauschungsrelation (1.8)

Co, G —CfCy =1. (2.20)
Die zu verschiedenen k-Vektoren gehorigen Leiteroperatoren sind vertauschbar

CrCh—CLCr=0 wenn k#K . (2.21)

Der allgemeine Eigenzustand des Hamiltonoperators wird durch wiederholte Anwendung der Erzeugungs-
operatoren aus dem Vakuumzustand gewonnen

(A;_)nk
e Mgy e ey Ny o) = 0,0,0...). 2.22
g V vl ) (222)

11



Kapitel 3

Emission und Absorption von Strahlung

Als Modellsystem betrachten wir ein Wasserstoff-Atom und beschrinken uns auf die beiden niedrigsten
Energieniveaus £y = Eis und E» = E3,. Wenn sich das Elektron im Grundzustand v, befindet, kann es
durch Absorption eines Photons (Lichtquants) der Energie hwy = Eo — E; in den angeregten Zustand v,
iibergehen. Fiir den Ubergang vom angeregten Zustand 1, in den Grundzustand v, unter Emission eines
Photons gibt es zwei Moglichkeiten: die spontane Emission, die “von selbst” ablduft, und die stimulierte
Emission, die durch ein bereits vorhandenes Strahlungsfeld induziert wird. In Abb. 3.1 sind die drei mit
Photon-Emission oder Photon-Absorption verkniipften Prozesse schematisch dargestellt.

A -1 — E2
ANANSS
ANNSS NN ANNS
ANNSS
Y Y Eq
Absorption spontane Emission stimulierte Emission

Abbildung 3.1: Absorption, spontane Emission und stimulierte Emission von Photonen. In allen drei
Féllen ist hwy = By — F1.

Die Absorption und die stimulierte Emission kénnen mit der quantenmechanischen Stérungsrech-
nung quantitativ berechnet werden. Dies wird im néchsten Abschnitt gezeigt. Die nichtrelativistische
Schrodingergleichung ist jedoch nicht imstande, die spontane Emission zu beschreiben, und selbst die re-
lativistische Diracgleichung ist dafiir ungeeignet. Die Eigenzustédnde des ungestorten Hamiltonoperators
sind stationdr: wenn sich das Elektron in einem angeregten Zustand befindet, so wird es - laut Quanten-
mechanik - fiir ewige Zeiten dort bleiben, es sei denn, eine externe Stérung bewirkt die Riickkehr in den
Grundzustand.

Um die spontane Emission zu erkéren, muss man nicht nur die Teilchen quantentheoretisch behandeln,
sondern auch noch das elektromagnetische Strahlungsfeld (diese von Paul Dirac eingefithrte Methode
wurde 2. Quantisierung genannt).

3.1 Absorption und stimulierte Emission in der Quantenmechanik

In der nichtrelativistischen Quantenmechanik wird die zeitabhéngige Stérungsrechnung angewandt, um
den Ubergang eines Elektrons von einem atomaren Energieniveau auf ein anderes unter dem Einfluss
elektromagnetischer Strahlung zu berechnen. Optische Ubergéinge werden durch eine “semi-klassische”
Methode erfasst: die Elektronen im Atom werden quantentheoretisch durch die Eigenfunktionen 1 des
Hamiltonoperators Hy beschrieben, wihrend das elektromagnetische Strahlungsfeld als klassisches os-
zillierendes Feld behandelt wird. Zur Vereinfachung betrachten wir ein elektrisches Wechselfeld in z-
Richtung, beispielsweise eine stehende Lichtwelle im optischen Resonator eines Lasers. Das Atom befinde
sich im Nullpunkt des Koordinatensystems. Das elektrische Feld am Ort des Atoms lautet

E.(t) = Ey coswyt = % (et 4 emiwety (3.1)
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Der zeitabhéngige Wechselwirkungsterm /W(t) ist in diesem Fall die potentielle Energie des Elektrons im
Feld &,(¢):

W\(t) =e& ()T = % (ewet ety (3.2)
so dass der Hamilton-Operator nun lautet
H(t)y=H +W(t) mit HO = g & (3.3)
2me, dmegr
Zum Zeitpunkt ¢ = 0 sei das Elektron im Zustand 1; (initial state, i = (n,1,my);).
Im Zeitbereich 0 < t < T erfiillt die Wellenfunktion die Schrédinger-Gleichung
maaif = (HO + W)y (3.4)

und ist daher keine Eigenfunktion von H©®_ Wir kénnen sie aber (bei einer “kleinen” Stérung) als

Linearkombination der Eigenfunktionen mit zeitabhingigen Koeflizienten ansetzen:
U(rt) = ci(O)bi(r,t) + ) ity (r, 1) (3.5)
J#i

mit der Anfangsbedingung ¢;(0) = 1, ¢;(0) = 0. Der gewiinschte Endzustand (final state) ¢ befindet
sich unter den ;.

Damit der Ubergang 1; — 1y mit einer signifikanten Wahrscheinlichkeit eintreten kann, muss die
Frequenz eine Resonanzbedingung erfiillen

wg’f-li|Ef—Ei|/h7 (36)

wobei eine gewisse Unschérfe zugelassen ist in Einklang mit der Unschirferelation. Diese Unschérfe
ergibt sich automatisch, wenn das Feld nur fiir eine kurze Zeit 0 < t < T einwirkt. Die Begrenzung
auf ein endliches Zeitintervall hat zur Folge, dass die elektromagnetische Strahlung nicht mehr exakt
monochromatisch ist, sondern ein endliches Frequenzband wy £ dw iiberstreicht mit dw =~ /T

Aufgrund der Resonanzbedingung dominiert in der Summe (3.5) der Term j = f so stark, dass man
die iibrigen Terme weglassen kann. Unsere vereinfachte Wellenfunktion lautet fiir ¢ > 0

1/’(7°,t) = Cl(t) ’(/)1'(1",t) +Cf(t) q/}Jc(,”'7t) . (37)
Einsetzen in die Schrodinger-Gleichung ergibt unter Benutzung der Gleichungen
NG PN O ~
Rt — Oy, | et A 2 ()
"ot Vi Vs
die folgende Differentialgleichung fiir die Koeflizienten ¢; und cy
ihei i) +iher [ur) = ci(t) W(E) [s) + cp(8) W(E) [thy) - (3.8)

Hier wird die Dirac-Schreibweise benutzt. Um die zeitliche Entwicklung der Amplitude cs(t) des End-
zustands zu ermitteln, wird die Gleichung skalar mit (¢¢| multipliziert und die Orthogonalitdt und
Normierung der v; ausgenutzt

ihicy = c;(8) (s |Ws) + cp(t) (s [W ) . (3.9)

Nun gilt fiir dies spezielle Potential

@iAWloy) ~ [lermPodr =0,
da der Integrand eine ungerade Funktion in x ist. Daher folgt

ihés = ci(t) (| W) . (3.10)

13



Wenn die Stérung W schwach ist und nur fiir kurze Zeit wirks, gilt |¢;(¢)| ~ 1 und |cf(¢)| < 1 im Intervall
0 <t < T, und wir erhalten die vereinfachte Gleichung

ihep = ci(0) (s [Wlhi) = (bW lhs) . (3.11)
Wir schreiben das sog. Ubergangs-Matrizelement des Storterms W explizit hin

(Wr W) = 20 exy; [el(‘“f’ﬁ“’”t + el(“’f'i_“’f)t] mit wp =ws —w; . (3.12)
Dabei ist
exy; =e (Y| T|;) = e/w;ﬁ(r) x i (r)d>r (3.13)

das Ubergangs-Matrixelement des elektrischen Dipolmoments. Die Integration iiber das Zeitintervall

0 <t < T ergibt
eilwsitw)T _ 1) etlwri—w)T _q

) &
T)=L eqyy 14
theg(T) = 5 exyi { wntwr) (e —w) (3.14)

Diese Gleichung beschreibt die Absorption von Strahlung fir den Fall £y > E; und die stimulierte
Emission fiir £y < Ej;.

Absorption von Strahlung
Der Absorptionsprozess tritt auf, wenn die Energie der Endzustands hoher als die des Anfangszustands
ist

Ef >FE = Wi > 0.
Der zweite Term in der eckigen Klammer von Gl. (3.14) hat einen Resonanznenner bei wy = wy; und
dominiert bei dieser Frequenz. Die Wahrscheinlichkeit, das Elektron nach Abschalten der Wechselwirkung
im Endzustand ¢¢ zu finden, ist durch das Absolutquadrat des Koeffizienten c;(T") gegeben

i(b.)f,i—wg)T _ 1|2

2 02
_weEOS

&2 le
T2 = 20 215,12 _
‘Cf( )l e |l‘f | (Wfi — UJ@)z 272

(Wg — wfi) |Z‘f¢|2 T (3.15)

mit der Funktion
sin? [(we — wyg)T/2]
(o.)g — wfi)27rT/2 ’

S(Wg - Wfi) = (3.16)
die fiir grofe T' eine sehr schmale Kurve ist, deren Maximum bei w; —wy; = 0 liegt (siehe Abb. 3.2). Fiir
T — oo geht sie in die Deltafunktion §(wy — wy;) tiber. Diese “Energieerhaltungs-Funktion” garantiert
die Erhaltung der Energie beim Strahlungsprozess in Einklang mit der Unschérferelation:

h
fwe=|Ey — E;| £ AE mit AE < T (3.17)
Die Wahrscheinlichkeit |cf(7)|? ist proportional zur Zeitdauer T' der Wechselwirkung. Dividiert man
durch 7" und integriert {iber das schmale Frequenzband der Lichtwelle, so ergibt sich die Ubergangswahr-
scheinlichkeit pro Zeiteinheit. Wir erhalten das wichtige Resultat:

s |zl (3.18)

Stimulierte Emission von Strahlung
Stimulierte Emission tritt auf, wenn die Energie der Endzustands niedriger als die des Anfangszustands
ist

Ef <FE = Wi < 0.
Der erste Term in der eckigen Klammer von Gl. (3.14) hat einen Resonanznenner bei wy = —wy; = |wy]
und dominiert bei dieser Frequenz. Wiederum ist die Wahrscheinlichkeit, das Elektron nach Abschalten
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Aw [arb. units]

Abbildung 3.2:  Die Energieerhaltungs-Funktion S(w; — wy;), aufgetragen gegen Aw = wy — wy; in
willkiirlichen Einheiten. Die Hohe der Kurve wéchst linear mit T an, die Breite skaliert mit 1/T; fiir
T' = 2T beispielsweise wird das Maximum doppelt so hoch, und die Breite halbiert sich. Im Limes
T — oo strebt S(wy — wy;) gegen die Deltafunktion §(w; — wy;).

der Wechselwirkung im Endzustand 7 zu finden, durch das Absolutquadrat des Koeffizienten cy(T')
gegeben

&2 letwritw)T 112 72 £2 sin? [(wy — |wpi])T/2]
T2 = S0 21, 12 - 0 St 2T 3.19
O =g el G T T W e enlperyz 319
Wir erhalten das dasselbe Resultat wie in Gl. (3.18)
me? E3
Wstim = TQO |xfz|2 . (320)

Die Wahrscheinlichkeiten fiir Absorption und stimulierte Emission sind exakt gleich, und beide sind
poportional zum Absolutquadrat des Matrixelements des elektrischen Dipolmoments und zum Quadrat der
elektrischen Feldstdrke.

Wie schon erwdhnt, gibt es keine spontane Emission in der Quantenmechanik.

3.2 Absorption und Emission in der Quantenfeldtheorie

Die quantenfeldtheoretische Behandlung der Absorption oder Emission von Licht beim Ubergang eines
atomaren Elektrons von einem Energieniveau auf ein anderes Niveau erfordert im Prinzip die Lésung der
Dirac-Gleichung. Da die Elektronen in den dufleren Schalen der Atome nichtrelativistisch sind, kann man
in guter Ndherung mit der Schrodingergleichung in Kombination mit der zeitabhéngigen Storungstheorie
arbeiten. Die wesentliche Neuerung im Vergleich zum vorhergehenden Abschnitt ist, dass die Lichtwelle
nicht mehr als klassische Welle angesetzt wird, sondern dass das quantisierte elektromagnetische Feld
verwendet wird.

Zur Vereinfachung nehmen wir wieder an, dass sich das in Atom in einem monochromatischen Licht-
wellenfeld befindet, dessen Frequenz so gewéhlt wird, dass in sehr guter Néherung hiw, = |Ey — E;| ist.
Die Wellenfunktionen des ungestérten Atoms erfiillen die zeitunabhéngige Schrodingergleichung

~2
Hovi = Bapi,  Hovy = By mit Ho= 52— +v() (3:21)

Um im Hamiltonformalismus die Kopplung zwischen dem Elektron und dem elektromagnetischen Feld
zu erfassen, ersetzt man Impuls p = m.v des Elektrons durch den kanonischen Impuls p + e A. Die
Hamiltonfunktion des Atoms im Strahlungsfeld lautet

(p+eA)? 1 p?

+V(r) = (P +p-A+A-p+e*A%)+V(r) = +

H, = =
1 2me 2me  2me

D (p- A+A-p)+V(r).
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Der Term e2A?/(2m,) ist normalerweise in der Atomphysik vernachléssigbar und wird hier weggelassen
(dieser Term ist fiir Zwei-Photon-Emission verantwortlich). Bevor man den Ubergang zur Quantentheorie
macht, ist es sinnvoll, das Skalarprodukt von Impuls und Vektorpotential umschreiben’:

p-A=m.v-A.

Der Hamiltonoperator des Atoms im Strahlungsfeld wird damit

~2
p

2me

H = +V(@)+ev-A=Hy+edv-A=Hy+W. (3.22)
Zu beachten ist, dass die Operatoren Pp und v nur auf die Wellenfunktion 1 des Elektrons wirken, wihrend
der Operator A nur auf die Quantenzustéinde des Photonenfeldes wirkt. Aus diesem Grund sind v und
A vertauschbar.

Wie schon gesagt betrachten wir den Spezialfall, dass nur eine einzige Welle vorhanden ist, beschrieben
durch den Operator des Vektorpotentials

A\m(z,t) = {Q\cos(k z) — iﬁ sin(k z)} . (3.23)

We

1
V €o L3
Dann ist 9-A = ﬁg, wobei wir zur Vereinfachung der Schreibweise den Index x bei 7, und EL weglassen.
Das Atom befinde sich am Ort » = 0. Die Wellenldnge des Lichtes ist im allgemeinen sehr gro8 gegen

den Atomdurchmesser, daher gilt innerhalb des Atoms k z < 1, also cos(k z) = 1 und sin(k z) ~ 0. Damit
wird der Operator des Vektorpotentials

~ 1 ~ 1 h ~ ~
A= = \=—(CT4+C7). 3.24
VeoL3 @ VeoL3 QW( ) (329

Der Wechselwirkungsterm hat die einfache Gestalt

_ N 7 U
=etA=e/—=70(CT 7). 2
W =ev e Sy o7 v(CT+CT) (3.25)

Der Hamiltonoperator der Lichtwelle hat die Form (2.14)

1

5 (P? +w? Q?). (3.26)

Hy
Seine Eigenzustidnde schreiben wir als Dirac-Ket-Vektoren
Hy |n) = (n+1/2) hwe |n).

Der Hamiltonoperator des Gesamtsystems ist die Summe der Hamiltonoperatoren des Atoms und der
Lichtwelle PR R R o
H=H,+Hy,=Hy+Hy+W, (3.27)

und die gesamte Zustandsfunktion ist das Produkt der Wellenfunktion des Elektrons und des Dirac-Kets
der Lichtwelle. Anfangs- und Endzustand schreiben wir in der Form

CI%' = 1/}1 |TLZ> s (I)f = 1/Jf "ﬂ,f> . (328)
Ohne den Wechselwirkungsterm gilt

H®; = (Howi) i) + i (Ha |ni)) = [ B + hwg(n; +1/2)] @,

'In der klassischen Elektrodynamik kann man die magnetische Energiedichte als Skalarprodukt der elektrischen
Stromdichte und des Vektorpotentials umzuschreiben: J - A = p v - A. Die Skalarprodukte p+ A und mev - A
bedeuten in der klassischen Physik dasselbe, aber nach Substitution der Operatoren ergeben sich verschiedene
Resultate: me 0-A ist die korrekte Form der Kopplung in der Quantenfeldtheorie. Dies ist ein Beispiel dafiir, dass
der Klassik-Quanten-Ubergang seine Tiicken hat.
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und analog fiir ®¢. Beide Zusténde sind stationér fiir W= 0, es gibt weder Emission noch Absorption.

Wenn man jedoch die Wechselwirkung einschaltet (W # 0), sind diese Zustiinde nicht mehr stationér.
Selbst der Grundzustand |0) des Lichtwellenfeldes erweist sich als nichtstationér, wenn er mit der Wellen-
funktion eines angeregten Atoms kombiniert wird. Genau hier liegt die Quelle der spontanen Abstrahlung.

Jetzt wird der Ubergang ®; — ® ¢ betrachtet. Die Ubergangswahrscheinlichkeit pro Zeiteinheit ist
proportional zum Absolutquadrat des Ubergangsmatrixelements des Wechselwirkungsoperators WW:

Wi gy X (D[ W|@)[?

Das Ubergangsmatrixelement kann man als Produkt von zwei Matrixelementen schreiben

— e2h ~ A+ ~—
(@5 183) =\ 5 (sl 1) - ((ngIC ¥ + (g1 o) (3.29)

Das erste Matrixelement betrifft den atomaren Ubergang v; — 1 ¢. Das hier auftretende Matrixelement
des Geschwindigkeitsoperators ist gleich der zeitlichen Ableitung des Matrixelements des Ortsoperators:

. d N dx s
(sl Ol = = (sl Bli) = =L (3.30)
Aus ¢; x exp(—iw;t) und Yi exp(+iwyt) folgt
(el Olhi) = i (wp — wi) (Vs | T |ths) = iwp; T g - (3.31)

Damit das Dipolmatrixelement ex; von null verschieden ist, miissen die bekannten Auswahlregeln der
Atomphysik A¢ = £1 und Amy = 0,+£1 erfiillt sein. Darauf wollen wir hier nicht weiter eingehen.
Wichtig fiir unsere jetzige Diskussion ist das zweite Matrixelement. Nach Gl. (2.17) gilt

Cting)=vni+1|ni+1), C|ny) = /ni|ni—1).

Das zweite Ubergangsmatrixelement ist also genau dann von null verschieden, wenn n f =mn; + 1 oder
ny = n; — 1 ist. Das bedeutet, dass nur solche Prozesse auftreten, bei denen genau ein Photon erzeugt
wird (ny = n; + 1) oder vernichtet wird (ny =n; — 1).

Zur Berechnung der Ubergangswahrscheinlichkeit gehen wir auf GI. (3.11) zuriick:
ihéy = c;(0) (Pp| WD) = (Pf|W|D;) . (3.32)

Die Integration iiber das Zeitintervall 0 < ¢t < T" der Wechselwirkung ergibt

heoT e2h eilwpitwe)T _ 1) eilwpi—w)T _

' =i\ ; i ; 1 —F S 3.33

they(T) =i 2wy egLs AT VT + i(wypi + we) oy i(wypi — we) (3.33)
Emission Absorption

Absorption von Strahlung

Wenn das Energieniveau Ef des Atoms hoher liegt als E;, kann der Ubergang 1; — 1) ¢ durch Absorption
eines Photons der Energie hw = Ey — E; erfolgen. Die Wahrscheinlichkeit, das Elektron nach Abschalten
der Wechselwirkung im Endzustand ¢ zu finden, ist durch das Absolutquadrat des Koeffizienten c¢(T')
gegeben

e2 |eiwsimw)T _ 1|2 me?w?,
T2:7‘ 2 i2 ‘N = fz‘S — i iQT- i 3.34
s (T)] roorcal? i |2 £l o T hareol? (we —wyi) lxgel* T -n (3.34)
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Dividiert man durch 7" und integriert tiber das schmale Frequenzband der Lichtwelle, so ergibt sich wegen
wy; ~ wy fiir die Ubergangswahrscheinlichkeit pro Zeiteinheit:

7T€2wg

Wabs = m ‘Ifi

12 n,;. (3.35)

In dieser Gleichung bedeutet n; die Anzahl der Photonen im Volumen L3. Die Energiedichte der elek-
tromagnetischen Welle ist demnach

nihwe € .o € EZL?
=% = . 3.36
3 2% T MT oh, (3.36)
Setzt man dies in Gl. (3.35) ein, so erhilt man
me?E2 9
Wabs — W |I’f1‘ 5 (337)

in perfekter Ubereinstimmung mit der quantenmechanischen Formel (3.18).

Emission von Strahlung

Wenn F; < E; ist, kann der Ubergang v; — 9 ¢ durch Emission eines Photons der Energie hAw = E; — Ey
erfolgen. Fiir das Photonenfeld bedeutet dies die Erzeugung eines Photons. Das Matrixelement des
Storoperators lautet in diesem Fall

— 2h
(Df| W D) = ”ﬁo[ﬁ tweTp - Vng +1 bei Emission von Strahlung. (3.38)

Die Emission ist wird &hnlich wie die Absorption berechnet, und man findet in Analogie zu Formel (3.35)

7T€2(.Jg 7T€20Jg 7re2wg

2 2 2
em — il i 1) = il Ny P —— il 1. 3.39
w h€0L3 |§Cf | (n + ) héoLS “'L'f | n hﬁOLS |:L.f | ( )
| —
stim. Em. spont. Em

Der erste Summand ergibt genau die Formel (3.20). Das bedeutet: die quantenfeldtheoretischen Resultate
stimmen mit den quantenmechanischen iiberein, und auch in der Quantenfeldtheorie erweisen sich die
Wahrscheinlichkeiten fiir Absorption und stimulierte Emission als exakt gleich.

Es gibt in Gl (3.39) den wichtigen Zusatzterm me?wy/(hiegL?) |zs;]? - 1, welcher die spontane Emis-
sion beschreibt. Jetzt kommt ein spannendes Ergebnis. Im Anfangszustand sei iiberhaupt kein Photon
vorhanden, also n; = 0. Wenn ein elektromagnetisches Feld kein Photon enthélt, verschwindet die Ener-
giedichte und damit auch die elektrische Feldstéirke, und dann ist die Emission von Strahlung in der
Quantenmechanik ausgeschlossen. Die Gleichung (3.39) zeigt uns aber, dass in der Quantenfeldtheorie
dann immer noch Emission auftreten kann. Dies ist die spontane Emission, die “von selbst”, ohne dufleres
Feld, ablauft. Die Wahrscheinlichkeit fiir spontane Emission wird

Wspon < [ (| Z[3)[* [(1|CHI0)* = [argil - 1. (3.40)
Der Faktor |[(1]C*]0)|2 beschreibt die Erzeugung eines Photons aus dem Vakuum.

Charakteristische Eigenschaften der stimulierten Emission
Damit die Emission eines Photons als stimuliert im Sinn der Quantenfeldtheorie genannt werden darf,
miissen 2 Kriterien erfiillt sein:

KriteriumI Die Wahrscheinlichkeit fiir stimulierte Emission ist proportional zur Zahl n; der bereits
vorhandenen Photonen in diesem Quantenzustand.

Kriterium IT Das emittierte Photon nimmt den gleichen Quantenzustand ein wie die Photonen der
anregenden Welle: es hat exakt die gleiche Frequenz, die gleiche Richtung, die gleiche Polarisation und
die gleiche Phase. Diese perfekte Identitéit ist eine Konsequenz der Bose-Einstein-Statistik.
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3.3 Feldtheoretische Berechnung der spontanen Emission

Zur Berechnung der Wahrscheinlichkeit fiir spontane Emission wird eine bekannte Formel der zeitabhéngi-
gen Storungsrechnung benutzt, die von Enrico Fermi wegen ihrer zentralen Bedeutung die “Goldene Re-
gel” genannt wurde. Die Wahrscheinlichkeit pro Zeiteinheit fiir einen spontanen Ubergang ®; — ®¢
ist
2m
Wspon = =~ (Wyil® p(Ey) - (3.41)

Hierin ist Wy; das in Gl. (3.38) aufgefiihrte Ubergangsmatrixelenent des Stéroperators W, und p(Ey) ist
die Dichte der Endzusténde geméss Formel (2.6). Durch Einsetzen dieser Gleichungen erhilt man
02

— g |zl el (3.42)

Wspon =
P megh

Die spontane Emission erfolgt isotrop in alle Raumrichtungen. Daher gilt

| 2
3 )

|2 |2 _ |Tfi|2

\fﬁfi Z\yﬁ :|Zfi

und es folgt die aus der Literatur bekannte Formel fiir die Wahrscheinlichkeit der spontanen Emission

62 . E;, — Ef
Wspon = 3reh Irpi?w®  mit w= zT , (3.43)

die fiir einen Dipoliibergang eines Atoms von einem Anfangsniveau E; auf ein Endniveau Ey < E; gilt.

Die Gleichnung (3.43) ist auBerordentlich wichtig. Sie zeigt, dass die spontane Emission nur von den
spezifischen Eigenschaften des betrachteten Atoms abhéngt, dem Dipol-Matrixelement ery; und der
Energiedifferenz E; — Ef. Es gibt keinerlei Abhéngigkeiten von externen Parametern, die vom Expe-
rimentator variiert werden konnten, wie z.B. Magnetfeld, Temperatur, Druck etc. Das bedeutet, dass
die spontane Emission nicht von auflen beeinflusst oder kontrolliert werden kann (ausgenommen in sehr
speziellen Versuchsanordnungen, die im niichsten Abschnitt diskutiert werden). Dadurch unterscheidet
sich die spontane Emission in fundamentaler Weise von der stimulierten Emission.

Ein wichtiges Charakteristikum ist die w3-Abhéngigkeit: die spontane Emission hat eine verschwin-
dend kleine Wahrscheinlichkeit bei niedrigen Frequenzen, sie wird aber sehr wichtig bei hohen Frequenzen.

3.4 Beziehungen zwischen stimulierter und spontaner Emission

3.4.1 Nur eine Schwingungsmode

In Kap. 3.2 haben wir den Spezialfall betrachtet, dass nur eine Schwingungsmode des elektromagnetischen
Feldes vorliegt. Wenn es bereits n Photonen im Strahlungsfeld gibt, ist die stimulierte Emission n-mal
wahrscheinlicher als die spontane Emission:

Wstim = N Wspon  (nUr eine Mode). (3.44)

Diese Beziehung ist fiir die Funktion des Lasers von entscheidender Bedeutung, aber in allen Lasern tritt
als Konkurrenzprozess zur stimulierten Emission auch die spontane Emission auf. Die Gleichung (3.44)
gilt dann nur fiir die spezielle Schwingungsmode, die zum Laseriibergang fithrt. Sie gilt nicht fiir die
anderen Schwingungsmoden.

3.4.2 Strahlung im thermischen Gleichgewicht mit Materie

Von Albert Einstein wurde schon im Jahr 1917, lange vor Entstehung der Quantenmechanik, ein Zusam-
menhang zwischen Emissions- und Absorptionsvorgéingen im thermodynamischen Gleichgewicht gefun-
den. Um konsistente Resultate zu erhalten, musste Einstein dabei den Prozess der stimulierten (induzier-
ten) Emission “erfinden”, der zu dieser Zeit unbekannt war. Wir betrachten elektromagnetische Strahlung
im thermodynamischen Gleichgewicht mit erhitzter Materie der absoluten Temperatur T' (Beisp. Sonne,
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das Innere eines Hochofens, nédherungsweise eine Glithlampe). Es wird dann ein kontinuierliches Fre-
quenzspektrum emittiert, dessen spektrale Energiedichte durch die Plancksche Strahlungsformel (4.10)
gegeben ist. Die Photonen kénnen beliebige Frequenzen, Richtungen und Polarisation haben. Es gibt
daher auflerordentlich viele verschiedene Zusténde fiir die Photonen. Nehmen wir an, wir hitten Atome
mit zwei Niveaus E; und Es, die sich zusammen mit der Strahlung in einem Kasten befinden. Die
Wahrscheinlichkeit pro Zeiteinheit fiir Absorption Ey; — Es ist proportional zur Energiedichte pgp(w) der
Strahlung bei der Frequenz w = (Ey — Fy)/h

Wabs = Bi2 pin(w) - (3.45)

Die Emission hat zwei Anteile: die stimulierte Emission ist proportional zu py,(w), die spontane Emission
ist unabhéngig von der vorhandenen Strahlungsdichte

Wem = Wstim + Wspon = B21 Pth(w) + A21 . (346)

Die Zahl N5 der Atome im oberen Niveau erhoht sich durch Absorption und vermindert sich durch
Emission von Photonen:

dNy

e WabsN1 — Wem N2 = Bia pen(w) N1 — (Ba1 pn(w) + A21) Na . (3.47)

Im thermodynamischen Gleichgewicht ist dNa/dt = 0, und gem#f der Boltzmannverteilung gilt

N1 EQ — E1 huw
— —_— = . 3.48
N2 P ( kBT ) P (kBT) ( )

Setzen wir dies in (3.47) ein, so folgt Bia pin(w) exp[fw/(k,T)] = A21 + B21 ptn(w) und daher

A21/Bis
w) = . 3.49
Pl) = oo (ky 7] — Br /B (3.49)
Durch Vergleich mit der Planck-Strahlungsformel (4.10) finden wir:
fiw?
Bgl = Blg und A21 = % Bgl . (350)

Die erste Gleichung besagt, dass die Wahrscheinlichkeiten fiir Absorption und stimulierte Emission gleich
sind. Wie wir wissen, folgt dies auch aus der quantentheoretischen Behandlung. Die zweite Gleichung
stellt einen Zusammenhang zwischen der stimulierten und spontanen Emission im thermodynamischen
Gleichgewicht her:
Wstim _ Ba1pin(w) _ 1 . (3.51)
Wspon Aoy exp[m/(kBT)] -1
Die Lichtwellen im Kasten werden durch optische Eigenschwingungen dargestellt. Jede Eigenschwingung
verhélt sich wie ein harmonischer Oszillator, dessen Energie den Wert (n 4 1/2)hw hat, wobei n die Zahl
der Photonen in dieser Eigenschwingung ist. Im thermodynamischen Gleichgewicht ist die mittlere Zahl
dieser Photonen

i 1
" ol ey T — 1 (3.52)

und die mittlere Energie eines harmonischen Oszillators (abziiglich der Nullpunktsenergie fiw/2) ist

_ hw o
E= TR =T hw . (3.53)

Damit konnen wir schreiben
Wstim = ﬁwspon . (354)
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Zwel Fille sollen betrachtet werden.

(a) Hohe Frequenzen: hiw > k,T bei Raumtemperatur, 7' = 293 K. Dies gilt fiir sichtbares Licht und
Rontgen- oder y-Strahlung. Die mittlere Zahl der Photonen in einem definierten Quantenzustand ist im
thermodynamischen Gleichgewicht sehr klein, @ < 1. Die spontane Emission ist viel wahrscheinlicher als
die stimulierte Emission, was auch sofort aus Gl. (3.51) folgt.

Der Laser ist ein Gegenbeispiel, dort ist die Besetzungszahl eines bestimmten Photonzustands sehr
grol gegen 1. Man muss sich aber klarmachen, dass der Laser ein System darstellt, welches extrem weit
vom thermodynamischen Gleichgewicht entfernt ist, da eine Besetzungsinversion vorliegt. Die Gleichun-
gen (3.52) und (3.54) diirfen daher nicht auf Laser angewandt werden.

(b) Niedrige Frequenzen, hw < k,T. Das gilt im Hochfrequenz- und Mikrowellenbereich. Dann ist
7 > 1, und die stimulierte Emission dominiert vollig. Ein wichtiges Beispiel mit praktischer Bedeutung ist
die magnetische Kernresonanz, die genaueste Methode zur Messung von Magnetfeldern und die Grundlage
der Kernspin-Tomographie. Ein Proton hat in einem Magnetfeld B zwei Energieniveaus £; = —uB und
Ey = +uB. Durch Einstrahlen von Hochfrequenz mit hw = 2pB kann man Umklappen der Spins
erreichen. Fiir B = 1 Tesla erhélt man eine Frequenz f = w/(27) = 42,6 MHz. Bei Raumtemperatur
ist hw/(k,T) ~ 107°, d.h. die spontane Emission ist im Vergleich zur stimulierten Emission vollig
vernachléssigbar.

Fiir die beiden diskutierten Félle gilt die Beziehung

w2 I(w
Wstim = T:;() Wspon (355)

wobei I(w) die spektrale Intensitit der einfallenden Strahlung ist. Der Beweis ist eine lehrreiche Ubungs-
aufgabe. Die Formel (3.55) gilt allgemein, wenn die Strahlung isotrop und unpolarisiert ist, siche Ref.
[3], Gl. (44.10).

3.5 Strahlung einer periodisch schwingenden Ladung

Larmor-Formel
Ein Teilchen der Masse m und Ladung ¢ fiithre eine harmonische Schwingung aus

z(t) = xg cos(wt).

Wodurch diese Schwingung verursacht wird, soll zunéchst ignoriert werden. Die Geschwindigkeit und
Beschleunigung sind

v(t) = —wzg sin(wt), a(t) = —w?xg cos(wt) = ag cos(wt). (3.56)

Die klassische Schwingungsenergie ist

m. 2

m
Ek]ass = 5 x% = ﬁ CLO . (357)

Das elektrische Dipolmoment der Ladung ist
p(t) = qu(t)e, (3.58)

Die beschleunigte Ladung strahlt eine elektromagnetische Welle der Frequenz w aus. Die abgestrahlte
Intensitiit hiingt vom Winkel 8 zwischen dem Dipolmoment p und dem Wellenvektor k ab, I(#) o sin® 6.
Nach Integration iiber den Raumwinkel findet man fiir die gesamte Strahlungsleistung

q2 a2

Pilass = (3.59)

6meged

Hierin ist a® = a3/2 der zeitliche Mittelwert des Quadrats der Beschleunigung. Gleichung (3.59) ist die
Larmorformel der klassischen Elektrodynamik.
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Quantentheoretische Herleitung der Strahlungleistung

Jetzt wollen wir dies Problem mit der Quantentheorie behandeln. Die oszillierende Ladung ist ein
harmonischer Oszillator mit den in Kap.1 angegebenen Wellenfunktionen v, und den Energiewerten
E, = (v +1/2) hw (die Quantenzahl des Oszillators wird hier mit v bezeichnet, um Verwechslungen mit
der Photonenzahl n zu vermeiden). Um die Formel (3.59) quantentheoretisch herzuleiten, multiplizieren
wir Gl. (3.42) mit hw, denn die abgestrahlte Leistung ist das Produkt der Ubergangswahrscheinlichkeit
pro Zeiteinheit und der Photonenenergie.

Pquan = Wspon hw=

Diese Formel ist noch nicht ganz korrekt, man muss die sin® f-Abhéngigkeit der abgestrahlten Intensitéit

beriicksichtigen. Der iiber den Raumwinkel gemittelte Wert von sin? 6 ist sin® 0 = 1 /3. Damit wird

e2

Pquan = Wspon hw = 3 |1'f7.|2 wt. (360)

3meg

Die Abstrahlung eines Photons ist gekoppelt mit einem Ubergang ¢; = v, — ¥ = 1,_1. Das Matrix-
element fiir diesen Ubergang ist nach Gl. (1.18)

h h
v L el = vhw

(3.61)

Tfi = Ty—-1,v =

2mw 2mw?’

Nun ist vhw = E, — hw/2 die Anregungsenergie des Anfangszustands ¢; = 1, die wir gleichsetzen
miissen mit der klassischen Energie des Oszillators vor der Abstrahlung:

2 2
maj ma
th = Eklass = —_— =

2w? w?

Setzt man dies in (3.60) ein, so folgt

q2 a2

Pquan = Pklass = (362)

6megcd
Das quantentheoretische Ergebnis stimmt perfekt mit dem klassischen iiberein. Bei Landau-Lifschitz [3]
findet man den kryptischen Satz, dass diese Ubereinstimmung ein Zufall sei.

Dipolstrahlung als erzwungene Strahlung

Die obige Behandlung der Dipolstrahlung hat Tradition, man findet sie in Lehrbiichern der Quantenme-
chanik wie z.B. [6]. Sie beschreibt aber im Grunde nur die halbe Wahrheit. Die Ursache der Oszillation
wird in dieser Modellrechnung ignoriert, und deswegen kann die Abstrahlung auch nur “spontan” sein,
da in dem Modell keine anregenden Kréifte existieren. Nun ist vollig klar, dass eine periodische Anre-
gung unverzichtbar ist. Eine Senderantenne kann nur dann Radiowellen emittieren, wenn ihr von einem
Hochfrequenzverstérker permanent Leistung zugefithrt wird. Es ist daher naheliegend zu fragen, ob die
Dipolstrahlung auch einen Beitrag von der stimulierten Emission erhilt. Die Antwort ist ja, aber wie grof3
dieser Beitrag ist, hingt von der Frequenz ab und auch von der Art, wie die Dipolschwingung angeregt
wird.

Die Beziechung (3.55)

22
Wstim 7o T(w)

_ , 3.63
Wspon hw3 ( )

zeigt, dass die stimulierte Emission im Bereich sehr hoher Frequenzen (sichtbares Licht, UV- oder Ront-
genstrahlung) normalerweise stark unterdriickt ist, auler im FEL. Regen wir ein Elektron durch Laserlicht
zu einer harmonischen Schwingung an, so ist die stimulierte Emission noch zusétzlich unterdriickt, weil
die Abstrahlungscharakteristik eines Dipols vollig anders aussieht als die annéhernd ebene Lichtwelle des
Lasers.

Die stimulierte Emission dominiert bei niedrigen Frequenzen, sofern die spektrale Intensitéit I(w) der
einfallenden Strahlung hinreichend grof§ ist. Das ist in Radio- oder Fernsehsendern generell der Fall. Eine
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wesentliche Eigenschaft eines Radio- oder Fernsehsenders ist, dass makroskopische elektromagnetische
Wellen ausgestrahlt werden, die eine hohe Intenstéit haben und nahezu monochromatisch sind. Dies
erfordert eine feste Phasenkorrelation zwischen den ungeheuer vielen Photonen in der Welle. Jedes
Photon muss also mit einer starren Phasenbeziehung relativ zum erregenden Feld emittiert werden. Mit
dem Mechanismus der spontanen Emission ist das unmoglich. Ein Fernsehsender basiert deswegen auf
der stimulierten Emission.

Der Prototyp eines Hertzschen Dipols ist eine Stabantenne der Liange A/2, in der ein periodischer Strom
fliesst
I(t) = Iy cos(wt) .

Die Antenne sendet Kugelwellen aus, deren Amplitude mit sin(f) moduliert ist. Der Strom I(¢t) wird
nicht durch eine ebene Welle der Frequenz f = w/(27), sondern durch einen Hochfrequenzverstirker
erzeugt. Man konnte sich vorstellen, dass an Stelle des HF-Verstérkers einlaufende Kugelwellen zur
Anregung benutzt werden. Die fiir dies Problem relevanten Photonen-Zustinde sind daher nicht die
in der Quantenfeldtheorie (QFT) verwendeten ebenen Wellen, sondern Kugelwellen. Eine in diesem
Sinn konstruierte QFT konnte moglicherweise zu dem Ergebnis fithren wiirde, dass die Emission eines
Hertzschen Dipols stimuliert ist. Ich schlage dies nicht ernsthaft vor, es ist nur eine Gedankenspielerei.

3.6 Quantentheoretische Aspekte der Undulatorstrahlung

Die Elektronen der Energie W, > m.c? durchlaufen den Undulator auf einer Wellenbahn. Ihre mittlere
Geschwindigkeit in z-Richtung ist nach Ref. [9]

~ 1 K? - , W, 1
vZ:<1—W(1+2>>c:Bc mit 'y:meczz =5 B=uv/c (3.64)

und dem Undulatorparameter
eBO eBo)\u

MeCky 27T mMeC

In einem mitbewegten Koordinatensystem (z/,y’, z’), das die Geschwindigkeit 7, entlang der Undula-
torachse hat, wird das statische periodische Magnetfeld des Undulators in ein oszillierendes elektromagne-
tisches Feld Lorentz-transformiert. Dieses Wechselfeld regt die Elektronen zu harmonischen transversalen
Schwingungen an und bewirkt auf diese Weise die Emission von Dipolstrahlung, die wir in Kap. 3.5 quan-
tentheoretisch berechnet haben. Die Strahlungsleistung im mitbewegten Koordinatensystem ist durch die
Larmorformel (3.59) gegeben. In Ref. [9] wird die Beschleunigung des Elektrons auf seiner Wellenbahn
berechnet. Die Strahlungsleistung lésst sich damit wie folgt schreiben

. eQC’YQKQki
-~ 2meo(1+ K2/2)2

(3.65)

Das Undulatorfeld im mitbewegten System ist B’ = vBjy, also zeigt Gl.(3.65), dass die abgestrahlte
Leistung proportional zur Energiedichte B?/(240) des elektromagnetischen Wechselfeldes ist

B?  nho
P = —. .
X e = (3.66)

Die Emissionswahrscheinlichkeit ist proportional zur Zahl n der im Feld vorhandenen Photonen. Dies ist
das KriteriumI der stimulierten Emission. Das Kriterium IT ist jedoch nicht erfiillt, denn es besteht nur
eine geringe Wahrscheinlichkeit, dass das Photon in den Quantenzustand der einlaufenden Welle, also
genau in z-Richtung, emittiert wird. In den meisten Féllen wird es andere Richtungen haben.

Bei der Analyse der Undulatorstrahlung befinden wir uns in einer Zwittersituation. Wenn wir als gege-
ben hinnehmen, dass die Elektronen im mitbewegten Korrdinatensystem wie harmonische Oszillatoren
schwingen, und nicht fragen warum sie das tun, so kénnen wir die Strahlungsleistung mit der Formel
fiir spontane Emission berechnen, siehe Gl. (3.60). Aber wie ich schon in Kap. 3.5 gesagt habe, ist dies
nur die halbe Wahrheit. Die Anregung der Oszillation im mitbewegten System ist “stimuliert”. Ohne
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das Undulatorfeld wiirden die relativistischen Elektronen geradlinig durch das Vakuumrohr fliegen und
koénnten aus kinematischen Griinden (Energie/Impuls-Erhaltung) keine Strahlung emittieren.

Die Undulatorstrahlung ist also mittelbar ein erzwungener Prozess: die Wellenbahn wird den Elektro-
nen durch das Feld des Undulators aufgezwungen, die nachfolgende Abstrahlung ist vorwiegend spontan
(man miisste mal numerisch untersuchen, wie grofl der Beitrag der stimulierten Emission ist). Durch
Andern der Feldstiirke des Undulators kénnen wir die Intensitit der Strahlung in weiten Grenzen variie-
ren.

Undulatorstrahlung als Bremsstrahlung im Magnetfeld des Undulators

Man kann die Strahlung auch durch Bremsstrahlung der einlaufenden Elektronen am periodischen Ma-
gnetfeld des Undulatorfeldes erkldren und sogar quantitativ berechnen, siehe die Pionierarbeit von John
Madey Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field [10]. Die Reaktionsrate ist
selbstverstindlich proportional zum Quadrat des Magnetfeldes: dies ist ganz klar ein erzwungener Pro-
zess. Die Abstrahlung erfolgt aber nicht nur in Vorwértsrichtung, sondern auch unter endlichen Winkeln.
Die emittierten Photonen nehmen also nicht alle den gleichen Quantenzustand ein, d.h. unser Kriterium
IT ist verletzt, die Emission muss als spontan eingestuft werden. Madey zeigt weiterhin, dass die FEL-
Strahlung auf der stimulierten Emission beruht.

Ich habe die Arbeit von Madey noch nicht genau studiert.

Fiir die Erzeugung von Bremsstrahlung verwendet man {iblicherweise Schwermetalle mit hoher Kernla-
dung wie Blei oder Uran, da die Reaktionsrate proportional zu Z? ist. Die Atomkerne iibernehmen dabei
einen Riickstoflimpuls. Ohne Riickstopartner wire die Emission eines Photons durch ein relativistisches
Elektron verboten, denn der Prozess e — e + v wiirde den Energie-Impuls-Erhaltungssatz verletzen.
Als RiickstoBpartner kommen aber nicht nur einzelne Atomkerne in Frage, sondern auch Einkristalle
wie Diamant. Wenn die Kristallachsen mit hoher Prézision relativ zum einlaufenden Elektronenstrahl
einjustiert werden, so dass der RiickstoBimpuls mit einem reziproken Gittervektor iibereinstimmt (an-
ders ausgedriickt, wenn man sich in einem Laue-Reflex befindet), iibernimmt der gesamte Kristall den
RiickstoBimpuls. Mit dieser Methode sind in den 1960er Jahren bei DESY mit 6 GeV Elektronen linear
polarisierte und nahezu monochromatische Gammastrahlen mit einer Energie von 3.4 GeV erzeugt wor-
den, mit denen international beachtete Experimente zur Erzeugung von geladenen Mesonen durchgefiihrt
wurden.

Die Bremsstrahlung im periodischen Magnetfeld eines Undulators hat vermutlich Ahnlichkeiten mit der
Bremsstrahlung im periodischen Gitter eines Einkristalls. Dariiber muss ich noch nachdenken.
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Kapitel 4

Weitere Betrachtungen zur Quantenfeldtheorie

4.1 Die tiefere Ursache spontaner Quanteniiberginge

Wir haben gesehen, dass ein angeregtes Atom auf zwei Weisen in den Grundzustand iibergehen kann,
durch stimulierte oder spontane Emission eines Photons. Die stimulierte Emission ist die Grundlage des
Lasers und wird durch ein bereits vorhandenes Strahlungsfeld induziert. Dieses Strahlungsfeld kann vom
Experimentator nach Belieben ein- und ausgeschaltet werden und auch in seiner Stérke variiert werden.
Die spontane Emission hingegen lduft von selbst ab, aber was ist die Ursache dafiir?

Die spontane Emission ist eine durch Vakuumfluktuationen erzwungene Emission.

Diese Einsicht habe ich aus dem Physics Today Artikel von Victor Weisskopf [2] gewonnen, und ich
mochte einige Sétze aus diesem Artikel zitieren:

According to equation 5 spontaneous emission appears as a forced emission caused by the zero-point
oscillations of the electromagnetic field, which are always present, even in a space without any photons.
This was the start of an interesting development in theoretical physics. After Einstein had put an end to
the concept of aether, the field-free and matter-free vacuum was considered as a truly “empty space”. The
introduction of quantum mechanics changed this situation and the vacuum gradually became “populated”.
In quantum mechanics an oscillator cannot be exactly at its rest position except at the expense of an infinite
momentum, according to Heisenberg’s uncertainty relation. The oscillatory nature of the radiation field
therefore requires zero-point oscillations of the electromagnetic fields in the vacuum state, which is the
state of lowest energy. The spontaneous emission process can be interpreted as a consequence of these
oscillations.

Im tiefsten Energiezustand des elektromagnetischen Feldes, dem “Vakuum”, sind keine reellen Photonen
vorhanden, aber die Nullpunktsschwingungen existieren fiir alle zulédssigen Werte von w. Die Energie-Zeit-
Unschérferelation erlaubt einem Oszillator, fiir eine sehr kurze Zeit in einen Anregungszustand iiberzuge-
hen und danach in den Grundzustand zuriickzukehren. Die bei diesen kurzlebigen Prozessen auftretenden
virtuellen Photonen sind es, die die angeregten Atome zu ihren “spontanen” Ubergiingen veranlassen. Die
Vakuumfluktuationen sind statistischer Natur, und mit der hier aufgefithrten Deutung wird die statisti-
sche Natur der quantenmechanischen Ubergiinge auf die statistischen Fluktuationen des “leeren Raums”
zuriickgefiihrt.

Wie kann man diese Vorhersagen der Quantenfeldtheorie experimentell beweisen? Die Idee ist, ange-
regte Atome in eine Art “Faraday-Kéfig” zu sperren, der die Vakuumfluktuationen abschirmt, und dann
zu {iberpriifen, ob die Atome linger als normal im Anregungszustand bleiben. Ein Experiment dieser
Art ist von Serge Haroche und Mitarbeitern mit einem Césium-Atomstrahl durchgefithrt worden. Als
Abschirmung dienten zwei sehr ebene parallele Metallplatten oberhalb und unterhalb des Atomstrahls
(Abb. 4.1), deren Abstand d = 1,1 ym kleiner als die halbe Wellenléinge der beim Ubergang 5d — 6s
emittierten Strahlung war (A = 3,5 um). Eine elektromagnetische Welle der Wellenléinge A\ = 3,5 um kann
sich im Raum zwischen den Platten ungehindert ausbreiten, sofern ihr elektrischer Vektor senkrecht auf
den Platten steht. Ist aber der £-Vektor parallel zu den Platten, so wird die Welle exponentiell abge-
schwiicht und dringt weniger als eine Wellenlénge in den Zwischenraum ein. Mit einem Detektor wurde
die Zahl der angeregten Cs-Atome als Funktion des Winkels zwischen dem &-Vektor und den Platten
gemessen. Bei paralleler Ausrichtung (0°, 180°) wurde eine hohe Zihlrate gemessen, bei senkrechter
Ausrichtung (90°) erreichte kein einziges angeregtes Atom den Detektor. Die Auswertung des Experi-
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Abbildung 4.1: Unterdriickung der spontanen Emission durch “Abschirmung” der Vakuumfluktuatio-
nen. Links wird ein Schema des Experiments gezeigt, rechts ist die Zdhlrate der angeregten Cs-Atome A*
als Funktion des Winkels zwischen dem E-Vektor und den Platten aufgetragen. Gezeichnet nach einer
Skizze von S. Haroche mit freundlicher Genehmigung des Urhebers.

ments ergab, dass bei der parallelen Ausrichtung eine 13-fache Verldngerung der natiirlichen Lebensdauer
gemessen wurde.

Es sind auch Experimente mit angeregten Atomen in metallischen Hohlrdumen (cavities) durchgefiihrt
worden, die Vakuumfluktuationen jeglicher Polarisation abschirmten (siche [7], [8]). Der spontane Zerfall
konnte komplett zum Erliegen gebracht werden.

Diese experimentellen Befunde sind ganz offensichtlich in Widerspruch zu Formel (3.43). Diese Formel
wird jedoch falsch, wenn man das Atom in einen metallischen Hohlraum einsperrt, dessen Dimensionen in
der Groflenordnung der Lichtwellenléinge liegen. Die periodischen Randbedingungen (2.2) werden aufer
Kraft gesetzt, wodurch sich die Zustandsdichte und die Emissionswahrscheinlichkeit drastisch verringern.

Spontane Uberginge in der Kern- und Teilchenphysik

Es gibt viele weitere Typen spontaner Quanteniibergéinge, die ohne Einwirkung eines Experimentators
ablaufen und die keiner Weise von auflen beeinflusst werden kénnen. Dazu zéhlen vor allem die radio-
aktiven Zerfille von Atomkernen und instabilen Elementarteilchen. Beim 5~ -Zerfall wandelt sich ein im
Atomkern gebundenes Neutron in ein Proton, ein Elektron und ein Neutrino um. Dies ist der Prototyp
eines spontanen Zerfalls. Man hat bis heute keine Moglichkeit gefunden und wird sie wahrscheinlich auch
niemals finden, diesen Prozess zu stoppen oder zu beschleunigen. Diese Nichtkontrollierbarkeit fiihrt
zu schwerwiegenden Problemen. Die bei der Kernspaltung in einem Reaktor entstehenden Tochterkerne
haben einen Neutroneniiberschuss und sind alle radioaktiv. Es wére aulerordentlich niitzlich, wenn man
den langlebigen radioaktiven Miill durch geeignete Massnahmen zur schnellen Abstrahlung stimulieren
und ihn dadurch unschédlich machen koénnte.

Warum geht das prinzipiell nicht? Die Feldquanten der (geladenen) schwachen Wechselwirkung sind
die W- und W~-Bosonen mit Spin 1, die sich von den Photonen in zweierlei Hinsicht unerscheiden:
(1) sie haben eine sehr hohe Ruhemasse von 90 Protonenmassen und (2) sie zerfallen mit extrem kurzer
Lebendauer. Es erscheint vollig ausgeschlossen, ein dem optischen Laser analoges Gerét zu konstruieren
mit einem kohérenten W-Bosonen-Strahl, der die radioaktiven Kerne zur Abregung stimuliert.

4.2 Das Problem der Nullpunktsenergien

Werden alle Wellen in Gl. (2.3) zugelassen, erhalten wir den Hamiltonoperator (2.19), dessen Energieni-
veaus durch folgende Formel beschrieben werden

1
E=Y" (nk+2) hwe np=0,1,2, ... (4.1)
k,s
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Die Zahl ng gibt die Anzahl der Photonen mit Wellenzahlvektor k an. Der Grundzustand des elektro-
magnetischen Feldes, auch Vakuumzustand genannt, liegt vor wenn alle ng, = 0 sind. Das Problem ist
jedoch, dass jede Schwingungsmode dann immer noch eine Nullpunktsenergie von fiwy /2 hat. Da die m;
in Gl (2.4) alle ganzen Zahlen durchlaufen kénnen, gibt es unendlich viele k-Vektoren, und sieht es so
aus, als habe der Vakuumzustand eine unendlich groie Nullpunktsenergie. Dies ist eine der Divergenzen
der Quantenelektrodynamik, die zeigt, dass die Theorie noch nicht vollsténdig ist (s. Landau-Lifschitz).

W. Heitler argumentiert, dass die vermeintliche Unendlichkeit der Nullpunktsenergie des Vakuums
formaler Natur sei. Er zeigt, dass der Ubergang von der klassischen Theorie zur Quantentheorie nicht
eindeutig ist. Die Hamiltonfunktion (2.13) kann auch durch die Feldamplituden aj und aj, ausgedriickt
werden, siehe Gl. (2.7).

H=¢L? Zwi (agay + ajar) (4.2)
k,s
Die Amplituden ar und aj, sind komplexe Zahlen, die vertauschbar sind. Also darf man mit gleicher
Berechtigung schreiben
H =e¢L® > wi2ajax, (4.3)
k,s

und es gilt A/ = H. Macht man den Ubergang zur Quantentheorie, so ergeben H und H’ jedoch
verschiedene Hamiltonoperatoren

H =LY W} (anay +apae), H =eL® Y wi2aga. (4.4)
k,s

Es gilt H # H weil die Operatoren ar und @, nicht vertauschbar sind. Rechnet man auf die Operatoren
auf die Qk und Py um, so nimmt H wie erwartet die Gestalt (2.19) an, aber H’ sieht anders aus:

qH=% [; (P2 +w?Q3) — ;mk} . (4.5)

k,s

Dieser Hamiltonoperator hat die Eigenwerte

E=> nghwy nk=0,1,2, .. (4.6)

Das Problem der unendlich groflen Nullpunktsenergie des Vakuums wére damit beseitigt.

Ich finde diese Argumentation nicht iiberzeugend, sie erscheint mir wie ein Taschenspielertrick. Wenn
es durch Herumbasteln an der klassischen Hamiltonfunktion moglich ist, unterschiedliche quantenmecha-
nische Resultate zu erhalten, ist dies meiner Meinung nach ein Hinweis, dass die gingige Methode zur
“Herleitung” der Quantentheorie aus dem klassischen Hamiltonformalismus, die darin besteht, die kano-
nischen Variablen durch die betreffenden Operatoren zu ersetzen, nur mit Vorsicht und einer gewissen
Skepsis angewandt werden sollte.

Die Notwendigkeit der Nullpunktsenergie

Der Trick, die problematischen Nullpunktsenergien des quantisierten Strahlungsfeldes unter den Tep-
pich zu kehren, koénnte meiner Ansicht nach auch auf den ganz normalen harmonischen Oszillator der
Quantenmechanik angewandt werden. Dazu gehen wir von dritten Darstellung des Hamiltonoperators in

Gl (1.7) aus
A_hw A Al A
H_T(C C~+0-C )

Geht man jetzt einen Schritt zuriick in den klassischen Hamiltonformalismus und ersetzt die Operatoren
C™T und C~ durch die entsprechend definierten komplexen Koeffizienten:

(—iP+w@), C™ = !

ot = 2
V2hw ’ 2h

(iP+wQ),

&

so lautet die Hamiltonfunktion .
H = > (C’*Ci + C'*C'Jr) .
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Da die komplexen Zahlen C* und C~ vertauschbar sind, kann man die Hamiltonfunktion auch in folgender
Form schreiben
H=hwCtC™

Der Ubergang in die Quantentheorie ergibt dann einen modifizierten Hamiltonoperator
H =hwCTC, (4.7)

der die Eigenwerte E,, = nhw hat. Die Nullpunktsenergie tritt nicht mehr auf.

Das ist vollig unakzeptabel. Ein harmonischer Oszillator ohne Nullpunktsenergie wire eine Kata-
strophe fiir die Quantentheorie: die Heisenberg’sche Unschérferelation wire in eklatanter Weise verletzt,
denn aus Ey = 0 folgt Az - Ap = 0.

Es gibt aber nicht nur theoretische Argumente fiir die Existenz der Nullpunktsenergie, es gibt auch
experimentelle Beweise. Ein schones Beispiel findet man in den Vibrationsbewegungen zweiatomiger
Molekiile. Infolge der kovalenten Bindung besteht eine anziehende Wechselwirkung zwischen den beiden
H-Atomen im Wasserstoffmolekiil. Die potentielle Energie ist in Abb. 4.2 als Funktion des Kernabstands
aufgetragen. In der Nihe des Gleichgewichtsabstands Ry hat das Potential einen annidhernd parabelformi-

V(R)

Ediss

i Nullpunktsenergie

Ro Kernabstand R

Abbildung 4.2: Die potentielle Energie des Hy-Molekiils als Funktion des Kernabstands R.

gen Verlauf, und man erhélt die dquidistanten Energieniveaus eines quantenmechanischen harmonischen
Oszillators, was durch die Messung der Vibrationsspektren leicht nachweisbar ist. (Mit wachsendem
Kernabstand flacht das Potential ab im Vergleich zu einer Parabel, und der Abstand der Niveaus wird
geringer). Als Dissoziationsenergie Egiss bezeichnet man die Energie, die aufgewendet werden muss, um
das Molekiil in zwei getrennte, weit voneinander entfernte Atome zu zerlegen. Man konnte vermuten,
dass Egiss = V(00) — V(Ry) ist, also gleich der Differenz zwischen der potentiellen Energie von zwei weit
voneinander entfernten Atomen und der potentiellen Energie am Gleichgewichtsabstand. Diese einfache
Beziehung muss durch die Nullpunktsenergie modifiziert werden, denn der energetisch tiefste Zustand ist
nicht V(Ry), sondern V(Ry) + hw/2. Es gilt also

Wenn man sich auf den normalen Wasserstoff beschrinkt, hilft diese Gleichung nicht allzuviel, da das
Potential V' (R) nicht mit hinreichender Genauigkeit bekannt ist. Zusétzlich muss man die mit schwerem
Wasserstoff (Deuterium) gebildeten Molekiile HD und Do analysieren. Der Potentialverlauf V (R) hingt
nur von den Kernladungen und der Elektronenwolke ab und ist identisch bei den drei Molekiiltypen Hs,
HD und Ds, der Gleichgewichtsabstand ist Ry = 0 74-10'°m in allen drei Fllen. Die Vibrationsfrequen-
zen hiangen dagegen von den reduzierten Massen der drei Molekiile ab und unterscheiden sich deutlich

1 V3
EWHQ , WHD = 7wH2

OJD2

Die gemessenen Dissoziationsenergien der Molekiile Ho, HD und D; sind in der Tat verschieden und
erlauben die Bestimmung der Nullpunktsenergien. Damit ist deren Existenz zweifelsfrei bewiesen.
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Gibt es einen Unterdriickungsmechanismus extrem hoher Frequenzen?
Die Formel (2.5) zeigt, dass die Zahl der elektromagnetischen Eigenschwingungen in einem Kasten qua-
dratisch mit der Frequenz anwéchst. Demnach sollte es eine Million mal mehr v-Quanten mit 1 GeV als
mit 1 MeV geben, eine Million mal mehr v-Quanten mit 1 TeV als mit 1 GeV, eine Million mal mehr
~v-Quanten mit 1000 TeV als mit 1 TeV.... und so weiter, bis ins Unendliche. Ich halte diese Sichtweise
fiir vollig absurd, und eine Theorie, die darauf beruht, kann gar nicht richtig und in sich konsistent sein.
Die kritiklose Anwendung der Formel (2.5) fithrte zur sog. “Ultraviolettkatastrophe” der Strahlung
des schwarzen Koérpers!, die Ende des 19. Jahrhunderts das Weltbild der klassischen Physik erschiitterte.
Die klassische Rayleigh-Jeans-Formel fiir die spektrale Energiedichte ergab sich, indem man die Zustands-
dichte (2.5) mit der mittleren thermischen Energie eines harmonischen Oszillators multiplizierte, die nach
dem Gleichverteilungssatz der Thermodynamik den Wert kT hat

2
w
Uklass (W) dw = p(w) kT dw = s kT dw . (4.9)

Diese Formel widerspricht dem Energiesatz und allen experimentellen Beobachtungen.

Der 14. Dezember 1900 war gewissermaflen der Geburtstag der Quantentheorie: Max Planck stellte auf
der Tagung der Deutschen Physikalischen Gesellschaft seine Theorie der Strahlung des schwarzen Korpers
vor, mit der ihm eine quantitative Beschreibung gelang. Der Preis dafiir war hoch. Planck musste den
Boden der klassischen Physik verlassen und die Annahme machen, dass die Schwingungsenergie der
beteiligten Atome oder Molekiile quantisiert und proportional zur Frequenz ist: £ = h v mit einer neuen
Naturkonstanten h, dem Planckschen Wirkungsquantum. Die von Planck hergeleitete Strahlungsformel

lautet . ) .
w
UP]aan(W) dw = p(w) W dw = 23 ehw/(kBT) 1 dw . (410)

Was ist neu im Vergleich zur Rayleigh-Jeans-Formel? Die mittlere thermische Energie eines Quantenos-

zillators ist nicht kT, sondern
hw

Die Nullpunktsenergie hw/2 ist hier subtrahiert worden, die Gleichung beschreibt also prézise gesagt die
thermische Anregungsenergie. Bei niedrigen Frequenzen (hw < kpT) strebt E gegen den klassischen
Wert kT, aber bei hohen Frequenzen geht F gegen null. Mit anderen Worten: hohe Frequenzen werden

durch die Quantentheorie stark unterdriickt, und der Grenzfall w — oo tritt iiberhaupt nicht auf.

Meine Vermutung ist, dass fiir die Nullpunktsschwingungen ein &hnlicher Unterdriickungsmechanismus
extrem hoher Frequenzen existieren sollte, aber man braucht wohl einen Physiker vom Format Max
Plancks, um dies theoretisch zu rechtfertigen. Sollte die Vermutung richtig sein, so wére die Energie des
Vakuumzustands endlich, und die Nullpunktsenergien der Schwingungsmoden mit endlicher Frequenz
konnten beibehalten werden.

!Unter einem schwarzen Korper versteht man einen Korper, der alle einfallende Strahlung zu 100% absorbiert.
Eine mattschwarz gefarbte Metall- oder Kunststoff-Oberfléche erfiillt dies Kriterium nur unvollkommen. Die beste
Approximation ist ein Hohlraum mit dunklen Wénden, in den die Strahlung durch ein kleines Loch eintritt. Durch
vielfache Absorption und Reflexion im Innern wird die Strahlung immer weiter abgeschwécht, und es besteht nur
eine sehr geringe Wahrscheinlichkeit, dass Strahlung durch das Loch wieder entweicht. Diese Offnung sieht also
sehr “schwarz” aus.
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