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Kapitel 1

Phänomenologische Thermodynamik

In der phänomenologischen Thermodynamik (Wärmelehre) wird die atomare Struktur der Ma-
terie weitgehend ignoriert. Wir folgen nicht der rein phänomenologischen Beschreibung, die
mathematisch sehr formal werden kann, sondern benutzen die kinetische Gastheorie, um die
Begriffe Wärme, innere Energie, Temperatur und Druck durch mikroskopische Größen darzu-
stellen. Die Entropie wird in diesem Kapitel allerdings nur vorläufig in phänomenologischer
Weise eingeführt. Ihre mikroskopische Darstellung wird in Kap. 2 gebracht.

Unser Modellsystem ist das ideale Gas. Ein Gas ist ein Ensemble von Atomen oder Mo-
lekülen, deren mittlerer Abstand groß im Vergleich zu ihrem Durchmesser ist. (In Flüssigkeiten
oder Festkörpern berühren sich die Teilchen). Ein Gas heißt ideal, wenn folgende zwei Bedin-
gungen erfüllt sind:

a) Das Eigenvolumen der Atome/Moleküle ist vernachlässigbar.
b) Die Kräfte zwischen den Atomen/Molekülen sind vernachlässigbar.

Beispiele: Edelgase und Luft bei Normaldruck und Raumtemperatur verhalten sich in guter
Näherung wie ideale Gase.

1.1 Kinetische Gastheorie

1.1.1 Wärme als Energieform

Wärme ist eine spezielle Form von Energie, sie ist die Energie, die in der ungeordneten Bewegung
der Teilchen steckt. Wir betrachten zwei Beispiele, ein Gas und eine rotglühende Eisenkugel. Die
Gasatome in einem Behälter bewegen sich mit hohen Geschwindigkeiten, aber die Richtungen der
Geschwindigkeitsvektoren sind stochastisch verteilt. Die Summe der Geschwindigkeitsvektoren
ist null, der Gasbehälter als Ganzes bleibt in Ruhe. In der glühenden Eisenkugel schwingen die
Eisenatome um ihre jeweilige Ruhelage in verschiedenen räumlichen Richtungen, wobei jedes
Atom unabhängig von den anderen schwingt. Die Kugel selbst bewegt sich nicht.

Die Unordnung der Bewegung ist ein entscheidendes Kriterium. In einem Satelliten gibt es
eine kollektive Translationsbewegung der Atome, aber diese trägt nicht zur inneren Energie
bei und hat nichts mit der Temperatur des Satelliten zu tun, die bei großen Flughöhen sehr
niedrig werden kann. Die innere Energie muss im Schwerpunktsystem berechnet werden. Wir
kommen auf die Unterscheidung zwischen einer kollektiven, geordneten Bewegungsenergie und
der ungeordneten Wärmeenergie noch mehrfach zurück.
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1.1.2 Innere Energie und Temperatur

Edelgase (Helium, Neon, Argon..) sind atomare Gase. Die Atome haben nur eine Translations-
energie; Moleküle können zusätzlich Rotations- oder Vibrationsenergien besitzen, darauf wird
in Kap. 1.5 eingegangen. Die Summe der kinetischen Energien der N Atome nennt man die
innere Energie des Gases:

U =
N∑
i=1

m

2
v2
i . (1.1)

Diese Größe ist im Schwerpunktsystem zu berechnen. Das bedeutet, dass die Summe der Im-
pulsvektoren verschwindet

N∑
i=1

pi =

N∑
i=1

mvi = 0.

Wir berechnen das mittlere Geschwindigkeitquadrat

〈v2〉 =
1

N

N∑
i=1

v2
i . (1.2)

Die absolute Temperatur T wird mit Hilfe der mittleren kinetischen Energie der Atome definiert

m

2
〈v2〉 =

3

2
kBT . (1.3)

Die Einheit der Temperatur ist Kelvin [K]. Die hier auftretende Konstante heißt Boltzmann-
Konstante, ihr Wert ist

kB = 1,38 · 10−23 J/K.

Traditionell wird die Boltzmann-Konstante k genannt. Wir bevorzugen kB, um eine Verwechs-
lung mit der Wellenzahl k = 2π/λ zu vermeiden.
Aus Gleichung (1.3) wird sofort klar, dass negative absolute Temperaturen nicht möglich sind,
da kinetische Energien stets ≥ 0 sein müssen. Wir werden in Kap. 1.3.3 sehen, dass der Wert
T = 0 K ein Grenzwert ist, der dem “unendlich” der Mathematik ähnelt: dem absoluten Null-
punkt der Temperatur kann man sich nur asymptotisch annähern, ihn aber nie exakt erreichen.
Der Zusammenhang mit der Celsius-Skala ist

Θ[◦C] = T [K]− 273,15.

1.1.3 Druck eines idealen Gases

Das Gas sei in einen Zylinder mit der Querschnittsfläche A und dem Volumen V eingesperrt,
in dem sich ein verschiebbarer Kolben befindet. Der Druck auf die Wände und den Kolben
kommt durch die Stöße der Atome zustande, wobei die Annahme gemacht wird, dass die Atome
elastisch reflektiert werden.

x

elastische Reflexion
eines Atoms am Kolben 

Montag, 30. Juli 2012
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Bei der Reflexion eines Atoms am Kolben wird ein Impuls ∆px = 2mvx übertragen. Um die auf
den Kolben wirkende Kraft zu berechnen, gehen wir schrittweise vor.

a) Vereinfachende Annahme: alle N Atome haben die gleiche Geschwindigkeit vx in x-Richtung.
In der Zeit ∆t treffen ∆N = nAvx ∆t Atome auf den Kolben, wobei n = N/V die Teilchendichte
ist. Der übertragene Impuls und die Kraft sind

∆px = ∆N 2mvx = 2nAmv2
x∆t , Fx =

∆px
∆t

= 2nAmv2
x.

b) 1. Richtigstellung: nur N/2 Atome fliegen nach rechts, also wird Fx = nAmv2
x.

c) 2. Richtigstellung: die Geschwindigkeitskomponenten vx sind alle verschieden. Das berück-
sichtigen wir, indem wir v2

x durch den Mittelwert 〈v2
x〉 ersetzen.

d) 3. Richtigstellung: es gibt auch Geschwindigkeitskomponenten in y- und z-Richtung. Auf-
grund der räumlichen Isotropie gilt

〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉 =

1

3
〈v2〉 ≡ 1

3
〈v2〉 und Fx = nAm 〈v2〉/3.

Druck ist Kraft pro Flächeneinheit: p = Fx/A (genauer Normalkomponente der Kraft). Damit
ergibt sich für den Druck des idealen Gases

p =
1

3
nm 〈v2〉 = nkBT . (1.4)

Die Einheit für den Druck heißt Pascal: 1 P = 1 N/m2.

(Leider verwendet man für Impuls und Druck den gleichen Buchstaben p, bitte aufpassen.)

Multiplizieren wir Gl. (1.4) mit dem Volumen, so erhalten wir die Zustandsgleichung des idealen
Gases1

p · V = N kBT . (1.5)

In der Chemie ist es praktisch, das Mol als Basiseinheit für die Stoffmenge einzuführen. 1 Mol
enthält NA = 6,022 · 1023 Atome oder Moleküle. NA ist die Avogadro-Konstante (in der älteren
Literatur nennt man dies die Loschmidt-Zahl). Die universelle Gaskonstante ist definiert durch

R = NAkB = 8,31 J/(mol K). (1.6)

Für ein Mol lautet die Zustandsgleichung des idealen Gases

p · V = RT. (1.7)

1.1.4 Maxwellsche Geschwindigkeitsverteilung

Die Atome (Moleküle) eines Gases haben alle verschiedene Geschwindigkeiten. Sei N die Ge-
samtzahl der Atome. Die Anzahl der Atome mit Geschwindigkeiten im Intervall [v, v + ∆v]
ist

∆N = N f(v) ∆v.

Dabei ist f(v) die Maxwellsche Geschwindigkeitsverteilung

f(v) = 4π

(
m

2πkBT

)3/2

v2 exp

(
− mv2

2kBT

)
. (1.8)

1Reale Gase gehorchen der van der Waals-Gleichung, die auch Phasenübergänge beschreiben kann.
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Wir werden diese Formel in Kap. 2 beweisen. Die Funktion f(v) ist in Abb. 1.1 aufgetragen.
Diese Funktion ist auf eins normiert: ∫ ∞

0
f(v)dv = 1.

Von besonderem Interesse ist das mittlere Geschwindigkeitquadrat

0 1000 2000 3000 4000

x 0.9 0.901� 2.5����

v [m/s]

Sauerstoff

Wasserstoff

Dienstag, 31. Juli 2012

f(v)

Dienstag, 4. Dezember 12

Abbildung 1.1: Die Geschwindigkeitsverteilung von Sauerstoff- und Wasserstoffmolekülen bei der Tem-

peratur T = 300 K.

〈v2〉 =

∫ ∞
0

v2f(v)dv =
3kBT

m
. (1.9)

Diese Beziehung haben wir in Gl. (1.3) benutzt, um die absolute Temperatur zu definieren.

1.1.5 Barometrische Höhenformel

Mit wachsender Höhe vermindert sich der Luftdruck. Um den Druck als Funktion der Höhe zu
berechnen, betrachten wir eine Luftsäule mit konstantem Querschnitt und nehmen zur Verein-
fachung an, dass die Temperatur überall den gleichen Wert hat. Die Druckabnahme zwischen h
und h+ ∆h ergibt sich aus dem Gewicht der Luftmenge in der Scheibe der Dicke ∆h:

p(h+ ∆h)− p(h) = −n(h)mg∆h,

wobei n(h) die Teilchendichte in der Höhe h ist. Aus Gl. (1.5) folgt n(h) = p(h)/(kBT ). Daher
kann man die obige Gleichung leicht integrieren mit dem Ergebnis

p(h) = p0 exp

(
−mg h

kBT

)
. (1.10)

Dies ist die barometrische Höhenformel. Die Exponentialfunktionen in Gl. (1.8) und (1.10) sind
Spezialfälle des Boltzmann-Faktors, siehe Gl. (2.14).

1.2 Arbeit und Wärme

Einem Gas kann man auf zwei verschiedene Weisen Energie zuführen: durch Arbeitsleistung
und durch Wärmezufuhr. Um dies zu verdeutlichen, betrachten wir drei Fälle.

(a) System 1 sei ein ideales Gas in einem Zylinder mit beweglichem Kolben, System 2 sei eine
gespannte Druckfeder, die eine Kraft F auf den Kolben ausübt. Wenn die Feder den Kolben um
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∆x nach links bewegt, leistet sie eine Arbeit ∆W = F ∆x und erhöht dabei die innere Energie
des Gases

∆U1 = ∆W = F ∆x .

1

1
2

1 2

Druckfeder im Vakuum

Donnerstag, 19. Juli 2012

Die Erhöhung von U1 kann man auch im mikroskopischen Bild verstehen: bei der elastischen
Reflexion der Gasatome am bewegten Kolben vergrößert sich die kinetische Energie der Atome.

(b) Die gespannte Druckfeder wird durch ein komprimiertes Gas 2 ersetzt, dessen Druck höher
als der von Gas 1 ist.

1
2

1 2

Druckfeder im Vakuum beweglicher Kolben

2

feste Wand

1

Donnerstag, 19. Juli 2012

Bei der Linksbewegung des Kolbens leistet das Gas 2 eine Arbeit, die die innere Energie von
Gas 1 erhöht. Gleichzeitig wird die innere Energie von Gas 2 erniedrigt, denn die Reflexion der
Gasatome an dem sich weg bewegenden Kolben vermindert ihre kinetische Energie. Aus dem
Energiesatz folgt

∆U1 = ∆W = F ∆x = −∆U2 .

(c) Thermischer Kontakt zwischen zwei Gasen.
In den Fällen (a) und (b) wird die Energieübertragung durch eine makroskopische Bewegung
eines Kolbens bewirkt. Wie kann man die innere Energie von Gas 1 erhöhen, ohne dass eine
makroskopische Bewegung auftritt? Antwort: durch Übertragung von Wärme. Die beiden Gase
seien durch ein starre Wand getrennt, die eine Energieübertragung durch Arbeit verhindert.

1
2

1 2

Druckfeder im Vakuum beweglicher Kolben

2

feste Wand

1

Donnerstag, 19. Juli 2012

Die Temperatur von Gas 2 sei höher als die von Gas 1. Die Wand wird durch Gas 2 erhitzt und
gibt thermische Energie an Gas 1 weiter. Die Energiebilanz lautet:

∆U1 = ∆Q = −∆U2 .

Der Wärmestrom ist definiert als die durch die Wand strömende Wärmemenge pro Zeiteinheit

ΦW =
∆Q

∆t
= λ

A (T2 − T1)

d
. (1.11)
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Dabei sind λ das Wärmeleitvermögen des Wandmaterials, A die Fläche und d die Dicke der
Wand. Die Wärmeübertragung hört auf, wenn die Temperaturen des beiden Gase gleich werden.
Man spricht dann vom thermischen Gleichgewicht. Die Wärmeübertragung durch eine feste
Wand kann ebenfalls im mikroskopischen Bild interpretiert werden. Die schnellen Atome von
Gas 2 treffen auf die Wand und erhöhen die kinetische Energie der Leitungselektronen oder
die Schwingungsenergie der Wandatome, und diese wiederum geben Energie an die Atome des
Gases 1 ab.

Metalle sind sehr gute Wärmeleiter. Die sog. “Leitungselektronen” sind die Träger des
elektrischen Stroms und auch des Wärmestroms. Besonders gute elektrische Leiter wie Kupfer
oder Aluminium sind auch besonders gute Wärmeleiter, und schlechtere elektrische Leiter wie
Edelstahl haben auch eine geringere Wärmeleitfähigkeit.

Elektrische Isolatoren sind generell viel schlechtere Wärmeleiter als Metalle, z.B. beträgt
λ = 1 W/(m K) für Glas im Vergleich zu λ = 380 W/(m K) für Kupfer. In Isolatoren wird die
thermische Energie durch Gitterschwingungen transportiert.

Isotherme Expansion oder Kompression eines Gases
Ein Prozess wird isotherm genannt, wenn dabei die Temperatur konstant gehalten wird. In

einem pV -Diagramm des idealen Gases ist eine Isotherme (Kurve konstanter Temperatur) eine
Hyperbel. Für 1 Mol gilt gemäß Gl. (1.7)

p(V ) =
RT

V
.

Ein ideales Gas befinde sich in einem Zylinder mit verschiebbarem Kolben, der die Fläche A
hat. Das Gas übt auf den Kolben die Kraft F = pA aus und leistet bei einer Expansion eine
Arbeit. Wird der Kolben um ∆x nach außen verschoben, so leistet das Gas die Arbeit

∆Wgas = pA∆x = p∆V .

Damit die Temperatur und damit auch die innere Energie konstant bleiben können, muss bei
der Expansion eine Wärmemenge ∆Q = ∆Wgas aufgenommen werden. Die Gesamtarbeit bei
der isothermen Expansion eines Mols eines idealen Gases von VA nach VB > VA ist

Wgas =

∫ VB

VA

p(V )dV =

∫ VB

VA

RT

V
dV = RT ln

(
VB
VA

)
. (1.12)

Die vom Gas geleistete Arbeit ist gleich der Fläche unter der Isotherme.

Isotherme T=const

VA VB V

p

Arbeit W

Donnerstag, 26. Juli 2012

Wird das Gas isotherm komprimiert, so muss von außen Arbeit hineingesteckt werden, d.h. die
vom Gas geleistete Arbeit ist negativ und hat dem Betrag nach den gleichen Wert (1.12).
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1.3 Die Hauptsätze der Thermodynamik

Wir besprechen die Hauptsätze am Beispiel idealer Gase.

1.3.1 Der Erste Hauptsatz

In der klassischen Mechanik gibt es den Erhaltungssatz der Energie. Konservative Kräfte sind
dadurch charakterisiert, dass die Summe der kinetischen und potentiellen Energie eines Körpers
konstant bleibt, sofern bei der Bewegung keine Reibung auftritt. Wenn Reibungskräfte vorhan-
den sind, nimmt die mechanische Energie ab. Der 1. Hauptsatz ist die Verallgemeinerung des
Energiesatzes der Mechanik. Seine wesentliche Aussage ist, dass Wärme eine Energieform ist.
Unter Einbeziehung der Wärmeenergie gilt der Energie-Erhaltungssatz auch bei Vorgängen mit
Reibung.

Die innere Energie eines Gases können wir auf zwei Weisen erhöhen: durch Wärmezufuhr
oder Hineinstecken von Arbeit, indem wir das Gas durch eine externe Kraft komprimieren. Dies
wird in Abb. 1.2 gezeigt. Der 1. Hauptsatz lautet

∆U = ∆Q+ ∆Wext . (1.13)

Dabei ist ∆Wext = Fext∆x die in das Gas von außen hineingesteckte Arbeit, also die Arbeit, die

Fext

ΔxΔQ

L
Δx

L

E2

E3

ΔE1

ΔE2

ΔE3

L'=L-Δx

E1

Arbeitsleistung

Fext

Montag, 17. Dezember 12

E2

E1

E3

Wärmezufuhr

Montag, 17. Dezember 12

Montag, 17. Dezember 12

Abbildung 1.2: Illustration zum 1. Hauptsatz: die innere Energie U wird entweder durch Wärmezufuhr

∆Q oder durch Kompressionsarbeit ∆Wext = Fext∆x erhöht.

eine externe Kraft leistet, wenn sie den Kolben um ∆x nach innen bewegt und dadurch das Gas
komprimiert. Umgekehrt ist es bei einer Expansion des Gases; hierbei wird der Kolben durch
den Gasdruck nach außen bewegt, und das Gas leistet eine Arbeit, die mit negativem Vorzeichen
eingeht, weil sie die innere Energie verringert:

∆U = ∆Q−∆Wgas .

Mathematische Anmerkung: Bei infinitesimalen Änderungen muss man sehr sorgfältig in der Schreib-

weise sein. Der erste Hauptsatz lautet dann dU = δQ + δWext . Die innere Energie ist eine Zustands-

funktion, und ihre Änderung dU ist ein sog. vollständiges Differential. Im Unterschied dazu sind Wärme

und Arbeit keine Zustandsfunktionen, siehe Anhang A.1. Um dies zu kennzeichnen, schreibt man für

infinitesimale Wärmemengen bzw. Arbeitsleistungen δQ und δW . Auf diese Feinheiten wollen wir nicht

näher eingehen.
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Man kann den 1. Hauptsatz so verallgemeinern, dass sämtliche Energieformen einbezogen wer-
den: chemische Energien, elektrische und magnetische Energien, Strahlung, Kernenergie. Dann
gilt der allgemeine Energieerhaltungssatz, der ein Erfahrungssatz ist:

In einem abgeschlossenen System bleibt die Gesamtenergie konstant .

Unter einem abgeschlossenen System versteht man ein System, das vollständig von der Umwelt
isoliert ist. Dies ist ein idealisierter Grenzfall, abgeschlossene Systeme im strengen Sinn gibt es
nicht. Jedes denkbare reale System, so gut es auch thermisch, elektrisch oder magnetisch abge-
schirmt sein mag, wird unweigerlich eine geringe Menge von thermischer Strahlung emittieren
oder absorbieren, und es wird von den Teilchen der kosmischen Strahlung durchdrungen, die
ihrerseits Energie deponieren können. Durch hinreichend gute Isolation von Umwelteinflüssen
kann man aber erreichen, dass die Gesamtenergie in sehr guter Näherung konstant bleibt.

Nicht alle Energieformen sind gleichwertig

Nach dem 1. Hauptsatz könnte es so aussehen, als seien alle Energieformen gleichwertig. Dies
ist jedoch nicht der Fall. Die Erfahrung zeigt uns: man kann mechanische oder elektrische
Energie vollständig in Wärme umwandeln, das passiert in einer Bremse oder einer Kochplatte.
Die Umkehrung ist ein trauriges Kapitel. Man kann Wärmeenergie nur zu einem Bruchteil in
mechanische oder elektrische Energie umwandeln, und dieser Bruchteil ist enttäuschend niedrig.
Es bleibt immer eine beträchtliche Restwärme (Abfallwärme) auf niedrigerem Temperaturniveau
übrig. Welchen Prozentsatz kann man umwandeln? Dies wird durch den 2. Hauptsatz geregelt.

Mechanische oder elektrische Energien sind “geordnete” Energien, diese kann man zu 100%
in “ungeordnete” Wärme-Energie überführen. Die Herstellung von Unordnung verläuft quasi
von selbst. Die Umkehrung funktioniert nicht. Wie jeder weiß, geht Unordnung fast nie von
selbst in Ordnung über, man muss eigentlich immer Arbeit dafür aufwenden. Das gilt in der
Thermodynamik wie im täglichen Leben.

Mechanische oder elektrische Energien sind hochwertige Energieformen. Man kann diese
nahezu verlustfrei ineinander überführen. Wärme ist eine geringwertige Energieform.

1.3.2 Der Zweite Hauptsatz

Eine der Formulierungen des 2. Hauptsatzes lautet:

Es ist unmöglich, eine periodisch arbeitende Maschine zu bauen, die nichts anderes tut, als
Wärme vollständig in mechanische oder elektrische Energie umzuwandeln.

Das Wort “periodisch” ist wichtig, es bedeutet, dass die Maschine einen ständig wiederkehrenden
Prozess durchläuft. In jedem Zyklus ist der Endzustand identisch mit dem Anfangszustand. Bei
einem nicht-zyklischen Teilprozess kann durchaus eine vollständige Konversion von Wärme in
mechanische Arbeit stattfinden. Als Beispiel nehmen wir die isotherme Expansion eines Gases.
Das Gas leistet eine Arbeit Wgas, und die dafür erforderliche Energie wird einem Wärmereservoir
entnommen. Da konstante Temperatur auch konstante innere Energie bedeutet, folgt aus dem
1. Hauptsatz

Wgas = Q.

Nach der Expansion nimmt das Gas ein größeres Volumen ein. Um zum Anfangszustand zurück-
zukehren und auf diese Weise einen zyklischen Prozess zu realisieren, muss man das Gas wieder
komprimieren. Dafür ist exakt die gleiche Arbeit aufzuwenden, die das Gas vorher geleistet hat
(hier werden Reibungsverluste vernachlässigt). Während dieser isothermen Kompression wird
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dem Wärmereservoir genau die Wärmemenge Q wieder zugeführt, die es im ersten Schritt ab-
gegeben hat. Das Ergebnis wäre ein Kreisprozess, bei dem als Nettoeffekt gar nichts passiert,
also ein nutzloser Prozess.

Eine idealisierte Wärmekraftmaschine
Nach dem 2. Hauptsatz ist es unmöglich, eine zyklische Maschine zu bauen, die einem Wärmere-
servoir der Temperatur T1 eine eine Wärmenge Q1 entzieht und diese vollständig in mechanische
Arbeit W umwandelt. Eine unvollständige Umwandlung von Wärme in Arbeit ist aber durchaus
möglich, und die verbleibende Restwärme Q2 = Q1 −W muss einem Reservoir der Temperatur
T2 < T1 zugeführt werden. Die entscheidende Frage ist, welcher Bruchteil der Primärwärme in
Arbeit umgewandelt werden kann. Der 1. Hauptsatz kann hierzu keine Aussage machen, wohl
aber der 2. Hauptsatz. Um diesen Prozentsatz zu ermitteln, betrachten wir eine idealisierte
Wärmekraftmaschine, bestehend aus drei Komponenten (s. Abb. 1.3):

1) einem Wärmereservoir der Temperatur T1, dies kann ein Dampfkessel sein,
2) der eigentlichen Maschine M , die dem Reservoir eine Wärmenge Q1 entzieht und einen
gewissen Bruchteil davon in mechanische Arbeit W umsetzt,
3) einem Kühlsystem der Temperatur T2 < T1, das die verbleibende Energie als Restwärme
Q2 = Q1 −W aufnimmt.

Verdrängerkolben
mit Wärmespeicher

Arbeitskolben

Heizung T1

Kühlung T2

A B C D

Verdrängerkolben
mit Wärmespeicher

Arbeitskolben

Heizung T1

Kühlung T2

A B C D

T

T

A

B

C

D

V

p

V V

Arbeit W

T1

T2

A

B

C

D

V

p

VA VB

Arbeit W

Freitag, 26. Oktober 2012

Montag, 14. Januar 13

VA VB

1

2

Dienstag, 22. Januar 13

Abbildung 1.3: Oben links: Schema einer Wärmekraftmaschine M (Stirlingmotor). Oben rechts: Der

Stirling-Zyklus im pV -Diagramm eines idealen Gases. Unten: Schema eines Stirling-Motors für Demon-

strationsexperimente.

Als Wirkungsgrad der Maschine definieren wir den Quotienten aus der geleisten Arbeit und der
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hineingesteckten Primärenergie

η =
W

Q1
. (1.14)

Von S. Carnot wurde bewiesen, dass der maximal mögliche Wirkungsgrad durch folgenden Aus-
druck gegeben ist

ηCarnot =
Wmax

Q1
=
T1 − T2

T1
. (1.15)

Zum Beweis hat Carnot einen nach ihm benannten hypothetischen Kreisprozess erdacht mit
einem idealen Gas als Medium, der den maximal möglichen Wirkungsgrad erreicht, den sog.
Carnot-Wirkungsgrad (1.15). Der Carnot-Zyklus wird in vielen Physikbüchern beschrieben. Wir
analysieren hier stattdessen den Stirling-Zyklus, der ebenfalls mit einem idealen Gas arbeitet
und den Carnot-Wirkungsgrad erreicht, aber zwei wesentliche Vorteile hat: (a) er ist theoretisch
einfacher zu verstehen, und (b) man kann Stirling-Maschinen bauen (Carnot-Maschinen sind
ziemlich realitätsfern).

Der Stirling-Zyklus ist in Abb. 1.3 dargestellt. Er ist ein Kreisprozess im pV -Diagramm eines
idealen Gases und besteht aus vier Schritten:

1. Schritt A→B: isotherme Expansion des Gases von VA nach VB bei der Temperatur T1. Das
Gas leistet die Arbeit W1 = RT1 ln(VB/VA) und nimmt dabei die Wärme Q1 = W1 auf. (Wir
rechnen hier mit 1 Mol).

2. Schritt B→C: das Gas wird bei konstantem Volumen V = VB von T1 auf T2 abgekühlt.
Dabei gibt es eine Wärmemenge ∆Q = CV (T1 − T2) ab, die in einem Wärmespeicher zwischen-
gespeichert wird. (CV ist die Wärmekapazität des Gases bei konstantem Volumen).

3. Schritt C→D: isotherme Kompression des Gases von VB nach VA bei der Temperatur T2.
Das Gas nimmt die Arbeit W2 = RT2 ln(VB/VA) auf und gibt gleichzeitig die Wärme Q2 = W2

an das Kühlsystem ab.

4. Schritt D→A: das Gas wird bei konstantem Volumen V = VA von T2 auf T1 erwärmt. Die
dafür benötigte Wärmemenge ∆Q wird dem Wärmespeicher entnommen.

Die vom Gas geleistete Netto-Arbeit beträgt W = W1−W2 = R(T1−T2) ln(VB/VA). Sie ist iden-
tisch mit der vom Kreisprozess eingeschlossenen Fläche im pV -Diagramm. Der Wirkungsgrad
ist

η =
W

Q1
=
W1 −W2

W1
=
T1 − T2

T1
. (1.16)

Wir haben damit bewiesen, dass die ideale Stirling-Maschine exakt den Carnot-Wirkungsgrad
erreicht.

Eine idealisierte Kältemaschine
Im Carnot- oder Stirling-Kreisprozess darf man den Umlaufsinn ändern. Die Stirlingmaschine

arbeitet dann als Kältemaschine, s. Abb. 1.4. Ihre Aufgabe besteht darin, Wärmeenergie
von einem tieferen Temperaturniveau T2 auf ein höheres Niveau T1 zu transportieren. Dies
erfordert Arbeitaufwand. In einem Kühlschrank wird die Arbeit durch einen Elektromotor
geleistet, der einen Kompressor antreibt. Die Energiebilanz lautet Q1 = Q2 + W . Bei einem
Kühlschrank interessiert die elektrische Energie W , die man aufwenden muss, um dem Kühlraum
eine Wärmemenge Q2 zu entziehen. Für die ideale Kältemaschine gilt

W =
T1 − T2

T2
Q2 . (1.17)
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Abbildung 1.4: Schema einer Kältemaschine und der rückwärts durchlaufene Stirling-Zyklus. Die

rückwärts laufende Stirlingmaschine wird mit M−1 bezeichnet.

In der Praxis muss man mehr elektrische Energie aufwenden. Wir werden in Kap. 1.7 näher auf
kryogenische Maschinen und Wärmepumpen eingehen.

Der Carnot-Wirkungsgrad ist der maximal mögliche Wirkungsgrad
Wir können nun beweisen, dass der Carnot-Wirkungsgrad (1.15) der maximal mögliche Wir-
kungsgrad einer beliebigen Wärmekraftmaschine ist. Der Beweis wird durch Widerspruch zum
2. Hauptsatz geführt. Wir nehmen also an, es gäbe eine Maschine M̃ mit einem Wirkungs-
grad η̃ > ηCarnot. Wir kombinieren diese Maschine mit einer invers laufenden Stirlingmaschine
M−1. Die Maschine M̃ entnehme eine Wärmemenge Q1 aus dem Wärmereservoir. Da sie einen

M-1
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D

V

p
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Q1

Q2

WM-1

~M
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T2

Freitag, 26. Oktober 2012

Abbildung 1.5: Kombination einer hypothetischen Wärmekraftmaschine M̃ , deren Wirkungsgrad η̃ >

ηCarnot ist, mit einer rückwärts laufenden Stirlingmaschine M−1.

höheren Wirkungsgrad als die Stirling- oder Carnotmaschine hat, leistet sie eine größere Arbeit
W̃ = W+∆W > W und gibt eine geringere Restwärme Q̃2 = Q2−∆W < Q2 an das Kühlsystem
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ab. Mit dem Anteil W der Arbeit W̃ betreiben wir die invers laufende Stirlingmaschine M−1

als Wärmepumpe, die dem Kühlsystem die Wärmemenge Q2 entzieht und dem Wärmereservoir
die Wärme Q1 zuführt. Der Nettoeffekt der kombinierten Maschine ist:

1) Dem Wärmereservoir der Temperatur T1 wird die Wärme Q1 entzogen und gleich danach
wieder zugeführt, also passiert dort gar nichts.
2) Die kombinierte Maschine gibt die Arbeit ∆W = W̃ −W nach außen ab.
3) Dem Kühlsystem der Temperatur T2 wird netto die Wärme ∆Q = Q2− Q̃2 = ∆W entzogen.

Fazit: die kombinierte Maschine wäre ein sog. “Perpetuum Mobile II. Art”, sie entnimmt einem
Reservoir (hier dem Kühlsystem) eine Wärmemenge ∆Q und wandelt diese vollständig in Arbeit
∆W um, ohne dass sonst irgends etwas passiert. Dies ist ein Widerspruch zum 2. Hauptsatz.
Damit ist die Annahme widerlegt, es gäbe eine Wärmekraftmaschine mit einem größeren als
dem Carnot-Wirkungsgrad.

Alle realen Wärmekraftmaschinen - Dampfturbinen, Otto- oder Dieselmotoren, Stirlingmotoren
- haben Wirkungsgrade, die teilweise deutlich geringer als der Carnot-Wirkungsgrad sind:

ηreal < ηCarnot =
T1 − T2

T1
.

Die folgende Abbildung illustriert das am Beispiel eines Stirling-Motors. Eine reale Stirling-

T1

T2
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p
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Wreal < WCarnot

Freitag, 26. Oktober 2012

Abbildung 1.6: Eine reale Stirlingmaschine leistet eine geringere Arbeit als die ideale Stirlingmaschine.

maschine läuft nicht infinitesimal langsam, sondern mit hoher Tourenzahl. Das hat folgende
Konsequenzen:
- die Expansion A→B ist nicht exakt isotherm (T = T1), sondern die Temperatur sinkt während
der Expansion ab, da die Wärmeleitung Zeit braucht;
- die Kompression C→D ist nicht exakt isotherm (T = T2), sondern die Temperatur steigt dabei
an;
- die Zwischenspeicherung der Wärme auf dem Weg B→C und die Rückgewinnung der Wärme
auf dem Weg D→A sind nicht verlustfrei.
Die real geleistete Arbeit entspricht der von einem realen Kreisprozess umschlossenen Fläche,
und diese ist kleiner als die vom idealen Stirlingzyklus umschlossene Fläche.
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1.3.3 Der Dritte Hauptsatz

Die wesentliche Aussage des 3. Hauptsatzes ist die Unerreichbarkeit des absoluten Nullpunkts.
Zunächst können wir uns davon überzeugen, dass der absolute Nullpunkt aus energetischen
Gründen unerreichbar ist. Um das zu erkennen, betrachten wir eine Kältemaschine, die zwischen
einer sehr tiefen Temperatur T2 und einem höheren Niveau, etwa T1 = 300 K, arbeitet. Es ist
unvermeidlich, dass durch Wärmeleitung oder Strahlung eine minimale Wärmemenge Q2 > 0
pro Zeiteinheit in das kalte System gelangt. Mit Hilfe einer invers laufenden Stirlingmaschine
entziehen wir diese Wärme und führen sie auf das Temperaturniveau T1. Die dafür benötigte
Arbeit ist nach Gl. (1.17)

W =
T1 − T2

T2
Q2 . (1.18)

Lassen wir T2 → 0 gehen, so geht die Arbeit W gegen unendlich. Weitere Konsequenzen und
Anwendungen des 3. Hauptsatzes werden im Folgenden diskutiert.

1.4 Die Entropie in der phänomenologischen Thermodynamik

In diesem Kapitel wird eine der wichtigsten Größen der Thermodynamik und statistischen Me-
chanik eingeführt, die Entropie. In der phänomenologischen Thermodynamik definiert man die
Entropie mit Hilfe reversibler Prozesse. Wir werden sehen, dass die Entropie des Gesamtsystems
bei idealen Carnot- oder Stirlingmaschinen invariant bleibt, bei realen Wärmekraftmaschinen
hingegen anwächst. Die Entropieänderung kann als Maß dafür angesehen werden, mit welcher
Effizienz Wärme in Arbeit umgesetzt wird. Je geringer die Entropiezunahme ist, desto effektiver
arbeitet die Maschine.

Wie die innere Energie ist auch die Entropie eine Zustandsfunktion eines thermodynamischen
Systems (siehe auch Kap. 2.2.3 und Anhang A.1). Sie kann gemessen werden und hat eine große
Bedeutung für Ingenieure und Techniker, die Dampfturbinen oder Heliumverflüssiger bauen wol-
len. Aber trotz ihres unbestreitbaren Nutzens bleibt die Entropie in der phänomenologischen
Thermodynamik eine ziemlich unanschauliche Größe. Das wird anders in der statistischen Me-
chanik: dort wird die Entropie als Logarithmus der sog. thermodynamischen Wahrscheinlichkeit
definiert und ist unmittelbar als Maß für die Ordnung oder Unordnung eines Vielteilchensy-
stems zu erkennen. Wir werden dies in Kap. 2 kennen lernen und dort auch die Äquivalenz der
beiden Definitionen der Entropie beweisen.

1.4.1 Reversible und irreversible Prozesse

Ein Prozess wird reversibel genannt, wenn man seine Richtung durch eine infinitesimale (beliebig
kleine) Änderung eines Parameters umkehren kann. Andernfalls heißt der Prozess irreversibel.
Beispiele für reversible Prozesse:
a) Fließen von Wasser in einer fast horizontalen Rinne. Der Parameter ist hier die Steigung der
Rinne. Eine winzige negative Steigung lässt das Wasser nach links fließen, eine winzige positive
Steigung lässt es nach rechts fließen.
Gegenbeispiel: Wasserfall. Eine infinitesimale Änderung der Höhe der Niagarafälle wird nichts
an der Fließrichtung des Wassers ändern.
b) Verhalten eines Eiswürfels in Wasser von 0◦C. Der Parameter ist die Temperatur. Ist sie
geringfügig höher als 0◦C, so schmilzt der Eiswürfel. Ist sie geringfügig niedriger, so gefriert das
Wasser. Gegenbeispiel: Schmelzen eines Eiswürfels in kochendem Wasser.
c) Wärmeleitung von einem Körper der Temperatur T1 zu einem Körper der Temperatur T2 < T1.
Die Wärmeleitung ist irreversibel für T2 6= T1 und wird reversibel im Grenzfall T2 → T1, aber
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dann verschwindet auch der Wärmestrom.
d) Eine irreversible Vermischung tritt auf, wenn man einen Tropfen Tinte in einen Wasser-
behälter fallen lässt. Die Tinte verteilt sich gleichmäßig, und es gibt keinen Parameter, an dem
man drehen kann, um eine Entmischung herbeizuführen.

Reversible Prozesse laufen extrem langsam ab, wie man sofort am Beispiel a) erkennt. Ir-
reversible Prozesse können schnell ablaufen, unter Umständen sogar explosionsartig (Beispiel
Zündvorgang im Ottomotor).

1.4.2 Definition der Entropie

Wir haben oben schon ausgenutzt, dass die ideale Stirlingmaschine reversibel ist und man den
Drehsinn des Kreisprozesses umkehren darf. Wir betrachten nun den normalen (im Uhrzeiger-
sinn laufenden) Stirlingzyklus, wobei angenommen wird, dass pro Umlauf nur kleine Wärme-
mengen ∆Q1, ∆Q2 und eine kleine Arbeit ∆W übertragen werden. Nach dem Energiesatz ist
∆Q1 = ∆W + ∆Q2, und aus Gl. (1.15) folgt dann die wichtige Beziehung

∆Q1

T1
=

∆Q2

T2
. (1.19)

Wir definieren nun eine Funktion S(T, V ) dadurch, dass wir ihre Änderung bei einem reversiblen
Prozess vorgeben:

∆S =
∆Qrev

T
. (1.20)

Durch Integration dieser Gleichung findet man die Funktion S(T, V ), die den Namen Entropie
erhalten hat.

Auch hier muss man an sich mit differentiellen, also infinitesimal kleinen Änderungen arbeiten. Wie
schon erwähnt, treten dabei subtile mathematische Probleme auf. Die korrekte Gleichung lautet

dS =
δQrev

T
. (1.21)

Die S ist eine Zustandsfunktion, aber für die Wärme trifft das nicht zu (s. Anhang A.1), und deshalb

wird eine infinitesimale Wärmemenge als δQ geschrieben. Diese mathematisch bedeutsamen Unterschiede

gehen weit über den Rahmen des vorliegenden Manuskripts hinaus und werden hier ignoriert.

Wie die Energie ist auch die Entropie eine additive Größe. Die Entropie des Gesamtsystems
ist die Summe der Einzelentropien:

S = S1 + S2 . (1.22)

Dem Wärme-Reservoir 1 wird die Wärme ∆Q1 entzogen und seine Entropie nimmt ab, dem
Wärme-Reservoir 2 wird die Wärme ∆Q2 zugeführt und seine Entropie nimmt zu. Die Entro-
pieänderungen sind

∆S1 = −∆Q1

T1
, ∆S2 = +

∆Q2

T2
.

Wegen Gl. (1.19) folgt:

∆S = ∆S1 + ∆S2 = 0. (1.23)

Bei einer idealen Carnot- oder Stirlingmaschine bleibt die Gesamtentropie konstant.

Nun betrachten wir eine reale Wärmekraftmaschine, die pro Zyklus ebenfalls die Wärme
∆Q1 aufnimmt. Da sie einen kleineren als den Carnot-Wirkungsgrad hat, wird die geleistete
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Arbeit kleiner, ∆W ′ < ∆W , und die Abfallwärme wird größer, ∆Q′2 > ∆Q2. Daraus ergibt sich
für die Änderung der Gesamtentropie

∆S = −∆Q1

T1
+

∆Q′2
T2

> 0. (1.24)

Bei jeder realen Wärmekraftmaschine nimmt die Gesamtentropie zu.

Die entsprechenden Aussagen gelten für Kältemaschinen.

Aus den obigen Betrachtungen sieht man, dass die Entropie eines Teilsystems (hier ist es
das Reservoir 1) sehr wohl abnehmen kann. Dies geht aber auf Kosten des anderen Teilsystems
(Reservoir 2), in dem die Entropie mindestens ebenso stark oder noch mehr zunimmt. Für abge-
schlossene (von der Umwelt völlig isolierte) Gesamtsysteme gelten die Sätze: die Gesamtenergie
bleibt bei allen Vorgängen konstant, die Gesamtentropie wächst an oder bleibt bestenfalls kon-
stant. Wenn man - wie in Kap. 2 erläutert wird - die Entropie als Maß für die Unordnung
ansieht, so kann man auch sagen: in einem abgeschlossenen System laufen alle Vorgänge so, dass
die Unordnung zunimmt und nur in seltenen Glücksfällen konstant bleibt, dass sie aber niemals
geringer wird.

Aus diesen Betrachtungen ergibt sich eine alternative Formulierung des 2. Hauptsatzes:

In einem abgeschlossenen System wächst die Gesamtentropie S im Laufe der Zeit an oder bleibt
bestenfalls konstant, sie nimmt aber niemals ab: ∆S ≥ 0.

1.4.3 Entropieänderung bei der Expansion eines idealen Gases

Ein Zylinder ist in zwei Hälften unterteilt, links befindet sich ein ideales Gas, rechts Vakuum.
Der Zylinder ist von einem Wärmebad der Temperatur T umgeben. In Abb. 1.7 werden zwei
Möglichkeiten gezeigt, wie man das Gas auf das gesamte Volumen verteilen kann. Wenn die
Teilvolumina durch eine Folie getrennt sind und diese platzt, so ist die Expansion irreversibel:
die Gasatome werden sich spontan im Gesamtvolumen ausbreiten, aber niemals werden alle
Teilchen “von selbst” in den linken Teil zurückkehren. Anders ist dies, wenn die Teilvolumina
durch einen Kolben getrennt sind, und man durch langsame Bewegung des Kolbens das Gas
allmählich auf das Gesamtvolumen verteilt. Der Kolben kann auch wieder zurückbewegt werden,
hier ist die Expansion reversibel. Der Anfangszustand und der Endzustand des Gases sind für
beide Expansionsprozesse identisch. Worin bestehen die Unterschiede?

Irreversible Expansion. Das Gas leistet keine Arbeit, und es nimmt auch keine Wärme auf,
denn die innere Energie eines idealen Gases hängt nur von der Temperatur, aber nicht vom
Volumen ab.

Reversible Expansion. Wenn sich der Kolben um ∆x nach außen bewegt, leistet das Gas
eine Arbeit ∆Wgas = pA∆x = p∆V . Die Expansion verläuft infolge des Kontakts mit dem
Wärmebad isotherm, die innere Energie U bleibt konstant, weil das Gas die Wärme ∆Q = ∆Wgas

aufnimmt. Da dies ein reversibler Prozess ist, kann man die Entropieänderung mit Gl. (1.20)
berechnen:

∆S =
∆Q

T
=

∆Wgas

T
.

Die Gesamtarbeit bei der reversiblen Expansion ist nach Formel (1.12)

Wgas = RT ln

(
VB
VA

)
.
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Abbildung 1.7: Die irreversible und reversible Expansion eines idealen Gases.

Daraus folgt für die Entropieänderung

SB − SA = R ln

(
VB
VA

)
. (1.25)

Diese Gleichung gilt auch für den Fall der irreversiblen Expansion, da die Entropie eine Zustands-
funktion ist und ihre Änderung nicht davon abhängt, auf welche Weise man vom Anfangszustand
mit dem Volumen VA zum Endzustand mit dem Volumen VB gelangt. Der irreversible Prozess
erlaubt aber nicht die Berechnung der Entropie im Endzustand.
In Kap. 2.2.3 betrachten wir die irreversible Expansion vom Standpunkt der statischen Mechanik.
Dort kann man die Entropieänderung auch im irreversiblen Fall berechnen und kommt zum
gleichen Ergebnis wie in Gl. (1.25).

1.5 Wärmekapazität, Gleichverteilungssatz

Eine wichtige Frage, die gerade in Zeiten der Energiekrise von großer praktischer Bedeutung ist,
lautet: Wieviel Wärme kann ein Medium speichern? Die Wärmenge ist sicherlich proportional
zur Menge des Speichermediums, aber die Masse ist hierbei nicht die geeignete Kenngröße. Ein
kg des schweren Metalls Blei kann weniger Wärmenergie speichern als ein kg des leichten Medi-
ums Wasser; wenn man 1 kg Blei um 1 Grad Celsius (oder 1 Kelvin) erwärmen möchte, braucht
man dafür 129 Joule, bei 1 kg Wasser sind es 4186 Joule. Nach unseren Betrachtungen zur ki-
netischen Gastheorie und zur mikroskopischen Deutung der Wärme sollte es nicht verwundern,
dass es auf die Anzahl der Atome oder Moleküle ankommt. Aus diesem Grund ist das Mol die
geeignete Kenngröße.

1.5.1 Definition der Wärmekapazität

Die molare Wärmekapazität C gibt an, wieviel Wärme man zuführen muss, um 1 Mol des Stoffes
um 1 Kelvin zu erwärmen. Bei Abkühlung um 1 Grad wird die gleiche Wärmemenge wieder
abgegeben. Unser erstes Beispiel ist ein atomares ideales Gas (Beispiel Helium). Bezogen auf 1
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Mol hat die innere Energie den Wert U = 3/2NAkBT = 3/2RT . Die molare Wärmekapazität
eines Gases ist wie folgt definiert

CV =

(
∂U

∂T

)
V

= 3/2R . (1.26)

Der Index V bedeutet, dass die Erwärmung bei konstantem Volumen erfolgt. Dabei erhöht
sich der Druck des Gases, denn nach Gl. (1.4) ist p ∼ T . Oft wird die Wärmekapazität auch
spezifische Wärme genannt.

Man kann das Gas auch bei konstant gehaltenem Druck erwärmen, aber das geht nur, wenn es sich dabei
ausdehnt, beispielsweise indem es einen Kolben nach außen bewegt. Diese Ausdehnung erfordert eine
Arbeitsleistung. Die molare Wärmekapazität bei konstantem Druck ist deswegen größer und hat den
Wert

Cp =

(
∂U

∂T

)
p

= CV +R = 5/2R . (1.27)

1.5.2 Der Gleichverteilungssatz

Ein molekulares Gas hat eine höhere Wärmekapazität als ein atomares Gas, weil zur kineti-
schen Energie der Moleküle auch noch die inneren Anregungsenergien hinzukommen, es sind
dies Rotations- und Schwingungsenergien. Welchen Beitrag zur Wärmekapazität leisten diese
Anregungsformen? Die Antwort gibt der Gleichverteilungssatz.

Der klassische Gleichverteilungssatz lautet

Die mittlere thermische Energie eines Objekts beträgt kBT/2 pro Freiheitsgrad. (1.28)

Das Objekt kann ein Elementarteilchen oder Atom sein, ein Molekül oder ein Kristall. Bei Tem-
peraturen bis zu einigen 1000 K können elektronische Anregungen oder Ionisation der Atome
nicht durch thermische Energie verursacht werden, und deswegen darf man die Atome wie Punkt-
teilchen behandeln. Bei Molekülen ist das anders, dort treten Rotationen um den Schwerpunkt
und innere Schwingungen auf. In Kristallen sind die Schwingungen der Atome oder Ionen um
ihre Ruhelage von großer Bedeutung (siehe Kap. 3.3.2).

Translation
Alle Objekte, Elementarteilchen, Atome, Moleküle oder Kristalle, können sich im Raum bewe-
gen. Die Translationsbewegung hat drei Freiheitsgrade, da es drei unabhängige Raumrichtungen
x, y und z gibt. Daher wird die mittlere Translationsenergie

ūtrans =
Utrans

N
=
m

2
〈v2〉 =

3

2
kBT .

Dies ist identisch mit der Formel (1.3), die wir zur Definition der absoluten Temperatur benutzt
haben.

Rotation
Ein zweiatomiges Molekül hat zwei zueinander orthogonale Rotationsachsen, die beide senk-
recht auf der Verbindungachse der Atome stehen. Eine Rotation um die Verbindungachse der
Atome ist quantenmechanisch ausgeschlossen, weil sich dabei nur die Phasen der atomaren Wel-
lenfunktionen ändern würden, die nicht messbar sind, während die Wahrscheinlichkeitsdichten
|ψ|2 invariant blieben. Die mittlere thermische Rotationsenergie eines H2 - oder O2 -Moleküls ist
daher

ūrot = 2
1

2
kBT = kBT .
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Mehratomige Moleküle haben drei orthogonale Rotationsachsen.

Vibration
In einem zweiatomigen Molekül können die Atome Schwingungen entlang ihrer Verbindung-
achse ausführen. Im zeitlichen Mittel sind die kinetische Energie und die potentielle Energie
eines harmonischen Oszillators gleich groß (dies gilt in der klassischen Physik und auch in der
Quantenmechanik). Daraus folgt für die mittlere Vibrationsenergie pro Molekül

ūvib = 2
1

2
kBT = kBT .

Wärmekapazität eines zweiatomigen Gases
Addiert man die obigen thermischen Energien, so ergibt sich für die molare molare Wärmeka-
pazität eines zweiatomigen Gases

CV = 3/2R+R+R = 7/2R. (1.29)

Diesen Wert findet man jedoch nur bei sehr hohen Temperaturen. Für kleine Werte von T

CV/R

3/2

5/2

7/2

Temperatur T

"Einfrieren" der Vibration

"Einfrieren" der Rotation

"Einfrieren" der Translation

Abbildung 1.8: Schematischer Verlauf der molaren Wärmekapazität eines zweiatomigen Gases als Funk-

tion der Temperatur. Bei hohen Temperaturen ist CV = 7/2R. Mit sinkender Temperatur friert erst die

Vibration ein, danach die Rotation. Erst bei extrem niedrigen Temperaturen, wo sich das Gas verflüssigt

oder verfestigt, friert auch die Translation ein. Im Limes T → 0 wird CV = 0.

wird CV = 3/2R, für mittlere Werte von T wird CV = 5/2R. Diese befremdlichen Tatsachen
waren bereits von der Entdeckung der Quantentheorie bekannt, aber im Rahmen der klassi-
schen Physik gab es keine Erklärung dafür. Der wesentliche Punkt ist, dass die Rotations- und
Schwingungsenergien quantisiert sind (siehe [2]):

Erot = ~2
2Θ `(`+ 1) mit dem Trägheitsmoment Θ und der Rotationsquantenzahl ` = 0,1,2..,

Evib = (n+ 1/2)~ω mit der Vibrationsquantenzahl n = 0,1,2...

Wenn die thermische Energie kBT viel kleiner als der Abstand benachbarter Energieniveaus
ist, kann die Rotation bzw. Schwingung nicht angeregt werden. Bildhaft kann man sagen,
dass der betreffende Rotations- oder Vibrationsfreiheitsgrad “eingefroren” ist. Das “Einfrieren”
eines Freiheitsgrades bei sinkender Temperatur und das “Auftauen” bei wachsender Temperatur
geschehen nicht abrupt, sondern es gibt einen gleitenden Übergang. Wie das mathematisch
aussieht, werden wir in Kap. 3 studieren.
Lässt man die Temperatur gegen null gehen, so verschwinden auch die Translationsfreiheitsgrade.
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Der physikalische Grund ist: für T → 0 verflüssigt oder verfestigt sich das Gas, und die Atome
oder Moleküle sind nicht mehr frei beweglich.

Die quantentheoretisch korrigierte Fassung des Gleichverteilungssatzes lautet:

Die mittlere thermische Energie eines Objekts ist kBT/2 pro angeregtem Freiheitsgrad.

(1.30)
Bei nur teilweise angeregten Freiheitsgraden muss man die Anregungswahrscheinlichkeit quan-
tentheoretisch berechnen. Dies wird in Kap. 3.3.2 für die Gitterschwingungen in einem Kristall
vorgeführt.

1.5.3 Wärmekapazitäten nahe dem absoluten Nullpunkt

Eine wichtige Konsequenz des 3. Hauptsatzes lautet: die Wärmekapazität eines beliebigen
Systems muss gegen null gehen, wenn man sich dem Wert T = 0 annähert. Die Wärmekapazität
eines Gases erfüllt diese Bedingung, wie wir in Abb. 1.8 erkennen. Wichtig ist die Einsicht, dass
der 3. Hauptsatz ganz wesentlich auf der Quantentheorie basiert. Ohne die Quantisierung der
Energie würde die Molwärme eines Gases auch bei T = 0 den Wert 3/2R haben. Wenn sich
ein System im thermischen Gleichgewicht befindet, geht seine Entropie am absoluten Nullpunkt
ebenfalls gegen null, siehe die Beispiele in Kap. 2.2.3.

1.6 Die Freie Energie

In der phänomenologischen Thermodynamik werden eine ganze Reihe von Zustandsfunktionen
eingeführt, die zur Charakterisierung bestimmter Prozesse nützlich sind. Wir wollen hier nur
eine dieser Funktionen erklären, die Freie Energie. Sie ist definiert durch die Gleichung

F = U − T · S . (1.31)

Worin besteht der Nutzen dieser Zustandsfunktion? Um das zu verstehen betrachten wir die
isotherme Expansion eines idealen Gases in einer Stirlingmaschine. Während einer kleinen
Expansion leistet die Maschine eine Arbeit ∆W und entnimmt die dazu erforderliche Energie
als Wärmemenge ∆Q aus einem Wärmereservoir der Temperatur T :

∆W = ∆Q.

Die innere Energie U des Gases ändert sich nicht bei der isothermen Expansion, denn die innere
Energie eines idealen Gases hängt nur von der Temperatur ab, die bei diesem Prozess konstant
bleibt, nicht aber vom Volumen. Es gilt also ∆U = 0. Der Zustand des Gases hat sich aber
sehr wohl geändert: zwar ist seine Temperatur konstant geblieben, aber sein Volumen hat sich
vergrößert. Wir ziehen daraus den Schluss, dass die innere Energie nicht die geeignete Zustands-
funktion ist, um die Arbeitsleistung bei einer isothermen Volumenänderung zu berechnen.

Die Freie Energie hingegen erfüllt genau diese Aufgabe. Bei einer kleinen Zustandsänderung
gilt

∆F = ∆U − S∆T − T ∆S.

Nun betrachten wir eine reversible isotherme Expansion. Isotherm bedeutet: die Temperatur
bleibt konstant, ∆T = 0; reversibel bedeutet gemäß Gl. (1.20)

∆S =
∆Q

T
⇒ ∆F = ∆U − T ∆S = ∆U −∆Q.
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Nach dem Ersten Hauptsatz ist ∆U = ∆Q−∆W , also folgt

∆F = −∆W. (1.32)

Wird das Gas isotherm expandiert und leistet dabei eine Arbeit (∆W > 0), so erniedrigt sich
seine Freie Energie um genau diesen Betrag. Wird das Gas isotherm komprimiert und dabei
eine Arbeit hineingesteckt (∆W < 0), so erhöht sich die Freie Energie entsprechend.

1.7 Beispiele und didaktische Anmerkungen

Wirkungsgrad eines Kraftwerks

Die Dampftemperatur in einem Kernkraftwerk beträgt aus Sicherheitsgründen nur ca. 300◦C,
T1 ≈ 570 K. Die Temperatur des Kühlsystems liegt bei 80◦C, T2 ≈ 350 K. Der Carnot-Wirkungsgrad
ist

ηCarnot =
570− 350

570
= 0,38.

Die in der Praxis erreichten Wirkungsgrade liegen bei 33%. Nur etwa 1/3 der Primärenergie
wird in elektrische Energie umgewandelt, 2/3 gehen als Abfallwärme verloren und führen zu
einer unerwünschten Aufheizung von Flüssen oder der Luft.

In fossil beheizten Kraftwerken kann man sich höhere Dampftemperaturen leisten und erzielt
damit Wirkungsgrade um 40%, aber auch hier wird weit mehr als die Hälfte der Primärenergie
verschwendet, es sei denn, man baut Fernwärmeleitungen und nutzt die Abfallwärme zur Heizung
von Gebäuden (die sog. Kraft-Wärme-Kopplung).

Kryogenische Maschinen

Die elektrische Energie W , die man aufwenden muss, um einem Kühlraum eine Wärmemenge
Q2 zu entziehen, ist durch Gl. (1.17) gegeben.

W =
T1 − T2

T2
Q2 .

Die elektrische Energie wird rasch sehr groß , wenn man zu tiefen Temperaturen kommen möchte.
Ein besonders krasser Fall ist der Heliumverflüssiger. Hier ist T2 = 4 K, für die obere Temperatur
muss man T1 > 300 K als Temperatur eines Wärmetauschers ansetzen. Dann wird

W >
300

4
Q2 = 75Q2 .

In Wahrheit ist es noch viel ungünstiger, die leistungsfähigsten Heliumverflüssiger erfordern
W ≈ 280Q2. Will man supraflüssiges Helium von T < 2 herstellen, so ist W ≈ 800Q2.

Was passiert für T2 → 0? Die Arbeit divergiert:

W =
T1 − T2

T2
Q2 →∞ .

Man bräuchte unendlich viel Energie, um einen Kühlraum bei T = 0 zu betreiben. Wie schon
erwähnt ist dies ein praktisches Argument dafür, dass der absolute Nullpunkt der Temperatur
T = 0 unerreichbar ist.
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Wärmepumpe

Eine Wärmepumpe entzieht dem Grundwasser, dem Erdboden oder der Außenluft Wärme und
transportiert diese auf ein höheres Temperaturniveau.

Fußbodenheizung
ca. 450 C

Grundwasser,
ca. 100 C

M-1

Q1

Q2

W

Schema einer
Wärmepumpe

Bei dieser Anwendung eines rückwärts durchlaufenen Stirling-Zyklus interessiert die an die Hei-
zung abgegebene Wärme Q1, dividiert durch die aufzuwendende Energie. Der Leistungsfaktor
(coefficient of performance) einer idealen Wärmepumpe ist

Q1

W
=

T1

T1 − T2
.

Wenn man eine Fußbodenheizung mit 45◦C Wassertemperatur wählt und die Temperatur des
Grundwassers mit 10◦C ansetzt, so ergibt sich ein theoretischer Leistungsfaktor von 9. Prak-
tisch erreichte Leistungsfaktoren liegen eher bei 3 - 4, denn die Wärmepumpe erreicht natürlich
nicht die Carnot-Effizienz, und außerdem sind erhebliche Verluste in den Wärmetauschern einer
solchen Anlage zu berücksichtigen. In der Praxis kann man mit ca. 3,5 kW Wärmeleistung
pro 1 kW elektrischer Leistung rechnen. Das klingt natürlich sehr verlockend im Vergleich mit
einer direkten elektrischen Raumheizung. Nun ist aber elektrische Raumheizung energiepoliti-
scher Unsinn und sollte möglichst vermieden werden, denn bei der Erzeugung der Elektrizität
im Kraftwerk geht 2/3 der primären Wärmeenergie verloren, wie wir oben gesehen haben.

Die elektrisch betriebene Wärmepumpe ist - energiepolitisch gesehen - aber auch nicht be-
sonders eindrucksvoll, denn wenn man die Kraftwerke mit Kohle, Gas oder Öl betreibt, so tut die
Wärmepumpe kaum mehr, als gerade mal die Wärmeverluste im Kraftwerk auszugleichen. Man
könnte fast genau so gut die Kohle, das Gas oder das Öl direkt zur Gebäudeheizung verwenden.
(Hier wurden in der Vergangenheit immer die Befürworter der Kernenergie aktiv und argumen-
tierten, dass Kernkraftwerke ideal zum Betrieb von Wärmepumpen geeignet seien. Nach den
Reaktorkatastrophen in Japan ist dies sicher keine wünschenswerte Option für die Zukunft).

Energetisch sinnvoller erscheint der Antrieb einer Wärmepumpe mit einem Öl- oder Gas-
betriebenen Motor. Die Abwärme des Motors kann man auch noch in das Heizsystem einspeisen.
Bei dieser Kombination, die leider noch nicht kommerziell verbreitet ist, kann man pro Liter
Heizöl oder pro m3 Gas mehr Wärme erzeugen, als wenn man eine konventionelle Heizung mit
Öl- oder Gasbrenner benutzt.

Der Leistungsfaktor einer Wärmepumpe sinkt rasch ab, wenn man die Vorlauftemperatur der
Heizung erhöht. Normale Radiatorheizungen arbeiten bei ca. 70◦C und haben einen theoreti-
schen Leistungsfaktor von nur 5,7. Niedertemperatur-Fussbodenheizungen sind also unerlässlich
für Wärmepumpenbetrieb.
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Kapitel 2

Klassische Statistik

In der statistischen Physik betrachtet man das Verhalten von sehr vielen Teilchen wie Elektro-
nen, Atomen oder Molekülen, die typischen Teilchenzahlen sind N ≈ NA = 6,022 · 1023. Es ist
praktisch (und in der Quantentheorie auch rein theoretisch) unmöglich, die Bahn jedes Gasmo-
leküls zu verfolgen, und dies wäre auch völlig uninteressant. Von Interesse sind Zustandgrößen,
die man mit “makroskopischen” Messinstrumenten bestimmen kann und die von der Bewegung
eines oder weniger Atome nicht merklich beeinflusst werden. Dazu gehören:
Druck p, Temperatur T , innere Energie U , Entropie S usw. Gesucht ist eine mikroskopische
Definition der Zustandgrößen, die teilweise bereits in Kap. 1 gegeben wurde.

Zu unterscheiden sind die klassische Statistik und die Quantenstatistik.
Gemeinsamkeiten:
Es wird die aus der Quantentheorie folgende Tatsache benutzt, dass die Energie räumlich ein-
geschränker Teilchen nur gewisse diskrete Werte E1, E2, E3, .. annehmen kann. Ohne diese Hy-
pothese kann man die für die statistische Mechanik charakteristischen Abzählmethoden nicht
durchführen (d.h. streng genommen gibt es keine rein klassische Statistik).
Unterschiede :
In der klassischen Statistik werden identische Teilchen als unterscheidbar angesehen.
In der Quantenstatistik sind identische Teilchen grundsätzlich nicht unterscheidbar. Fermionen
gehorchen der Fermi-Dirac-Statistik, Bosonen der Bose-Einstein-Statistik.

Die klassische Statistik ist in guter Näherung auf die Atome oder Ionen in Festkörpern an-
wendbar, da diese Teilchen durch ihren Ort im Kristall gekennzeichnet sind und gewissermaßen
eine eindeutige Adresse haben. In Gasen ändert sich die Position eines Atoms oder Moleküls
ständig, und die kritiklose Anwendung der klassischen Statistik führt zu Inkonsistenzen, bei-
spielsweise bei der Definition der Entropie. Die richtige Statistik für Gase ist in jedem Fall
die Quantenstatistik, und zwar die Fermi-Dirac-Statistik für Teilchen mit halbzahligem Spin
und die Bose-Einstein-Statistik für Teilchen mit ganzzahligem Spin. Beide gehen im Grenz-
fall hoher Temperaturen und geringer Teilchendichten in die klassische Statistik über. Für die
Bose-Einstein-Statistik wird dies in Kap. 3.5.1 gezeigt.

2.1 Die Boltzmann-Verteilung

Wir betrachten einen Festkörper mit N � 1 Atomen, die jeweils die Energieniveaus E1, E2, ....Ek
einnehmen können (wir denken dabei an Schwingungsniveaus, aber nicht an elektronische Anre-
gungen). Ein mikroskopischer Zustand des Systems ist dadurch definiert, dass für jedes einzelne
Teilchen bekannt ist, auf welchem Energieniveau es sich befindet.
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2.1.1 Postulat der gleichen Wahrscheinlichkeiten

Es wird die Grundannahme gemacht, dass alle mikroskopischen Zustände einesN -Teilchensystems
(mit vorgebenen Werten der Gesamtenergie U und des Volumens V ) mit gleicher Wahrschein-
lichkeit eingenommen werden. Die theoretische Begründung dieses Postulats ist schwierig und
wird hier übergangen1.

Sei ni die Zahl der Teilchen mit Energie Ei, so gilt∑
i

ni = N ,
∑
i

niEi = U.

Die Zahl der Mikrozustände mit n1 Teilchen der Energie E1, n2 Teilchen der Energie E2,...,nk
Teilchen der Energie Ek nennen wir P (n1, n2, ..., nk). Dies ist die Anzahl der unterscheidbaren
Möglichkeiten, die vorgegebene Verteilung zu realisieren. Unsere Aufgabe besteht darin, diese
Anzahl zu berechnen.

Beispiel
Als einfaches Beispiel betrachten N = 3 Teilchen, die auf 4 Niveaus E1 = 0, E2 = ε, E3 =
2ε, E4 = 3ε verteilt werden. Die Gesamtenergie sei U = 4ε. Die unterscheidbaren Teilchen
kennzeichnen wir durch die Farben rot, blau und grün. Aus Abb. 2.1 erkennen wir, dass
P (1,1,0,1) = 6 und P (1,0,2,0) = 3 ist.

3 ! 
2 ! 
1 ! 
0 

P(1,1,0,1)=6 P(1,0,2,0)=3

Donnerstag, 19. Juli 2012

Abbildung 2.1: Mögliche Verteilungen von drei unterscheidbaren Teilchen (Farben rot, blau und grün)

auf die vier Energieniveaus E1, ...E4. In allen Fällen ist die Gesamtenergie U = 4ε.

Berechnung von P (n1, n2, ..., nk)

Wir betrachten zunächst wieder ein einfaches Beispiel: wie viele Möglichkeiten gibt es, n1 = 3
Teilchen aus N � 1 Teilchen auszuwählen und auf das Niveau E1 zu setzen?
1. Teilchen: N Möglichkeiten,
2. Teilchen: N − 1 Möglichkeiten,
3. Teilchen: N − 2 Möglichkeiten.
Demnach sieht es so aus, als hätten wirN(N−1)(N−2) Möglichkeiten, 3 Teilchen ausN Teilchen
auszuwählen. Das stimmt aber nicht, denn es kommt nicht auf die zeitliche Reihenfolge an: die
6 Sequenzen abc, bac, bca, cba, cab, acb ergeben das gleiche Endresultat, dass sich nämlich drei
wohldefinierte Teilchen mit den “Namen” a, b und c auf dem Niveau E1 befinden. Daher ist die
Zahl der Möglichkeiten, n1 = 3 unterscheidbare Teilchen aus N Teilchen auszuwählen und auf

1Bei genauer Betrachtung zeigt sich, das man das Postulat noch ein wenig abschwächen muss: das System
muss nicht jeden Mikrozustand einnehmen, ihm aber beliebig nahekommen.
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das Niveau E1 zu setzen, durch folgenden Ausdruck2 gegeben:

N(N − 1)(N − 2)

6
=
N(N − 1)(N − 2)

3!
=

N !

3!(N − 3)!
.

Die Verallgemeinerung ist offensichtlich. Es gibt

N !

n1!(N − n1)!

Möglichkeiten, n1 unterscheidbare Teilchen aus N Teilchen auszuwählen und auf das Niveau E1

zu setzen.
Für die Besetzung des Niveaus E2 verbleiben N ′ = N − n1 Teilchen, und damit gibt es

N ′!

n2!(N ′ − n2)!

Möglichkeiten, n2 unterscheidbare Teilchen aus N ′ Teilchen auszuwählen und auf das Niveau
E2 zu setzen. Das geht so weiter. Es gibt

N ′′!

n3!(N ′′ − n3)!

Möglichkeiten, n3 unterscheidbare Teilchen aus N ′′ = N ′ − n2 Teilchen auszuwählen und auf
das Niveau E3 zu setzen.
Daraus folgt für P (n1, n2, ..., nk)

P (n1, n2, ..., nk) =
N !

n1!(N − n1)!
· N ′!

n2!(N ′ − n2)!
· N ′′!

n3!(N ′′ − n3)!
. . .

Die Faktoren N ′! = (N − n1)!, N ′′! = (N ′ − n2)! etc. kürzen sich heraus und somit wird

P (n1, n2, ..., nk) =
N !

n1!n2!n3!....nk!
. (2.1)

Die Größe P (n1, n2, ..., nk) wird manchmal die thermodynamische Wahrscheinlichkeit genannt
(obwohl P im allgemeinen sehr groß gegen 1 ist). P gibt die Zahl der Mikrozustände an mit ni
Teilchen auf dem Niveau Ei und ist proportional zur Wahrscheinlichkeit, dass sich das System
in einem der Mikrozustände mit den Besetzungszahlen (n1, n2, n3, ....nk) aufhält.

2.1.2 Statistisches Gleichgewicht

Man spricht vom statistischen Gleichgewicht, wenn die Verteilung (n1, n2, n3, ....nk) mit der
größten Wahrscheinlichkeit vorliegt. In der statistischen Mechanik wird die Annahme gemacht,
dass das System “von selbst” in die Verteilung (n1, n2, n3, ....nk) mit der größten Wahrschein-
lichkeit übergeht, also dem statistischen Gleichgewicht zustrebt. Da P eine riesige Zahl ist,
rechnet man besser mit dem natürlichen Logarithmus von P .
Wir suchen nun das Maximum von lnP unter Beachtung der Nebenbedingungen

N =
∑
i

ni = const und U =
∑
i

niEi = const. (2.2)

2Die Zahl N ! (sprich N Fakultät) ist definiert als N ! = N(N − 1)(N − 2).. 1, also z.B. 4! = 4 · 3 · 2 · 1 = 24.
Man definiert 0! = 1.
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Dabei machen wir die Annahme, dass N � 1 ist und auch alle ni � 1 sind. Für große Zahlen
gilt die Stirlingsche-Formel

lnn! ≈ (n+ 1/2) lnn− n+ ln
√

2π ≈ n lnn− n.

Damit wird

lnP ≈ N lnN −N − (
∑
i

ni lnni −
∑
i

ni) = N lnN −
∑
i

ni lnni .

Um das Maximum einer Funktion y = f(x) zu finden, die nur von einer Variablen abhängt,
bildet man die Ableitung y′ = df/dx und setzt diese gleich null. Hier haben wir es mit ei-
ner Funktion von vielen Variablen zu tun. Das Maximum der Funktion f(n1, n2, n3, ...nk) =
lnP (n1, n2, n3, ...nk) findet man analog, indem man das Differential df = d(lnP ) = 0 setzt:

d(lnP ) = −
∑
i

(lnni) dni −
∑
i

ni d(lnni)︸ ︷︷ ︸
dni/ni

= −
∑
i

(lnni) dni ,

wobei wir dN =
∑

i dni = 0 benutzt haben. Die Maximumbedingung für lnP lautet daher

d(lnP ) = −
∑
i

(lnni) dni = 0 . (2.3)

Wegen der Erhaltung der Gesamtteilchenzahl und der Gesamtenergie U =
∑

i niEi gemäß
Gl. (2.2) sind nicht alle ni unabhängig variierbar. Es ist zu beachten, dass die Beziehungen

dN =
∑
i

dni = 0 , dU =
∑
i

Eidni = 0 (2.4)

erfüllt sein müssen. Variieren wir z.B. die Besetzungszahlen n3, n4....nk ganz nach Belieben, so
sind n1 und n2 durch diese Nebenbedingungen festgelegt und nicht mehr frei variierbar.

Trick der Lagrange-Multiplikatoren:
multipliziere erste der Gln. (2.4) mit einer geeigneten Konstanten α und die zweite mit einer
Konstanten β und addiere beides zu Gl. (2.3):

(lnn1 + α+ βE1)dn1 + (lnn2 + α+ βE2)dn2 +
k∑
i=3

(lnni + α+ βEi)dni = 0 .

Die Parameter α und β werden so gewählt, dass die beiden ersten Klammern verschwinden.
Daraus folgt

α =
E1 lnn2 − E2 lnn1

E2 − E1
, β =

lnn1 − lnn2

E2 − E1
. (2.5)

Dann lautet die obige Gleichung

k∑
i=3

(lnni + α+ βEi)dni = 0 . (2.6)

Nun sind aber die Zahlen n3, n4...nk frei wählbar. Wir dürfen z.B. dn3 = 1 setzen und dn4 =
dn5 = ... = dnk = 0. Dann muss (lnn3 + α + βE3) = 0 sein. Analog dürfen wir dn4 = 1 und
dn3 = dn5 = ... = dnk = 0 setzen und finden, dass (lnn4 + α + βE4) = 0 sein muss. Insgesamt
ergibt sich aus den Gl. (2.5) und (2.6), dass für alle Indizes i = 1,2...k gilt

(lnni + α+ βEi) = 0 ⇒ ni = e−αe−βEi . (2.7)

Dies ist schon fast die Boltzmann-Verteilung.
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2.1.3 Multiplizität der Energieniveaus

Wir müssen zulassen, dass die Energieniveaus Ei mehrfach vorkommen (in der Quantenmechanik
nennt man das Entartung). Sei also gi die Multiplizität des Energieniveaus Ei. Die Zahl der
Möglichkeiten, ni unterscheidbare Teilchen auf das Niveau Ei zu setzen, erhöht sich um den
Faktor gni

i . Somit wird

PFestk(n1, n2, ..., nk) =
N ! gn1

1 ......gnk
k

n1!n2!n3!....nk!
. (2.8)

Die Maximumbedingung d(lnP ) = 0 führt zu der Gleichung∑
i

ln

(
ni
gi

)
dni = 0 , (2.9)

die der Gl. (2.3) entspricht. Um die Nebenbedingungen (2.4) zu berücksichtigen, werden wie-
derum Lagrange-Multiplikatoren eingeführt, die dieses Mal folgende Werte haben

α =
E1 ln(n2/g2)− E2 ln(n1/g1)

E2 − E1
, β =

ln(n1/g1)− ln(n2/g2)

E2 − E1
. (2.10)

Analog zu Gl. (2.7) ergibt sich für alle Werte von i:

ni = gie
−αe−βEi . (2.11)

Der Parameter α wird eliminiert, indem man die Zustandssumme Z einführt

Z =
∑
i

gie
−βEi . (2.12)

Damit wird ∑
i

ni = N = e−α
∑
i

gie
−βEi = e−α Z ⇒ e−α =

N

Z
.

Der Parameter β wird beibehalten, weil er eine wichtige neue physikalische Größe ist

β =
1

kBT
. (2.13)

Dies ist die Definitionsgleichung der absoluten Temperatur in der statistischen Mechanik. Die
Konstante kB = 1,38 · 10−23 J/K ist die uns schon bekannte Boltzmann-Konstante. Setzen wir
(2.12) und (2.13) in Gl. (2.11) ein, so erhalten wir die Boltzmann-Verteilung

ni = gi
N

Z
e−Ei/(kBT ) . (2.14)

Die Boltzmann-Verteilung beschreibt die Verteilung der Teilchen auf die Energieniveaus im
statistischen Gleichgewicht.

Die innere Energie kann mit Hilfe der Zustandssume berechnet werden

U =
∑
i

niEi =
N

Z

∑
i

giEie
−βEi

︸ ︷︷ ︸
−dZ/dβ

= −N d lnZ

dβ
. (2.15)
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2.1.4 Klassische Statistik für Gase

Die Atome oder Moleküle in einem Gas sind prinzipiell nicht unterscheidbar, da sie nicht durch
einen festen Ort gekennzeichnet sind. Die klassische Statistik ist aus diesem Grund eigentlich
nicht anwendbar, obwohl dies im 19. Jahrhundert natürlich gemacht wurde, weil die richtige
Quantenstatistik nicht bekannt war. Um Übereinstimmung mit der Quantenstatistik zu erhalten
(dies ist die Bose-Einstein-Statistik für die meisten Gase), muss man in der Formel (2.8) den
Faktor N ! streichen.

Die anschauliche Begründung lautet: eine beliebige Permutation der N nicht unterscheidbaren Teilchen

kann keinen neuen Zustand ergeben.

Für Gase benutzen wir daher den Ausdruck

PGas(n1, n2, ..., nk) =
gn1

1 ......gnk
k

n1!n2!n3!....nk!
. (2.16)

Wir werden später sehen, dass die Bose-Einstein-Statistik bei hinreichender Verdünnung des
Gases diesen Ausdruck reproduziert.

Nun müssen die Gewichtsfaktoren gi bestimmt werden. In einem Gas liegen die Energieniveaus
Ei so dicht, dass es zweckmäßig ist, die Energie als kontinuierliche Variable anzusehen und die
diskreten Werte gi durch eine kontinuierliche Funktion g(E) zu ersetzen. Diese Funktion nennt
man die Zustandsdichte. Die genaue Definition lautet: g(E)dE ist die Zahl der Energieniveaus
im Intervall [E,E + dE]. Die Berechnung der Zustandsdichte erfolgt in Anhang A.2. Das
Ergebnis ist

g(E)dE = 2π V
( m

2π2~2

)3/2√
E dE . (2.17)

Dabei ist V das Volumen, in dem sich das Gas befindet und m die Masse eines Gasatoms.

Die Zustandssumme (2.12) drücken wir nun durch ein Integral aus

Z(β) =

∫ ∞
0

g(E) e−βEdE = 2π V
( m

2π2~2

)3/2
·
√
π

2
β−3/2 .

Es ist lnZ = const−3/2 lnβ. Die innere Energie des Gases ist

U = −N d(lnZ)

dβ
=

3N

β
.

Setzen wir β = 1/(kBT ) ein, so ergibt sich

U =
3

2
N kBT. (2.18)

Dies ist die bekannte Formel für die innere Energie eines idealen atomaren Gases. Bei moleku-
laren Gasen wird durch diese Formel nur die Translationsenergie erfasst, es kommen noch die
Rotations- und Vibrationsenergien hinzu.

2.1.5 Statistisches und thermisches Gleichgewicht sind äquivalent

Wir betrachten zwei Systeme A und A′, beispielsweise zwei Gase.
System A: N Teilchen, Energieniveaus Ei, Gewichtsfaktoren gi.
System A′: N ′ Teilchen, Energieniveaus E′j , Gewichtsfaktoren g′j .
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Thermisches Gleichgewicht: die Temperaturen der beiden Systeme sind gleich, TA = TA′ .
Statistisches Gleichgewicht: Das Gesamtsystem A + A′ befindet sich im Zustand der größten
Wahrscheinlichkeit.

Wir wollen beweisen, dass die beiden Gleichgewichte äquivalent sind. Zwischen den Systemen
muss ein Energieaustausch möglich sein, um überhaupt zu einem Gleichgewicht gelangen zu
können. Es gelten folgende Erhaltungssätze

N =
∑
i

ni = const , N ′ =
∑
j

n′j = const , U =
∑
i

niEi +
∑
j

n′jE
′
j = const.

Die Teilchenzahlen N und N ′ bleiben jeweils konstant, aber die Erhaltung der Energie gilt nur
für das Gesamtsystem A+ A′. Die Zahl der Möglichkeiten, eine Verteilung (n1, ...nk) in A und
gleichzeitig eine Verteilung (n′1, ...n

′
k′) in A′ zu realisieren, ist gegeben durch das Produkt der

jeweiligen thermodynamischen Wahrscheinlichkeiten:

P = PA · PA′ =
gn1

1 gn2
2 ....

n1!n2!...
· g
′
1
n′
1 g′2

n′
2 ....

n′1!n′2!...
. (2.19)

Um das Maximum von lnP zu finden, berechnen wir das Differential d lnP und setzen dies
gleich null

d lnP = −
∑
i

ln

(
ni
gi

)
dni −

∑
j

ln

(
n′j
g′j

)
dn′j = 0

mit den Nebenbedingungen

dN =
∑
i

dni = 0 × α

dN ′ =
∑
j

dn′j = 0 × α′

dU =
∑
i

Eidni +
∑
j

E′jdn
′
j = 0 × β

Die erste Gleichung wird mit α multipliziert, die zweite mit α′ und die dritte mit β, und das
Ganze wird zu der obigen Gleichung d lnP = 0 addiert, mit dem Ergebnis:∑

i

(ln(ni/gi) + α+ βEi) dni +
∑
j

(
ln(n′j/g

′
j) + α′ + βE′j

)
dn′j = 0.

Unter den dni und dn′j sind alle bis auf drei frei wählbar. Es seien dn1, dn2 und dn′1 die
abhängigen Differentiale. Wir wählen die Konstanten α, α′ und β so, dass die folgenden Klam-
mern verschwinden:

(ln(n1/g1) + α+ βE1) = 0 , (ln(n2/g2) + α+ βE2) = 0 , (ln(n′1/g
′
1) + α′ + βE′1) = 0.

Da die übrigen dni und dn′j frei wählbar sind, erhalten wir

(ln(ni/gi) + α+ βEi) = 0 für alle i = 1....k(
ln(n′j/g

′
j) + α′ + βE′j

)
= 0 für alle j = 1....k′

Die Verteilungen sind daher

ni = gi e
−α · e−βEi für alle i = 1....k,

n′j = g′j e
−α′ · e−βE

′
j für alle j = 1....k′.
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Das wichtige Ergebnis ist, dass beide Verteilungen den gleichen Parameter β haben. Das be-
deutet: zwei Systeme A und A′, die im statistischen Gleichgewicht sind, haben die gleiche
Temperatur, TA = TA′ . Mit anderen Worten: sie befinden auch im thermischen Gleichgewicht.

2.2 Die Entropie in der statistischen Mechanik

Die Anzahl der Mikrozustände P (n1, n2...nk) ist oft eine ungeheuer große Zahl. Es ist zweckmäßi-
ger, mit dem natürlichen Logarithmus von P zu rechnen. Dies ist im wesentlichen die Entropie.
Um mit der Definition der Entropie in der phänomenologischen Thermodynamik kompatibel zu
sei, multipliziert man lnP noch mit der Boltzmann-Konstanten. Die Definitionsgleichung der
Entropie in der statistischen Mechanik lautet

S = kB lnP . (2.20)

Aus dieser Beziehung folgt eine erste wichtige Eigenschaft: bei zusammengesetzten Systemen
werden die Wahrscheinlichkeiten multipliziert, also sind die Entropien additiv:

P = P1 · P2 , S = S1 + S2 . (2.21)

2.2.1 Die Entropie von N unterscheidbaren Teilchen

Benutzen wir die für unterscheidbare Teilchen gültige Formel (2.8), so finden wir für die Entropie

S = kB

[
ln(N !) +

∑
i

ln(gni
i /ni!)

]
= kB

[
ln(N !) +

∑
i

ni ln gi −
∑
i

ln(ni!)

]
.

Unter Benutzung der Stirlingschen Formel ln(n!) ≈ n lnn− n folgt

S = kB

[
N lnN −

∑
i

ni ln(ni/gi) +
∑
i

ni

]
.

Im statistischen Gleichgewicht berechnet man die ni mit Hilfe der Boltzmann-Verteilung

ni = gi
N

Z
e−βEi ⇒ ln(ni/gi) = lnN − lnZ − βEi .

Setzen wir dies ein, so wird

S = kB [N lnZ + β
∑
i

niEi︸ ︷︷ ︸
U

] .

Die Entropie im statistischen Gleichgewicht ist damit

S = kB N lnZ +
U

T
. (2.22)

Diese Formel gilt für die Atome oder Ionen in Festkörpern, die durch ihre festen Positionen im
Kristall unterscheidbar sind. Sie ist nicht anwendbar auf Gase.
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2.2.2 Die Entropie eines idealen Gases

Wegen der Nichtunterscheidbarkeit der Gasatome müssen wir die Zahl der Mikrozustände mit
Formel (2.16) berechnen, die sich von Gl. (2.8) durch das Fehlen des Faktors N ! unterschei-
det. Die Entropie eines Gases erhalten wir also einfach, indem wir von Gl. (2.22) den Term
kB ln(N !) ≈ kBN lnN − kBN subtrahieren. Die Entropie wird somit

S = kBN ln

(
Z

N

)
+ kBN +

U

T
= kBN lnZ +

5

2
kBN wegen U =

3

2
kBNT . (2.23)

Mit

Z(T ) = V

(
mkBT

2π~2

)3/2

folgt für die Entropie des Gases als Funktion der Temperatur und des Volumens

S(T, V ) =
5

2
kBN + kBN ln

(
V

N

(
mkBT

2π~2

)3/2
)
. (2.24)

Diese Formel wird ungültig im Grenzfall T → 0, weil sich dann die Gase verflüssigen oder
verfestigen und die Atome in festen Positionen “eingefroren” sind, wodurch sie unterscheidbar
werden.

2.2.3 Anwendungsbeispiele

Um mit dem Begriff Entropie vertraut zu werden, diskutieren wir vier Anwendungsbeispiele,
zwei aus der Festkörperphysik und zwei aus der kinetischen Gastheorie.

Anwendungsbeispiel 1: magnetischer Festkörper

Unser erstes Beispiel ist ein Festkörper mit N Atomen, die den Spin 1/2 und ein magnetisches
Moment µ haben. In einem Magnetfeld B gibt es für jedes Atom die zwei Energiewerte

E1 = −µB , E2 = +µB .

Diese Niveaus sind einfach, die Gewichtsfaktoren sind g1 = g2 = 1. Die Zustandssumme ist

Z = Z(T ) = e−βE1 + e−βE2 = 2 coshx mit x = βµB =
µB

kBT
.

Die innere Energie und die Entropie sind

U(T ) = −N
Z

dZ

dβ
= −N µB tanhx = −N µB tanh

(
µB

kBT

)
,

S(T ) = kBN ln
(
ex + e−x

)
+
U

T
.

Die Funktionen U(T ) und S(T ) sind in Abb. 2.2 als Funktion der Temperatur aufgetragen.
Zwei Grenzfälle sind interessant:

a) Sehr tiefe Temperaturen: kBT � µB, x� 1.
Für T → 0 gehen alle Atome in das untere Energieniveau, n1 → N , n2 → 0, und die innere
Energie wird U ≈ −NµB. Die Entropie geht gegen null

S ≈ kBN
µB

kBT
+
U

T
≈ N µB

T
− N µB

T
= 0 .
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Klassische Statistik: Z, U, S

1. Beispiel: Spin1/2 Atome mit magn. Moment 
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Donnerstag, 2. August 2012

Abbildung 2.2: Die normierte innere Energie U(T )/(N µB) und die normierte Entropie S(T )/(kBN ln 2)

eines magnetischen Festkörpers im Bereich 0 < T < 10 K. Das magnetische Moment beträgt µ = µB , das

Magnetfeld B = 5 T.

Dies ist ein sehr wichtiges Resultat, es ist ein Beispiel für den 3. Hauptsatz der Thermodynamik,
aus dem folgt, dass die Entropie am absoluten Nullpunkt der Temperatur verschwindet. (Hier
wird vorausgesetzt, dass sich das System im statistischen Gleichgewicht befindet). Aus der Sicht
der statistischen Mechanik ist das leicht verständlich: im Limes T → 0 gehen alle Teilchen in
das tiefste Energieniveau. Die Zahl der Mikrozustände sinkt dadurch auf P = 1 ab, und es wird
S = kB lnP = 0.

b) Sehr hohe Temperaturen: kBT � µB, x� 1.

e±x ≈ 1± x , Z ≈ 2 , n1 ≈ n2 ≈ N/2 .

Die Teilchen sind nahezu gleichverteilt auf die beiden Energieniveaus. Die innere Energie geht
gegen null

U ≈ N

2
µB[−(1 + x) + (1− x) ] = −NµB µB

kBT
≈ 0 .

Die Entropie wird

S ≈ kBN ln 2 = kB ln(2N ) .

Auch dies ist leicht zu verstehen: bei Gleichbesetzung der beiden Niveaus hat jedes Atom zwei
Möglichkeiten, d.h. die Zahl der Mikrozustände ist P = 2N .

Anwendungsbeispiel 2: Einstein-Modell der Gitterschwingungen

Im zweiten Beispiel analysieren wir das thermodynamische Verhalten von N ′ Atomen in einem
Kristall. Jedes Atom kann in drei orthogonalen Richtungen (x, y oder z) um seine Ruhelage
schwingen, so dass wir ein Ensemble von N = 3N ′ harmonischen Oszillatoren haben. Die
Wärmekapazität eines elektrischen Isolators beruht auf den Gitterschwingungen. In dem von
Einstein vorgeschlagenen Modell wird zur Vereinfachung angenommen, dass es nur eine einzige
Schwingungsfrequenz ω gibt (ω = 2πf ist an sich eine Kreisfrequenz, die wir aber zur Ver-
einfachung “Frequenz” nennen). In der genaueren Debye-Theorie wird ein Frequenzspektrum
angesetzt, siehe Kap. 3.

In unserem Festkörpermodell haben wir ein Ensemble von N harmonischen Oszillatoren der
Quantenenergie ε = ~ω , die die äquidistanten Energieniveaus

Ei = (i+ 1/2)~ω , i = 0,1,2....
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einnehmen können. Diese Niveaus sind einfach (nicht entartet), also sind die Gewichtsfaktoren
gi = 1. Selbstverständlich gibt es nur endlich viele Niveaus, denn die maximal zulässige Schwin-
gungsenergie muss kleiner als die Ablöseenergie der Atome aus dem Kristall sein. Wenn Ek die
maximale Energie ist (wobei k � 1 angenommen wird), so wird die Zustandssumme

Z = Z(β) =
k∑
i=0

e−βEi = e−β~ω/2
k∑
i=0

xi mit x = e−β~ω < 1 .

Die geometrische Reihe kann leicht summiert werden:

k∑
i=0

xi =
1− xk

1− x
≈ 1

1− x
für k � 1 .

Daher wird

Z(β) =
e−β~ω/2

1− e−β~ω
.

Die innere Energie berechnen wir durch Differentiation

U = −N
Z

dZ

dβ
= N

~ω
2

1 + e−β~ω

1− e−β~ω
.

Die mittlere Energie pro Oszillator ist

u =
U

N
=

~ω
2

+
~ω

exp
(

~ω
kBT

)
− 1

. (2.25)

Dies ist eine sehr wichtige Formel. Der erste Term ist die Nullpunktsenergie, die jeder har-
monische Oszillator in der Quantenmechanik besitzt. Der zweite Term ist die mittlere Anre-
gungsenergie des Oszillators bei der Temperatur T . Man kann diese Energie auch in der Form
schreiben

uanr = ~ω · wanr mit wanr =
1

exp
(

~ω
kBT

)
− 1

,

wobei wanr die Wahrscheinlichkeit ist, dass der Oszillator thermisch angeregt ist. In Kap. 3.3.2
werden wir sehen, dass die gleiche Formel aus der Bose-Einstein-Statistik folgt, siehe Gl. (3.8).

Die Entropie berechnen wir mit der Formel S = N kB lnZ + U/T :

S = kBN

 ~ω
kBT

1

exp
(

~ω
kBT

)
− 1
− ln

(
1− exp

(
− ~ω
kBT

)) . (2.26)

Die Wärmekapazität wird wie folgt berechnet

C =
∂U

∂T
= kBN

(
~ω
kBT

)2 exp
(

~ω
kBT

)
[
exp

(
~ω
kBT

)
− 1
]2 . (2.27)

Auch hier sind die beiden Grenzfälle interessant:

a) Sehr tiefe Temperaturen: kBT � ~ω, x = ~ω/kBT � 1.

S = kBN [x e−x − ln(1− e−x)]→ 0 , C = kBNx
2 e−x → 0 für x→∞ .
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Abbildung 2.3: Temeraturabhängigkeit der Wärmekapazität C(T ) und Entropie S(T ) eines Systems

von Oszillatoren (Einstein-Modell der Gitterschwingungen).

Auch in diesem Beispiel verschwindet die Entropie am absoluten Nullpunkt, und die Wärme-
kapazität geht dort ebenfalls gegen null. Der 3. Hauptsatz ist erfüllt.

b) Sehr hohe Temperaturen: kBT � ~ω, x� 1.

C ≈ kBN
(

~ω
kBT

)2 1(
~ω
kBT

)2 = kBN .

Für 1 Mol ist N = 3NA (mit NA = 6,022 · 1023 Avogadro-Zahl) und C = 3NAkB = 3R. Dies
ist das Gesetz von Dulong und Petit.

Anwendungsbeispiel 3: irrevesible Expansion eines Gases

Ein Zylinder mit Volumen 2V ist durch eine Folie unterteilt. In der linken Hälfte befindet sich
ein Gas mit N Atomen, die rechte Hälfte ist evakuiert. Jetzt platzt die Folie, und das Gas
verteilt sich gleichmässig auf das Gesamtvolumen 2V . Frage: wie ändert sich die Entropie?
Nach Gl. (2.24) gilt für den Anfangszustand:

S1 =
5

2
kBN + kBN ln

(
V

N

(
mkBT

2π~2

)3/2
)

=
5

2
kBN + kBN ln

(
1

N

(
mkBT

2π~2

)3/2
)

+ kBN lnV (2.28)

und für den Endzustand:

S2 =
5

2
kBN + kBN ln

(
2V

N

(
mkBT

2π~2

)3/2
)

=
5

2
kBN + kBN ln

(
1

N

(
mkBT

2π~2

)3/2
)

+ kBN ln(2V ) . (2.29)

Dabei sind die beiden ersten Terme in den Gln. (2.28) und (2.29) vom Volumen unabhängige
Funktionen der Temperatur. Bei der Expansion ändert sich die Temperatur nicht, da wir ein
ideales Gas vorausgesetzt haben (in realen Gasen bewirken die intermolekularen Kräfte, dass
sich die Temperatur bei der Expansion verringert).
Die Entropie wächst bei der Expansion:

∆S = S2 − S1 = kBN ln

(
2V

V

)
= kB ln(2N ).
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Für die thermodynamischen Wahrscheinlichkeiten gilt dementsprechend

P2 = 2NP1.

Dies Resultat ist unmittelbar einleuchtend: wenn sich das Volumen verdoppelt, gibt es für jedes
Atom 2 Möglichkeiten, es kann sich in das linke oder das rechte Teilvolumen begeben. Für N
Atome sind es 2N Möglichkeiten. Für 1 Mol ist die Teilchenzahl N = 6,022 · 1023. Dann ist 2N

eine ungeheuer große Zahl, und selbst ln(2N ) = N ln 2 ist riesig. Die Entropie vergrößert sich bei
der Expansion ganz enorm. Die Expansion läuft ganz von selbst ab. Die Umkehrung - alle Atome
sammeln sich spontan im linken Teilvolumen - ist zwar nicht prinzipiell ausgeschlossen, dieser
Vorgang ist aber extrem unwahrscheinlich und wird nie beobachtet werden. Die Expansion nach
dem Platzen der Folie ist ein typisch irreversibler Vorgang, dessen Umkehrung nicht vorkommt.

Anwendungsbeispiel 4: Mischung von zwei Gasen

In dem Kasten sei links Helium, rechts Argon, die Teilchenzahlen seien gleich NHe = NAr = N .
Beim Platzen der Trennwand gibt es eine irreversible Vermischung, beide Gase verteilen sich
über das Gesamtvolumen. Die Entropieänderungen sind:

∆SHe = kB2N ln 2 , ∆SAr = kBN ln 2 ,

∆S = ∆SHe + ∆SAr = kB(2N) ln 2 > 0 .

Die Vermischung ist irreversibel. Die Entropie wächst gewaltig an. Eine spontane Entmischung
wird nie beobachtet werden.

Eine spannende Frage ist, was passiert, wenn wir links und rechts das gleiche Gas einfüllen,
beispielsweise Helium. In dem Fall sind die Gesamtentropien vor und nach dem Platzen der
Wand gemäß Formel (2.24)

S1 = 2 ·

[
5

2
kBN + kBN ln

(
V

N

(
mkBT

2π~2

)3/2
)]

,

S2 =
5

2
kB(2N) + kB(2N) ln

(
2V

2N

(
mkBT

2π~2

)3/2
)
.

Daraus folgt ∆S = S2−S1 = 0. Das muss auch so sein, denn wenn links und rechts gasförmiges
Helium gleicher Temperatur und Dichte ist, kann sich durch Entfernen der Trennwand nichts
ändern. Hätten wir aber mit der Entropieformel (2.22) gerechnet, so wäre ∆S > 0. Denn
diese Formel setzt voraus, dass die Heliumatome im linken Teilvolumen von denen im rechten
unterschieden werden können. Das ist eine sinnlose Annahme.

2.3 Mikroskopische Deutung der Hauptsätze

2.3.1 1. Hauptsatz

Zunächst wollen wir den 1. Hauptsatz im mikrokopischen Bild deuten. Dazu betrachten wir
wieder ein ideales Gas. Die innere Energie des Gases können wir durch Wärmezufuhr oder durch
Arbeitsleistung einer externen Kraft erhöhen

∆U = ∆Q+ ∆W.

Wie in Kap. 1 befinde sich das Gas in einem Zylinder mit verschiebbarem Kolben. Den Zylin-
der mit Kolben repräsentieren wir im mikroskopischen Bild durch einen Potentialtopf variabler
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Länge L. Wenn der Kolben um ∆x nach links bewegt wird, verringert sich die Länge des Topfs
auf L′ = L − ∆x, und die Energieniveaus wachsen dadurch an: E′i = Ei + ∆Ei. Die innere
Energie des Gases ist im mikroskopischen Bild U =

∑
i niEi, und ihre Änderung ist

∆U =
∑
i

Ei ∆ni +
∑
i

ni ∆Ei . (2.30)

Dies ist die Form des 1. Hauptsatzes in der statistischen Mechanik.

Der erste Term in Gl. (2.30) entspricht der Wärmezufuhr.∑
i

Ei ∆ni = ∆Q . (2.31)

Im mikroskopischen Bild bedeutet Wärmezufuhr einen Umbesetzungsvorgang, siehe Abb. 2.4.
Das Anheben der Atome auf höhere Niveaus ist “ungeordnet”, manche Atome werden auf we-
sentlich höhere Niveaus gehoben, andere auf weniger hohe und manche Atome werden überhaupt
nicht angehoben.

E2

E1

E3

Wärmezufuhr

Dienstag, 4. Dezember 12

Abbildung 2.4: Mikroskopische Deutung der Wärmezufuhr. Die Energieniveaus bleiben invariant, aber

einige Atome werden auf höhere Niveaus angehoben.

Der zweite Term ist ebenfalls leicht zu deuten. Durch Verschiebung des Kolbens, gleichbe-
deutend mit der Längenänderung des Potentialtopfs, verschieben sich auch die Energieniveaus.
Dies ist offensichtlich ein wohlgeordneter Vorgang, der alle Teilchen in gleicher Weise betrifft;
alle Teilchen verbleiben auf ihren jeweiligen Niveaus (Abb. 2.5). Dieser Term entspricht der
geleisteten Arbeit. ∑

i

ni ∆Ei = ∆W . (2.32)

2.3.2 2. Hauptsatz, Zusammenhang zwischen Entropie und Wärme

Wir wollen nun zeigen, dass die Definition der Entropie in der phänomenologischen Thermo-
dynamik aus der statistischen Definition hergeleitet werden kann. Dazu betrachten wir wieder
unser Musterbeispiel des idealen Gases. Nach Formel (2.23) ist seine Entropie eine Funktion der
Zustandssumme

S = kBN lnZ +
5

2
kBN mit Z =

∑
i

gie
−βEi .
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Abbildung 2.5: Mikroskopische Deutung der Arbeitsleistung. Wenn der Kolben durch eine externe Kraft

um ∆x nach links bewegt wird, verringert sich die Länge des Topfs, L′ = L −∆x. Die Energieniveaus

wachsen dadurch an. Alle Teilchen bleiben auf ihren jeweiligen Energieniveaus.

Das Gas durchlaufe eine reversible Expansion, wobei die Teilchenzahl N konstant gehalten wird.
Die Änderung der Entropie ist

∆S = kBN
∆Z

Z
, ∆Z = −β

∑
i

gie
−βEi ∆Ei −

∑
i

gie
−βEiEi ∆β .

Nun benutzen wir β = 1/(kBT ) und finden

∆S = kBN
∆Z

Z
= − 1

T

∑
i

N

Z
gie
−βEi︸ ︷︷ ︸

ni

∆Ei +
1

T 2

∑
i

N

Z
gie
−βEiEi︸ ︷︷ ︸
niEi

∆T

= − 1

T

∑
i

ni∆Ei +
U

T 2
∆T =

−∆W

T
+
U

T 2
∆T =

−∆W

T
+

∆U

T
.

Nach dem 1. Hauptsatz ist ∆U = ∆W + ∆Q, und es folgt die wichtige Beziehung zwischen der
Entropieerhöhung und der in einem reversiblen Prozess absorbierten Wärme

∆S =
∆Qrev

T
. (2.33)

Dies ist genau die Definitionsgleichung (1.20) der Entropie in der phänomenologischen Thermo-
dynamik.

Eine irreversible Expansion liegt z.B. vor, wenn wir dem Gas durch Platzen einer Folie die
Ausbreitung in ein größeres Volumen erlauben. In diesem Fall wird keine Wärme zugeführt, da
das Gas bei freier Expansion ins Vakuum keine Arbeit leistet und weil die innere Energie eines
idealen Gases unabhängig vom Volumen ist. Die Entropie ändert sich jedoch genau so wie im
reversiblen Fall. Daraus folgt

∆S >
∆Qirrev

T
= 0. (2.34)
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Kapitel 3

Quantenstatistik

In der Quantenstatistik wird die Nichtunterscheidbarkeit der Teilchen (Atome, Moleküle, Elek-
tronen, Protonen, Neutronen) explizit berücksichtigt. Dabei kommen wir bei Fermionen und
Bosonen zu verschiedenen Ergebnissen. Einzelne Energieniveaus kann man bei Fermionen nicht
betrachten, da sie wegen des Ausschließungsprinzips mit maximal zwei Teilchen besetzt werden
dürfen. Wir nutzen die Tatsache aus, dass die Energieniveaus unter normalen Umständen au-
ßerordentlich dicht liegen. So sind einem O2-Molekül bei Zimmertemperatur und Normaldruck
mehr als 1030 Niveaus zugänglich. Wir fassen sehr viele Niveaus zu Gruppen zusammen und
ordnen gi � 1 Niveaus der Energie Ei zu. Auf diese Weise können wir Besetzungszahlen ni � 1
auch für Fermionen realisieren (wobei die Besetzungszahlen ni sehr viel kleiner als die Zahl gi
der Niveaus bleiben sollten).

3.1 Fermi-Dirac-Verteilung

Die Zahl der Möglichkeiten, ni ununterscheidbare Teilchen auf gi Niveaus zu verteilen mit der
Einschränkung, dass maximal 1 Teilchen pro Niveau erlaubt ist, berechnen wir wie folgt.
1. Teilchen: gi Möglichkeiten,
2. Teilchen: (gi − 1) Möglichkeiten,
ni-tes Teilchen: (gi − ni) Möglichkeiten.
Insgesamt sind dies

gi(gi − 1)...(gi − ni) =
gi!

(gi − ni)!

Möglichkeiten. Nun kommt die Bedingung der Nichtunterscheidbarkeit: eine beliebige Permu-
tation der ni Fermionen führt zum gleichen Ergebnis, so dass die Zahl der Möglichkeiten, ni
Fermionen auf gi Niveaus zu verteilen, gegeben ist durch

gi!

(gi − ni)!ni!
.

Die thermodynamische Wahrscheinlichkeit ist das Produkt dieser Ausdrücke für i = 1...k:

PFermi(n1, n2...nk) =
g1! g2!....gk!

(g1 − n1)! (g2 − n2)! ...(gk − nk)! n1!n2! ...nk!
. (3.1)

Wir üblich suchen wir das Maximum von lnP mit den Nebenbedingungen

N =
∑
i

ni = const , U =
∑
i

niEi = const.
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Der Logarithmus von P wird unter Benutzung der Stirling-Formel

lnP =
∑
i

(ln(gi!)− ln(gi − ni)!)− ln(ni!) ≈
∑
i

[ gi ln gi − ni lnni − (gi − ni) ln(gi − ni)) ] .

Da die Multiplizitäten gi konstant sind, gilt dgi = 0, und wir erhalten

d lnP = −
∑
i

(lnni − ln(gi − ni))dni = 0 (3.2)

mit den Nebenbedingungen

dN =
∑
i

dni = 0 , dU =
∑
i

Eidni = 0 .

Die erste Gleichung wird mit α multipliziert, die zweite mit β, und beides wird zu der Gleichung
(3.2) addiert. Die Parameter α und β werden so bestimmt, dass für alle i gilt:

lnni − ln(gi − ni) + α+ βEi = 0 ⇒ ni/(gi − ni) = e−αe−βEi .

Daraus folgt die Fermi-Dirac-Verteilung

ni = gi ·
1

exp
(
Ei−EF )
kBT

)
+ 1

. (3.3)

Die Fermi-Energie ist dabei definiert durch EF = −αkBT . Wenn die Energieniveaus sehr dicht
liegen, was bei vielen Anwendungen der Fall ist, erweist es sich als zweckmäßig, eine Fermi-
Dirac-Verteilungsfunktion einzuführen

fFermi(E, T ) =
1

exp
(
E−EF
kBT

)
+ 1

. (3.4)

3.2 Bose-Einstein-Verteilung

Es ist erlaubt, beliebig viele Bosonen auf ein Niveau zu setzen. Um die Zahl der Realisie-
rungsmöglichkeiten zu ermitteln, gibt es einen witzigen Trick (s. Alonso-Finn [1]). Wir be-
trachten g � 1 Kästen und n � 1 Bosonen (wobei aber die Bedingung 1 � n � g erfüllt sein
muss). Zwischen den g Kästen gibt es g − 1 Trennwände. Der Trick besteht nun darin, die
n Teilchen und die g − 1 Trennwände zu n + g − 1 Objekten zusammen zu fassen. Aus einer
beliebigen gewählten Anordnung dieser Objekte kann man jede andere Anordnung durch eine
geeignete Permutation der Objekte erzeugen. Es gibt insgesamt (n + g − 1)! Permutationen.
Eine Permutation der Wände untereinander oder eine Permutation der Teilchen untereinander
ergibt nichts Neues. Wir müssen daher durch n! und (g − 1)! dividieren, so dass die Zahl der
verschiedenen Möglichkeiten wird

(n+ g − 1)!

(g − 1)!n!
.

Dies machen wir für alle Energien Ei und multiplizieren die entsprechenden Ausdrücke:

PBose(n1, ....nk) =
(n1 + g1 − 1)!.....(nk + gk − 1)!

(g1 − 1)!n1!........(gk − 1)!nk!
. (3.5)

41



Wie üblich wird das Maximum von lnP unter Berücksichtigung der Nebenbedingungen N =∑
i ni = const, U =

∑
i niEi = const bestimmt. Das Ergebnis ist die Bose-Einstein-Verteilung

ni = gi ·
1

eα+βEi − 1
. (3.6)

Photonen sind Bosonen, unterscheiden sich aber von anderen Bosonen wie He4-Atomen in
einem wesentlichen Punkt: da Photonen von Materie emittiert oder absorbiert werden können,
ist ihre Anzahl nicht konstant. Somit entfällt die Nebenbedingung

∑
i ni = const, und damit

entfällt auch der Parameter α. Die modifizierte Bose-Einstein-Verteilung für Photonen lautet

ni = gi ·
1

eβEi − 1
. (3.7)

Wenn die Energieniveaus sehr dicht liegen, erweist es sich auch hier als zweckmäßig, eine Ver-
teilungsfunktion einzuführen

fBose(E, T ) =
1

exp
(

E
kBT

)
− 1

. (3.8)

Vergleich der drei Verteilungen
Um die Gemeinsamkeiten und Verschiedenheiten der drei Verteilungen zu erkennen, schreiben
wir sie in der folgenden Form

Boltzmann ni =
gi

(eα+βEi + 0)
,

Fermi-Dirac ni =
gi

(eα+βEi + 1)
,

Bose-Einstein ni =
gi

(eα+βEi − 1)
.

Bei hinreichend verdünnten Systemen, beispielsweise in Gasen unter Normalbedingungen, ist
ni � gi, und der Exponentialterm im Nenner ist groß gegen 1; in diesem Fall gehen die Quan-
tenverteilungen in die klassische Boltzmannverteilung über. Daher darf man in der kinetischen
Gastheorie meistens mit der Boltzmannverteilung rechnen. Es gibt allerdings bemerkenswerte
Ausnahmen, die wir uns im Folgenden ansehen. Für das “Photonengas” in erhitzten Hohlräumen
muss man grundsätzlich die modifizierte Bose-Einstein-Statistik verwenden. Das “Elektronen-
gas” in Metallen ist derartig hoch konzentriert, dass unbedingt die Fermi-Dirac-Verteilung ver-
wendet werden muss.

3.3 Anwendungen der Bose-Einstein-Statistik

Zwei besonders wichtige Anwendungsgebiete der Bose-Einstein-Statistik sind die Plancksche
Strahlungsformel und die Wärmekapazität von Festkörpern.

3.3.1 Die Plancksche Strahlungsformel

Der 14. Dezember 1900 war der Geburtstag der Quantentheorie: Max Planck stellte auf der
Tagung der Deutschen Physikalischen Gesellschaft seine Theorie der Strahlung des “schwarzen
Körpers” vor.
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Unter einem schwarzen Körper versteht man einen Körper, der alle einfallende Strahlung zu 100% absor-

biert. Eine mattschwarz gefärbte Metall- oder Kunststoffoberfläche erfüllt dies Kriterium nur unvollkom-

men. Die beste Approximation ist ein Hohlraum mit dunklen Wänden, in den die Strahlung durch eine

kleine Öffnung eintritt. Durch vielfache Absorption und Reflexion im Innern wird die Strahlung immer

weiter abgeschwächt, und es besteht nur eine sehr geringe Wahrscheinlichkeit, dass Strahlung durch die

Öffnung wieder entweicht. Diese Öffnung sieht also sehr “schwarz” aus.

Die Rayleigh-Jeans-Formel
Zunächst kann man versuchen, die Hohlraumstrahlung mit der klassischen statistischen Me-
chanik zu behandeln. Dazu werden die möglichen Eigenschwingungen des elektromagnetischen
Feldes in einem geschlossenen Kasten ermittelt, der die Form eines Würfels der Kantenlänge L
hat. Die sich daraus ergebende Zustandsdichte wird in Anhang A.3 berechnet und lautet

g(ω)dω = L3 ω2

π2c3
dω . (3.9)

Die optischen Eigenschwingungen werden als harmonische Oszillatoren angesehen, und jedem
dieser Oszillatoren wird nach dem klassischen Gleichverteilungssatz die mittlere thermische Ener-
gie kBT zugeordnet (jeweils kBT/2 für die kinetische und die potentielle Energie). Die Strah-
lungsenergie im (Kreis)-Frequenzintervall [ω, ω + dω] ist

Uklass(ω, T )dω = g(ω) · kBTdω = L3 ω2

π2c3
kBTdω .

Üblicherweise gibt man die spektrale Energiedichte ρ an, die Energie pro Frequenzeinheit und
Volumeneinheit. Wir erhalten sie, indem wir die obige Gleichung durch das Volumen V = L3

des Kastens dividieren:

ρklass(ω, T )dω =
ω2

π2c3
kBT dω . (3.10)

Dies ist die Formel von Rayleigh und Jeans, die um 1900 vorgestellt wurde. Sie ist äußerst
problematisch, denn die vorhergesagte Strahlungsenergie wächst quadratisch mit der Frequenz
an und divergiert sogar im Limes ω →∞. Das ist natürlich völlig unvereinbar mit dem Energie-
Erhaltungssatz. Im Rahmen der klassischen Physik konnte aber niemand eine Lösung dieses
Problems finden, und daher wurde der Ausdruck “Ultraviolett-Katastrophe” geprägt.

Die Planck-Formel
Max Planck fand schießlich einen Ausweg aus dieser existenziellen Krise der klassischen Physik,
aber der Preis war hoch. Er sah sich gezwungen, radikal neue Konzepte einzuführen. Planck
postulierte, dass die Energie der Eigenschwingungen proportional zu ihrer Frequenz ist und dass
sie - im krassen Gegensatz zur klassischen Mechanik oder Elektrodynamik - keine kontinuier-
liche Variable ist, sondern nur dikrete, äquidistante Werte annehmen kann. Die von Planck
hergeleitete Strahlungsformel lautet

ρth(ω, T )dω =
ω2

π2c3
· ~ω
e~ω/(kBT ) − 1

dω . (3.11)

Sie wurde von Planck so konstruiert, dass sie die experimentellen Daten sehr gut reprodu-
ziert. Die mit Gl. (3.11) berechnete Strahlungsleistung wächst zunächst quadratisch mit ω an,
durchläuft dann ein Maximum und fällt zu hohen Frequenzen auf null ab. Im Bereich kleiner Fre-
quenzen stimmt sie mit der nach Rayleigh-Jeans berechneten Strahlungsleistung überein. Das
ist im rechten Bild der Abb. 3.10 gut zu erkennen und ist auch mathematisch leicht verständlich.
Für ~ω � kBT gilt

e~ω/(kBT ) ≈ 1 +
~ω
kBT

und
~ω

e~ω/(kBT ) − 1
≈ kBT .
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Abbildung 3.1: Vergleich der Strahlungsformeln von Planck (durchgezogene rote Kurven) und Rayleigh-

Jeans (gestrichelte blaue Kurven). Aufgetragen ist jeweils ρ(ω, T ) als Funktion der normierten Frequenz

ω/ωmax, wobei ωmax die Frequenz ist, bei der die Planck-Kurve ihr Maximum erreicht. Die Strahlungs-

formeln stimmen nur bei sehr kleinen Werten von ω/ωmax überein.

Wir diskutieren hier nicht die Planck’sche Herleitung seiner Strahlungsformel, sondern präsen-
tieren eine modernere Herleitung unter Benutzung der uns heute zur Verfügung stehenden Hilfs-
mittel, die um 1900 unbekannt waren. Die spektrale Energiedichte ergibt sich als Produkt
der Zustandsdichte g(ω) gemäß Gl. (A.8), der Photonen-Energie ~ω und der Bose-Einstein-
Verteilungsfunktion fBose(~ω, T ) gemäß Gl. (3.8):

ρth(ω, T ) = g(ω) · ~ω · fBose(~ω, T ) =
ω2

π2c3
· ~ω

exp
(

~ω
kBT

)
− 1

. (3.12)

Oft trägt man die Strahlungsenergiedichte als Funktion der Wellenlänge auf (siehe Abb. 3.2).
Wegen ω = 2πc/λ , dω = −2πc/λ2 dλ lautet die Planck-Formel dann

ρth(λ, T )dλ =
16π2~ c
λ5

· 1

e2π~ c/(λ kBT ) − 1
dλ . (3.13)

Abbildung 3.2: Die thermische Strahlungsenergiedichte als Funktion der Wellenlänge für Temperaturen

von 6000, 5000 und 4000 Kelvin.
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3.3.2 Wärmekapazität von Festkörpern

Die thermische Energie eines Festkörpers steckt vorwiegend in den Schwingungen, die die Atome
um ihre Ruhelage ausführen. In Metallen können zusätzlich auch noch die frei beweglichen
Leitungselektronen thermische Energien aufnehmen, aber infolge des Ausschließungsprinzips ist
ihr Beitrag zur Wärmekapazität sehr gering; dies wird im nächsten Abschnitt erläutert.

Wir betrachten 1 Mol eines Festkörpers, der eine Kristallstruktur besitzt und die Form eines
Würfels der Kantenlänge L hat. Jedes der NA = 6,022 ·1023 Atome im Kristallgitter kann in drei
unabhängigen Raumrichtungen schwingen, daher gibt es 3NA Eigenschwingungszustände, also
6NA Freiheitsgrade. (Zur Erinnerung: jedem Schwingungszutand entsprechen 2 Freiheitsgrade,
da ein harmonischer Oszillator sowohl kinetische wie potentielle Energie hat). Nach dem Gleich-
verteilungssatz (1.28) sollte die molare Wärmekapazität1 den Wert C = 6NAkB/2 = 3R haben.
Dies ist der “klassische Wert”, der nach Dulong und Petit benannt ist. Experimentell misst
man C = 3R nur bei hinreichend hohen Temperaturen, während bei niedrigen Temperaturen
ein viel kleinerer Wert herauskommt. Im Grenzfall T → 0 geht C sogar gegen null. Wie bei
Molekülen “frieren” auch in Kristallgittern die Schwingungen ein, wenn die Temperatur absinkt.
Zur Erklärung braucht man die Quantentheorie.

Abbildung 3.3: a) Die molaren Wärmekapazitäten von Blei, Aluminium und Diamant als Funktion

der Temperatur T . b) Die molare Wärmekapazität C(T ) gemäß der Debye-Theorie, aufgetragen als

Funktion der normierten Temperatur T/ΘD (durchgezogene Kurve). Die experimentellen C-Werte von

Blei (ΘD = 105 K), Aluminium (ΘD = 428 K) und Diamant (ΘD = 2230 K) stimmen gut mit der Debye-

Theorie überein.

Die gemessenen Wärmekapazitäten von Blei, Aluminium und Diamant sind in Abb. 3.3a
als Funktion der Temperatur aufgetragen. Die Kurven sehen extrem unterschiedlich aus. Das
weiche Metall Blei erreicht den Dulong-Petit-Wert von C = 3R oberhalb von 100 K, das härtere
Aluminium oberhalb von 300 K. Diamant, härteste Stoff überhaupt, kommt überhaupt nicht in
den klassischen Bereich. Wie kann man dies seltsame Verhalten erklären?

Das erste brauchbare Modell wurde von Albert Einstein vorgeschlagen, der die Annahme
machte, dass die Atome genau eine Schwingungsfrequenz besitzen. Das Einstein-Modell haben
wir in Kap. 2.2.3 diskutiert. Eine wesentliche Verfeinerung stammt von Peter Debye. In der von
ihm entwickelten Theorie der Wärmekapazität von Festkörpern wird ein breites Frequenzspek-
trum angenommen. Es wird vorausgesetzt, dass die Frequenz der Gitterschwingungen linear von
der Wellenzahl abhängt, ω ∼ k. (In Wahrheit tritt eine Dispersion bei Gitterschwingungen auf,
die Funktion ω = ω(k) ist nichtlinear. Die dadurch bewirkten Korrekturen an der Debye-Theorie

1Das Volumen eines Festkörpers ändert sich nur geringfügig mit der Temperatur, daher ist die bei Gasen
wichtige Unterscheidung von CV und Cp hier überflüssig.
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sind erstaunlich klein).

In Festkörpern gibt es longitudinale und transversale Gitterschwingungen. Die Quanten
dieser Schwingungen nennt man Phononen. Sie haben eine gewisse Ähnlichkeit mit den Licht-
quanten, den Photonen, und gehorchen wie diese der Bose-Einstein-Statistik. In Anhang A.3
wird gezeigt, dass die Zustandsdichten der transversalen und longitudinalen Phononen sowie die
gesamte Zustandsdichte durch folgende Formeln beschrieben werden

gt(ω) = L3 ω2

π2v3
t

, g`(ω) = L3 ω2

2π2v3
`

, g(ω) = gt(ω) + g`(ω) =
L3

2π2

[
2

v3
t

+
1

v3
`

]
ω2 . (3.14)

Dabei ist vt die Schallgeschwindigkeit für transversale Wellen und v` die Schallgeschwindigkeit
für longitudinale Wellen.

Die Gesamtzahl der unabhängigen Eigenschwingungen erhält man durch Integration über
die gesamte Zustandsdichte g(ω) = gt(ω) + g`(ω). Da diese Zahl den endlichen Wert 3NA

hat, folgt daraus die Existenz einer maximalen Frequenz der Gitterschwingungen. Diese wird
Debye-Frequenz ωD genannt. Sie berechnet sich aus der Beziehung

3NA =

∫ ωD

0
g(ω)dω =

L3

2π2

[
2

v3
t

+
1

v3
`

] ∫ ωD

0
ω2dω =

L3

2π2

[
2

v3
t

+
1

v3
`

]
ω3
D

3
. (3.15)

Die der Maximalfrequenz entsprechende Debye-Temperatur wird durch folgende Gleichung defi-
niert

kBΘD = ~ωD . (3.16)

Mit Hilfe der Gleichungen (3.14) und (3.15) findet man eine sehr einfache Darstellung für die
gesamte Zustandsdichte

g(ω) =
9NA

ω3
D

ω2 . (3.17)

Um die innere Energie des Festkörpers zu berechnen, multiplizieren wir die Zustandsdichte g(ω)
mit der Phononen-Energie ~ω und der Bose-Einstein-Verteilungsfunktion (3.8) und integrieren
über die Frequenz.

U(T ) =

∫ ωD

0
g(ω) ~ω fBose(~ω, T ) dω =

9NA

ω3
D

∫ ωD

0

~ω3

e~ω/(kBT ) − 1
dω . (3.18)

Die molare Wärmekapazität ist

C(T ) =
∂U

∂T
=

9NA

ω3
D

∫ ωD

0

~2ω4

kBT 2

e~ω/(kBT )

(e~ω/(kBT ) − 1)2
dω .

Mit der Abkürzung x = ~ω/(kBT ) kann man die Wärmekapazität wie folgt schreiben

C(T ) = 9R

(
T

ΘD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)2
dx , x =

~ω
kBT

. (3.19)

Wir betrachten zunächst die folgenden Grenzfälle:

(1) Sehr hohe Temperaturen, T � ΘD.
Wegen ω ≤ ωD gilt dann im Integranden

x =
~ω
kBT

≤ ~ωD
kBT

=
ΘD

T
� 1 ⇒ ex ≈ 1 + x ,

x4ex

(ex − 1)2
≈ x2 ,
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man kann also den Integranden näherungsweise durch x2 ersetzen. Damit wird

C ≈ 9R

(
T

ΘD

)3 ∫ ΘD/T

0
x2 dx = 9R

(
T

ΘD

)3 1

3

(
ΘD

T

)3

= 3R für T � ΘD . (3.20)

Für Temperaturen weit oberhalb der Debye-Temperatur gilt somit das klassische Dulong-Petit-
Gesetz.

(2) Sehr tiefe Temperaturen, T � ΘD.
Die obere Grenze des Integrals in Gl. (3.19) ist ΘD/T � 1, näherungsweise ersetzen wir sie
durch ∞ und erhalten

C(T ) ≈ 9R

(
T

ΘD

)3 ∫ ∞
0

x4ex

(ex − 1)2
dx︸ ︷︷ ︸

4π4/15

∼ T 3 für T � ΘD . (3.21)

Bei tiefen Temperaturen ist C proportional zur dritten Potenz der Temperatur und verschwindet
im Grenzfall T → 0. Der 3. Hauptsatz ist erfüllt.

Um die Wärmekapazität für beliebige Temperaturen zu berechnen, kann die Gleichung (3.19)
leicht mit einem Programm wie Mathematica oder MathCad numerisch ausgewertet werden. In
Abb. 3.3b wird C als Funktion der normierten Temperatur T/ΘD gezeigt. In dieser Darstellung
stimmen die experimentellen Daten der verschiedenen Substanzen sehr gut der universellen
theoretischen Kurve überein. Dies ist ein bemerkenswerter Erfolg der Debye-Theorie.

3.4 Anwendung der Fermi-Dirac-Statistik: Elektronengas in Metallen

Metalle werden von Elementen der ersten drei Hauptgruppen des Periodischen Systems der
Elemente gebildet. Die Valenzelektronen sind im Kristall nicht mehr individuellen Atomen
zugeordnet, sondern können sich nahezu ungehindert durch den gesamten Kristall bewegen.
Dies erklärt die hohe elektrische und thermische Leitfähigkeit der Metalle. Das Modell des freien
Elektronengases wurde bereits vor der Entwicklung der Quantentheorie aufgestellt. Paul Drude
konstruierte eine Theorie der elektrischen Leitung und des Ohmschen Widerstandes, die - bei
richtiger Deutung - auch heute noch ihren Wert hat. Die Quantentheorie und insbesondere das
Ausschließungsprinzip führen aber insgesamt zu einschneidenden Modifikationen der klassischen
Beschreibung.

3.4.1 Wellenfunktionen und Zustandsdichte

In einer vereinfachten Modellrechnung wird das periodische Potential im Innern eines Metalls
ignoriert und durch einen Potentialtopf mit flachem Boden ersetzt. Das Metallstück habe die
Form eines Würfels der Kantenlänge L, das Volumen ist V = L3. Es wird ein kubisches Kri-
stallgitter mit einem Atom pro Elementarzelle gewählt, und die Länge L wird als sehr gross
im Vergleich zu atomaren Dimensionen angenommen. Ein typischer Wert ist L = 2 cm. Inner-
halb des Topfes wird V (x, y, z) = 0 gesetzt, außerhalb hat es den Wert V (x, y, z) = +V0. Die
zeitunabhängige Schrödingergleichung

− ~2

2me

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
= Eψ(x, y, z) (3.22)

muss mit den geeigneten Randbedingungen gelöst werden. Für einen Potentialtopf endlicher
Tiefe wird das recht kompliziert, siehe Kap. 3 in Ref. [2], aber hier machen wir uns das Leben
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leicht und benutzen die einfachen Randbedingungen eines Potentialtopfs mit unendlich hohen
Wänden:

ψ(0, y, z) = ψ(L, y, z) = 0 , ψ(x,0, z) = ψ(x, L, z) = 0 , ψ(x, y,0) = ψ(x, y, L) = 0.

Die Lösungen sind stehende Wellen

ψ(x, y, z) =
1

L3/2
sin(k1x) sin(k2y) sin(k3z). (3.23)

Die Zeitabhängigkeit ist wie bei allen Schrödinger-Wellenfunktionen von der Form exp(−iωt)
mit der Kreisfrequenz ω = E/~. Für die Komponenten des Wellenvektors gilt

kj = nj
π

L
mit nj = 1,2,3, .... (3.24)

Die Energie-Eigenwerte sind quantisiert

E =
~2k2

2me
=

~2

2me

(
2πx

L

)2

(n2
1 + n2

2 + n2
3) . (3.25)

Da das Potential im Topf null ist, sind diese Energiewerte identisch mit den kinetischen Energien
der Teilchen.

Unter der Zustandsdichte versteht man die Zahl der Energieniveaus im Intervall [E,E+dE].
In Anhang A wird bewiesen, dass die Zustandsdichte eines dreidimensionalen Elektronengases
durch folgenden Ausdruck gegeben ist

g(E)dE =
L3

2π2

(
2me

~2

)3/2√
E dE . (3.26)

Sie wächst proportional zur Wurzel aus der (kinetischen) Energie an.

Anmerkung: In dünnen Halbleiterschichten kann man 2D-Elektronengase realisieren, sie haben eine

von der Energie unabhängige Zustandsdichte.

3.4.2 Fermi-Energie

Wie werden die Energieniveaus besetzt? Im Kristallvolumen V = L3 gibt es N = (L/a)3

Atome. Wenn man 1 Leitungselektron pro Atom annimmt, so gibt es auch N Elektronen, d.h.
die Elektronendichte ist n = N/V . Bei niedriger Temperatur werden die Energieniveaus von
unten her mit jeweils 2 Elektronen entgegengesetzter Spinausrichtung besetzt (Abb. 3.4). Die
Fermi-Energie gibt an, bis zu welcher Höhe die Niveaus besetzt werden müssen, damit alle Elek-
tronen untergebracht werden können. Anschaulich gesprochen entspricht sie der Füllhöhe in
einer Badewanne. Die Fermi-Energie muss nicht mit einem der Energieniveaus zusammenfallen,
generell liegt sie zwischen dem höchsten besetzten Energieniveau und dem nächsten freien Ni-
veau. Man kann sie berechnen, indem man die Bedingung ausnutzt, dass das Integral über die
Zustandsdichte gleich der Zahl der Elektronen sein muss:

N =

∫ EF

0
g(E)dE =

V

2π2

(
2me

~2

)3/2 2

3
E

3/2
F , V = L3.

Dies führt zu der wichtigen Formel

EF =
π2~2

2me

(
3n

π

)3/2

, n =
N

V
. (3.27)
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Die Austrittsarbeit Wa = V0 − EF des Metalls ist die Energie, die aufzuwenden ist, wenn man
ein Elektron aus dem Metall entfernen möchte. Sie entspricht in unserem Badewannenmodell
dem Höhenunterschied zwischen der Wasseroberfläche und dem Wannenrand. Die Austritts-
arbeit spielt eine wichtige Rolle bei der Interpretation des photoelektrischen Effekts und der
Glühemission von Elektronen aus Festkörpern.

EF

Wa

V(x,y,z) = 0

V(x,y,z) = +V0

L

Donnerstag, 6. Dezember 12

Abbildung 3.4: Besetzung der Energieniveaus mit je zwei Elektronen und die Lage der Fermi-Energie.

Gezeigt wird auch die Austrittsarbeit Wa. Der Übersichtlichkeit halber werden in diesem Bild nur wenige

Energieniveaus gezeigt. In Wahrheit ist die Anzahl der Niveaus extrem hoch, wenn die Kantenlänge L

des Metallwürfels im cm-Bereich liegt.

Die Fermi-Energie der Metalle ist sehr hoch, sie beträgt 5,51 eV bei Silber und 7,04 eV bei
Kupfer. Dies ist viel größer als typische thermische Energien, kBT = 0,025 eV bei T = 300 K.
Die Gesamtenergie des Elektronengases ist

U =

∫ EF

0
E g(E) dE =

3

5
N EF .

Die mittlere kinetische Energie eines Elektrons ist

〈Ekin〉 =
3

5
EF ≈ 3 eV� 3

2
kBT . (3.28)

Die Elektronen im Metall verhalten sich offensichtlich ganz anders als die Teilchen in einem
normalen Gas. Man spricht von einem entarteten Fermi-Gas2.

3.4.3 Wärmekapazität des Elektronengases

Die innere Energie eines klassischen Gases ist proportional zur absoluten Temperatur, und die
Wärmekapazität bei konstantem Volumen ist unabhängig von T (abgesehen von der unmittel-
baren Nähe des absoluten Nullpunkts). Für ein Mol eines atomares Gases gilt U = 3/2NAkBT
und CV = 3/2NAkB = 3/2R. Bei dem Elektronengas in einem Metall ist die innere Energie
viel größer als bei einem klassischen Gas, aber sie ändert sich nur sehr wenig mit wachsender
Temperatur. Die Wärmekapazität ist viel geringer als im klassischen Fall, und sie ist nicht
konstant, sondern hängt linear von T ab. Dies wollen wir jetzt untersuchen.

2Traditionell haben Physiker eine kuriose Vorstellung von der Bedeutung des Wortes “Entartung” (degeneracy),
das ist uns schon in der Quantenmechanik begegnet. Nach der unerträglichen Diffamierung der modernen Kunst
als “Entartete Kunst” durch das Nazi-Regime sollte man diese Bezeichnungsweise eigentlich aufgeben, Tradition
und Beharrungsvermögen sind aber wohl zu stark.
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Für Elektronen und andere Spin-1/2-Teilchen ist die Besetzungswahrscheinlichkeit eines
Energieniveaus E nicht durch den Boltzmann-Faktor exp(−E/(kBT ) der klassischen Thermody-
namik gegeben, sondern man muss stattdessen die Fermi-Dirac-Verteilungsfunktion3 verwenden:

fFermi(E, T ) =
1

exp
(
E−EF
kBT

)
+ 1

. (3.29)

Die Zahl der Elektronen im Energieintervall [E,E + dE] ist

N(E, T )dE = g(E)fFermi(E, T )dE . (3.30)
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Abbildung 3.5: Die Fermi-Dirac-Verteilungsfunktion fFermi(E, T ) für T = 1 K (blau) und T = 300 K

(rot) und das Produkt g(E)fFermi(E, T ).

Das Ausschließungsprinzip hat einen dramatischen Einfluss auf die Wärmekapazität des Elek-
tronengases. Die meisten Elektronen sind außerstande, thermische Energie aufzunehmen, da
alle erreichbaren Energieniveaus bereits besetzt sind. Nur die Elektronen in unmittelbarer Nähe
der Fermienergie finden freie Niveaus. Grob abgeschätzt sind dies die Elektronen im Bereich
[EF − kBT ≤ E ≤ EF + kBT ]. Für 1 Mol eines Metalls mit einem Leitungselektron pro Atom
haben wir insgesamt N = NA = 6,02 · 1023 Elektronen, aber nur etwa NA (2kBT/EF ) Elek-
tronen können thermische Energie aufnehmen. Daher wird die molare Wärmekapazität des
Elektronengases Cel(T ) ≈ 3/2R · (2kBT/EF ). Eine genauere Rechnung ergibt

Cel(T ) =
π2

2
R
kBT

EF
∼ T . (3.31)

Im Unterschied zu einem idealen atomaren Gas hat die molare Wärmekapazität des Elektro-
nengases nicht den konstanten Wert 3/2R, sondern ist viel kleiner und wächst linear mit der
Temperatur an.

In Abb. 3.6 wird die Wärmekapazität von Kupfer als Funktion der Temperatur gezeigt.
Der Anteil der Gitterschwingungen dominiert bei Raumtemperatur, in diesem Bereich trägt das
Elektronengas weniger als 1% bei. Unterhalb von 10 Kelvin wird das anders. Dort kann man
schreiben

C(T ) = Cel(T ) + Cgitter(T ) ≈ γelT + γgitterT
3 . (3.32)

Im Bereich 0 < T < 3 K dominiert das Elektronengas.
Wie kann man die beiden Anteile experimentell trennen? Dafür ist es zweckmäßig, den Quoti-
enten C(T )/T zu bilden

C(T )

T
≈ γel + γgitterT

2 .

3Die Fermi-Energie hängt geringfügig von T ab, das wird hier ignoriert.
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Trägt man diesen Quotienten als Funktion von T 2 auf, so erwartet man einen linearen Verlauf.
Genau so ein Verhalten wird experimentell beobachtet, siehe das rechte Bild in Abb. 3.6. Die
experimentell bestimmten Koeffizienten γel und γgitter stimmen recht gut mit den theoretischen
Werten überein. Dies ist eine eindrucksvolle Bestätigung der quantenmechanischen Vorhersagen.
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Abbildung 3.6: Links und Mitte: Die Wärmekapazität von Kupfer als Funktion der Temperatur. Die

Debye-Temperatur von Cu beträgt ΘD = 343 K. Rechts: Der Quotient C(T )/T aufgetragen als Funktion

von T 2. Die Punkte sind ausgewählte Messwerte von C.A. Bailey und P.L. Smith, Phys. Rev. 114, 1010

(1959).

3.5 Abschließende Bemerkungen

3.5.1 Bose-Einstein-Statistik für verdünnte Gase

Es soll gezeigt werden, dass bei hinreichend verdünnten Gasen die Bose-Einstein-Statistik in die
klassische Statistik übergeht. Dazu betrachten wir den Ausdruck (3.5) und nehmen an, dass
die Besetzungszahlen ni zwar alle sehr groß gegen eins sind, aber doch sehr viel kleiner als die
Multiplizitäten gi. Dann können wir den i-ten Term in (3.5) wie folgt umformen

(ni + gi − 1)!

(gi − 1)!ni!
=

(ni + [gi− 1])(ni − 1 + [gi− 1])(ni − 2 + [gi− 1])...(1 + [gi− 1])(gi − 1)!

(gi − 1)!ni!

=
(ni + [gi− 1])(ni − 1 + [gi− 1])(ni − 2 + [gi− 1])...(1 + [gi− 1])

ni!
.

In der zweiten Zeile steht im Zähler ein Produkt bestehend aus ni Faktoren, die für den ange-
nommen Fall gi � ni � 1 alle ungefähr den Wert gi haben. Also wird aus dem Term i

(ni + gi − 1)!

(gi − 1)!ni!
≈
gni
i

ni!
.

Wir erhalten insgesamt

PBose(n1, ....nk) =
(n1 + g1 − 1)!.....(nk + gk − 1)!

(g1 − 1)!n1!........(gk − 1)!nk!
≈

gn1
1 ......gnk

k

n1!n2!n3!....nk!
. (3.33)

Dies ist der klassische Ausdruck (2.16) der thermodynamischen Wahrscheinlichkeit für Gase.
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3.5.2 Die Rolle der Quantentheorie in der Thermodynamik

Wir haben gesehen, dass die Quantentheorie zu massiven Korrekturen der klassischen Ther-
modynamik führt. Die Gitterschwingungen müssen mit der Quantentheorie des harmonischen
Oszillators behandelt werden, und für die thermodynamische Besetzungswahrscheinlichkeit ist
die Bose-Einstein-Verteilungsfunktion gemäß Gl. (3.8) anzuwenden. Die Konsequenz ist, dass
die Wärmekapazität des Kristallgitters nur bei hinreichend hohen Temperaturen den klassischen
Wert C = 3R annimmt, bei kleinen Temperaturen aber proportional zu T 3 wird und für T → 0
verschwindet. Das Elektronengas wird wegen des Pauliprinzips noch stärker von der Quanten-
theorie beeinflusst. Nur ein kleiner Bruchteil der Leitungselektronen ist imstande, thermische
Energie aufzunehmen. Die Konsequenz ist, dass die Wärmekapazität des Elektronengases nur
etwa 1% des klassischen Dulong-Petit-Wertes beträgt.

Aus dem 3. Hauptsatz der Thermodynamik folgt, dass die Wärmekapazitäten aller Substan-
zen bei Annäherung an den absoluten Nullpunkt verschwinden müssen. Dieses experimentell
verifizierte Verhalten kann nicht durch die klassische Thermodynamik, sondern nur durch die
Quantentheorie erklärt werden.
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Anhang A

Zustandsfunktionen und Zustandsdichte

A.1 Zustandsfunktionen

Um ein makroskopisches System zu charakterisieren, braucht man eine Reihe von Zahlenanga-
ben. Für ein ideales Gas sind dies die Anzahl N der Atome/Moleküle, das Volumen V und
die Temperatur T . Die anderen Größen wie Druck, innere Energie oder Entropie sind dann
eindeutige Funktionen von N , V und T . Man nennt diese Größen auch Zustandsfunktionen.
In der Thermodynamik benötigen wir aber noch weitere Größen, die keine Zustandsfunktionen
sind, z.B. die bei einer Expansion geleistete Arbeit W oder die zugeführte Wärme Q.

Wir wollen uns ansehen, was es bedeutet, dass die innere Energie U und die Entropie S Zu-
standsfunktionen sind, die Wärme Q und die Arbeit W hingegen nicht. Bei der isothermen
Expansion eines idealen Gases vom Anfangsvolumen VA auf das Endvolumen VB > VA bleibt
die innere Energie invariant und hat den Wert

UA = UB =
3

2
kBN T.

Die innere Energie eines idealen Gases hängt nur von der Teilchenzahl und der Temperatur ab,
aber nicht vom Volumen. Die Entropieänderung berechnet man gemäß Gl. (2.24)

∆S = SB − SA = kBN ln

(
VB
VA

)
, (A.1)

und ∆S = SB − SA ist unabhängig davon, auf welche Art das System von VA nach VB gelangt,
sei es durch einen reversiblen oder einen irreversiblen Prozess.
Im Unterschied dazu hängen die vom Gas geleistete Arbeit W und die dabei absorbierte Wärme
Q explizit vom Verlauf des Prozesses ab und nicht allein von Anfangs- und Endzustand. Bei der
reversiblen Expansion eines idealen Gases (Bewegung eines Kolbens) wird eine Arbeit geleistet
und Wärme zugeführt. Arbeit und Wärme sind beide ungleich null, W = Q > 0. Bei der
irreversiblen Expansion eines idealen Gases infolge des Platzens einer Trennfolie wird keine
Arbeit geleistet und keine Wärme zugeführt, und es gilt W = 0 und Q = 0. Daraus wird
unmittelbar klar, dass Arbeit und Wärme keine Zustandsfunktionen sind.

A.2 Berechnung der Zustandsdichte für Gase

Um die statistische Mechanik auf Gase anwenden zu können, müssen die Gewichtsfaktoren gi
bestimmt werden. Dazu benötigen wir die Quantenmechanik, und zwar egal ob es sich um ein
konventionelles Gas wie Helium oder Luft handelt oder um das “nichtklassische” Elektronengas
in Metallen. Das Gas sei in einen würfelförmigen Kasten mit der Kantenlänge L eingesperrt. Im
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Innern des Kastens sind die Atome frei beweglich, wir dürfen also das Potential V = 0 setzen. Die
Tatsache, dass die Atome nicht aus dem Kasten entweichen können, berücksichtigen wir dadurch,
dass wir an den Wänden V →∞ gehen lassen. Die zeitunabhängige Schrödingergleichung lautet

− ~2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
= Eψ(x, y, z) (A.2)

mit den Randbedingungen

ψ(0, y, z) = ψ(L, y, z) = 0 , ψ(x,0, z) = ψ(x, L, z) = 0 , ψ(x, y,0) = ψ(x, y, L) = 0.

Die Lösungen sind stehende Wellen

ψ(x, y, z) =
1

L3/2
sin(k1x) sin(k2y) sin(k3z). (A.3)

Eine stehende Welle kann immer als Superposition einer vorwärts und einer rückwärts laufenden
Welle dargestellt werden, daher erfassen wir mit dieser Beschreibung auch bewegte Teilchen. Die
Zeitabhängigkeit ist wie bei allen Schrödinger-Wellenfunktionen von der Form exp(−iωt) mit
der Kreisfrequenz ω = E/~. Für die Komponenten des Wellenvektors gilt

kj = nj
π

L
mit nj = 1,2,3, .... (A.4)

Die Energie-Eigenwerte sind quantisiert

E =
~2

2m
(k2

1 + k2
2 + k2

3) =
~2

2m

(π
L

)2
(n2

1 + n2
2 + n2

3). (A.5)

Da das Potential im Topf null ist, sind diese Energiewerte identisch mit den kinetischen Energien
der Teilchen.

Die Kastenlänge L sei sehr groß im Vergleich zu atomaren Dimensionen. Dann liegen die
Energie-Eigenwerte sehr nah beieinander, und man kann die Energie als nahezu kontinuierliche
Variable behandeln. Die Gewichtsfaktoren gi werden durch eine kontinuierliche Funktion g(E)
ersetzt, die man die Zustandsdichte nennt. Sie ist wie folgt definiert:

g(E)dE ist die Anzahl der Energieniveaus im Intervall [E,E + dE].

Das Intervall [E,E + dE] entspricht einem Intervall [k, k + dk] im k-Raum, das wir wie folgt
berechnen

E =
~2k2

2m
⇒ dE =

~2

m
kdk , dk =

m

~2k
dE .

(Wie üblich definieren wir k = |k| =
√
k2

1 + k2
2 + k2

3). Im (k1, k2, k3)-Raum bilden die erlaub-
ten (k1, k2, k3)-Werte ein kubisches Gitter mit der Gitterkonstanten π/L. Das Volumen der
Elementarzelle ist (π/L)3. Das Intervall [k, k + dk] entspricht einer Kugelschale im (k1, k2, k3)-
Raum, die ein Volumen 4πk2dk/2 hat. Die Zahl der Gitterpunkte in dieser Schale ist

4πk2dk

(π/L)3
.

Da alle ki > 0 sind, müssen wir 1/8 dieser Zahl nehmen. Die Zustandsdichte ist daher

g(k)dk =
πk2

2(π/L)3
dk = L3 πk

2

2π3
dk . (A.6)
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Dies gilt für Atome mit Spin S = 0, für die jedes Energieniveau einfach ist. Nun benutzen wir
dk = m/(~2k)dE und finden

g(E)dE = L3 2π
( m

2π2~2

)3/2√
E dE . (A.7)

Das Elektronengas in einem Metall hat wegen der zwei Spineinstellungen der Elektronen eine
zweimal so große Zustandsdichte.

A.3 Zustandsdichte für Photonen und Phononen

Photonen
Um die Zustandsdichte eines Photonengases zu ermitteln, muss man die dreidimensionale Wel-
lengleichung mit Randbedingungen lösen. In einem würfelförmigen Kasten mit spiegelnden
Wänden ergeben sich für die elektrische Feldstärke ebenfalls stehende Wellen der Form

sin(k1x) sin(k2y) sin(k3z) mit kj = nj
π

L
.

Für Photonen ist der Zusammenhang zwischen Energie und Impuls anders als für Teilchen mit
Masse m > 0:

E = ~ω = p c = ~k c , ω = k c =
√
k2

1 + k2
2 + k2

3 c .

Die Anzahl der (k1, k2, k3)-Werte im Intervall [k, k + dk] ist durch Gl. (A.6) gegeben, die wir
allerdings noch mit einem Faktor 2 multiplizieren müssen, da es zwei unabhängige Polarisati-
onsrichtungen gibt. Die Zustandsdichte im Frequenzbereich wird somit

g(ω)dω = L3 ω2

π2c3
dω . (A.8)

Phononen
In Festkörpern gibt es longitudinale und transversale Gitterschwingungen. Die Quanten die-
ser Schwingungen nennt man Phononen. Sie habe gewisse Ähnlichkeiten mit den Photonen,
den Quanten der elektromagnetischen Wellen: Phononen verhalten sich wie Bosonen, sie sind
masselos, und ihre Zahl ist nicht konstant. Man kann daher die modifizierte Bose-Einstein-
Verteilungsfunktion (3.7) auf sie anwenden. Allerdings ist ihre Ausbreitungsgeschwindigkeit
viel kleiner als c und identisch mit der Schallgeschwindigkeit in dem Festkörper. Ein zwei-
ter Unterschied zur Optik ist, dass es sowohl longitudinale wie transversale Phononen gibt. Bei
transversalen Schallwellen gibt es zwei orthogonale Schwingungsrichtungen, genau wie bei Licht-
wellen, während longitudinale Schallwellen nur entlang der Ausbreitungsrichtung schwingen, also
unpolarisiert sind.

Die Gl. (A.8) gilt auch für transversale Phononen, wenn man die Lichtgeschwindigkeit c
durch die Geschwindigkeit vt der transversalen Schallwellen im Festkörper ersetzt.

gt(ω)dω = L3 ω2

π2v3
t

dω . (A.9)

Longitudinale Schallwellen haben nur eine Schwingungsrichtung, und daher ist die Zustands-
dichte nur halb so groß :

g`(ω)dω = L3 ω2

2π2v3
`

dω . (A.10)

Die Geschwindigkeit v` der longitudinalen Schallwellen unterscheidet sich von der Geschwindig-
keit vt der transversalen Schallwellen.
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