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Faszination Quantentheorie:
Die paradoxen Vorhersagen der Theorie und ihre
Bestätigung durch neuere Experimente

Peter Schmüser, Universität Hamburg

No one really understands 
quantum physics

Richard P. Feynman

A paradox is the conflict 
between reality and your feeling 
of what reality ought to be
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Drei Formeln, die das Weltbild der Physik verändert haben:

E = m c2       Albert Einstein

E = h f    Max Planck

λ = h / m v   Louis de Broglie

Energie und Masse sind äquivalent
  - Masse kann in Energie umgewandelt werden (Sonne, Kernreaktor)
  - Energie kann in Masse umgewandelt werden (Elementarteilchen) 

Die Energie einer Lichtwelle wird von Quanten getragen
Lichtquanten = Photonen
f = Frequenz, λ = Wellenlänge 

Teilchen (Elektronen, Neutronen, Atome) haben Welleneigenschaften
Wellenlänge = Planck-Konstante / Impuls

Zwei wichtige Naturkonstanten: Lichtgeschwindigkeit c:  sehr gross
Planck-Konstante h:  sehr klein

Relativitätstheorie

Quantentheorie
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Doppelspaltexperiment mit Teilchen und Wellen

Für viele Jahrzehnte war dies ein Gedankenexperiment der Quantentheorie
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Doppelspalt-Interferenzen mit Licht und mit Elektronen 
(Möllenstedt-Gruppe, Tübingen 1962) 

Es folgt: Elektronen haben Welleneigenschaften

Aber wie zeigt sich ihre Teilchennatur? 

Serge Haroche: "Gedankenexperimente werden Wirklichkeit"
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jedes Elektron macht genau einen 
Punkt im Interferenz-Muster

Niels Bohr war ein entschiedener Verfechter der statistischen Interpretation
         "Kopenhagener Deutung" der Quantentheorie

Albert Einstein lehnte sie ab: "Gott würfelt nicht"

Einstein sah natürlich ein, dass die Quantenmechanik außerordentlich erfolgreich war.
Er hielt sie jedoch nicht für die endgültige Theorie, sondern glaubte, dass mehr dahinter stecken 
müsste. Vermutlich dachte er an eine deterministische Theorie.
 

  Statistische Deutung der Quantenmechanik
      a) Berechne die Wellenfunktion durch Lösung der Schrödinger-Gleichung
      b) Quadrieren der Wellenfunktion ergibt die Wahrscheinlichkeit, das Teilchen an einem 
            bestimmten Ort zu finden
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1.2 Teilchen und Wellen 9

Abbildung 1.3 Entstehung des Interferenzmusters beim Doppelspaltexperiment
mit Elektronen. Jedes Elektron macht genau einen “Eintrag” im Interferenzdia-
gramm, wobei die Wahrscheinlichkeit durch das Absolutquadrat der Wellenfunktion
gegeben ist.

Abbildung 1.4 Beobachtung von Elektroneninterferenzen mit 8, 270, 2000 und
60 000 Elektronen [6]. Wiedergabe mit freundlicher Genehmigung von Dr. Akira To-
nomura (Hitachi Research Laboratory) und des Springer-Verlags.

Bild allmählich heraus, aber man braucht viele Millionen Lichtquanten, um
es gut erkennen zu können.

Die Sequenz von Fotos ist ein Beleg für beide Aspekte des Lichts: die
Wellennatur zeigt sich darin, dass mit Hilfe von Glaslinsen eine Abbildung

Akira Tonomura
Hitachi Research Labs

Elektroneninterferenzen mit 8, 270, 2000 und 60.000 Elektronen

8

270

2000

60.000

Ist die statistische Deutung korrekt?      
Antwort: es sieht ganz so aus 
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Was ist Licht, Welle oder Teilchen? 
Antwort: beides

Albert Rose, Vision: Human and Electronic
Wiedergabe mit Genehmigung des Springer-Verlags  

Abbildung 1.5: Experimentelle Beweise für die duale Natur des sichtbaren Lichts und der

Röntgenstrahlung. Links: Fotografie als Quantenprozess. Die Aufnahmen eines Frauenkopfes wurden mit

sehr unterschiedlichen Belichtungszeiten gemacht, zwischen 3000 und 30 000 000 Photonen. Die granulare

Natur des Lichtes ist bei schwach belichteten Bildern deutlich zu erkennen. (Albert Rose, Vision: Human

and Electronic, Plenum Press 1973, Springer 1974. Wiedergabe mit Genehmigung des Springer-Verlags).

Rechts: Streuung von Röntgenstrahlung an Graphit. Die Wellennatur der Strahlung wird zweimal aus-

genutzt: mit Hilfe von Bragg-Reflexion an einem Kristallgitter wird eine bestimmte Wellenlänge der

einfallenden Strahlung selektiert (hier � = 0, 71 Å), und die Wellenlänge der gestreuten Strahlung wird

wiederum über Bragg-Reflexion gemessen. Die Quantennatur der Strahlung ist nötig, um den Prozess

mathematisch zu beschreiben, siehe Text. Anmerkung: bei großen Streuwinkeln beobachtet man zwei

Intensitätsmaxima. Das Maximum bei der unverschobenen Wellenlänge von 0, 71 Å ist auf Compton-

streuung am gesamten Atom zurückzuführen.

das Photon Energie auf das Elektron. Nach dem Stoß ist daher sein Impuls kleiner und die
Wellenlänge größer. Als Funktion des Streuwinkels ✓ ist sie gegeben durch die Comptonsche
Streuformel

�

0 = �+
2⇡~
mec

(1� cos ✓) .

In der klassischen Elektrodynamik hingegen würde das atomare Elektron eine erzwungene Schwin-
gung im Feld der elektromagnetischen Welle ausführen und Strahlung mit genau der Frequenz
und Wellenlänge dieser Welle emittieren. Mit anderen Worten: die um 90� gestreute Strahlung
müsste ebenfalls � = 0, 71 Å haben.

1.6 Interferenzexperimente mit Neutronen

Mit Neutronen sind viele verschiedene Interferenzexperimente durchgeführt worden (siehe Hel-
mut Rauch, Neutronen-Interferometrie: Schlüssel zur Quantenmechanik, Physik in unserer Zeit,

6

Compton-Streuung

8



9

Neutroneninterferornetrie 57 

Quantenmechanik aufmerksam zu machen. 
Demnach ist eine Katze, die sich unbeobach- 
tet in einer Kiste befindet, in einem Superpo- 
sitionszustand, der die Katze gleichzeitig le- 
bendig und tot sein lafit, und erst durch das 
Beobachten - Offnen der Kiste - entscheidet 
sich, ob die Katze tot oder lebendig ist. Aber 
auch die Tatsache, dai3 ein an sich unteilbares 
Objekt gleichzeitig uber zwei weit voneinan- 
der getrennte Wege gehen kann - wie in Ab- 
bildung 1 dargestellt - oder sich an zwei raum- 
lich getrennten Orten befinden kann, geht 
uber unser ,,klassisches" Verstandnis deutlich 
hinaus, und dennoch gibt es diese Phano- 
mene, wie wir im folgenden sehen werden. 

Experimente, die diese ,,absurden" Vorstel- 
lungen bestatigen, konnten in den letzten 
beiden Jahrzehnten mit Neutronen durchge- 
fuhrt werden, die zweifelsohne als massive 
Teilchen anzusehen sind. Sic haben eine 
wohldefinierte Masse und besitzen auch 
etliche weitere Eigenschaften, die sic als 
Teilchen ausweisen. Schliei3lich besteht die 
gesamte uns umgebende Materie zu fast 
50 % aus Neutronen, die in den Atomkernen 
gebunden sind. Bei der Kernspaltung oder an- 
deren Kernreaktionen werden etliche davon 
freigesetzt, und wir konnen damit experimen- 
tieren. Ein fur die Quantenmechanik relevan- 
tes Experiment, welches die Situation des 
Skifahrers nachempfindet, haben wir 1974 
im Rahmen einer deutsch-osterreichischen 
Kooperation am 250 kW TRIGA-Reaktor in 
Wien durchgefiihrt [l]. Wie in Abbildung 2 
dargestellt, wird ein Neutronenstrahl durch 
Beugung an einem vollig perfekten Silizium- 
Einkristall in zwei weit voneinander ent- 
fernte koharente Teilstrahlen geteilt und an- 
schliei3end werden diese Teilstrahlen wieder 
zusammengefiihrt. Dabei 1ai3t sich zeigen, 
dai3 es hinter dem Interferometer so aussieht 
als hatte jedes Neutron Informationen iiber 
beide Strahlwege, obwohl es als Elementar- 
teilchen nicht teilbar ist. Die Dichte der Neu- 
tronen ist dabei so niedrig, dai3 sich jeweils 
immer nur ein Neutron im Interferometer 
befindet und das nachste noch im Urankern 
des Kernbrennstoffs gebunden ist. Beschrie- 
ben wird der gesamte Vorgang n i t  der Schro- 
dinger-Gleichung, die die zeitliche Anderung 
eines Zustandes awlat in Zusammenhang 
stellt mit der Wirkung des Hamilton-Opera- 
tors H auf dieses System, wobei jedoch zu 
beriicksichtigen ist, da8 eine kleinste Wirkung 
in Form des Planckschen Wirkungsquantums 
f i  existiert 

aly 
at 

H y  = iA -. 

Abb. 2. Perfektkristall-Neutroneninterferometer, mit dem an sich unteilbare Neutronen 
auf getrennten Wegen durch das Interferometer gefuhrt werden. 

Die Intensitat hinter dem Interferometer setzt 
sich aus Anteilen zusammen, die uber die 
Strahlwege I und I1 dorthin gelangt sind 

wobei man fur die Vorwartsrichtung (0) aus 
Symmetriegriinden leicht erkennt, da8 die 
Anteile aus beiden Strahlwegen gleich sein 
mussen, weil sie transmittiert-reflektiert-re- 
flektiert und reflektiert-reflektiert-transmit- 
tiert sind. Durch das Einbringen einer Wech- 
selwirkung in einen Teilstrahl in Form eines 
beliebigen Materials, eines Magnetfeldes oder 
durch Beriicksichtigung des Gravitationsfel- 
des ergibt sich eine Phasenverschiebung x ei- 
ner Teilwelle gegeniiber der anderen, die ahn- 
lich wie fur Licht durch einen Brechungsin- 
dex n und eine raumliche Verschiebung A des 
Wellenzuges beschrieben werden kann 

w - w e  

x = $ 
wobei 2 den kanonischen Impuls entlang der 
Strahlwege d? angibt und D die Dicke des 
Phasenschiebers. 

(3) I1 - I ix 

* d? = (n - 1) kD = d .&  

Fur stationare Situationen ist die Losung der 
Schrodinger-Gleichung in Form eines Wel- 
lenpakets gegeben 

Abb. 3. Typisches Interferenzbild hinter 
dem Interferometer, wenn in einem Teil- 
strahl der Phasenschub - Dicke des Alumi- 
nium-Phasenschiebers - geandert wird. 

wobei I a ( Z )  1 = g ( R )  die Impulsverteilung 
des Strahls angibt, deren Breite wir mit 
& bezeichnen. Damit ergibt sich als endgiil- 
tige Intensititsformel 

z =  1 + I T(A)  I cos d * i  ( 5 )  

mit 

Das bedeutet, daf3 die Intensitat zwischen ei- 
nem Maximalwert und fast Null oszilliert. 

Physik in unserer Zeit / 29. Jahrg. 1998 / N,: 2 
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Helmut Rauch
Physik in unserer Zeit, 
Nov. 1998

Perfektkristall-Interferometer für Neutronen

jedes Neutron interferiert mit sich selber, 
nicht mit anderen Neutronen

12 1 Einleitung

niedrig, dass sich immer nur ein Neutron zur Zeit in der Apparatur befindet
und das nachfolgende Neutron noch gar nicht entstanden ist. Wie bei den
Elektronen beobachten wir also die Interferenz von Teilchen mit sich selbst
und nicht mit anderen Teilchen. Bei Fermionen sind Interferenzen zwischen
verschiedenen Teilchen auch gar nicht möglich, da sie aufgrund des Pauli-
Prinzips verschiedene Quantenzustände einnehmen müssen und daher nicht
kohärent sein können.
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Experimente, die diese ,,absurden" Vorstel- 
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im Rahmen einer deutsch-osterreichischen 
Kooperation am 250 kW TRIGA-Reaktor in 
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stellt mit der Wirkung des Hamilton-Opera- 
tors H auf dieses System, wobei jedoch zu 
beriicksichtigen ist, da8 eine kleinste Wirkung 
in Form des Planckschen Wirkungsquantums 
f i  existiert 

aly 
at 

H y  = iA -. 

Abb. 2. Perfektkristall-Neutroneninterferometer, mit dem an sich unteilbare Neutronen 
auf getrennten Wegen durch das Interferometer gefuhrt werden. 

Die Intensitat hinter dem Interferometer setzt 
sich aus Anteilen zusammen, die uber die 
Strahlwege I und I1 dorthin gelangt sind 

wobei man fur die Vorwartsrichtung (0) aus 
Symmetriegriinden leicht erkennt, da8 die 
Anteile aus beiden Strahlwegen gleich sein 
mussen, weil sie transmittiert-reflektiert-re- 
flektiert und reflektiert-reflektiert-transmit- 
tiert sind. Durch das Einbringen einer Wech- 
selwirkung in einen Teilstrahl in Form eines 
beliebigen Materials, eines Magnetfeldes oder 
durch Beriicksichtigung des Gravitationsfel- 
des ergibt sich eine Phasenverschiebung x ei- 
ner Teilwelle gegeniiber der anderen, die ahn- 
lich wie fur Licht durch einen Brechungsin- 
dex n und eine raumliche Verschiebung A des 
Wellenzuges beschrieben werden kann 

w - w e  

x = $ 
wobei 2 den kanonischen Impuls entlang der 
Strahlwege d? angibt und D die Dicke des 
Phasenschiebers. 

(3) I1 - I ix 

* d? = (n - 1) kD = d .&  

Fur stationare Situationen ist die Losung der 
Schrodinger-Gleichung in Form eines Wel- 
lenpakets gegeben 

Abb. 3. Typisches Interferenzbild hinter 
dem Interferometer, wenn in einem Teil- 
strahl der Phasenschub - Dicke des Alumi- 
nium-Phasenschiebers - geandert wird. 

wobei I a ( Z )  1 = g ( R )  die Impulsverteilung 
des Strahls angibt, deren Breite wir mit 
& bezeichnen. Damit ergibt sich als endgiil- 
tige Intensititsformel 

z =  1 + I T(A)  I cos d * i  ( 5 )  

mit 

Das bedeutet, daf3 die Intensitat zwischen ei- 
nem Maximalwert und fast Null oszilliert. 

Physik in unserer Zeit / 29. Jahrg. 1998 / N,: 2 

Abbildung 1.6 Links: Perfektkristall-Neutroninterferometer. Rechts: Interferenz-
streifen als Funktion der Dicke der Aluminiumplatte in einem Strahlweg [7]. Wie-
dergabe mit freundlicher Genehmigung von Prof. Helmut Rauch. Copyright Wiley
VHC-Verlag, reproduced with permission.

1.2.4 Welchen Weg wählt das Teilchen?

Beim Doppelspaltexperiment tre↵en die Elektronen als praktisch punktförmi-
ge Teilchen auf den Beobachtungsschirm (fotografische Schicht oder Pixel-
detektor), siehe Abb. 1.4. Demnach erscheint es vernünftig, sie generell als
punktförmig anzusehen und folgende Behauptung aufzustellen: jedes Elek-
tron fliegt entweder durch Spalt 1 oder durch Spalt 2, aber nicht gleichzeitig
durch beide Spalte.

Diese einleuchtende Behauptung erweist sich als nicht haltbar. Sobald man
sich ein Experiment ausdenkt, mit dem geprüft werden kann, ob ein Elektron
durch Spalt 1 oder Spalt 2 fliegt, verschwindet das Interferenzmuster. Eine
wichtige Konsequenz dieser Erkenntnis ist: es ist nicht sinnvoll, von einer
Bahnkurve des Elektrons in atomaren Dimensionen zu sprechen. Aber ei-
gentlich ist es noch viel schlimmer: bei den Neutron-Interferenzexperimenten
mit den Perfektkristall-Interferometern sind die beiden Teilpfade des Neu-
trons um mehrere cm getrennt, und trotzdem “merkt” das Neutron, was in
beiden Pfaden geschieht. Das heißt, es gibt Situationen, wo man selbst im
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Welchen Weg wählt das Teilchen?

Helmut Rauch
Physik in unserer Zeit, 
Nov. 1998
Wiedergabe mit Genehmigung 
von H. Rauch

Die Interferenzen verschwinden sofort, wenn man den Weg kennt

Gedankenexperiment von Heisenberg: Beobachtung des Elektrons durch Licht. Wellenlänge muss klein
gegen Spaltabstand sein. Dann aber ist die Bahnstörung so gross, dass die Interferenz verschwindet.
Aber heute weiss man dass die Interferenzen auch dann verschwinden, wenn die Information über den Weg 
keine Bahnstörung bewirkt (siehe Haroche-Experiment).

Das Doppelspaltexperiment als Cartoon
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Abbildung 1.8 Links: Schema des Aufbaus von M. Brune und anderen zur Untersu-
chung des Grenzbereichs zwischen der Mikrowelt mit voll ausgeprägten Teilcheninter-
ferenzen und der Makrowelt, in der es keine Teilcheninterferenzen gibt (Erläuterungen
dazu im Text). Darunter werden die Phasenverschiebungen ±�'/2 im Mikrowellen-
resonator C durch die Rydberg-Atome A

51

mit Hauptquantenzahl n = 51 und A
50

mit n = 50 gezeigt. Da nur wenige Mikrowellenphotonen im Resonator C vorhanden
sind, gibt es eine gewisse Unschärfe in der Amplitude und Phase des Hochfrequenz-
feldes. Dieser Unschärfebereich wird durch die kreisförmigen Scheiben angedeutet.
Rechts: Die beobachteten Interferenzmuster für verschieden präzise Identifikation des
Hochfrequenz-Resonators R

1

oder R
2

, in dem der Übergang A
51

! A
50

erfolgt. Bild
(a): gar keine Identifikation ergibt maximalen Kontrast; Bilder (b) und (c): teilweise
Identifikation ergibt Interferenzen mit reduziertem Kontrast; Bild (d): 100% sichere
Identifikation lässt die Interferenzen völlig verschwinden. Nachdruck mit freundlicher
Genehmigung von Prof. J.-M. Raimond und Prof. S. Haroche. Figures adapted with
permission from [8]. Copyright 1996 by the American Physical Society.

Zustände A
50

und A
51

. Übertragen auf unser Doppelspaltexperiment heißt
das: man kann die Wahrscheinlichkeit w in Gleichung (1.9) kontinuierlich
zwischen w = 0,5 (keine Unterscheidungsmöglichkeit der beiden Spalte) und
w = 1 (genaue Kenntnis des richtigen Spalts) variieren. Das Ergebnis des
Brune-Experiments ist ebenfalls in Abb. 1.8 gezeigt. Man kann sehr deutlich
die Veränderungen des Kontrasts im Interferenzmuster erkennen. In der Tat
findet man maximalen Kontrast für w = 0,5 (keine Entscheidungsmöglich-
keit), verminderten Kontrast für 0,5 < w < 1 und Verschwinden des Musters
für w = 1 (genaue Kenntnis des Spalts).

Ein hochinteressanter Aspekt dieses Experiments ist, dass es gar nicht dar-
auf ankommt, die Phasenverschiebung im Mikrowellenresonator tatsächlich
zu messen. Allein die Tatsache, dass dies im Prinzip möglich wäre, reicht aus,
das Interferenzmuster zu beeinflussen oder sogar zu zerstören. Diese Erkennt-
nis geht weit über die Argumentation beim “Heisenberg-Mikroskop” hinaus:
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states with the help of circular Rydberg atoms (see text).  
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The field in the cavity is probed by Rb atoms that are prepared in a circular Rydberg state 
(e.g., n = 50, l = |m|=49). Such atoms have a large area, with a radius of 125 nm, and are very 
strongly coupled to the field in the cavity. The transition n = 50 (|Ļ>) to n = 51 (|Ĺ>) has 

almost the same frequency as the microwave field in the cavity (51 GHz). Two cavities R1 and 
R2 (see Fig. 4) are used to create and analyze a controlled quantum superposition between 
|Ļ> and |Ĺ>. A selective field ionization detector (D) detects the state of the atom. Photons 

produced by a coherent source are coupled to the cavity via a waveguide. The atoms are sent 
one at a time into the cavity at a controlled velocity and thereby have a controlled time of 
interaction. In most experiments performed by Haroche’s group, the atom and field have 
slightly different frequencies. An atom travelling in the cavity does not absorb photons, but 
its energy levels shift due to the dynamical Stark effect, inducing a phase variation of the 
microwave field. This phase shift is of the opposite sign, depending on whether the atom is in 
the |Ļ> or |Ĺ> state, leading to an entanglement of the atomic and field states (Brune et al., 

1996b).  

 

In 1990, Haroche and coworkers suggested a method to measure the number of photons in 
the cavity in a quantum non-demolition measurement (Brune et al., 1990). Recently, they 
were able to demonstrate it experimentally (Gleyzes et al., 2007; for a related experiment, see 
Nogues et al., 1999). Individual photons are captured in a cavity and observed via the 
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Identifikation ergibt Interferenzen mit reduziertem Kontrast; Bild (d): 100% sichere
Identifikation lässt die Interferenzen völlig verschwinden. Nachdruck mit freundlicher
Genehmigung von Prof. J.-M. Raimond und Prof. S. Haroche. Figures adapted with
permission from [8]. Copyright 1996 by the American Physical Society.
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. Übertragen auf unser Doppelspaltexperiment heißt
das: man kann die Wahrscheinlichkeit w in Gleichung (1.9) kontinuierlich
zwischen w = 0,5 (keine Unterscheidungsmöglichkeit der beiden Spalte) und
w = 1 (genaue Kenntnis des richtigen Spalts) variieren. Das Ergebnis des
Brune-Experiments ist ebenfalls in Abb. 1.8 gezeigt. Man kann sehr deutlich
die Veränderungen des Kontrasts im Interferenzmuster erkennen. In der Tat
findet man maximalen Kontrast für w = 0,5 (keine Entscheidungsmöglich-
keit), verminderten Kontrast für 0,5 < w < 1 und Verschwinden des Musters
für w = 1 (genaue Kenntnis des Spalts).

Ein hochinteressanter Aspekt dieses Experiments ist, dass es gar nicht dar-
auf ankommt, die Phasenverschiebung im Mikrowellenresonator tatsächlich
zu messen. Allein die Tatsache, dass dies im Prinzip möglich wäre, reicht aus,
das Interferenzmuster zu beeinflussen oder sogar zu zerstören. Diese Erkennt-
nis geht weit über die Argumentation beim “Heisenberg-Mikroskop” hinaus:

FIGURE 4. IN THE PARIS EXPERIMENT,10 Schrodinger's cat is
embodied by a few photons stored in the cavity C, whose

mirrors are shown in the photo at right. A rubidium atom
from oven O is prepared in box B in the Rydberg state | +>. In

the auxiliary cavity R|, a microwave pulse turns it into a
superposition of | +̂ > and | —̂>. Traversing C, the atom imparts

to the cavity field two different phases at once. A second pulse in
R2 remixes the Rydberg states. The atomic state is measured in
detectors D+ and D_ by applying state-selective ionizing electric-

fields. A second atom, the "quantum mouse," tests the "cat" state
prepared by the first atom. Statistical analysis of atomic energy

correlations in many runs determines the quantum coherence of
the cavity field. By varying the delay between the two atoms,

one observes the cat's rapid decoherence.

at the Ecole Normale Superieure in Paris by a group that
includes Jean-Michel Raimond, Michel Brune and my-
self.10 The role of the cat in our experiment is played
by a field oscillator consisting of a few photons stored in
a high-Q cavity. After interacting with a single atom, the
field oscillates with two different phases at once—again
a Schrodinger cat situation. The box in which the photonic
cat is trapped is a cavity 3 cm long, consisting of two
carefully polished niobium mirrors facing each other. (See
the photo in figure 4.)

The photons are produced by a coherent millimeter-
wave source coupled to the cavity by a waveguide. As
soon as a few photons are stored, the source is switched
off and the photons are left free to bounce back and forth
between the mirrors. Coupling to the environment is
minimized by cooling the setup to very low temperature
(0.6 K), because blackbody radiation can cause unwanted,
trivial relaxation effects. Furthermore, at this tempera-
ture the niobium is superconducting. The photons sur-
vive on average 160 microseconds before being scattered
outside by mirror surface defects. One can tune the
frequency of the field near 51 GHz by slightly moving the
mirrors.

Once the radiation field is prepared, a single atom is
sent across the cavity with an adjustable velocity (typically
400 m/s). This atom has a resonant frequency different
from the field. Therefore it cannot absorb photons. The
atom behaves like a small piece of transparent dielectric
material with a refractive index slightly different from
unity. It thus induces a small dispersive effect on the

field, momentarily changing its fre-
quency by a few kHz. The frequency
resumes its initial value when the
atom exits the cavity, after about 20
/J.S. But in the process the phase of the
radiation field has been shifted.

Such an effect requires a special
kind of atom. The refractive index
corresponding to an ordinary atom in
a volume of about 1 cm3 differs from
unity by only a few parts in 1O22. To
get a much larger refractive index ef-
fect, we excited rubidium atoms from
an atomic beam by laser and rf irra-
diation to a very high Rydberg state—
with principal quantum number
n = 51. By adjusting the laser inten-
sity, we can reduce the flux of Rydberg
atoms to the point where they cross
the cavity one at a time.

A Rydberg level has a large de-
generacy, corresponding to all possible
values of the atomic angular momen-
tum. The sublevel we prepare is the

highest angular momentum state, with the excited elec-
tron moving around the nucleus in a very circular orbit.
Although the radius of an ordinary atomic state is half
an angstrom (0.05 nm), this state has a enormous orbital
radius of 125 nm. The atom then behaves like a huge
antenna strongly coupled to the radiation. It also has a
very long radiative damping time, so that the loss of
coherence due to spontaneous emission is negligible.

A single Rydberg atom in the 1 cm3 cavity volume
changes the refractive index by as much as a part in 107.
That's 15 orders of magnitude more than one gets with
an ordinary atom! The dephasing produced by such an
atom on the field is on the order of a radian. Its value
can be adjusted by controlling the atom's velocity and
hence its transit time through the cavity, or by changing
the frequency of the radiation field. (The refractive index
is strongly frequency dependent.)

Introducing weirdness
We introduce quantum weirdness into these proceedings
by subjecting the atom to an auxiliary microwave pulse
before it enters the cavity. The pulse leaves the atom in
a linear superposition of the two circular Rydberg states
with principal quantum numbers 51 and 50. To stress
the similarity with the ion experiment, we again label
these states, respectively, The cavity field+> and
is detuned slightly from the transition between these two
states, which induces opposite refractive index changes in
the cavity.

After the atom's traversal, the field thus acquires two
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zu messen. Allein die Tatsache, dass dies im Prinzip möglich wäre, reicht aus,
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feldes. Dieser Unschärfebereich wird durch die kreisförmigen Scheiben angedeutet.
Rechts: Die beobachteten Interferenzmuster für verschieden präzise Identifikation des
Hochfrequenz-Resonators R

1

oder R
2

, in dem der Übergang A
51

! A
50

erfolgt. Bild
(a): gar keine Identifikation ergibt maximalen Kontrast; Bilder (b) und (c): teilweise
Identifikation ergibt Interferenzen mit reduziertem Kontrast; Bild (d): 100% sichere
Identifikation lässt die Interferenzen völlig verschwinden. Nachdruck mit freundlicher
Genehmigung von Prof. J.-M. Raimond und Prof. S. Haroche. Figures adapted with
permission from [8]. Copyright 1996 by the American Physical Society.

Zustände A
50

und A
51

. Übertragen auf unser Doppelspaltexperiment heißt
das: man kann die Wahrscheinlichkeit w in Gleichung (1.9) kontinuierlich
zwischen w = 0,5 (keine Unterscheidungsmöglichkeit der beiden Spalte) und
w = 1 (genaue Kenntnis des richtigen Spalts) variieren. Das Ergebnis des
Brune-Experiments ist ebenfalls in Abb. 1.8 gezeigt. Man kann sehr deutlich
die Veränderungen des Kontrasts im Interferenzmuster erkennen. In der Tat
findet man maximalen Kontrast für w = 0,5 (keine Entscheidungsmöglich-
keit), verminderten Kontrast für 0,5 < w < 1 und Verschwinden des Musters
für w = 1 (genaue Kenntnis des Spalts).

Ein hochinteressanter Aspekt dieses Experiments ist, dass es gar nicht dar-
auf ankommt, die Phasenverschiebung im Mikrowellenresonator tatsächlich
zu messen. Allein die Tatsache, dass dies im Prinzip möglich wäre, reicht aus,
das Interferenzmuster zu beeinflussen oder sogar zu zerstören. Diese Erkennt-
nis geht weit über die Argumentation beim “Heisenberg-Mikroskop” hinaus:

FIGURE 4. IN THE PARIS EXPERIMENT,10 Schrodinger's cat is
embodied by a few photons stored in the cavity C, whose

mirrors are shown in the photo at right. A rubidium atom
from oven O is prepared in box B in the Rydberg state | +>. In

the auxiliary cavity R|, a microwave pulse turns it into a
superposition of | +̂ > and | —̂>. Traversing C, the atom imparts

to the cavity field two different phases at once. A second pulse in
R2 remixes the Rydberg states. The atomic state is measured in
detectors D+ and D_ by applying state-selective ionizing electric-

fields. A second atom, the "quantum mouse," tests the "cat" state
prepared by the first atom. Statistical analysis of atomic energy

correlations in many runs determines the quantum coherence of
the cavity field. By varying the delay between the two atoms,

one observes the cat's rapid decoherence.

at the Ecole Normale Superieure in Paris by a group that
includes Jean-Michel Raimond, Michel Brune and my-
self.10 The role of the cat in our experiment is played
by a field oscillator consisting of a few photons stored in
a high-Q cavity. After interacting with a single atom, the
field oscillates with two different phases at once—again
a Schrodinger cat situation. The box in which the photonic
cat is trapped is a cavity 3 cm long, consisting of two
carefully polished niobium mirrors facing each other. (See
the photo in figure 4.)

The photons are produced by a coherent millimeter-
wave source coupled to the cavity by a waveguide. As
soon as a few photons are stored, the source is switched
off and the photons are left free to bounce back and forth
between the mirrors. Coupling to the environment is
minimized by cooling the setup to very low temperature
(0.6 K), because blackbody radiation can cause unwanted,
trivial relaxation effects. Furthermore, at this tempera-
ture the niobium is superconducting. The photons sur-
vive on average 160 microseconds before being scattered
outside by mirror surface defects. One can tune the
frequency of the field near 51 GHz by slightly moving the
mirrors.

Once the radiation field is prepared, a single atom is
sent across the cavity with an adjustable velocity (typically
400 m/s). This atom has a resonant frequency different
from the field. Therefore it cannot absorb photons. The
atom behaves like a small piece of transparent dielectric
material with a refractive index slightly different from
unity. It thus induces a small dispersive effect on the

field, momentarily changing its fre-
quency by a few kHz. The frequency
resumes its initial value when the
atom exits the cavity, after about 20
/J.S. But in the process the phase of the
radiation field has been shifted.

Such an effect requires a special
kind of atom. The refractive index
corresponding to an ordinary atom in
a volume of about 1 cm3 differs from
unity by only a few parts in 1O22. To
get a much larger refractive index ef-
fect, we excited rubidium atoms from
an atomic beam by laser and rf irra-
diation to a very high Rydberg state—
with principal quantum number
n = 51. By adjusting the laser inten-
sity, we can reduce the flux of Rydberg
atoms to the point where they cross
the cavity one at a time.

A Rydberg level has a large de-
generacy, corresponding to all possible
values of the atomic angular momen-
tum. The sublevel we prepare is the

highest angular momentum state, with the excited elec-
tron moving around the nucleus in a very circular orbit.
Although the radius of an ordinary atomic state is half
an angstrom (0.05 nm), this state has a enormous orbital
radius of 125 nm. The atom then behaves like a huge
antenna strongly coupled to the radiation. It also has a
very long radiative damping time, so that the loss of
coherence due to spontaneous emission is negligible.

A single Rydberg atom in the 1 cm3 cavity volume
changes the refractive index by as much as a part in 107.
That's 15 orders of magnitude more than one gets with
an ordinary atom! The dephasing produced by such an
atom on the field is on the order of a radian. Its value
can be adjusted by controlling the atom's velocity and
hence its transit time through the cavity, or by changing
the frequency of the radiation field. (The refractive index
is strongly frequency dependent.)

Introducing weirdness
We introduce quantum weirdness into these proceedings
by subjecting the atom to an auxiliary microwave pulse
before it enters the cavity. The pulse leaves the atom in
a linear superposition of the two circular Rydberg states
with principal quantum numbers 51 and 50. To stress
the similarity with the ion experiment, we again label
these states, respectively, The cavity field+> and
is detuned slightly from the transition between these two
states, which induces opposite refractive index changes in
the cavity.

After the atom's traversal, the field thus acquires two
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S. Haroche in a colloquium in Hamburg, Jan. 1997:

It is not necessary to actually observe the trajectory in order to suppress 
the interference. The mere fact that a "trace" of the trajectory is left in the 
environment and "could be observed" is sufficient.
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Wie groß dürfen Objekte werden, um noch Interferenzen zu machen?
Sind Fußbälle erlaubt? Ja, aber nur Mini-Fußbälle: C60-Fullerene

Markus Arndt et al., Uni Wien

16 1 Einleitung

dort ist es der vom Photon auf das Elektron übertragene Rückstoßimpuls,
der das Interferenzmuster zum Verschwinden bringt.

1.2.5 Interferenzen mit großen Molekülen

Die Wellennatur der Materie ist für kleine Objekte - Elektronen, Neutronen
oder Atome - durch Interferenzexperimente eindrucksvoll bestätigt worden,
wie wir gerade gesehen haben. Bei großen Objekten - Billardkugeln oder
Fußbällen - sind noch nie Interferenzen beobachtet worden. Ist die Quan-
tenmechanik auf solche makroskopischen Objekte überhaupt anwendbar und
macht es Sinn, von der de Broglie-Wellenlänge eines Fußballs zu sprechen?
In der Kopenhagener Deutung wird dies verneint, dort wird eine deutliche
Unterscheidung gemacht zwischen dem mikroskopischen Bereich der Elektro-
nen, Atome und Moleküle, in dem die Gesetze der Quantentheorie anzuwen-
den sind, und dem makroskopischen Bereich unserer täglichen Erfahrung, der
mit der klassischen Physik beschrieben wird. Eine spannende Frage ist: wie
groß dürfen Objekte werden, um noch Interferenzen zu zeigen? Oder etwas
allgemeiner gefragt: an welcher Stelle setzt der Übergang vom Quantenver-
halten zum klassischen Verhalten ein (Engl. quantum-to-classical transition)?

Interferenzen mit Fußbällen kann man in der Tat beobachten, allerdings sind
dies Miniaturfußbälle, die C

60

-Fulleren-Moleküle. Experimentelle Resultate
werden in Abb. 1.9 gezeigt. Diese Messung ist aus zwei Gründen hochinter-

Abbildung 1.9 Links: das Fulleren C
60

. Das C
60

-Molekül ähnelt einem Fußball. Es
ist innen hohl und hat einen Durchmesser von etwa 0,8 nm. Rechts: beobachtete Inter-
ferenzen mit C

60

-Molekülen der mittleren Geschwindigkeit 136± 3m/s [9]. Abdruck
mit freundlicher Genehmigung von Prof. M Arndt, Universität Wien. Copyright 2003
American Association of Physics Teachers, reproduced with permission.
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1.2 Teilchen und Wellen 17

essant. Die de Broglie-Wellenlänge der Moleküle ist viel kleiner als ihr Durch-
messer (siehe Aufgabe 1.2), und zweitens darf man die aus 60 C-Atomen
bestehenden Bälle nicht als Punktteilchen ansehen, da die Atome innerhalb
des Moleküls Schwingungen durchführen und Strahlung emittieren können.
Die in der Quelle hoch erhitzten Fulleren-Moleküle senden auf ihrem Flug
vom Beugungsgitter zum Detektor 2 bis 3 Infrarot-Photonen aus. Allerdings
beträgt die Wellenlänge dieser Photonen einige 10µm und ist weit größer als
der Spaltabstand im Gitter von 0,1µm. Daher ist es prinzipiell unmöglich,
durch Messung dieser Photonen den Weg des C

60

-Moleküls zu bestimmen,
und aus diesem Grund wird das Interferenzmuster auch nicht beeinträchtigt.

Auch mit noch größeren Molekülen lassen sich Interferenzen beobachten
(Abb. 1.10).

Abbildung 1.10 Gemessenes Interferogramm für das Makromolekül
C

30

H
12

F
30

N
2

O
4

[10]. Die im unteren Teil des Bildes gezeigten Moleküle wur-
den von Prof. M. Mayor an der Univ. Basel synthetisiert. Abdruck mit freundlicher
Genehmigung von Prof. M Arndt, Universität Wien. Copyright Wiley VHC-Verlag,
reproduced with permission.

1.2.6 Bose-Einstein-Kondensation und kohärente
Materiewellen

Mit dem Laser lassen sich Interferenzen sehr einfach demonstrieren. Es han-
delt sich dabei um die Überlagerung von makroskopischen Wellen, bestehend
aus Millionen von Photonen, die alle den gleichen Quantenzustand einneh-

VCH-
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Der Quantencorral 
(Don Eigler, IBM)

Wellennatur der Elektronen direkt sichtbar
abgetastet mit Raster-Tunnelmikroskop

22 1 Einleitung

Abbildung 1.13 Eine stehende Elektronenwelle innerhalb eines Ringes von 48 Ei-
senatomen auf einer Kupferoberfläche. (Wiedergabe mit freundlicher Genehmigung
von Dr. Don Eigler, IBM-Forschungslabor Almaden. Image originally created by IBM
Corporation.) Zur theoretischen Beschreibung der stehenden Elektronenwelle siehe
Anhang B.4.

seres Erkennungsvermögens wahrnehmen: die winzigen Objekte werden “an-
schaulich” für uns, weil wir sie sehen können, wenn auch nur mit Hilfsmitteln.
In den letzten Jahrzehnten sind neue, extrem hochauflösende Mikroskope
entwickelt worden, die selbst einzelne Atome “sichtbar” machen können, das
Rastertunnelmikroskop und das Rasterkraftmikroskop. Abbildung 1.13 zeigt
ein berühmtes Beispiel. Mit Hilfe eines Rasterkraftmikroskops wurden Eisena-
tome auf einer Kupferoberfläche verschoben und zu einem Ring angeordnet.
Ein Bild des Ringes erhält man durch Abtastung mit einem Rastertunnelmi-
kroskop. Die Elektronen, die sich auf der Kupferoberfläche im Innern dieses
ringförmigen Käfigs befinden, bilden eine zweidimensionale stehende Elek-
tronenwelle, die man ebenfalls abtasten kann. Dies ist der direkte, visuelle
Beweis für die Wellennatur der Elektronen.

Zusammenfassung

1. Die Quantenmechanik ist Grundlage der neuen Technologien.

2. Moderne Doppelspaltexperimente mit Elektronen, Neutronen und schwe-
reren Teilchen belegen eindeutig die Wellennatur der Materie. Sie zeigen
aber gleichzeitig die Teilchennatur, da die Interferenzbilder sukzessive durch
punktförmige Einträge aufgebaut werden.

3. Licht zeigt sowohl Wellen- wie Quantenverhalten, was man mit Fotografien
und der Comptonstreuung sichtbar machen kann.

4. Beim Doppelspaltexperiment gibt es einen gleitenden Übergang zwischen
Teilchen- und Wellenverhalten.
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32 2 Die Schrödinger-Gleichung

| (x, y, z)|2dxdydz .

Das Normierungsintegral lautet

Z
+1

�1

Z
+1

�1

Z
+1

�1
| (x, y, z)|2dxdydz = 1 . (2.28)

Man kann in der Quantenmechanik eine Kontinuitätsgleichung herleiten, die
der Kontinuitätsgleichung der Elektrodynamik entspricht, siehe Anhang B.

2.5 Das Unschärfeprinzip

Die Wellennatur des Elektrons (oder anderer Teilchen) hat eine wichtige Kon-
sequenz: man kann den Ort und den Impuls des Teilchens nicht gleichzeitig
exakt festlegen. Es gilt die berühmte Unschärferelation von Werner Heisen-
berg

�x�p � ~/2 . (2.29)

Die genaue Definition der Unschärfen wird in Kap. 4 gebracht. Will man den
Impuls eines Teilchens sehr präzise festlegen, so muss wegen p = 2⇡~/� auch
die de Broglie-Wellenlänge � entsprechend präzise sein. Damit dies gewähr-
leistet ist, muss die Wellenfunktion die Form eines langen harmonischen Wel-
lenzuges haben, siehe Abb. 2.1 (linkes Bild).

Abbildung 2.1 Im oberen Teil sind zwei mögliche Wellenfunktionen  (x) eines frei-
en Teilchens sowie | (x)| aufgetragen (rote Kurven). Darunter werden die zugehöri-
gen Impulsverteilungen gezeigt (blaue Kurven). Ein langer harmonischer Wellenzug
impliziert eine große Ortunsicherheit, aber der Impuls des Teilchen ist recht genau
festgelegt. Ein kurzer Wellenpuls legt den Ort des Teilchens genau fest, während der
Impuls sehr unscharf wird.

Die Unbestimmtheitsrelation
 von Werner Heisenberg

unscharfer Ort
scharfer Impuls

scharfer Ort
unscharfer Impuls
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Fouriertransformation
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3.6 Der Tunnele↵ekt 51

Abbildung 3.8 Demonstration des Tunnele↵ekts bei einer Potentialschwelle der
Höhe V

0

= 5 eV und der Dicke d = 0,3 nm. Der Realteil der Wellenfunktion eines
Elektrons der Energie E = 3 eV ist vor, innerhalb und hinter der Potentialschwelle
aufgetragen.

den können und das in der medizinischen Diagnostik eine wichtige Rolle
spielt. Die fantastische Auflösung des Rastertunnelmikroskops ist in Abb. 3.9
zu erkennen, in der das Bild der Oberfläche eines Nickel-Einkristalls gezeigt
wird. Die einzelnen Ni-Atome sind deutlich sichtbar.

Abbildung 3.9 Die Oberfläche eines Nickel-Einkristalls, abgetastet mit einem Ras-
tertunnelmikroskop. (Wiedergabe mit freundlicher Genehmigung von Don Eigler,
IBM-Forschungslabor Almaden. Image originally created by IBM Corporation.)

Nur mit dem Tunnele↵ekt kann man verstehen, dass beim radioaktiven ↵-
Zerfall von Atomkernen die Halbwertszeiten ganz extrem von der Energie der
↵-Teilchen abhängen. Die Zerfallswahrscheinlichkeit eines ↵-aktiven Kerns ist
proportional zum Gamow-Faktor

G = exp

✓
�2

~

Z r
2

r
1

p
2m↵(V (r)� E↵) dr

◆
. (3.36)
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Der Tunneleffekt
3.7 Didaktische Anmerkungen 53

Schwingung ist proportional zum Quadrat der Amplitude. Eine ruhende Sai-
te hat die Schwingungsenergie null. Das Teilchen im Potentialtopf hat immer
eine von null verschiedene Minimalenergie, die Nullpunktsenergie.

Freie Teilchen, die sich bis ins Unendliche entfernen können, haben auch in
der Quantenmechanik eine kontinuierlich veränderbare Energie. Dies betri↵t
beispielsweise Elektronen, die durch Ionisation von Atomen getrennt werden.
Stellt man die Bedingung auf, dass die Teilchen sich nicht bis ins Unendliche,
sondern nur bis zu einer extrem großen Entfernung frei bewegen können, so
ist ihre Energie im Prinzip zwar quantisiert, aber die Niveaus liegen so dicht,
dass sie quasi-kontinuierlich erscheinen.

3.7.2 Der Tunnele↵ekt in der Schule

Abbildung 3.11 Demonstration des Tunnele↵ekts. Mikrowellen mit einer Wel-
lenlänge � von etwa 3 cm werden in einem Para�n-Prisma durch Totalreflexion um
90� abgelenkt. Nähert man ein zweites Prisma bis zu einem Abstand d ⌧ �, so läuft
die Mikrowellenstrahlung geradeaus.

Mit Mikrowellen kann der Tunnele↵ekt sehr schön demonstriert werden.
Dazu wählen wir einen Aufbau, bei dem die Mikrowellen in einem Para�n-
prisma total reflektiert und um 90� abgelenkt werden (Abb. 3.11). Bringt
man ein zweites Prisma bis auf wenige Millimeter an die Grenzfläche heran,
an der die Totalreflexion stattfindet, so läuft die Mikrowellenstrahlung einfach
geradeaus, und die um 90� abgelenkte Welle wird stark unterdrückt. Die Er-
klärung ist, dass die elektromagnetische Welle ein wenig in den “verbotenen”
Bereich jenseits der Para�n-Luft-Grenze eindringt und dort eine exponenti-
elle Abschwächung erleidet. Ist diese verbotene Zone wesentlich schmaler als
die Wellenlänge, so merkt die Mikrowelle kaum etwas davon und geht prak-
tisch ungehindert in das zweite Para�nprisma über. Mit wachsender Breite
des Luftspalts wächst der total reflektierte Anteil auf Kosten des transmit-
tierten Anteils rasch an.

Schulversuch zum Tunneleffekt mit Mikrowellen

Neue Anwendung: Raster-Tunnelmikroskop

Historisch wichtig: Erklärung des α-Zerfalls

Spalt << Wellenlänge

Prisma aus Paraffin 
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Beschreibung eines freien Elektrons durch ein Wellenpaket
Anfangsbreite 1 Nanometer

Das "Zerfließen" des Wellenpakets ist ein ernsthaftes Problem, vor dem Schrödinger kapitulierte. 
Bei kritikloser Anwendung der Quantenmechanik hätte das Wellenpaket nach 1 Sekunde  eine 
Breite von 58 Kilometern! 

46 3 Anwendungen der Schrödinger-Gleichung

 (x, t) = A
0

Z
exp

✓
� (k � k

0

)2

4�2

k

◆
eikx�i!(k)tdk . (3.29)

Eine aufwändige analytische Rechnung ergibt für die zeitabhängige Wahr-
scheinlichkeitsdichte (siehe z.B. [13])

⇢(x, t) = | (x, t)|2 =
1p

2⇡ �(t)
exp

✓
� (x� v

0

t)2

2(�(t))2

◆
. (3.30)

Dieses Gauß-Wellenpaket hat nun fast alle gewünschten Eigenschaften: (1)
es wandert mit der Geschwindigkeit v

0

= ~k
0

/me in x-Richtung, genau wie
unser Teilchen; (2) es ist räumlich eingegrenzt; (3) die Wellenfunktion ist auf
1 normiert, wie man aus Gl. (3.30) erkennt (siehe auch Anhang A.3.3). Ein
Problem bliebt dennoch: das Wellenpaket hat die unerfreuliche Eigenschaft,
dass seine Breite im Laufe der Zeit zunimmt und gleichzeitig die Höhe absinkt.
Man sagt, das Wellenpaket “zerfließt”, siehe Abb. 3.6. Das Integral, die

20 0 20 40 60 80 100

t = 0

20 fs

40 fs

60 fs

x [nm]

Abbildung 3.6 Darstellung eines freien Elektrons mit E = E
kin

= 4 eV durch ein
gaußförmiges Wellenpaket mit �

0

= 1nm. Aufgetragen ist die Wahrscheinlichkeits-
dichte ⇢(x, t) für verschiedene Zeiten (t=0, 20 fs, 40 fs, 60 fs). Die Fortbewegung und
das “Zerfließen” des Wellenpakets sind deutlich erkennbar.

Fläche unter der Kurve, bleibt invariant. Die Varianz wächst als Funktion
der Zeit an

(�(t))2 = �2

0

+
~2

4m2

e�
2

0

· t2 mit �2

0

=
1

4�2

k

. (3.31)

Zum Zeitpunkt t = 0 ist die Impulsunschärfe des Teilchens �px = ~�k und
die Ortsunschärfe �x = �

0

. Daraus folgt die fundamentale Beziehung

�x ·�px = ~/2 . (3.32)

σ0 = 1 nm, E = 4 eV

Dekohärenz infolge ständiger "Beobachtung" des Teilchens durch die Umgebung
Das Wellenpaket wird immer wieder neu geformt und zerfließt viel weniger

Lösung des Problems (ca 1980 gefunden, Joos, Zeh, Zurek und andere):
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Setzen wir die Ausdrücke für c
1

und c
2

ein, so erhalten wir

a
0

=
4⇡"

0

~2
mee2

= 0,529 · 10�10m , E = �1

2
· e2

4⇡"
0

a
0

= �13,6 eV . (6.11)

Die Größe a
0

nennt man den Bohrschen Radius (s. Kap. 6.3), und E er-
weist sich als die Energie des Grundzustands des H-Atoms, vgl. Gl. (6.14).
Bis auf eine Normierungskonstante ist die Funktion (6.10) identisch mit der
Wellenfunktion des H-Atoms im Grundzustand.

In Anhang D wird bewiesen, dass die allgemeinen Lösungen der Di↵e-
rentialgleichung (6.8) die Radialfunktionen Rnl(r) sind. Sie lassen sich als
Produkt eines Polynoms des Grades (n � 1) in der Variablen r/(na

0

) und
der Exponentialfunktion exp(�r/(na

0

)) darstellen. Für n = 1, 2, 3 haben
die normierten Radialfunktionen die Gestalt

R
1 0

=
2

a3/2
0

exp(�r/a
0

) ,

R
2 0

=
1

p
2 a3/2

0

✓
1� r

2a
0

◆
exp(�r/(2a

0

)) ,

R
2 1

=
1

p
6 a3/2

0

r

2a
0

exp(�r/(2a
0

)) , (6.12)

R
3 0

=
2

p
27 a3/2

0

 
1� 2

r

3a
0

+
2

3

✓
r

3a
0

◆
2

!
exp(�r/(3a

0

)) ,

R
3 1

=
8

9
p
6 a3/2

0

 
r

3a
0

� 1

2

✓
r

3a
0

◆
2

!
exp(�r/(3a

0

)) ,

R
3 2

=
4

9
p
30 a3/2

0

✓
r

3a
0

◆
2

exp(�r/(3a
0

)) .

Die Radialfunktionen hängen nur von der Hauptquantenzahl n und der
Bahndrehimpuls-Quantenzahl l ab, während die magnetische Quantenzahl
m nicht eingeht. Ebenso wie die Kugelfunktionen sind sie auf 1 normiert:

Z 1

0

|Rnl(r)|2r2dr = 1 . (6.13)

Die Energiewerte ergeben sich zu (s. Anhang D)

En = �1

2

e2

4⇡"
0

a
0

· 1

n2

= �13,6

n2

eV mit n = 1, 2, 3, . . . . (6.14)

Wir erhalten das fundamentale Resultat, dass die Schrödinger-Gleichung ge-
nau die Energieniveaus des Bohrschen Atommodells wiedergibt.
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Schrödinger-Bild des H-Atoms              oder        Bohrsches Atom-Modell?

Man beobachtet Annihilation im Grundzustand
Unmöglich im Bohr-Atom, aber hohe Wahrscheinlichkeit im Schrödinger-Atom, da 
ψ(0) nicht null ist

108 6 Das Wassersto↵-Atom

Abbildung 6.4 Die räumliche Verteilung der Wahrscheinlichkeitsdichte
| 

100

(x, y, z)|2 im Grundzustand des H-Atoms. Links: Winkelverteilung von
|Y

00

|2. Mitte: | 
100

(x,0, z)|2 ist in einer Farbcodierung in der xz-Ebene aufgetragen.
Die Farbcodierung ist so gewählt, dass rot hohe Werte bedeutet, blau-violett niedrige
Werte. Rechts: die Wahrscheinlichkeitsdichte | 

100

(x,0, z)|2 als Funktion von x und
z.

Abbildung 6.5 Bilder der 2p-Zustände des Wassersto↵atoms. Die oberen Bil-
der zeigen die Winkelverteilungen der 2p-Zustände, links für die Quantenzahlen
(n, l,m) = (2,1,0), rechts für (n, l,m) = (2,1,1). Darunter sind die Wahrscheinlich-
keitsdichten | 

210

(x,0, z)|2 und | 
211

(x,0, z)|2 in einer Farbcodierung in der xz-Ebene
aufgetragen.

tenzahlen (n, l,m) = (3,2,0), (n, l,m) = (3,2,1) und (n, l,m) = (3,2,2). Die
zugehörigen “Elektronenwolken” werden in Abb. 6.6 gezeigt.
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(2) Strahlung wird genau dann emittiert oder absorbiert, wenn das Elektron
von einem stationären Zustand in einen anderen übergeht.

Die dritte Neuerung im Vergleich zur klassischen Physik ist die Quantisie-
rung des Bahndrehimpulses, die allerdings - wie wir aus Kap. 5 wissen -
in der Quantenmechanik komplizierter ist als im Bohr-Modell. Insbesondere
haben der Grundzustand 1s und die angeregten Zustände 2s, 3s, 4s,... einen
Bahndrehimpuls null, was im Planetenmodell des H-Atoms unmöglich ist.

Die großen Unterschiede zwischen dem Schrödinger-Bild des Atoms und dem
Bohrschen Atommodell erkennt man in Abb. 6.9. Im Schrödinger-Bild besteht
für das Elektron eine große Wahrscheinlichkeit, direkt am Ort des Atomkerns
gefunden zu werden, während es im Bohrschen Atommodell immer einen re-
lativ großen Abstand a

0

vom Kern hat. Es gibt überzeugende experimentelle
Beweise, dass das Schrödinger-Bild korrekt ist.

hhhh

Kern

kkk
Abbildung 6.9 Links: Bild des Wassersto↵atoms im Grundzustand in der Schrödin-
gertheorie. Die Wahrscheinlichkeitsdichte | 

100

(x, y, z)|2 wird für y = 0 als Funktion
von x und z gezeigt. Das Maximum liegt bei x, y, z = 0, also genau im Atomkern. Mit-
te: die (n = 1)-Kreisbahn im Bohrschen Atommodell. Das Elektron hat immer einen
relativ großen Abstand a

0

vom Kern. Rechts: Schnitt durch das H-Atom entlang der
x-Achse. Aufgetragen ist die Wahrscheinlichkeitsdichte | 

100

(x,0,0)|2 als Funktion
von x/a

0

für y = z = 0. Gezeigt wird auch die Lage der Kreisbahn im Bohrschen
Atommodell.

Wie kann man die befremdliche Vorhersage der Quantentheorie prüfen,
dass das Elektron mit großer Wahrscheinlichkeit direkt am Ort des Atom-
kerns gefunden werden kann? Dafür sind zwei Systeme geeignet, die dem
Wassersto↵atom ähneln: man kann den Kern durch ein Positron ersetzen,
oder man kann das Elektron durch ein Antiproton ersetzen. Diese aus Teil-
chen und Antiteilchen bestehenden gebundenen Systeme, Positronium und
Antiprotonium, besitzen praktisch die gleichen Wellenfunktionen und Ener-
gieniveaus wie das H-Atom, man muss nur in den jeweiligen Gleichungen die
Elektronenmasse me durch die reduzierte Masse m

red

ersetzen. Im Fall des
Positroniums e+e� istm

red

= me/2, die Energie des Grundzustands ist daher
�13,6 eV/2 = �6,8 eV. Teilchen und Antiteilchen können sich gegenseitig an-
nihilieren, wenn sie einander sehr nahe kommen. Bei der Elektron-Positron-
Annihilation entstehen, je nach Spineinstellung, zwei oder drei �-Quanten,

Schrödinger-Bild oder Bohrsches Atom-Modell?

Positronium (Positron-Elektron-Atom), Antiprotonium (Proton-Antiproton-Atom)

man beobachtet Annihilation im Grundzustand
Unmöglich im Bohr-Atom, 
aber hohe Wahrscheinlichkeit im Schrödinger-Atom, da ψ(0) nicht null ist
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wasserstoffähnliche "Atome"

Positronium (Positron-Elektron-Atom), 
Antiprotonium (Proton-Antiproton-Atom)

21



22

Spektrallinien des 
antiprotonischen Neonatoms

Übereinstimmung mit Bohr-Modell und 
mit Schrödingergleichung

Verbreiterung der Spektrallinie für 
den Übergang 
          2p          1s
im antiprotonischen Wasserstoff
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Spektrallinien des 
antiprotonischen Neonatoms

Übereinstimmung mit Bohr-Modell und 
Schrödingergleichung

Verbreiterung der Spektrallinie für 
den Übergang 
          2p          1s
im antiprotonischen Wasserstoff

L. M. Simons, Phys. Blätter 48 (1992), S. 261
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7.5 Didaktische Anmerkungen: “Was die Welt im Innersten auseinanderhält”131

Abbildung 7.7 Schematisches Bild der Potentialtöpfe für Neutronen und Protonen
im Atomkern. Der Topf der Protonen ist wegen der positiven elektrostatischen Ener-
gie angehoben. Die Niveaus werden von unten her mit jeweils zwei Neutronen bzw.
Protonen besetzt, bis die Fermi-Energie erreicht ist. Das Proton-Neutron-Verhältnis
ergibt sich aus der Forderung, dass das Fermi-Niveau in beiden Töpfen die gleiche
Höhe haben muss. Das ist wie bei zwei Wasserbehältern, die durch eine kommunizie-
rende Röhre verbunden sind.

tontopfes. Was würde passieren, wenn die Nukleonen Bosonen wären? Dann
würden sich alle 126 Neutronen auf das tiefste Energieniveau des Neutron-
Potentialtopfs begeben. Der Protontopf liegt wegen der Coulombenergie viel
höher. Nichts in der Welt könnte die Protonen daran hindern, sich durch
Betazerfall oder Einfang von Hüllenelektronen in Neutronen umzuwandeln
und dann auch auf das Grundniveau des Neutrontopfes zu fallen. Die Konse-
quenz: schwere Atomkerne würden ihre Ladung verlieren, und es gäbe keine
schweren Atome.

In etwas lockerer Sprechweise können wir sagen, dass das Pauli-Prinzip
zwei Fermionen mit parallelem Spin daran hindert, sich am gleichen Ort auf-
zuhalten. Das sieht so aus, als ob es eine abstoßende Kraft gäbe, die bei sehr
kleinen Abständen wirksam wird. Eine solche Kraft ist jedoch unbekannt,
und wir müssen uns damit begnügen, dass es nur das abstrakte Ausschlie-
ßungsprinzip ist, welches die Atome daran hindert, kleiner zu werden, als sie
in Wirklichkeit sind. Trotzdem bleibt die Frage bestehen: Was ist es denn
nun wirklich, was die Welt im Innersten “auseinanderhält”? Wir dürfen ge-
spannt darauf sein, ob jemand eines Tages eine dynamische Erklärung für
das Ausschließungsprinzip findet. Auch für den modernen Faust gibt es noch
viel zu erforschen.

Eine Welt ohne Pauli-Prinzip? Lieber nicht!
1) Alle Elektronen würden in die K-Schale gehen, 
    schwere Atome wären sehr klein, Materie wäre extrem dicht

2) Noch viel schlimmer: in schweren Atomkernen würden sich alle Protonen durch
    Beta-Zerfall in Neutronen umwandeln: es gäbe gar keine schweren Atome

130 7 Atome mit vielen Elektronen

unser eigenes Gedankenexperiment und nehmen an, die Elektronen seien Bo-
sonen. Wir können uns davon überzeugen, dass dann alle Atome mehr oder
weniger gleich aussehen müssten. Das Wassersto↵atom bleibt unverändert,
da es nur ein Elektron enthält, und auch beim Grundzustand des Heliuma-
toms ändert sich kaum etwas. Wir würden beide bosonischen Elektronen in
den 1s-Zustand setzen, das tun wir aber auch bei fermionischen Elektronen
(dort mit antiparallelem Spin). Die Elektronenwolke hätte in beiden Fällen
die gleiche räumliche Verteilung. Der wirkliche Unterschied beginnt beim Li-
thium. Das dritte Elektron wird in die K-Schale gehen, falls es bosonisch ist,
es muss aber in die L-Schale gehen, wenn es fermionisch ist (Abb. 7.6). Als
Fermion ist es weiter vom Kern entfernt und relativ locker gebunden (man
braucht 25 eV, um He zu ionisieren, und nur 5 eV, um Li zu ionisieren). Lithi-
um als fermionisches System hat also völlig andere chemische Eigenschaften
als ein hypothetisches Li-Atom mit bosonischen Elektronen.

Abbildung 7.6 Schematische Darstellung der Elektronenwolke für bosonisches Li-
thium (links) und fermionisches Lithium (rechts).

Die Unterschiede werden viel krasser bei schweren Atomen. Wenn man
alle 82 Elektronen eines Bleiatoms in die K-Schale stecken könnte, wäre die
Ausdehnung des Atoms viel geringer als sie in Wahrheit ist. Blei hätte ei-
ne unglaublich hohe Massendichte. Das Schalenmodell der Atome, das die
Grundlage des Periodischen Systems der Elemente und der Chemie darstellt,
würde zusammenbrechen.

Die Auswirkungen auf Atomkerne wären sogar noch wesentlich drasti-
scher, wenn es kein Ausschließungsprinzip gäbe. Protonen und Neutronen
sind ebenfalls Spin-1/2-Fermionen. Bei mittelschweren Kernen ist das Proton-
Neutronverhältnis etwa 1:1, bei schweren Kernen ist es etwa 2:3. Eine qualita-
tive Erklärung liefert ein Potentialtopfmodell der Kernkräfte, unter Berück-
sichtigung der elektrostatischen Abstoßung der Protonen (siehe die Abb. 7.7).
Auf jedes Energieniveau des Neutron-Potentialtopfs können jeweils zwei Neu-
tronen mit entgegengesetztem Spin gesetzt werden, entsprechendes gilt auch
für die Protonen. Ein Bleikern hat 126 Neutronen und 82 Protonen. Man
muss die Niveaus des Neutrontopfes bis zu einer bestimmten Höhe besetzen,
um all diese Teilchen unterzubringen, und entsprechend die Niveaus des Pro-

bosonisches Lithium fermionisches Lithium
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Fermionen (Spin 1/2, 3/2,..) maximal ein Fermion pro Quantenzustand 

Kapitel 3

Identische Teilchen, Fermionen und Bosonen

3.1 Identische Teilchen sind ununterscheidbar

In der Quantentheorie sind identische Teilchen grundsätzlich ununterscheidbar, ganz anders als
in der klassischen Physik oder im täglichen Leben. Zwei exakt baugleiche Autos sind leicht
unterscheidbar, wenn man einem von ihnen einen Farbfleck auf die Motorhaube malt, eineiige
Zwillinge sind unterscheidbar, wenn einer von ihnen sich die Haare abschneidet. Die Elektronen
in einem Eisenatom sind dagegen nicht unterscheidbar. Wir können sie nicht durch Farbflecke
markieren oder mit einem Nummernschild versehen. Auch die Protonen im Eisenkern sind nicht
voneinander zu unterscheiden. Diese grundsätzliche Ununterscheidbarkeit elementarer Teilchen
hat weitreichende Konsequenzen für Vielteilchen-Wellenfunktionen: die Wahrscheinlichkeitsdich-
te muss invariant sein gegenüber der Vertauschung irgend zweier Teilchen.

| (1, 2)|2 = | (2, 1)|2

 A(2, 1) = � A(1, 2)

 S(2, 1) = + S(1, 2)

Von Pauli wurde bewiesen, dass Teilchen mit halbzahligem Spin (Fermionen) eine antisymmetri-
sche Gesamtwellenfunktion (Produkt von Ortswellenfunktion und Spinfunktion) haben müssen
und der Fermi-Dirac-Statistik gehorchen, während Teilchen mit ganzzahligem Spin (Bosonen)
eine symmetrische Gesamtwellenfunktion besitzen und der Bose-Einstein-Statistik gehorchen.
Wir betrachten die antisymmetrische und symmetrische Wellenfunktion von zwei identischen
Teilchen

 A(1, 2) =
1p
2
( a(1) b(2)�  a(2) b(1)) Fermionen ,

 S(1, 2) =
1p
2
( a(1) b(2) +  a(2) b(1)) Bosonen ,

Hier bedeutet der erste Term  a(1) b(2), dass sich Teilchen 1 im Quantenzustand |ai befindet
und Teilchen 2 im Quantenzustand |bi, beim zweiten Term  a(2) b(1) ist es umgekehrt.

3.2 Das Pauli-Ausschließungsprinzip

Um das Periodische System der Elemente und Regelmäßigkeiten in den Eigenschaften der Atome
zu erklären, schlug Wolfgang Pauli 1925 das Ausschließungsprinzip vor:

Zwei Elektronen in einem Atom sich in mindestens einer der vier Quantenzahlen n, l, ml, ms

unterscheiden.
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Antisymmetrische Gesamtwellenfunktion 

Fermionen sind extreme Individualisten

Was die Welt im Innersten  auseinander hält
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Bose-Einstein-Kondensation

Makroskopische Interferenz von Materiewellen 

Wolfgang Ketterle

Mittwoch, 13. März 13

Bosonen (Spin 0, 1,..) gehen bevorzugt in den exakt den gleichen Quantenzustand

Wichtige Beispiele: 
Photonen 
Bose-Statistik ist Grundlage der stimulierten Emission und des Lasers
Cooperpaare bilden eine makroskopische Wellenfunktion im Supraleiter

Symmetrische Gesamtwellenfunktion
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scale (16). Stoof predicted that a coherent
condensate would form immediately (17).
Several groups discussed interference exper-
iments and quantum tunneling for conden-
sates (18–29). If the condensate is initially
in a state of well-defined atom number, its
order parameter, which is the macroscopic
wave function, vanishes. However, the
quantum measurement process should still
lead to quantum interference and “create”
the phase of the condensate (20, 23–25,
27, 28), thus breaking the global gauge
invariance that reflects particle number
conservation (30). This is analogous to
Anderson’s famous gedanken experiment,
testing whether two initially separated
buckets of superfluid helium would show a
fixed value of the relative phase—and
therefore a Josephson current—once they
are connected (31).

Arguments for and against such a fixed
relative phase have been given (31, 32).
Even if this phase exists, there has been
some doubt as to whether it can be directly
measured, because it was predicted to be
affected by collisions during ballistic expan-
sion (12, 26) or by phase diffusion resulting
from the mean field of Bose condensed
atoms (21, 25, 27, 33). Additionally, the
phase of the condensate plays a crucial role
in discussions of an atom laser, a source of
coherent matter waves (34–37).

The phase of a condensate is the argu-
ment of a complex number (the macroscop-
ic wave function) and is not an observable.
Only the relative phase between two con-
densates can be measured. Here, we report
on the observation of high-contrast inter-
ference between two atomic Bose conden-
sates, which is clear evidence for coherence
in such systems.

The experimental setup. Two Bose con-
densates were produced using a modifica-
tion of our previous setup (3, 7). Sodium
atoms were optically cooled and trapped
and were then transferred into a double-
well potential. The atoms were further
cooled by radio frequency (rf)–induced
evaporation (38). The condensates were
confined in a cloverleaf magnetic trap (3),
with the trapping potential determined by
the axial curvature of the magnetic field B0
5 94 G cm–2, the radial gradient B9 5 120
G cm–1, and the bias field B0 5 0.75 G. The
atom clouds were cigar-shaped, with the
long axis horizontal. A double-well poten-
tial was created by focusing blue-detuned
far-off-resonant laser light into the center of
the magnetic trap, generating a repulsive
optical dipole force. Because of the far de-
tuning of the argon ion laser line at 514 nm
relative to the sodium resonance at 589 nm,
heating from spontaneous emission was
negligible. This laser beam was focused into
a light sheet with a cross section of 12 mm

by 67 mm (1/e2 radii), with its long axis
perpendicular to the long axes of the con-
densates. The argon ion laser beam propa-
gated nearly collinearly with the vertical
probe beam. We aligned the light sheet by
imaging the focused argon ion laser beam
with the same camera used to image the
condensates.

Evaporative cooling was extended well
below the transition temperature to obtain
condensates without a discernible normal
fraction. Condensates containing 5 3 106

sodium atoms in the F 5 1, mF 5 –1 ground
state were produced within 30 s. The pres-
ence of the laser-light sheet neither changed
the number of condensed atoms from our
previous work (3) nor required a modifica-
tion of the evaporation path; hence, prob-
lems with heating encountered earlier with
an optically plugged magnetic trap (2) were
purely technical. In the present application,
the argon ion laser beam was not needed to
avoid a loss process, and thus we had com-
plete freedom in the choice of laser power
and focal parameters.

The double condensate was directly ob-
served by nondestructive phase-contrast
imaging (Fig. 1A). This technique is an
extension of our previous work on disper-
sive imaging (4) and greatly improved the
signal-to-noise ratio. The probe light fre-
quency was far detuned from a resonant
transition (1.77 GHz to the red), and thus
absorption was negligible. Images were
formed by photons scattered coherently in
the forward direction. The phase modula-
tion caused by the condensate was trans-
formed into an intensity modulation at the

camera by retarding the transmitted probe
beam by a quarter-wave with a phase plate
in the Fourier plane. Previously, the trans-
mitted probe beam was blocked by a thin
wire (dark-ground imaging).

Interference between the condensates
was observed by simultaneously switching
off the magnetic trap and the argon ion
laser-light sheet. The two expanding con-
densates overlapped and were observed by
absorption imaging. After 40 ms time-of-
flight, an optical pumping beam transferred
the atoms from the F 5 1 hyperfine state to
the F 5 2 state. With a 10-ms delay, the
atoms were exposed to a short (50 ms)
circularly polarized probe beam resonant
with the F 5 2 3 F9 5 3 transition and
absorbed ;20 photons each. Under these
conditions, the atoms moved ;5 mm hori-
zontally during the exposure.

Absorption imaging usually integrates
along the line of sight and therefore has
only two-dimensional spatial resolution.
Because the depth of field for 15-mm fringes
is comparable to the size of an expanded
cloud, and because the fringes are in general
not parallel to the axis of the probe light,
line-of-sight integration would cause con-
siderable blurring. We avoided this problem
and achieved three-dimensional resolution
by restricting absorption of the probe light
to a thin horizontal slice of the cloud. The
optical pumping beam was focused into a
light sheet of adjustable thickness (typically
100 mm) and a width of a few millimeters;
this pumping beam propagated perpendicu-
larly to the probe light and parallel to the
long axis of the trap (39). As a result, the

A B

50 mm

0% 100%
Intensity (arbitrary units)

Fig. 1. (A) Phase-con-
trast images of a single
Bose condensate (left)
and double Bose con-
densates, taken in the
trap. The distance be-
tween the two conden-
sates was varied by
changing the power of
the argon ion laser-light
sheet from 7 to 43 mW.
(B) Phase-contrast im-
age of an originally dou-
ble condensate, with
the lower condensate
eliminated.
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probe light was only absorbed by a thin slice
of the cloud where the atoms were optically
pumped. Because high spatial resolution
was required from only the fraction of atoms
residing in the slice, a good signal-to-noise
ratio required condensates with millions of
atoms.

Interference between two Bose conden-
sates. In general, the pattern of interference
fringes differs for continuous and pulsed
sources. Two point-like monochromatic
continuous sources would produce curved
(hyperbolic) interference fringes. In con-
trast, two point-like pulsed sources show
straight interference fringes; if d is the sep-
aration between two point-like conden-
sates, then their relative speed at any point
in space is d/t, where t is the delay between
pulsing on the source (switching off the
trap) and observation. The fringe period is
the de Broglie wavelength l associated with
the relative motion of atoms with mass m,

l 5
ht
md

(1)

where h is Planck’s constant. The ampli-
tude and contrast of the interference pat-
tern depends on the overlap between the
two condensates.

The interference pattern of two conden-
sates after 40 ms time-of-flight is shown in
Fig. 2. A series of measurements with fringe
spacings of ;15 mm showed a contrast
varying between 20 and 40%. When the
imaging system was calibrated with a stan-
dard optical test pattern, we found ;40%
contrast at the same spatial frequency.
Hence, the contrast of the atomic interfer-
ence was between 50 and 100%. Because
the condensates are much larger than the
observed fringe spacing, they must have a
high degree of spatial coherence.

We observed that the fringe period be-
came smaller for larger powers of the argon
ion laser-light sheet (Fig. 3A). Larger power
increased the distance between the two
condensates (Fig. 1A). From phase-contrast
images, we determined the distance d be-
tween the density maxima of the two con-
densates versus argon ion laser power. The
fringe period versus maxima separation (Fig.
3B) is in reasonable agreement with the
prediction of Eq. 1, although this equation
strictly applies only to two point sources.
Wallis et al. (26) calculated the interfer-
ence pattern for two extended condensates
in a harmonic potential with a Gaussian
barrier. They concluded that Eq. 1 remains
valid for the central fringes if d is replaced
by the geometric mean of the separation of
the centers of mass and the distance be-
tween the density maxima of the two con-
densates. This prediction is also shown in
Fig. 3B. The agreement is satisfactory given
our experimental uncertainties in the deter-
mination of the maxima separations (;3
mm) and of the center-of-mass separations
(;20%). We conclude that the numerical
simulations for extended interacting con-
densates (26) are consistent with the ob-
served fringe periods.

We performed a series of tests to support
our interpretation of matter-wave interfer-
ence. To demonstrate that the fringe pattern
was caused by two condensates, we com-
pared it with the pattern from a single con-
densate (this is equivalent to performing a
double-slit experiment and covering one of
the slits). One condensate was illuminated
with a focused beam of weak resonant light
20 ms before release, causing it to disappear
almost completely as a result of optical
pumping to untrapped states and evapora-
tion after heating by photon recoil (Fig. 1B).

The resulting time-of-flight image did not
exhibit interference, and the profile of a
single expanded condensate matched one
side of the profile of a double condensate
(Fig. 4). The profile of a single expanded
condensate showed some coarse structure,
which most likely resulted from the nonpara-
bolic shape of the confining potential. We
found that the structure became more pro-
nounced when the focus of the argon ion
laser had some weak secondary intensity
maxima. In addition, the interference be-
tween two condensates disappeared when
the argon ion laser-light sheet was left on for

Fig. 2. Interference pattern of two
expanding condensates observed
after 40 ms time-of-flight, for two
different powers of the argon ion
laser-light sheet (raw-data images).
The fringe periods were 20 and 15
mm, the powers were 3 and 5 mW,
and the maximum absorptions
were 90 and 50%, respectively, for
the left and right images. The fields
of view are 1.1 mm horizontally by
0.5 mm vertically. The horizontal
widths are compressed fourfold,
which enhances the effect of fringe
curvature. For the determination of
fringe spacing, the dark central
fringe on the left was excluded.

Fig. 3. (A) Fringe period versus power in the argon
ion laser-light sheet. (B) Fringe period versus ob-
served spacing between the density maxima of
the two condensates. The solid line is the depen-
dence given by Eq. 1, and the dashed line is the
theoretical prediction of (26) incorporating a con-
stant center-of-mass separation of 96 mm, ne-
glecting the small variation (610%) with laser
power.

Fig. 4. Comparison between time-of-flight images
for a single and double condensate, showing ver-
tical profiles through time-of-flight pictures similar
to Fig. 2. The solid line is a profile of two interfering
condensates, and the dotted line is the profile of a
single condensate, both released from the same
double-well potential (argon ion laser power, 14
mW; fringe period, 13 mm; time of flight, 40 ms).
The profiles were horizontally integrated over 450
mm. The dashed profile was multiplied by a factor
of 1.5 to account for fewer atoms in the single
condensate, most likely the result of loss during
elimination of the second half.
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Abbildung 1.11 Linke Seite: Phasenkontrast-Aufnahmen von zwei getrennten Bose-
Einstein-Kondensaten, bestehend aus Natrium-Atomen [11]. Die Breite der Konden-
sate beträgt etwa 20 µm. Rechte Seite: beobachtete Interferenzen bei der Überlappung
der beiden Kondensate. Bildwiedergabe mit freundlicher Erlaubnis von Prof. Wolf-
gang Ketterle und Science. Copyright 1997 AAAS.

men und kohärent sind. Im Bereich der Teilcheninterferenzen ist dies bis vor
kurzem nicht möglich gewesen. Wie wir oben gesehen haben, sind die Elek-
troneninterferenzen an Doppelspalten, aber auch die Neutroneninterferenzen
in Kristallen grundsätzlich als Interferenz jedes einzelnen Teilchens mit sich
selber zu deuten. Kohärenz zwischen verschiedenen Elektronen kann man
aufgrund des Pauli-Ausschließungsprinzips auch nicht erwarten.

Anders kann dies bei Atomen mit ganzzahligem Gesamtdrehimpuls sein,
die Bose-Teilchen sind und sehr wohl den gleichen Quantenzustand einneh-
men dürfen und dies bei sehr tiefen Temperaturen auch bevorzugt tun. Seit
langer Zeit ist ein solches System bekannt: es ist die supraflüssige Phase des
Heliums, die bei Temperaturen unter 2,17 K auftritt. In den 1990er Jah-
ren ist es gelungen, in Teilchenfallen bei sehr tiefen Temperaturen sehr viele
Alkali-Atome in einem einzigen Quantenzustand zu kondensieren. Diese Bose-
Einstein-Kondensate haben ungewöhnliche Eigenschaften. Wolfgang Ketterle
und Mitarbeitern gelang es 1996, ein solches Kondensat in zwei Teile aufzu-
teilen und die beiden Atomwolken zur Überlappung zu bringen (Abb. 1.11).
Dabei sind erstmals makroskopische Materiewellen-Interferenzen beobachtet
worden.
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Die Überraschungen der relativistischen Quantentheorie
und der Quantenfeldtheorie

Existenz der Antiteilchen

Spin 1/2 des Elektrons und der Quarks

"anomales" magnetisches Moment des Elektrons 
Erklärung des Permanentmagnetismus 

Vakuumfluktuationen, Higgs-Teilchen
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186 8 Ausblick : Quantenelektrodynamik

bE = i~ @
@t

, bp = �i~r . (8.1)

Es wird postuliert, dass die Operatoren diese Gestalt auch in der relativisti-
schen Quantenelektrodynamik und den anderen relativistischen Quantenfeld-
theorien (Standard-Modell der vereinheitlichten elektro-schwachen Wechsel-
wirkung, Quantenchromodynamik) beibehalten, wobei der Energieoperator
dann allerdings die Summe von kinetischer Energie und Ruheenergie um-
fasst.

Zunächst soll daran erinnert werden, wie man zur Schrödinger-Gleichung
kommt. Ausgangspunkt ist die nichtrelativistische Energie-Impuls-Beziehung,
in der wir Energie und Impuls durch die Operatoren (8.1) ersetzen und auf
die Wellenfunktion anwenden. Für ein freies Elektron ergibt das

E =
p2

2me
, i~@ 

@t
= � ~2

2me
r2 .

Diese Vorgehensweise wird nun auf den relativistischen Fall übertragen. Wir
beginnen mit der relativistischen Energie-Impuls-Beziehung im kräftefreien
Fall (vgl. Kap. 6)

E2 = p2c2 +m2
0c

4

und substituieren die Operatoren (8.1). Dies führt uns zur Klein-Gordon-
Gleichung

� ~2 @
2 

@t2
= �~2c2

✓
@2 

@x2
+
@2 

@y2
+
@2 

@z2

◆
+m2

0c
4 . (8.2)

Es gibt einen ganz wesentlichen Unterschied zur Schrödinger-Gleichung: die
Klein-Gordon-Gleichung ist von der zweiten Ordnung in der Zeit. Als Folge
davon existieren zwei Typen von Lösungen:

 p(r, t) = A exp(ik · r) exp(�i!t) ,  n(r, t) = A exp(ik · r) exp(+i!t) .
(8.3)

Für beide Typen von Lösungen finden wir durch Einsetzen in (8.2)

~2!2 = c2~2k2 +m2
0c

4 = c2p2 +m2
0c

4 . (8.4)

Wählen wir ~! = +
p

c2p2 +m2
0c

4 als positiv definit, so ergibt sich bei An-
wendung des Energieoperators

bE p = i~@ p

@t
= +~! p , bE n = i~@ n

@t
= �~! n .

Dies ist ein sehr befremdliches Resultat: die Energie E kann sowohl positive
wie negative Werte annehmen. Die hier betrachtete Energie enthält aber kei-
nen potentiellen Energieanteil (potentielle Energien sind ja häufig negativ),
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Relativistische Verallgemeinerung der Schrödingergleichung 

(a) nichtrelativistisches freies Teilchen

Energie- und Impulsoperator

(b) relativistisches freies Teilchen

Schrödingergleichung

Klein-Gordon-Gleichung
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sie ist vielmehr die Summe der positiven Ruheenergie und der positiven ki-
netischen Energie und somit eine Größe, die in jedem Fall größer als null sein
muss.

bE  p = +
q

c2p2 +m2
0c

4  p
bE  n = �

q
c2p2 +m2

0c
4  n

Die Lösungen vom Typ  p sind physikalisch akzeptabel, es sind die Wellen-
funktionen mit positiver Energie

Ep = +~! = +
q

c2p2 +m2
0c

4 .

Ein ernsthaftes Problem stellen dagegen die Lösungen vom Typ  n dar, diese
Wellenfunktionen haben negative Energie-Eigenwerte

En = �~! = �
q

c2p2 +m2
0c

4 .

Die Klein-Gordon-Gleichung führt also zu Resultaten, die lange Zeit un-
verständlich blieben. Eine zweite Schwierigkeit ist, dass auch die Wahrschein-
lichkeitsdichte negative Werte annehmen kann. Dies waren die Gründe, dass
die Klein-Gordon-Gleichung zunächst aufgegeben wurde.

Probleme mit negativen kinetischen Energien gibt es bei der Schrödinger-
Gleichung nicht, da sie von der ersten Ordnung in der Zeit ist. Die Defi-
nitionsgleichung (8.1) des Energie-Operators stellt sicher, dass nur  p eine
Lösung der Schrödinger-Gleichung sein kann, nicht aber  n. Alle Schrödinger-
Wellenfunktionen haben in der Tat eine Zeitabhängigkeit der Form exp(�i!t),
und bei freien Teilchen sind die Energien stets � 0.

8.2 Die Dirac-Gleichung

Die negativen Energiewerte sind o↵ensichtlich mit der zweiten Zeitableitung
in der Klein-Gordon-Gleichung verknüpft. Um diese Schwierigkeit zu um-
gehen, suchte Paul Dirac nach einer Gleichung, die wie die Schrödinger-
Gleichung nur von der ersten Ordung in der Zeit ist. Die Lorentz-Invarianz
erfordert dann, dass auch die räumlichen Ableitungen nur in erster Ordnung
vorkommen. Für ein freies Elektron machte Dirac daher den Ansatz
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mit noch unbekannten Koe�zienten ↵j und �. Es stellt sich heraus, dass die
Koe�zienten nicht einfach als komplexe Zahlen gewählt werden dürfen, son-
dern 4⇥4-Matrizen sind, und dass  ein vierkomponentiger Wellenfunktions-
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sie ist vielmehr die Summe der positiven Ruheenergie und der positiven ki-
netischen Energie und somit eine Größe, die in jedem Fall größer als null sein
muss.
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0c
4  n

Die Lösungen vom Typ  p sind physikalisch akzeptabel, es sind die Wellen-
funktionen mit positiver Energie
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q

c2p2 +m2
0c

4 .

Ein ernsthaftes Problem stellen dagegen die Lösungen vom Typ  n dar, diese
Wellenfunktionen haben negative Energie-Eigenwerte
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Die Klein-Gordon-Gleichung führt also zu Resultaten, die lange Zeit un-
verständlich blieben. Eine zweite Schwierigkeit ist, dass auch die Wahrschein-
lichkeitsdichte negative Werte annehmen kann. Dies waren die Gründe, dass
die Klein-Gordon-Gleichung zunächst aufgegeben wurde.

Probleme mit negativen kinetischen Energien gibt es bei der Schrödinger-
Gleichung nicht, da sie von der ersten Ordnung in der Zeit ist. Die Defi-
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verständlich blieben. Eine zweite Schwierigkeit ist, dass auch die Wahrschein-
lichkeitsdichte negative Werte annehmen kann. Dies waren die Gründe, dass
die Klein-Gordon-Gleichung zunächst aufgegeben wurde.
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dern 4⇥4-Matrizen sind, und dass  ein vierkomponentiger Wellenfunktions-
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It was found that this equation gave the particle a spin of 
half a quantum. And also gave it a magnetic moment. It 
gave us the properties that one needed for an electron. 
That was really an unexpected bonus for me, 
completely unexpected.                                                          

Paul Dirac: Konstruktion einer relativistischen Wellengleichung,
die von erster Ordnung in der Zeit ist
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sein muss, da diese Gleichung eine notwendige Konsequenz der relativisti-
schen Energie-Impuls-Beziehung E2 = (p2x+p2y+p2z)c

2+m2
0c

4 ist. In Anhang
D werden die mathematischen Details besprochen, und es wird die Form der
Matrizen ↵j und � und der Dirac-Spinoren hergeleitet.

Hier soll die Dirac-Gleichung für einen sehr einfachen Spezialfall gelöst wer-
den, an dem man aber bereits wesentliche Charakteristika relativistischer
Wellengleichungen und ihrer Lösungen erkennen kann, nämlich für ein frei-
es ruhendes Elektron2. Da der Impuls und der Wellenvektor des Teilchens
null sind, verschwindet die Ortsabhängigkeit der Wellenfunktion. Zur Erin-
nerung: ein freies Teilchen beschreiben wir durch eine ebene Welle mit der
Ortsabhängigkeit exp(ik · r) = exp(i (kxx + kyy + kzz)). Für k = p/~ = 0
sind die Ableitungen @ /@x = @ /@y = @ /@z = 0, und die Dirac-Gleichung
nimmt die einfache Gestalt an

i~@ 
@t

= mec
2� . (8.6)

Die Dirac-�-Matrix hat die Form (s. Anhang D)

� =

0

BB@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1

CCA .

Gleichung (8.6) hat vier unabhängige Lösungen. Es gibt zwei Funktionen mit
der Zeitabhängigkeit exp(�i!0t):

 1 = exp(�i!0t)

0

BB@

1
0
0
0

1

CCA ,  2 = exp(�i!0t)

0

BB@

0
1
0
0

1

CCA mit !0 =
mec

2

~ , (8.7)

und zwei Funktionen mit der Zeitabhängigkeit exp(+i!0t):

 3 = exp(+i!0t)

0

BB@

0
0
1
0

1

CCA ,  4 = exp(+i!0t)

0

BB@

0
0
0
1

1

CCA . (8.8)

Wendet man den Energie-Operator auf  1 oder  2 an, so erhält man positive
Energiewerte:

bE 1 = E1 1 , bE 2 = E2 2 mit E1 = E2 = +~!0 = +mec
2 .

2 Die Dirac-Gleichung ist als Verallgemeinerung der Schrödinger-Gleichung für re-
lativistische Teilchen konstruiert worden, aber sie gilt selbstverständlich auch für
nichtrelativistische Teilchen.
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positive Energie

Die Dirac-Gleichung hat vier Lösungen:

negative Energie

Die Koeffizienten αi und β
sind 4x4-Matrizen
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Freitag, 27. April 2012

Antiprotonen

Protonen

Freitag, 27. April 2012

Dirac-Bild des Positrons

Wellenfunktionen mit negativer Energie? Umdeutung als Antiteilchen

Feynman-Interpretation der Wellenfunktionen negativer Energie.
Die Wellenfunktionen ψ3  und ψ4  haben keine direkte physikalische 
Relevanz.Sie gewinnen sie durch den Übergang zum konjugiert Komplexen.
Die Funktionen ψ*3  und ψ*4 kann man im wesentlichen als Wellenfunktionen der 
Positronen interpretieren. Anwendung des Energieoperators ergibt positive 
Energiewerte.
Die Dirac-Gleichung beschreibt sowohl Elektronen wie Positronen und auch 
Elektron-Positron-Paarerzeugung und -Paarvernichtung. 

Für Details siehe P. Schmüser, Feynman-Graphen und Eichtheorien für Experimentalphysiker, 
Springer 1995

Elektron-Positron-Paarerzeugung
in einer Blasenkammer
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Valenzband

Freitag, 27. April 2012

Dirac-Bild für Halbleiter

Warum verhält sich ein Loch im Valenzband wie eine positive Ladung?
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E(-) = -  E < 0
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E(+) = +  E > 0

Ort Ort

Zeit Zeit
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Sonntag, 29. April 2012

Dirac-Bild des Positrons

Wellenfunktionen mit negativer Energie? Umdeutung als Antiteilchen

Feynman-Bild des Positrons

Donnerstag, 25. Juni 15

Leitungsband

Valenzband

Energielücke (gap) einige eV
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Intensität in D1

Freitag, 27. April 2012

Das anomale magnetische Moment des Elektrons

Vorhersage der Dirac-Gleichung
eine rotierende geladene Kugel mit Spin 1/2 hätte µe = - µB/2 

Die skurrile 2π-Rotations-Antisymmetrie der Dirac-Spinoren
Gemessen mit Neutroneninterferenzen (H. Rauch et al.)
Gezeichnet mit Genehmigung nach einer Abbildung von H. Rauch

8.3 Spin und magnetisches Moment des Elektrons 191

haben. Die elektrischen Ladungen von Elektron und Positron haben exakt
den gleichen Betrag, aber verschiedenes Vorzeichen. Das kann mathematisch
bewiesen werden, wenn man die Dirac-Gleichung mit elektromagnetischem
Feld analysiert. Für eine anschauliche Begründung siehe Kap. 8.4.2.

8.3 Spin und magnetisches Moment des Elektrons

Die Dirac-Gleichung sagt nicht nur Antiteilchen voraus, sondern macht noch
weitere tiefgehende Aussagen über Eigenschaften, die in der nichtrelativisti-
schen Quantenmechanik nicht begründet werden konnten. Dies betri↵t den
Spin (Eigendrehimpuls) des Elektrons von ~/2 und sein “anomales” magne-
tisches Moment. Der Operator der z-Komponente des Spins hat in der Dirac-
Theorie die Form

bSz =
~
2

0

BB@

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

1

CCA . (8.9)

Wendet man bSz auf die Spinoren  1 und  2 an, so folgt

bSz 1 = +
~
2
 1 , bSz 2 = �~

2
 2 . (8.10)

Die Spinoren  1 und  2 beschreiben demnach die beiden Spineinstellungen
des Elektrons. Ganz entsprechend gilt

bSz 3 = +
~
2
 3 , bSz 4 = �~

2
 4 .

Nach Anwendung der weiter unten diskutierten Zeitumkehr-Transformation
beschreiben  3 und  4 das Positron mit seinen zwei Spineinstellungen. Aus
der Dirac-Gleichung folgt also, dass Elektron und Positron Teilchen mit Spin
1/2 sind.

Ein weiteres, selbst von Dirac ursprünglich nicht erwartetes Resultat sei-
ner Gleichung ist das anomale magnetische Moment des Elektrons. Aus der
Dirac-Gleichung mit elektromagnetischem Potential folgt ohne jede Zusatz-
annahme, dass das magnetische Moment den Wert

µe = � e~
2me

⌘ �µB (8.11)

hat, in Übereinstimmung mit dem Experiment. Der Beweis ist mathema-
tisch recht aufwändig und kann hier nicht gebracht werden. Dieser Wert ist
doppelt so groß wie erwartet, wenn man sich das Elektron als geladene Ku-
gel vorstellt, die mit dem Drehimpuls ~/2 um die eigene Achse rotiert. Das

Die unglaubliche Präzision der QED-Rechnung und der Experimente:
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magnetische Moment dieser Kugel sollte nämlich ein halbes Bohr-Magneton
betragen. Ein mechanisches Modell des Elektrons ergibt also falsche Resul-
tate. Diese sog. “magneto-mechanische Anomalie” des Elektrons konnte erst
durch die relativistische Quantentheorie Paul Diracs aufgeklärt werden. Ein
anschauliches Bild des “Dirac-Elektrons” ist mir nicht bekannt. Das Positron
hat als Antiteilchen des Elektrons eine positive Ladung und ein positives
magnetisches Moment der Größe µB .

Die elementaren Bausteine der Materie, Elektronen und Quarks, sind
sämtlich Spin-1/2-Fermionen und gehorchen der Dirac-Gleichung. Protonen
und Neutronen haben zwar auch den Spin ~/2, aber ihre Wellenfunktionen
sind keine Lösungen der Dirac-Gleichung. Dies folgt schon aus den ungewöhn-
lichen Werten der magnetischen Momente:

µp = 2,79µK , µn = �1,91µK (µK =
e~
2mp

Kernmagneton) . (8.12)

µe = �g · e

2me
· ~
2

(g � 2)/2 = (1159,65218076± 0,00000027) · 10�6

Diese experimentell bestimmten magnetischen Momente waren ein erster Hin-
weis darauf, dass Proton und Neutron eine innere Struktur besitzen. Heute
wissen wir, dass sie aus drei Quarks aufgebaut sind und eine Ausdehnung von
rund 1 fm = 10�15 m haben, im Gegensatz zum Elektron oder den Quarks,
die elementar sind und einen Radius von weniger als als 0,001 fm haben,
sofern sie überhaupt eine Ausdehnung besitzen.

2⇡-Rotations-Antisymmetrie der Dirac-Spinoren

Bei einer Rotation des Koordinatensystems um den Winkel 2⇡ ' 360� geht
eine Schrödinger-Wellenfunktion in sich selbst über. Dies erscheint so selbst-
verständlich, dass man man sich darüber wundert, dass es auch anders sein
könnte. Aus der Dirac-Theorie folgt jedoch die eigentümliche Vorhersage,
dass die Spinoren bei einer 2⇡-Rotation in ihr Negatives übergehen. Erst bei
einer 4⇡-Rotation, also nach zwei kompletten Umdrehungen, gehen sie in sich
selbst über (für einen Beweis siehe z. B. [11]). Dies ist eine Konsequenz des
halbzahligen Spins.

Das Vorzeichen einer Wellenfunktion kann mit einem Interferenzexperi-
ment ermittelt werden. Mit den in Band 1 diskutierten Neutron-Interferenzen
ist diese befremdliche Antisymmetrie der Dirac-Spinoren bei einer 2⇡-Rotation
verifiziert worden. Die experimentellen Daten und eine schematische Dar-
stellung des verwendeten Perfektkristall-Interferometers werden in Abb. 8.3
gezeigt. Ein Foto des Perfektkristall-Interferometers findet man in [15] so-
wie in Band 1, Abb. 1.6. In einem der Interferometerarme durchläuft das
Neutron ein transversales Magnetfeld, in welchem das magnetische Moment
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Aharonov-Bohm-Effekt (schon früher entdeckt durch Ehrenberg, Siday)

Ein Magnetfeld (genauer das magnetische Vektorpotential A) ändert die 
de-Broglie-Wellenlänge von Elektronen

3.4 Das Vektorpotential in der Quantentheorie 81

Eichinvarianz
Gegeben seien das skalare Potential �(r, t) und das Vektorpotential A(r, t).
Wenn �(r, t) eine beliebige skalare Funktion von Raum und Zeit ist, so lautet
die verallgemeinerte Eichtransformation

A0 = A+r� , �0 = �� @�

@t
. (3.12)

Die neuen Potentiale A0 und �0 ergeben die gleichen Felder E und B wie die
alten Potentiale, wie man durch Einsetzen in Gl. (3.11) nachrechnen kann.
Diese Eigenschaft wird als Eichinvarianz der Elektrodynamik bezeichnet.

3.4 Das Vektorpotential in der Quantentheorie

In der klassischen Elektrodynamik gelten die Feldstärken E und B als die
physikalisch relevanten Größen, und das Vektorpotential A wird oft nur als
mathematisches Hilfsmittel angesehen. Wegen der Möglichkeit von Eichtrans-
formationen ist es nicht eindeutig definiert und könnte daher als Größe ohne
eigene physikalische Bedeutung erscheinen. Bei dem skalaren Potential � ist
dies anders, weil �e� die potentielle Energie eines Elektrons in einem elek-
trostatischen Feld ist.

In der Relativitätstheorie spielt das Vektorpotential eine bedeutsame Rol-
le, denn � und A bilden zusammen einen Vierervektor, s. Gl. (7.5). Noch
wichtiger wird das Vektorpotential in der Quantentheorie: die Wellenlänge
eines geladenen Teilchens wird durch ein Vektorpotential verändert. In der
de Broglie-Relation muss der mechanische Impuls p = mv durch den sog. ka-
nonischen Impuls mv + qA ersetzt werden. Die Wellenlänge eines Elektrons
wird

� =
2⇡~

mev � eA
. (3.13)

Diese Beziehung zwischen de Broglie-Wellenlänge und Vektorpotential wurde
von Ehrenberg und Siday und von Aharonov und Bohm vorhergesagt und ist
als Aharonov-Bohm-E↵ekt bekannt. Bei einem vorgegebenen mechanischen
Impuls mev besitzt das Elektron eine andere Wellenlänge, wenn es sich im
elektromagnetischen Feld anstatt im feldfreien Raum befindet.

Wir bezeichnen die Phasenänderung der Elektronenwelle auf einer Strecke
�x mit �'. Im feldfreien Raum gilt

�' =
2⇡

�
�x =

mev

~ �x .

Wenn ein Vektorpotential vorhanden ist, gibt es eine zusätzliche Phasenände-
rung

Fundamentale Bedeutung in der Quantenelektrodynamik QED und der 
Eichtheorie der elektro-schwachen Wechselwirkung

Elektronenwellen in magnetischen Feldern
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Experimenteller Nachweis des Aharonov-Bohm-Effekts

G. Möllenstedt, W. Bayh, Phys. Blätter 18 (1962), S. 299
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Akira Tonomura
Experimente zum Aharonov-Bohm-Effekt mit Elektronenholografie

17

Verification of Aharonov-Bohm effect

magnetic flux lines emerging 
from a superconductor

magnetic flux quantization 
in Nb superconductor

Dienstag, 18. Januar 2011

17

Verification of Aharonov-Bohm effect

magnetic flux lines emerging 
from a superconductor

magnetic flux quantization 
in Nb superconductor

Dienstag, 18. Januar 2011

beachten: Verschiebung des 
Interferenzstreifens in der Ringöffnung

magnetic field lines emerging from a superconductor
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Die komplexe Natur des Vakuums

  (a) Spontane und stimulierte Emission von Strahlung durch Atome

Die stimulierte Emission von Strahlung durch Atome kann mit der Schrödinger- oder 
Dirac-Gleichung unter Benutzung der Störungstheorie berechnet werden. 

Es gibt keine spontane Emission in der Quantenmechanik
Man braucht dafür die Quantenfeldtheorie  

(a) Vakuumfluktuationen "triggern" spontane Quantenübergänge
(b) Higgsfeld schirmt schwache Wechselwirkungen ab und gibt den
    Feldquanten W und Z eine grosse Masse (und auch den Elementarteilchen) 
(c) Casimir-Kraft und weitere Effekte  



E2

E1

spontane Emission stimulierte Emission

 

E2

E1

Absorption spontane Emission stimulierte Emission

Sonntag, 12. Juli 15

 

E2

E1

Absorption spontane Emission stimulierte Emission

Sonntag, 12. Juli 15

 

E2

E1

Absorption spontane Emission stimulierte Emission

Sonntag, 12. Juli 15

 

E2

E1

Absorption spontane Emission stimulierte Emission

Sonntag, 12. Juli 15

 

E2

E1

Absorption spontane Emission stimulierte Emission

Sonntag, 12. Juli 15

n n+1

Montag, 13. Juli 15
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Quantentheorie des elektromagn. Strahlungsfeldes (QED) 
Das elektromagnetische Strahlungsfeld wird als Ensemble von unendlich vielen 
harmonischen Oszillatoren behandelt.

Grundzustand (Vakuum): Zustand der niedrigsten Energie des Feldes.
Die Nullpunktsschwingungen sind immer vorhanden und lassen sich nicht 
abschalten.

Die "spontane" Emission ist in Wahrheit eine  durch 
Vakuumfluktuationen erzwungene Emission

Haroche-Gruppe: Abschirmung der Vakuumfluktuationen verlängert Lebensdauer 
angeregter Atome A* 

Experimentell beweisbar  mithilfe der Cavity-QED

gemessen: 13-fache Verlängerung der Lebensdauer 

Cäsium-Atomstrahl, Übergang 5d 6s
λ= 3,5 µm

Gezeichnet mit Genehmigung nach einem Bild von S. Haroche
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Feinstruktur im H-Atom

Schrödinger-Gl. Dirac-Gl. 

-0,057 meV -0,011 meV

-0,18 meV

- 13,6 eV

- 3,4 eV
2s = 2p

1s 

1s1/2 

2s1/2 2p1/2

2p3/2 

Sonntag, 12. Juli 15

Die Dirac-Gleichung berücksichtigt nicht die Quantenfeldtheorie
Effekt der Vakuumfluktuationen: 
die Energien von 2s1/2 und 2p1/2 sind geringfügig verschieden (Lamb shift)  

Hinweis: Abbildung 10.1 in dem Buch "Theoretische Physik für Studierende des Lehramts", Band1,
enthält einen Fehler und sollte durch obiges Bild ersetzt werden 

Aufspaltung durch 
Vakuumfluktuationen
(Lamb shift)
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3

+

Schrödinger's Katze
(nach Serge Haroche)

Freitag, 15. März 13

Um die Absurdität der Quantenmechanik zu illustrieren, schlug Schrödinger 1935 ein 
Gedankenexperiment vor, in dem ein makroskopisches Objekt (die Katze) mit einem 
mikroskopischen System (angeregtes Atom) verschränkt ist. 

Schrödingers Katze

ψ = [ (angeregtes Atom / Katze lebend) + (Atom im Grundzustand / Katze tot) ]

Das Atom befindet sich in einer Superposition von Anregungs- und Grund-
zustand, also sollte sich die Katze in einer Superposition von lebendig und tot 
befinden. Eine Entscheidung über das Schicksal der Katze würde erst im 
Augenblick der Messung erfolgen. 

Diese absurde Situation wird nie beobachtet

geschlossener
Kasten
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Serge Haroche et al.: experiments with „mini-cats“
mini-cat: microwave photons in a superconducting cavity

decoherence time = τ / n τ=time constant of cavity=160 μsec
n number of photons ( n=3 - 10)

decoherence time of a cat  is
unmeasurably short because n is huge

The cat is always a classical object,
it is never a quantum object 

Physics Today July 1998

9.3 Der Übergang Quantenphysik - klassische Physik 167

Abbildung 9.6 Gemessene zeitliche Abnahme der Kohärenz in dem “Schrödinger-
Kätzchen-Experiment” von Brune et al. [8]. Die Dekohärenzzeit beträgt etwa 50 µs.
Die Abbildung wird in dem oben genannten Physics-Today-Artikel von S. Haroche
[23] diskutiert. Nachdruck mit freundlicher Genehmigung von Prof. J.-M. Raimond
und Prof. S. Haroche. Figure adapted with permission from [8]. Copyright 1996 by
the American Physical Society.

9.3.3 Der Messprozess aus neuerer Sicht

In diesem Abschnitt möchte ich noch etwas mehr auf die moderne Sicht der
Quantentheorie eingehen und erneut die Rolle des Messprozesses aufgreifen.
Ich folge dabei einem sehr gut geschriebenen Buch von Maximilian Schloss-
hauer, Decoherence and the Quantum-to-Classical Transition [24].

Das zerfließende Wellenpaket

Als Schrödinger, angeregt durch die Hypothese von de Broglie, seine berühm-
te Wellengleichung formulierte, beschäftigte er sich mit der Frage, ob und wie
man freie Teilchen durch Wellen beschreiben könnte. Er erkannte sehr schnell,
dass Wellenpakete dies nur für sehr kurze Zeitskalen leisten können. Wenn
man für die Wahrscheinlichkeitsdichte die Gaußfunktion (3.30) ansetzt, so
wächst deren Breite im Laufe der Zeit an gemäß

�(t) =

s

�2

0

+
~2

4m2

e�
2

0

· t2 ⇡ �
0

t

t
ch

für t � t
ch

=
2me�2

0

~ . (9.15)

Dabei ist t
ch

eine charakteristische Zeit, die für mikroskopische Teilchen
sehr klein ist: wenn wir ein Elektron mit einer Anfangsunschärfe von �

0

=
1 Å lokalisieren, so wird t

ch

= 10�14s. Aus Gl. (9.15) folgt dann, dass sich

Freitag, 15. März 13
Remark: with an improved cavity C much longer time constants τ have been achieved recently
Schrödinger kittens have grown
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Einstein-Podolsky-Rosen (EPR) paradox 1935

Conclusion by Einstein et al: quantum mechanics cannot be the 
ultimate theory. There must exist an underlying deterministic theory.

This would be a local theory with hidden variables, and quantum mechanics might be 
considered as an averaged version of the deeper theory.

Analogy: Statistical thermodynamics is the underlying theory of phenomenological 
thermodynamics. The positions and momenta of a huge number of particles are the hidden 
variables which are not measurable. Internal energy, pressure, entropy etc. are averaged 
quantities that can be measured.

EPR answer: No

Dienstag, 18. Januar 2011

Einstein-Podolsky-Rosen-Paradoxon 
Nichtlokalität der Quantenmechanik
   

Schlussfolgerung von EPR: Nein      Antwort von Niels Bohr: Ja

Sichtweise von Einstein: die Quantenmechanik ist nicht die endgültige Theorie, es 
muss eine tiefer liegende deterministische Theorie geben. Dies wäre eine 
Theorie mit verborgenen Variablen (hidden variables).
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EPR betrachteten Korrelationen zwischen zwei weit voneinander entfernten 
Objekten, die durch eine verschränkte Wellenfunktion beschrieben werden.

Eine Messung an Objekt 1 hat eine instantane Auswirkung auf die Messung an 
Objekt 2. Die Relativitätstheorie scheint außer Kraft gesetzt (ist sie  aber nicht). 
Albert Einstein hielt diese "spukhafte Fernwirkung" für absurd.
Er glaubte deshalb an die Existenz einer uns verborgenen deterministischen 
Theorie, welche die Korrelation erklären kann.

Niels Bohr hingegen war von der Richtigkeit der Quantentheorie überzeugt.  

Die Kontroverse zwischen Einstein und Bohr war letztlich philosophischer Natur und 
konnte durch theoretische Argumente nicht geklärt werden.

Es ist das Verdienst von John Bell, die Entscheidung zwischen den zwei 
Denkmöglichkeiten aus dem Bereich der Philosophie in den Bereich der 
Experimentalphysik verlegt zu haben.

Wenn es eine tiefer liegende deterministische Theorie gibt, muss die
Bell'sche Ungleichung erfüllt sein (siehe z.B. Ref. [1], Anhang E.2). 
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Korrelation der Photonen aus dem Zweistufenzerfall des Calcium-Atoms

Schema der Apparatur von Alain Aspect

9.2 EPR-Experimente mit verschränkten Photonen 157

Abbildung 9.1 Der Kaskadenzerfall des Calcium-Atoms (links) und die Zirkular-
polarisation der beiden Photonen (rechts).

| (1,2)i = 1p
2
(|R

1

i|R
2

i+ |L
1

i|L
2

i) . (9.5)

Eine zirkular polarisierte Welle kann man als Superposition von orthogonalen
linear polarisierten Wellen mit 90� relativer Phasenverschiebung darstellen:

R =
1p
2
(X + iY ) , L =

1p
2
(X � iY ) .

Die Phasenverschiebung wird durch den Faktor i = exp(i⇡/2) bewirkt.
Ausgedrückt durch die lineare Polarisation in x- und y-Richtung lautet der
Zweiphoton-Zustand

| (1,2)i = 1p
2
(|X

1

i|X
2

i � |Y
1

i|Y
2

i) . (9.6)

Dies ist ein verschränkter Zustand in völliger Analogie zum Spinsingulett-
Zustand (9.1). Es gibt noch eine weitere, für die EPR-Experimente wichtige
Beobachtung. Wenn man eine Drehung in der xy-Ebene um den Winkel '
durchführt

x0 = x cos'+ y sin' , y0 = �x sin'+ y cos' ,

so hat der verschränkte Zustand bezüglich der neuen Koordinaten dieselbe
Form:

| (1,2)i = 1p
2
(|X 0

1

i|X 0
2

i � |Y 0
1

i|Y 0
2

i) . (9.7)

Der verschränkte Zustand (9.6) hat bemerkenswerte Eigenschaften. Da
man ihn nicht einfach als Produkt der Zustände der beiden Photonen dar-
stellen kann, ist es unmöglich, den Photonen eine wohldefinierte Polarisation
zuzuordnen. Vielmehr sind die Messwerte zufällig verteilt (random), und mit
einer Wahrscheinlichkeit von 50% misst man bei Photon 1 horizontale Po-
larisation (wegen des 1. Terms in Gl. (9.6)), mit 50% misst man vertikale

Die verschränkte Wellenfunktion:
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John Bell
theoretician

Nature March 1998

Alain Aspect
experimentalist

It is the great achievement of John Bell that 
the discussion about the physical reality of 
quantum systems has been transferred from  
philosophy to experimental physics  
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Gemessene Korrelationsfunktion von Alain Aspect

Gültigkeitsbereich der
 Bell'schen Ungleichung

Vorhersage der Quantentheorie

Messpunkte von Aspect

Ergebnis: die Bell'sche Ungleichung ist verletzt,
d.h. es gibt keine tiefer liegende deterministische Theorie

Konsequenz: die Quantenmechanik gilt, aber sie ist nichtlokal
Eine verschränkte Wellenfunktion kann mehr als 100 km lang sein 

Gezeichnet mit Genehmigung nach einer Abbildung von A. Aspect
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Experiments with entangled laser photons and time-varying detectors 
violate Bell‘s inequality as well 

Aspect‘s experiment shows strong violation of Bell‘s inequality. There remains one final 
loophole for protagonists of the idea of hidden variables: if the setting of the detectors A 
and B is static they could communicate by some some mysterious mechanism  

Can be excluded by changing the angles of detectors A and B during the flight of the 
photons so rapidly that  information transfer from A to B would require signal speed much 
larger than speed of light

Anton Zeilinger

1 UV photon is converted into 2 infrared photons in BBO crystal
The IR photons are in an entangled polarization state

Mittwoch, 13. März 13 44
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xen Molekülen, Physik Journal 9 (2010) Nr. 10, S. 37
11. M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, W.

Ketterle, Observation of Interference Between Two Bose Condensates, SCIENCE
Vol. 275, 637 (1997)

12. Hermann Haken und Hans Christoph Wolf, Atom- und Quantenphysik, Springer
1996

13. Leonard I. Schi↵, Quantum Mechanics, McGraw-Hill 1955
14. Karl Schilcher, Theoretische Physik kompakt für das Lehramt, Oldenbourg 2010
15. Robert Eisberg and Robert Resnick, Quantum Physics of Atoms, Molecules,

Solids, Nuclei and Particles, John Wiley 1974
16. Albert Einstein, Boris Podolsky, Nathan Rosen, Can Quantum-Mechanical Des-

cription of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777 (1935)
17. Niels Bohr, Can Quantum-Mechanical Description of Physical Reality Be Con-

sidered Complete?, Phys. Rev. 48, 696 (1935)
18. John S. Bell, On the Problem of Hidden Variables in Quantum Mechanics, Rev.

Mod. Phys. 38, 447 (1966)
19. D. Bohm and Y. Aharonov, Discussion of Experimental Proof for the Paradox

of Einstein, Rosen, and Podolsky, Phys. Rev. 108, 1070 (1957)
20. Alain Aspect, Bell’s theorem: the naive view of an experimentalist, Vortrag bei

einer Konferenz zum Gedenken an John Bell, Wien 2000
21. Alain Aspect, Bell’s inequality test: more ideal than ever, NATURE Vol. 398, 18

March 1999
22. Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and An-

ton Zeilinger, Violation of Bell’s Inequality under Strict Einstein Locality Condi-
tions, Phys. Rev. Lett. 81, 5039 (1998)

23. Serge Haroche, Entanglement, Decoherence and the Quantum/Classical Boun-
dary, Physics Today, July 1998

24. Maximilian Schlosshauer, Decoherence and the Quantum-to-Classical Transition,
Springer 2007

25. L. Hackermüller, K. Hornberger, B.Brezger, A. Zeilinger, M. Arndt, Decoherence
in a Talbot-Lau interferometer: the influence of molecular scattering, Appl. Phys.
B 77, 781 (2003)

26. Siegfried Großmann, Mathematischer Einführungskurs für die Physik, Vieweg-
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