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Lagrange and Hamilton functions for
charged particles in electromagnetic fields

The electromagnetic field is expressed in terms of a
scalar potential ® and a vector potential A

_ ‘E)A
E- vd o

We use Cartesian coordinates (x4,X2,Xz) and consider
first nonrelativistic protons

q{-Xi. 3 Cii = Up

The kinetic energy is

T = iz‘_m'g'z = dimzti:.&

T

-

B = 5:(2{

To obtain the Lorentz force
_ wp
e (E +%#x B)

we need a velocity-dependent potential
U(_q:.,o'[l) o @ .Y

(Here ® and A are functions of the coordinates g; = X; )

l

The Lorentz force is given by

U oV
?‘*:_'3_%;4"0%(3(%;)

(‘{‘\d—ariaﬂ)




The Lagrangian is

L(qiq:) = T(q:) - U(q:,4:)

and the Lagrange e'quations

d 91_ oV ), 9U_
oIk ’a'oTt Bqt dt( ) ou(’c)ql)+ I
44 UL _:FL
lead to Newton's equation of motion
MM '{3 = & CE -+ ’G‘X é)
The canonical momentum is
oL 9T 20 *
L= SE = = -2 =m§ +eh
F 99. 09: T 1 :

Qo.nom'caﬁ momenfum

'|5 = muU + eA 0{ P""'L""‘ in g_m,ﬁilﬂ

myu mechanical momenbum

Hamiltonian:
H= & p: q: - L
(fm’U' +€.A) oy — %WI’U' o gA 'U‘+e.§
p 4 AL N o£ line lic @nol
H 1Tv : ?@ ‘ouknkd energy

Eki‘h : elgo’"



Result:

- H is the energy of the particle, i.e. the sum of kinetic
and potential energy

~ the vector potential has no influence on the energy

In the Hamiltonian formalism one has to write H as a

function of the coordinates gjand the canonical
momenta p;

H(c[ P)-——— (p eA(q)) + e.@(c'f)
Tecipe ﬂ‘epﬁtlca' mar 53 E—GA

Relativistic case:

(a) without field (free protons)

E = Elci emic? m, mest mass
HA Y ad = e .Y . m 'l-.;'
""E"‘ P C +My C P J <5

‘-I"'""r"-" L

(b) with field

H = V (B-eR)c? 4mict +red

Note: H is now the total energy of the particle,
including
- the rest energy moc? A

- the kinetic energy h’mac ""uC K*m
> C

- the potential energy e®




Hamiltonian treatment of transverse motion

(1) Hamiltonian in Cartesian coordinates

qT-(qﬂcleG[z) =7 "-'CK-'[{X'L,'KS)

The canonical momentum of a particle of charge e in
an electromagnetic field is

-

ks -
P o= 'K’n’lnﬂr +Q.A = e

The relativistic Hamiltonian is _
- - - 'y R T 4’2
H4(q,p,t)= c[(p~eA)2+m°C} +e@

(In general, the scalar potential ® and the vector
potential A are functions of the coordinates g; and the
time t)

(2) Transformation to accelerator coordinates

(-:I = (QHQUQS)': (th,S‘)
Po%ﬁkan.veﬂ"or G'f Parﬁ'cee
~ (s) = 170 (s) +X-’;\’CS) +Y b(s)

4 J

(R, bt) COMOving
unit vectors
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Assumption: accelerator is circle of radius p in the
plane y = 0 (no torsion)
o, _ de . a4 di_47 db_,
ds s ¥ s P s

Canonical transformation (4. B3 == (@, P)

using generéting function
Fg(l‘;’@) < _-q"-.E=— (rE. +xfn+3l:)'P

The new momenta are

Pa - O3
0@
P)( = - réf;_ = E'ﬁ =.P,< PT‘O&:QCk"“ U'f.ﬁ
gg I } on unit yeckors
b{Py=_'5?='Pb=P)’ ong X T<p- Y
: - X\ = 7
V8 Ps""‘ %‘E& £ (/f-{- ?)P t

Note that the momentum conjugate to the arc length
s is not identical with the tangential component of the

vector p

Since the generating function does not depend on
time, H remains invariant

H, = H4+%%=H4
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Write H» in terms of Q;, P,
P_eAg 2 %

Hy (@, Pt) = C[(Re-eh+(P-ehy) (ﬁ_r)m, »

Note that Hz is still the total energy of the particle

(3) Replace time t by orbit lenath s

This is basically a renaming of variables.

(t, -H») can be considered as canonical variables like
(s, Ps). The above equation is solved for -Ps which is
the new Hamiltonian:

5- Q—A *‘(44-.’()[ (Hz-eﬁ)l—mlcl

4
[ (Pe-eAd)-(8,-ehy)" [
(HZ - Qé ) = a’ﬂ‘iaCz kllﬂ&kc 4 reg!- e_neyaﬂ

=g

%(Hz,e@)l—m}c ngmafv) = b

z&emp YHQCL\thCQﬁ Ma menfum

For simplicity we restrict ourselves to transverse
magnetic fields only _,

%:O =) chaose A QU.C)’\ ltean- A,{,A} =)

Then the Hamiltonian reads
: ~52 2 |11
Hy = ~eAs - (4+ %)[ P px - Py | t]

Note that Hs is no longer an energy but has the
dimension of a momentum




(8

Derivation of Hill's equation

We evaluate Hj for a ring made of combined-function
magnets with ideal dipole and quadrupole field
components

Use cylindrical coordinate system (r,0,y)

,T-_?+)(' - O = 8/9 ('n'.na p?am’_.]
Y = verhced cogydinale

A has only a 0-component. To compute Aq we
evaluate ¢ xA in cylindrical coordinates

BrzBx =-3y = —%‘%@ (1)

By =-Bi-gx = 4 2 (»Ag) ©
Nom () : Agﬂxifj) = + %3.b?"+ £0x)
Then 2) can be writken

1 _@. X (x = -bha~ X
s () - o5

1

- -4



Astsf.-j) =-(4+—;§-)A9[xu:j)
= fu0x) +$94" 4 $ f;——fx
megleck 37 gvolar
Y . p,,[.;s + (L)% -t &1

Now SLMP&&.’ Second Hm in H.B

19

Clgz" sz"P;]f/z "‘"LE\_'" %‘-’a - %o_.,

PotapP
assumphon : Py, Py << Po , OP << [Ps
Then H3 becomes

Hy= polF +(eb)z L)
—p - (potap)P +("*§)(%a” %’5)

Kae.p{ma cmeﬂ fesms e Fo ghe avoler (n e
small”quank Bes X, Y, Py, Py and mejlec-
fing the conslant ferm —p  we obtain

o=} wpo (0t ¥ ] B 4 B |

H&mi@ﬁoniqn ﬁﬂ'f Hanswrge motion in %
",eimea.r GPHGI ‘ Q,bpmxrmaﬁbn

-3

Note: H., is of 9™ v oley inx,Yy ; Bis i neas




Ham:2to i 2q uakons

! = Q{_{_?Hz = Px

AS T px
Po
Px-"BH‘S“* 4
U 5" ~pe (+8)x
U{= 3 :—E‘i r
Py Pe 7 Pﬂ”'y;_a' by
!, (-;1 +£)x = 4 8P
fPe

Y —kj = O




24

(4) Normalized momenta

The Hamiltonian Hz (which is not an energy but a
momentum) and the transverse momenta are made
dimensionless by dividing them by po (nominal
momentum)

Ha P_x .. & LY
H‘-f = _'5—.: PK = Py P*’

In the following we restrict ourselves to one plane of

betatron oscillation, say x, and assume Ap = 0

Hq(xffx,S) = 4 KG) x* + di-ﬁ:'

_ ]
K'= B - BH" = Px P;-f—%%'“&(x

The canonical momentum is identical with the slope
of the trajectory

¥"' + K&)x =0

X(s)= a JAe) coo (¢(s)-9)
52 X6) = - o A% [ 5in(¢-5) - cn(4-9)

}'(s) = I



Ah‘&ee,-a.c;:\(}ﬂ VQTi&b&S G‘f KQTFWOHI'C Ogc':eea'lo:i
mq +kq=0 =40, 0I5
H - ﬁ?gL:ﬂ +heqt= 4, (P + miutq®)

S

o/ &an) umzq)
find awngl varalle @l propeshy
P:.--r:. C. Sinz(p, mzw’-?t= C . ecnt @ (C=cowsl,
= Mew {‘f-"\-mief'nhian I.V\O‘(ALIO&HO‘(QHI+ o-f LP : |

Qivonical honsformakion

(q,p) — (v, 7)

H - K
Wit F(q,¢) = - L mwq® fang
P=%El—'-' = -qu-hhfp
b {ellows q = % <o
P =~ [2Tmw sny
K- He Te Jw (sn'eray)=Tw

, ~ &
-5?) =0 = a.chon Je Cﬁh?f',j-a



(5) Transformation to angle-action variables

(x,x) —=(93) wth @=¢s)-9

Generating function

B (X,9,5) = Z;(s) [tony -4 £'G)]

\ 9F _ _ X _p
x='ﬁ'— p['{'a”(y %]

msert Xx= Q& VZ con )

i O . '
= X' = _TE [smtp —écm(p]
The new momentum, called 'action’, is
j:-—?.fﬂ-ﬁ A =&;ﬁmzt|»’ =-<-;:-
A
From Basic Optics course, formula (4.32)

e s (- L) =at = cons

Hence 2J is identical with the Courant-Snyder
invariant and therefore a constant of motion

New Hamiltonian

23



24
Second {erm: '

L ‘ Xt "
g (tany- &) & g b
Inser hon off X = Olfgﬂzcmlp H—-E»@ds

) [ | - 2 . SH
{5 {anpem f oy £ <o
Then He %Becomes -

He = 3; [caa“q) {K{l—% + ﬁfg"} + %S’in-zq/]
The /$ funchon ﬂeﬁw Hos Q?uqfimq (4.24)
i T R B A

e (9. 7,8) = -/;-;’-5—’
The mew Ham ilfenion does mot oepend an Hee

ang/@ vanabé ¢ The COHJ'ua.qfe mame;qh;_m)

the ackon J, is thus & constant of mehon
]'.; - 'a—é% = 0 J= consh

We kinow Hacs odreacty 2T = Cuurcznl-*fhjdqr
| tnvanant
q/*,: De(l) . 0Hs .. 4
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The Hamiltonian Hs is still s-dependent

(6) Transformation to angle variable that is linear in s
(v, 2) - (w,,q4)
Gemem.kna funchon
Fo (9,74,8) = @-J4 + (fg S *f {5(59) I,
2R circumference of machine
® = number of belakon oscitlakons s ﬁun

R *
(-l)/l: ‘%‘ = LP(S)'I-%S—- L %_S&[)

Y (5)= Q) + % Q Pﬂase. @, is

PQiviear in S
7= '%% =,
oF. Q J4

H5=H§+95"PG) R4—F&)
bg = %3 - r.oj] same @ for

ﬁtﬂ.r manic

oscitla fFor

j = CO‘"P!&‘- == -HE» = CﬂhS’&
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Qo tune shilk aQ
( Basic Opties 5:' (s.19)

Q- £ &% . A & Bs) k) ds
e

Higher - Order mubfipotes
(Here uniﬁwm% dishibuked aveunol frnU)

Sextupoke

H = Hm + S'XS
] St 3
H = EE_S) + S(Zj) co™ @
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) 1
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Canonical Perturbation Theory

In the linear-optics approximation the magnetic fields
are linear in x and y while the Hamiltonian (type Hy) is
of second order. Transformation to angle-action
variables

(X,XW = ((91'.:')

leads to a Hamiltonian (type Hes) which is independent

of the angular variable y4 and also of the orbit length
s (our 'quasi-time' ). Instead of s one can also use the

azimuthal angle 6.

HG= %j = Consd
S—'@=%l H:;=K‘H5=@':L

Normalized phase space diagram

plat U = o x = (e,

A . | ;
Vo= P (px'-fx) - b I3, sing,

b Ar
linear ophcs

/ ( unpecturbed ’mufiou)
@ circle H, =const

%\ C LL

per bur’oah'aw bj mne\'neqr

)
>d‘/ magwel , Rare sextupele
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Perturbation by nonlinear fields:

terms of order >2 in x and y in the Hamiltonian. The
sextupoles, octupoles etc are usually localized in the
ring, hence the perturbation depends on s resp. 0.

Start with Hamiltonian of type Hz which is called ¥
in the following

p FE G!o'j,, [ihohpandenl- c‘f @, and 9)

Perturbed Hamiltonian
W, (9. 3,0) = (W) + U(,, 3, 6)
' Qﬁ'jd cmal po.r'[‘urba,f'ian
No uv@oerfw'b&d fune

- The perturbation U is periodic in the betatron phase
w1 and the azimuthal angle 6. It can be expanded in a
double Fourier series

U (y, 3,6) = Z,, Uy (3) o A (% -16)

Cﬂ\a.n%t crf ahﬁfm ‘:)u NUG&A.HOVI:

6 — O +1r

(-"21 = Lp4 +Qﬂ'21T

L@eBo sin per furba o
i “small”
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Behaviour near a resonance

Let Qo = n/m and Uy, = 0. Then the phase factor
exp(’i (mQ, —"ne))
is almost constant from turn to turn since

m@p,-nb - o (@, + Qo 2) -0 (B +2m)
o f'mtp,‘"'?'le

Hence the perturbation adds up coherently from turn
fo turn.

Other ferms Uﬂ!h‘ ! PQ\ME,S vary From
turn bo fun = Pe,r{urbah‘.om QA Verage) owf

Close to a resonance we can restrict ourselves to the
terms Ugg and Upp.

W, =Q, T+ le (31) + ?U,,,.,JL)C#:(MQFh 6)

%\'Qo""'%‘

If a single resonance term is present the Hamiltonian
can be made independent of § by transformation into
a rotating coordinate system
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Canonical transformation into rotating coordinate
system: use generating function of type Fa(q,P,t)

Felw,32,0) = (@, ~ % 0) 1
_‘tha._F_t_-;jz_ (Pz;r@-t—:jt;—: (_')4*%1"9

Y0 ?
°F.
2{1-:. ;’f,, + ;-a—e—

= Qq'jq =+ Uoocj*) + zumn (J.;)C_m(mq),_)

m
"'"*r'ﬁje.

Yoo Te) = STa + Uso(Te) 4 20, (1) co mgp, J

3=Q,- % dislance fo rerenance

The new Hamiltonian is indeed independent of the
'quasi time' 6.

Simplified notation: omit index "2"

Wy, D) =3-T + (I + £Q) comy



Third-integer resonance

Sextupole magnet yields term

S(O) - x* = 3S(8) (2‘3{3)3“' ccragtp

P W il
Sextupele strength
ma_,-ﬂuncl"\‘ﬂh crfe %(cm&P +~3C.cD'LP)

The Fourier series of U contains the terms m = 1 and
m = 3. Since Qo must be far away from an integer to
avoid integer resonances we look only at the term

m = 3.

Third-integer resonance: QO = q—% = CS small

E{(L{)‘j) = 87 + A T3 ey 3y

Phase space representation: for constant Hamiltonian

plot {J" against angle v in a polar diagram

Fixed points: Poinh (v pfmse i’{:ac_g ) A
do nol mieve as a ﬁgncf«ian 0{6 [ Hmz)

%\%-‘- (%%-(-:O o S+ AT wr3y-<o
A1 _ _oX
de = Ty



3¢
Take &, A >0

S + %-_Ajdi and@ =0
e S’
20 >0 .

o fod privts o 9=, T, S

§ )2 ¢ J°3
= (%',6‘) ;KF.P. T 23 A

74 %Xﬁd P‘thf (-l) ="
B =15 (unbounded Mofion)

—+= (L

[epa rr.z.»’ﬂ S

Q.clumkon of o phase spo.ce de-ﬁ j

h=8 N SR
C.Q'J%LP = ’2—'{—3‘}& 2‘ Er'&-p 3= Je.?.

The SQ’MMMK (3\'—'4) Se.pam’oo TERINS
0{ Ihounded miohion and  whbounded yohou
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Fourth-integer resonance

Octupole magnet yields

6(6)-xt = 0(0) - (2IA) cm‘“P
L(enty +‘{'¢®2<P +3)

The term cos 2y can be ignored for Q0 ~ n/4
however the constant term must be kept

"
Close to a fourth-integer resonance cg =160~ ) Small

HpJ) = §J+A-7* (3+cn4y)

The constant A contains the strength and the sign of
the octupole

The Hamilton equations read (remember 0 is our
"time" variable)

X0 9 X ¢ (4
5 = 331" d+2A7 (24 cnty)

a1 9% | AT and (2)
r O T, ey
The conditions for fixed points are

1 AT T W
%_g-:o =2 0,5, T ¥, -

Ay ~0 : can anly he ME“&Q"( 74
A8 d and A are U_f OPP"%‘FQ Bgh
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Let Qo> n/4, i.e. > 0. Then A < 0 needed to obtain
fixed points.
There are two kinds of fixed points:
(a) Stable (or "elliptic") fixed points
i A5 AT ST Fm
s < , oW K73
Around a stable fixed point is an island of stable

motion
(b) Instable ("hyperbolic") fixed points
(P = O ] Iz_ Tr i 3’%

’

Bifurcation of trajectories occurs, chaos may happen

Phase space trajectories: iterative solution of (1), (2)

S+ 2AT (3+ o)
((g)i.u =(L:'IJ)L +( +C.LAI];" s:n‘-f(p;_q} )06

Qa"?{- 20

slable F.P
island

__stafie. F.P.

_ wnetable E.P.

Ioifurmf«ian O'f

johase space tyajectanis

\ Calau&cr a-fctxqas)
shb& mnkov\

»ffmr ﬂﬂ?‘&@. ampf.i('uo(&.
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What happens if 8 and A have the same sign?
No fixed points .are present, the phase space
trajectories are squares with rounded corners.

Important: one observes a strong amplitude
dependence of betatron tune

@- 3 - (0.-% +241(3+3%V)
averages b

Q Q) .-::(Qa-%) + 6 AT gero

\ contains shehgl-ﬁx

d=Qo-% 0 of ochupele

A>0 /ﬂ
| (r= growing

‘_—ﬂ | a MPQ/: haole.

\ gl-trl— o‘f ile ra ho
x J _S'(-OP d"f E-Lerat'bh
e

A>0Q R Awcreawes MM\ rincmaiinrj
A<O ' @ decreases

Beta on mohon in an accelernkory s
Oh@!j OCF\APG*@M IS aﬂm54 goamo(ao_f._
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Coupling resonances

Coupling of horizontal and vertical betatron
oscillations may be caused by

skew quadrupole Ae (x.4,8) = f(s)-x-g

sextupole normal ffs} = 3x 31)
skew T § 3,(:3 -43)

octupole  normal o ( x“'-—éxlga +3")
skew o« (%xPy -L(xy"")

These terms have to be added to the Hamiltonian
(type H4) which will be called Ho here

H= §KE) (4 -x®) +F(pxepy) + {O)xy

- : (]
Canonical transformation to angle-action variables

(X,Px) - (@, .7 3 (H;Pg) s O{)ijl)

2{4 = gjjd +Qt‘z'z +U(LP.,,Q)1,~74,:’1,9)
o (Hype He ) |

The perturbation U is periodic in y4, w2 and 6 and can
be expanded in a triple Fouries series

": mﬁq)#mtq)i"ﬂex
U(({J“Wz.j«r.]'z,é) = Z UW1MLMQ’ (

Ma, Wy N

U?quz“ is .Fuucl&on OIP Ji, da



4
Cﬁ.angx O'f pﬁ%e P.er 1‘1&!‘?’1:

: Y; —» @W; + 27 Q; O0- 0+l

)
“"'lﬂ’wmz_(pz—ne -2 Md"l)d"‘mtkpt:‘"e |
+ 21r('m4@,,+m197_-¢1)

Qe.sona.hc:e condifon
‘fm,‘@,‘.; m, R, ~n = O.
(Pose fo Sucl o meaoriance
‘g(*’lt': ad'll‘l +02'|]7. + 5(11;']1) Cﬁ)(‘?ﬂ.{\& 'f"m;}P,_-Me)

( F[j-nj-z_) = ZUW M, YU CJ#J:.); Uaca 1!&&&(1‘(0()

§= TH4Q4 +W\7_Qz— n d.ish-nce "0

M lonancCe

Canonieak hansfermabion inko motabing Sqvhem

b, Wt — v 0 =1, ¢
(@, ) (e, Wi) §5!

F-Z.(q)ﬂ Ml'l)z.rl(zre) :(’"11(& +maq)z,"'n9)‘u4 'f'L[)z'l(z

4}4 = %% "’md(-l)ﬂ +m-z(|)-,_-’”9

d}?—: gli‘é:(l)z.

Je Q8 cike Lo g mkovke
A &
s

K= "}{4*9_!:_2 —@4341'@th -r(J-tﬂz)Cﬂ)fP.,*ﬁK'
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The Hamiltonian in the rotating frame is
sz_ 5'£'K4 Th Q?_' KQ_ ¥ f(k-t ,K-L) f.f.'.t'l':icp‘,l

The Hamiltonian is independent of the quasi time 0,
hence the phase space trajectories are curves of
constant Hamiltonian

d..'}(-—-f = 93{'," = (0
dé 06
Furthermore ¥, is independent of ¢, hence

K, = const

%_.{3':0 =39 ﬁ"n?_j,,"' ‘77'1471_ = Const

3.

In the following we consider a skew quadrupole.
Choose m4 = +1, then m» maybe +1 or -1

Sum resonance

For m» = +1 the difference of horizontal and vertical
action

7= Ty = iCongf

must stay constant. However, J1 and J2 can both
grow indefinitely
A sum resonance

Q.'-t"az =N

is unstable and leads to beam loss
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Difference resonance

'q“.i: +"{me=|-4 —) j.ﬂ + j-z = C..OV'ISF'

The action variables are squares of amplitudes and

hence always positive. Therefore the motion remains
bounded

A difference resonance

Qq"Qz.:M

s stable

However there is energy exchange between the
horizontal and vertical betatron oscillations which is
undesirable in electron-positron storage rings

Time development of coupled motion

iy K 0Ha
b(z, = té_(g't._-_ - -8—‘-:-P-; = 0 P KZ:CJHI'{

o >N
b = 9?54 . f*gf,m‘Pd
KA":"&: fSan‘Dd

Ty ’ |
‘2“ = ( %Ad” +g—£&%)ﬁ“¢1 +.?cm¢{,, ¢,
0
6{4 = ‘E’ '%E CSLVI2¢A +Cﬂ2¢d) + £Em¢4
| Kd ST A et R e
1 A-d-U,y

n~t A= Ha-QU, = Const



Uy
4 = f% + £(A—5M)

S’Pec-:a.ﬂ c:me skew quadrbpa&
g(l j-z.) = B 077 Boc Shenpk

of quad.
f(“-ﬂ“‘z) BVL(A (rm “44‘(1‘) (= #d)

£'bk4 - (K-L-L?-makzt)

The Ol-'ﬁ&rcnhtﬁ QcTLLaAon ﬁrr K, [/ ——
b(,, + (d5=m, B, - O-A+5% {;(

consk |
Som menenance (My=+4)
l:(:. - 0(1 6(4 = C.ﬂ"'l“\SJ"
0('?_= EL —('gl
Sz Q+Qe-m diskanc o

~eronn CL
B n~ ShrengH a'f qund |

Except Pre vey weak lew quod we gof
«* >0

—  oxponenhial growt of Ka.
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Difference. aewonance (m, =-4)

K +w’ “4 = congt

w* = §“+&* >0
Periodic oscillahon , Skabilify

Eﬂﬂ"ﬂrj Wcﬂ\ﬂhé:e ihd.ﬂﬁtrma- manakce:
Tnikal conolifon 6 =0:
‘34(0)5‘715 ) ‘sz): O

K4(0) = '_'].1(0): Je
K, (0) = jz(O) - ":2_ KA(O) = Jo

-
‘5‘61(0) = C8+Qz,)7u + ;v:?n(:la—%)cﬂ:qﬁd
, - =

At 'J{L"az.b(z_ = (5\-:],_., L
|24 + UJQ K.«; = C51 i3 Ei )j"
K{(&)_ = Co + $q eon O)

ty B B/
C°=(cg‘§":ggf Jo, e gE e

9 (0)= 22, (84 B2cr*(46))
1,08)= L B sin* (4 6)

w

(. Riphken, F.Wikkle , DESY &&-114)
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Second-order perturbation theory

In the following we take a small perturbation but
assume that the tune Qo is far away from a
resonance condition

Start with Hamiltonian of type Hy

¥ (0, 34,0) = Ro@a) 4 U (94,2, 0)
Qo 34 s‘maﬂ pqrfurbal‘bn

A canonical transformation is performed which differs
only little from an identity transformation

(‘\Pq f]at) — ((P'L fj"-)

Fz(u)4 rjt-fe) = qu j + % ((.(),,,79_,9)
fl,d.cnf'ﬂfj framsf. "S’maﬂﬁﬁ

3 & (aX __(aF‘l. . I %
W= e Wt % de= 06 = 12 &

He =¥ ¢ Q)-(

First trick: ﬁepﬂa_ca_ in 364 ¥ aclion Iy ﬂ:\;
9X

s Hao= ¥, (79_4' )-FU((-P,, :fz-r Q) %
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second trick: add a term and subtract it again

\XZ-"— @u'jfz. t {U((P4:JL+3TP 9) U(q)..,,gtrQ)j

Now the function v is determined such that
Qo %4 + U(%,%G)f%%-

Then the perturbation vanishes in first order and
appears only in second order

Computation of perturbed Q-value

One is interested in the average tune shift, hence the
perturbation term is averaged over the phase Y

X
%, = Qe-Ty + [BU '%—4]34_%
V(w..,:i,_,e)
R = Qola + {V> averogeol over

If <V> is known one can compute the action-
dependent tune shift
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GEP_?" = ’B__ale} = Qo + 9sV7
d 6 o

Tz
g (>
4 (" dye _ 4
Q(J) = ngede ‘@n“'z?r:f 37?_0[6

Exomple : Sex hupebe

He = 4 KO x*+ 4p* + SG) %3
Seihpo—&t VN
He= Qo-Tp + V(L(’!.,-_Jz.e)
Whal is He I, dependence of I/ ¢
G- QI @ty 2 Ul (:2)
from the defermining equakon of X we ge

X o/ :]",,_3/2‘

Thewofrre 2 9K 1, g7

5 V> = £06)- 5"

em .
QR (3,) = Qo + %r j; 2 2(6) T, ok O

= Qo +AJ,
Im Second - avola puhrga/—fﬂn ?Leuum? a
Sexhapele ymakes o fune-shifd oo ackoy 7
Ceile ochaet o Fst order)



