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4Humboldt Universität zu Berlin, Institut für Physik, Newtonstraße 15, 12489 Berlin, Germany
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Abstract: Electromagnetic corrections to hadronic vacuum polarization contribute sig-

nificantly to the uncertainty of the Standard Model prediction of the muon anomaly, which

poses conceptual and numerical challenges for ab initio lattice determinations. In this study,

we compute the non-singlet contribution from intermediate Euclidean current separations

in quantum chromo- and electrodynamics (QCD+QED) using C⋆ boundary conditions in

two ways: either non-perturbatively by sampling the joint probability distribution directly

or by perturbatively expanding from an isospin-symmetric theory. This allows us to com-

pare the predictions and their uncertainties at a fixed lattice spacing and volume, including

fully the sea quarks effects in both cases. Treating carefully the uncertainty due to tuning

to the same renormalized theory with Nf = 1+2+1 quarks, albeit with unphysical masses,

we find it advantageous to simulate the full QCD+QED distribution given a fixed num-

ber of samples. This study lays the ground-work for further applications of C⋆ boundary

conditions to study QCD+QED at the physical point, essential for the next generation of

precision tests of the Standard Model.
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1 Introduction

The Standard Model (SM) prediction for the muon anomalous magnetic moment aµ =

(g−2)µ/2 [1, 2] is coming into sharper focus since several lattice quantum chromodynamics

(QCD) studies [3–6] have shown internal consistency and further highlighted the tension

between lattice and data-driven dispersive evaluations indicated in ref. [3]. The lattice
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QCD [3–6] results1 including a recent high-precision hybrid calculation [7] point towards

compatibility with the experimental results from BNL and Fermilab [8–11], and the no

new physics scenario. Further tensions in the e+e− → hadrons cross sections have arisen

in light of the CMD-3 data [12], which call for scrutiny of all assumptions underpinning

the SM predictions from the data-driven determination of the HVP contribution [1, 13].

While an impressive array of lattice computations have been able to pin down sub-

contributions to the HVP [14–24], in particular from small and intermediate Euclidean

separations, the so-called short-distance and window quantities, certain lacunae still exist.

In particular, the final result from Fermilab’s E989 experiment has now achieved a precision

of 127 parts per billion (ppb) [11], thereby reinforcing the need for a per mille theoretical

determination of the HVP contribution that matches the experimental accuracy. Conse-

quently, the inclusion of leading QED corrections in such ab initio computations remains

essential. On the lattice, this requires either computing the corrections to the leading-order

(in QED) result, defined usually in a scheme which naturally incorporates isospin symme-

try such that the corrections become so-called isospin-breaking effects, or else computing

directly in QCD+QED without an intermediate determination in the isospin-symmetric

theory. In either case, the incorporation of QED is challenging on the lattice for a num-

ber of conceptual and technical reasons, a contributing factor to the BMW computation

remaining the only complete computation of the muon anomaly in QCD+QED that incor-

porates all dynamical isospin-breaking effects.

To compute hadronic quantities and their electromagnetic corrections in numerical

lattice simulations, it is convenient, although not necessary, to use the same cutoff provided

by the lattice size L and lattice spacing a for both QCD and QED. Alternative infinite-

volume QED approaches have also been explored [25, 26]. The implementation of QED

in a finite volume is, however, not trivial due to constraints imposed by the long-range

nature of electromagnetism, which forbid the existence of charged states. This has been

overcome in many ways [27–33], and in this work we make use of C⋆ boundary conditions,

which permit a local and gauge-invariant formulation of finite-volume QED [34]. These

properties likely result in better finite-volume effects compared to other formulations [35]

and good scaling behaviour towards the continuum [36], making this setup ideal in the

pursuit of per mille accuracy on the gold-plated hadronic quantities that form the input

for precision tests of the SM.

In this work, we consider an observable closely related to the muon’s HVP contribution

in the intermediate window defined by the correlator of the U -spin vector current

Vµ(x) =
1
2{s̄(x)γµs(x)− d̄(x)γµd(x)}, (1.1)

which is flavour non-singlet when md = ms even when isospin-symmetry is explicitly bro-

ken, as in the setup we use in this work. Due to its flavour quantum numbers, its correlation

function is represented by quark-line connected diagrams which are significantly less compli-

cated to compute than the full electromagnetic current correlator, whose isospin-violating

contributions have been recently considered in ref. [37]. If the full SU(3) symmetry of the

1For a recent updated SM prediction by the Muon g − 2 Theory Initiative see [2].
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light quarks is manifest, the contribution of this current correlator represents exactly 75%

of their contribution to the hadronic vacuum polarization. In addition to this simplifica-

tion, the intermediate window we investigate is dominated by current separations between

0.4–1.0 fm, meaning it is neither afflicted by either large finite-volume effects nor discretiza-

tion effects. Therefore, this contribution to the muon anomaly, denoted aU,wµ , represents a

very good quantity to use as a probe observable to test our approach to QCD+QED using

C⋆ boundary conditions.

In the following, we compare and contrast two implementations of QCD+QED with C⋆

boundary conditions, consistent at next-to-leading order in the electromagnetic coupling,

to test their efficiency and utility. On one hand, we expand around an action defined

by QCD in the isospin-symmetric limit, à la Rome-123 (RM123) [38, 39], while on the

other hand we simulate directly the joint QCD+QED distribution non-perturbatively. In

both cases, all effects from the sea quarks are completely included, making the comparison

unambiguous at leading order in the expansion parameters. We make the comparison in

two ways: (i) by fixing the bare parameters of the simulations in both implementations and

comparing the resulting predictions for both aU,wµ as well as the hadronic observables used

to define the renormalized theory, and (ii) by fixing the line of constant physics using those

same hadronic observables and propagating their uncertainty to the physical prediction of

the muon anomaly. Our final results incorporating the uncertainty due to fixing to the

same lines of constant physics are

aU,wµ × 1011 =

{

1094(21) RM123

1085(7) non-perturbative
.

We find the uncertainty in the RM123 method completely dominated by the statistical

uncertainty in the estimation of the isospin-breaking effects due to the sea quarks. This

uncertainty can only be reduced by sampling more gauge-field configurations. Moreover,

the variance is expected to grow linearly with the volume in lattice units, up to logarithmic

corrections in the lattice spacing, making the reduction of this uncertainty very costly

toward the infinite-volume and continuum limits. This work provides the first experience

on the computation of physical predictions with this setup and lays the crucial groundwork

for future computations and moving closer to the physical point.

The rest of this paper is organized as follows. In section 2, we describe the renor-

malization scheme used to define QCD+QED and isospin-symmetric QCD parameters.

Section 3 provides the details of the lattice setup and the discretization of the observ-

able with C⋆ boundary conditions. In section 4, we derive in detail the isospin-breaking

corrections through the RM123 approach. The numerical implementation is described in

section 5 while the analysis and results are discussed in section 6, followed by our concluding

remarks.
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2 Parameterization of QCD+QED and isospin-symmetric QCD

The QCD+QED action with Nf = 4 quark flavors f = u, d, s, c contains six bare parame-

ters: four quark masses mf and the electromagnetic and strong couplings e20 and g20. The

renormalized theory is defined by introducing constraints which fix the bare masses along

the lines of constant physics. Physical predictions for QCD+QED are then unambiguous

in the continuum limit once the lattice scale has been set and ignoring the running of

the electromagnetic coupling, which goes beyond the target accuracy of state-of-the-art

computations.

In this work, we follow the hadronic renormalization scheme of ref. [40] to set the

lattice scale and fix the quark masses. The lattice spacing is set using the gradient-flow

scale
√
8t0. The bare masses of the up, down, strange, and charm quarks are tuned by

fixing the following set of dimensionless hadronic quantities

φ0 = 8t0(M
2
K± −M2

π±),

φ1 = 8t0(M
2
K± +M2

π± +M2
K0),

φ2 = 8t0(M
2
K0 −M2

K±)/αR,

φ3 =
√
8t0(MD±

s
+MD± +MD0),

(2.1)

where αR is the renormalized electromagnetic coupling computed at flow time t0, and the

masses denote those of the light π±,K±,0 and charmed D±,0, D±
s pseudoscalar mesons.

The φi quantities are particularly sensitive to certain combinations of quark masses, as

discussed for example in refs. [41, 42]. Specifically, φ0, φ1, φ2, and φ3 probe (ms −md),

(mu +md +ms), α
−1
R (md −mu), and mc, respectively. As we are only concerned with the

theory accurate to next-to-leading order in the electromagnetic coupling, which is more

than sufficient for the target precision, we can safely set the bare parameter e20 to its

physical value e2 = 4πα = 0.091701237 in the Thomson limit. In the following, we will use

the notation e2 or α to refer to the bare parameters for brevity.

The renormalization conditions we use to define our theory at unphysical quark masses

are given by matching the above quantities to the values

φ⋆0 = 0, φ⋆1 = 2.11, φ⋆2 = 2.36, φ⋆3 = 12.1, (2.2)

which do not match their physical values. We set the gradient-flow scale to the central

value of the Nf = 3 CLS determination [43]

√

8t⋆0 = 0.415 fm. (2.3)

The specific choices for the φi and the scale correspond to a pseudoscalar mass of ap-

proximately Mπ± ≈ MK± ≈ 400MeV in physical units. In QCD+QED, where isospin

symmetry is explicitly broken, the condition φ0 = 0 corresponds to setting md = ms and

there remains a SU(2) flavour symmetry between the down and strange quarks, which we

refer to as U -spin symmetry.

We now turn our attention to QCD in the isospin-symmetric limit, which forms the
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practical starting point of the perturbative approach to QCD+QED. While the parameter-

ization of QCD+QED is unambiguous at the level of accuracy that can be probed in Nature

and the renormalization scheme can be chosen as a matter of convenience, the same is not

true for QCD at the target percent level of precision. In ref. [44], a prescription for lattice

computations has been proposed to facilitate comparisons between high-precision lattice

QCD computations. In this work, because our renormalized theory is still far from the

physical point, where such considerations are important, we impose for isospin-symmetric

QCD the same conditions defined by the values in eq. (2.2) and take the limit of α→ 0 at

a constant φ2, leading to mu = md = ms. In the following, we denote the corresponding

theory by isoQCD for brevity. While the definition of a renormalized isoQCD theory is not

strictly necessary to use as a starting point for QCD+QED computations as we perform

in this study, it is required for computing renormalized results for isospin-breaking effects.

In this work, we will not examine the isospin-breaking effects directly but compare

results for a specific probe observable, aU,wµ , described in detail in section 3.2, computed

in QCD+QED using either the perturbative expansion around the isoQCD action or the

non-perturbative simulation of the joint distribution of QCD+QED. Details about the

implementation of the perturbative approach, originally proposed by the RM123 Collab-

oration [38, 39], are contained in section 4. Firstly, we will compare the results for the

scale-setting quantities t0/a
2 and φi and for aU,wµ at fixed bare parameters: in this case,

both the target observable and the scale-setting quantities will carry an uncertainty. Sec-

ondly, we will compare results for aU,wµ at fixed renormalization scheme: this requires

propagating the uncertainty on the scale-setting quantities to our target observable.

3 QCD+QED on the lattice with C⋆ boundary conditions

Implementing QED on a finite lattice presents additional challenges due to the zero modes

of the photon field, see e.g. ref. [36] for a discussion. One approach for handling these zero

modes is the application of C⋆ boundary conditions, also known as C-periodic boundary

conditions [31–34]. This method provides a rigorous way to simulate QED on a lattice with-

out compromising the theory’s locality or requiring an additional regulator, such as a mass

term for the photon field. Although using C⋆ boundary conditions increases computational

cost due to the need to effectively doubling the volume in the orbifold construction, studies

suggest that finite volume effects are relatively suppressed in such simulations, compensat-

ing at least part of the additional cost [35]. Here, we briefly outline our implementation of

C⋆ boundary conditions; for a comprehensive review, we refer the reader to ref. [34].

On a lattice with a finite size L in k̂ direction, C⋆ boundary conditions on fermionic

and gauge fields are defined using charge conjugation matrix C as

ψf (x+ Lk̂) = ψC
f (x) := C−1ψ̄⊤

f (x),

ψ̄f (x+ Lk̂) = ψ̄C(x) := −ψ⊤
f (x)C,

Uµ(x+ Lk̂) = UC
µ (x) := U∗

µ(x),

Aµ(x+ Lk̂) = AC
µ(x) := −Aµ(x).

(3.1)
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Here, ψf and ψ̄f are the fermionic fields of flavour f , Uµ(x) ∈ SU(3) are the QCD lattice

gauge fields, and Aµ(x) is the photon gauge field. The symbols C, ⊤, and ∗ denote charge

conjugation, transposition, and complex conjugation, respectively. Also note that in our

convention the charge conjugation matrix C obeys CγµC
−1 = −γ⊤µ with the Euclidean

gamma matrices γµ. By imposing the C⋆ boundary conditions in one or more directions,

the photon field Aµ(x) is antiperiodic in those directions, and therefore the zero-modes are

excluded by construction. In this work, we impose C⋆ boundary conditions in three spatial

directions. The details of the computational implementation of C⋆ boundary conditions

are discussed in ref. [45].

3.1 Lattice action

To simulate QCD+QED we discretize the Euclidean path integral of the theory,

Z =

∫

DψDψ̄DUDz e−SF[U,z,ψ̄,ψ] e−Sg,SU(3)[U ] e−Sg,U(1)[z], (3.2)

on a (T/a)× (L/a)3 lattice using (anti-)periodic boundary conditions in the time direction

and C⋆ boundary conditions in the spatial directions. For the SU(3) gauge field we employ

the Lüscher-Weisz discretization of the action [46, 47], while for the U(1) gauge field we

use the Wilson plaquette action in the compact formulation

Sg,U(1)(z) =
1

8πq2elα

∑

x

∑

µ 6=ν

[1− PU(1)
µν (x)], (3.3)

where P
U(1)
µν represents the plaquette built using the U(1) links zµ(x) = eieaqelAµ(x). While

the parameter qel drops out of the action in the continuum limit, at finite lattice spacing,

the compact formulation implies that the electric charge is quantized: only states with a

charge that is an integer multiple of the parameter qel exist in the Hilbert space of the

theory. In finite volume with C⋆ boundary conditions, we use qel = 1/6 to construct

gauge–invariant interpolating operators for charged hadrons, as explained in ref. [34].

The fermionic part of the QCD+QED action has to be modified because of the effect

of the C⋆ boundary conditions. Indeed, the boundaries mix the ψ and ψ̄ degrees of freedom

such that the Dirac operator does not act as a linear operator on the field ψ. The problem

is overcome by defining an extended spinor that contains both the fermion field and its

charge conjugate, i.e.

χ(x) =

(

ψ(x)

ψC(x)

)

, (3.4)

for which the boundary conditions in the spatial directions are set by

χ(x+ Lk̂) = Kχ(x), K =

(

0 1

1 0

)

. (3.5)
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In this new formulation, the measure of the path integral can be simply re-written as

Dχ = DψDψ̄, and the action reads

SF = −
∑

f

a4
∑

x

1

2
χ⊤
f (x)KCDfχf (x). (3.6)

The massive O(a)-improved Wilson-Dirac operator is defined by

Df = Dw,f + δDsw,f +mf , (3.7)

where the Wilson-Dirac term is defined as

Dw,f =

3
∑

µ=0

1

2

[

γµ(∇f
µ +∇f∗

µ )−∇f∗
µ ∇f

µ

]

, (3.8)

with the covariant forward finite-difference operator acting on the spinor as

∇f
µχf (x) = a−1

[(

Uµ(x)z
q̂f
µ (x) 0

0 U∗
µ(x)z

−q̂f
µ (x)

)

χf (x+ aµ̂)− χf (x)

]

. (3.9)

The covariant derivative is not universal for all quarks due to the presence of the compact

U(1) link z
q̂f
µ , with q̂f being the electric charge of the quark of flavour f in units of the

elementary charge qel. The second term in equation (3.7) is the Sheikholeslami-Wohlert

(SW) term

δDsw,f =
i

4

3
∑

µ,ν=0

σµν

{

cSU(3)
sw

(

Ĝµν 0

0 Ĝ∗
µν

)

+ qfc
U(1)
sw

(

F̂µν 0

0 F̂∗
µν

)}

, (3.10)

which removes O(a) discretization effects from the action with appropriately chosen coef-

ficients. Ĝµν and F̂µν are the clover discretizations of the anti-hermitian SU(3) and U(1)

tensors. The SU(3) tensor is defined as in ref. [48] while the U(1) tensor is constructed as

F̂µν(x) =
i

4qel
Im{zµν(x) + zµν(x− µ̂) + zµν(x− ν̂) + zµν(x− µ̂− ν̂)}, (3.11)

with zµν(x) = exp{ieqela[Aµ(x) +Aν(x+ µ̂)−Aµ(x+ ν̂)−Aν(x)]}.

The action of the Dirac operator on the doublet field χf may then be given through

Dfχf (x) =(mf + 4)χf (x)−
1

2

∑

µ

(1− γµ)
[

eieqfaAµτ3Wµ

]

(x)χf (x+ µ̂)

− 1

2

∑

µ

(1 + γµ)
[

eieqfaAµτ3Wµ

]

(x− µ̂)†χf (x− µ̂) + δDsw,f χf (x), (3.12)

where eieqfaAµτ3Wµ is the SU(3) × U(1) field, with the following definitions of the SU(3)
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parallel transporter Wµ and the matrix τ3:

Wµ(x) =

(

Uµ(x) 0

0 U∗
µ(x)

)

, τ3 =

(

1 0

0 −1

)

. (3.13)

The same action is used for isoQCD simulations with the electromagnetic charge of the

quarks in eq. (3.12) set to zero.

3.2 Flavour non-singlet contribution in the intermediate window

In this work, we consider the U -spin current

Vµ(x) =
1

2

∑

f=d,s

Qf χ̄f (x)γµ
τ3
2
χf (x), (3.14)

defined using the doublet notation introduced in the previous subsection, with χ̄ = −χ⊤KC,

and the charge assignments Qs = 1 = −Qd, and compute the Euclidean-time correlator in

the time-momentum representation [49]

GU(t) = −1

3

3
∑

k=1

∫

d3x 〈Vk(x)Vk(0)〉 . (3.15)

The intermediate window of this contribution to the muon’s HVP is obtained via the

integral

aU,wµ =

(

α

π

)2 ∫ ∞

0
dtGU(t)K̃(t;mµ)wI(t). (3.16)

The kernel K̃ is computed following ref. [50], while the intermediate window wI(t) is equal

to the weight function

w(t; t1, t2,∆) = Θ(t, t1,∆)−Θ(t, t2,∆), (3.17)

with the choice t1 = 0.4 fm, t2 = 1 fm,∆ = 0.15 fm [16], and the Θ function defined as

Θ(t, t′,∆) =
1

2

(

1 + tanh[(t− t′)/∆]
)

. (3.18)

The intermediate window selects the contribution less susceptible to finite-volume and

lattice discretization effects, and yet provides a substantial fraction of the total.

With this definition of the current, we examine a contribution which is proportional

to the full light-quark contribution from the electromagnetic current when there is SU(3)

symmetry. At the physical point, the light quarks contribute the most to the HVP, as

indeed the charm and bottom quarks provide only 2% of the total. With SU(3) symmetry,

the contribution of the light quarks to the electromagnetic current is non-singlet thanks to

the vanishing sum of their charges and thus the correlator is represented by a single Wick

contraction (a quark-line connected diagram) once the quark fields have been integrated

out. When the SU(3) symmetry is broken, for example from isospin-breaking effects, quark-
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line disconnected diagrams, which are computationally demanding to compute, no longer

cancel. In this investigation, even after including QED, we retain an SU(2) symmetry be-

tween the d and s quarks. With this choice, the current introduced in eq. (3.14) transforms

in the non-singlet representation of SU(2) when md = ms, and we avoid computing the

associated disconnected diagrams.

Although the absence of the singlet part of the current prevents us from computing

corrections to the full electromagnetic current correlator, one could still determine the

quark-line connected part of it, which can be defined in a partially-quenched theory. How-

ever, we do not expect that the isospin-breaking effects to that quantity to have any special

significance over the corrections to the non-singlet correlator, especially in the comparison

between the two approaches. Finally, we note that U -spin current is protected from mixing

with singlet operators, so there are no additive renormalizations required in our case, unlike

for the electromagnetic current, c.f. ref. [51].

3.3 Lattice discretization of aU,wµ

On the lattice, we must choose a discretization of the operators and integral appearing in

eq. (3.15). In this work, in addition to the local current defined in eq. (3.14), we make use

of the point-split current

Ṽµ(x) =
1

2

∑

f=d,s

Qf

[

χ̄f (x+ µ̂)
(1 + γµ)

4
e−ieqfaAµ(x)τ3W †

µ(x)τ3χf (x)

− χ̄f (x)
(1− γµ)

4
eieqfaAµ(x)τ3Wµ(x)τ3χf (x+ µ̂)

]

. (3.19)

While this current satisfies a Ward identity at finite lattice spacing, and automatically

has the correct normalization, the local current in eq. (3.14) requires a finite multiplica-

tive renormalization to match it. Furthermore, both currents require O(a) improvement

counterterms whose coefficients are not yet known for Nf = 4 Wilson fermions and the

Lüscher-Weisz gauge action. Therefore, we use the unimproved currents.

We define the renormalized but unimproved local current via

V R
µ (x) = Zm

V (g20, e
2,mf )Vµ(x), (3.20)

where Zm
V (g20, e

2,mf ) is the mass-dependent non-singlet renormalization factor. A suitable

renormalization condition to determine Zm
V can be constructed by imposing that the local

and point-split discretizations agree at large Euclidean separations

lim
t→∞

Zm
VG

U,l
bare(t)

GU,c
bare(t)

= 1, (3.21)

where the bare correlators of the local current is defined through

GU,l
bare(t) = −1

3
a3
∑

k

∑

x

〈Vk(x)Vk(0)〉 (3.22)
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and the corresponding one with the point-split discretization at the sink

GU,c
bare(t) = −1

3
a3
∑

k

∑

x

〈

Ṽk(x)Vk(0)
〉

. (3.23)

In practice, as our operators are not improved, this condition has the unfortunate feature

that it will be potentially subject to large cut-off effects. As we will use the same condi-

tion in both implementations and compare at finite lattice spacing, this does not pose a

particular problem for our study.

The renormalization thus defined, the two discretizations of the correlator we employ

are one using only the local currents

GU,l(t) = (Zm
V )2GU,l

bare(t) (3.24)

and one using a local and a point-split current

GU,c(t) = Zm
VG

U,c
bare(t). (3.25)

In practice, the normalization condition ensures that they agree at long distances, but in

this study we probe smaller Euclidean separations where they will differ due to cut-off

effects. Thus, we have two estimators for the lattice, finite-volume, U -spin observable

aU,wµ =

(

α

π

)2

a

T/2
∑

t=0

GU,ℓ(t)K̃(t;mµ)wI(t), ℓ = l, c, (3.26)

for either the local or point-split discretizations of the sink current.

4 Isospin-breaking effects à la RM123

While in the non-perturbative QCD+QED approach the computation of the observables

proceeds identically to isoQCD with no special treatment, the RM123 method requires the

estimation of new classes of diagrams which parameterize the linearization of the observ-

ables in the bare parameters. In this section, we derive the required diagrams that arise

from expanding the lattice action and currents in the bare parameters connecting isoQCD

and QCD+QED, as described in section 2. First, we introduce our notation for the leading

corrections order in the expansion parameters.

By Taylor-expanding an observable X at finite lattice spacing in the changes of the

bare parameters ∆ε = (e2,∆mu,∆md,∆ms,∆mc) as

X(∆ε) = X(0) + e2∂e2X(0) +
∑

f=u,d,s,c

∆mf∂mf
X(0) + O(e4), (4.1)

where we denote the partial derivatives ∂e2 = ∂/∂e2 and ∂mf
= ∂/∂mf , we can estimate
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our observable via X(∆ε) ≈ X(0) + δX, where

X(0) = X(0), δX = e2∂e2X(0) +
∑

f=u,d,s,c

∆mf∂mf
X(0). (4.2)

Both terms can be computed in the isoQCD theory defined by ∆ε = 0. We note that given

our definitions of isoQCD and QCD+QED we have ∆mf = O(e2), and so corrections to

the above formula start at second order in that parameter. We recall that both theories

are defined at the same bare coupling g20, so no change in this parameter is needed, but

isoQCD and QCD+QED will have different lattice spacings. Furthermore, in the current

definition, no change in the O(a) improvement coefficients are included.

For fixed line of constant physics, the change in the bare masses ∆mf are computed

by expanding the hadronic observables defined in eq. (2.1) at first-order in ∆mf and e2

around the isoQCD point and imposing the renormalization conditions as before. This

amounts to solving the system of equations

φi(0) + e2∂e2φi(0) +
∑

f=u,d,s,c

∆mf∂mf
φi(0) = φ⋆i , (4.3)

where the right-hand side φ⋆i are the target values in the full theory, given in eq. (2.2).

The derivatives ∂e2φi and ∂mf
φi can be related to the derivatives of the pseudoscalar

meson masses that enter the definitions of each φi and the derivatives of the scale setting

observable in lattice units t̂0 = t0/a
2.

When the same bare coupling is used in isoQCD and QCD+QED the lattice spacing

a also receives a correction to the value computed in the isoQCD ensemble

a(0) =

√

t⋆0

t̂
(0)
0

,
δa

a(0)
= −1

2

δt̂0

t̂
(0)
0

. (4.4)

In the following, we derive the form of the required corrections with C⋆ boundary con-

ditions and O(a)-improved Wilson fermions, where in practice, we find it more convenient

to expand the path integral after integrating over the Grassmann fields.

4.1 Derivation with C⋆ boundary conditions

After integrating out the fermion fields, the expectation value of any observable O[U, z] in

QCD+QED with C⋆ boundary conditions may be written

〈O[U, z]〉 = Z−1

∫

DUDz
∏

f

Pf(CKDf [U, z])O[U, z] e−Sg,SU(3)[U ]−Sg,U(1)[z], (4.5)

where Pf(CKDf ) denotes the pfaffian of CKDf , whose properties are discussed in ref. [40].

Note that O[U, z] now depends explicitly on the SU(3) and U(1) gauge field variables, but

not on the fermion fields and instead is in general a function of the inverse of the Dirac

operator D−1
f .
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With the exception of the gradient flow scale t̂0, all hadronic observables we consider

in this work are extracted from two-point functions of fermion bilinears which result in a

single fermionic trace

O(x, y) = Tr{D−1
f (y|x)ΓAD−1

g (x|y)ΓB} =

f

g

f

g

x y (4.6)

corresponding to quark-line connected diagram, where the trace is taken over the color,

Dirac and doublet spinor space. We stress that, in the doublet formulation introduced in

section 3.1, the Dirac operator and its inverse appearing in eqs. (4.5) and (4.6) are 24× 24

matrices for fixed x, y. The indices f, g denote quark flavours, while A,B = P,V, Ṽ denote

the pseudoscalar density, local vector and point-split vector current defined in eq. (4.8).

The explicit form of the operators ΓP,ΓV is

ΓP = 1
2γ51, ΓV = 1

2γµτ3δfg, (4.7)

while the action of ΓṼ on doublet spinors is

η†f (x)ΓṼφg(x) = η†f (x+ µ̂)τ3
(1 + γµ)

4
W †
µ(x)e

−ieqfaAµτ3φf (x)+

− η†f (x)τ3
(1− γµ)

4
Wµ(x)e

ieqfaAµτ3φf (x+ µ̂). (4.8)

Given these definitions, it is clear that none of these vertices depends explicitly on the

quark masses, and the only one depending on the electromagnetic coupling is ΓṼ.

In the following, we illustrate how to perturbatively expand the QCD+QED expec-

tation value 〈O(x, y)〉, which requires expanding the inverse Dirac operator, the pfaffian

and the vertex ΓṼ around the isoQCD point. We begin with the expansions of the inverse

Dirac operator

D−1
f = (D

(0)
f )−1

[

1 −∆Df (D
(0)
f )−1 +

{

∆Df (D
(0)
f )−1

}2
]

, (4.9)

and the Pfaffian

Pf(KCDf ) = Pf(KCD
(0)
f )

[

1 + 1
2 Tr

{

(D
(0)
f )−1∆Df

}

(4.10)

+1
8 Tr

{

(D
(0)
f )−1∆Df

}2
− 1

4 Tr
{

(D
(0)
f )−1∆Df (D

(0)
f )−1∆Df

}

]

,

which both can be expressed in terms of the Dirac operator at the isoQCD point D
(0)
f ,

and its leading correction ∆Df . Given the form of the Wilson-Dirac operator Df =

Dw,f + δDsw,f + mf defined through eqs. (3.7), (3.8), and (3.10), we expand the U(1)

gauge links up to order e2 and the quark masses to order O(∆mf ), leading to the following

– 12 –



three expressions:

Dw,f = D
(0)
w,f + eqfD

(1)
w,f +

1

2
e2q2fD

(2)
w,f +O(e3), (4.11)

δDsw,f = δD
(0)
sw,f + eqf δD

(1)
sw,f +O(e3), (4.12)

mf = m
(0)
f +∆mf +O((∆m)2), (4.13)

where D
(0)
w,f and δD

(0)
sw,f are the terms at the isoQCD point, while qfD

(1)
w,f , qfδD

(1)
sw,f and

q2fD
(2)
w,f denote the first and second derivatives with respect to e at e = 0. Eq. (4.13)

accounts for the shifts in the quark masses.

We stress that the expansion of the SW term in eq. (4.12) relies solely on the expansion

of the U(1) improvement term. In principle, the SU(3) improvement coefficient c
SU(3)
sw could

also be expanded around its isoQCD value. However, since both isoQCD and QCD+QED

simulations are performed with the same value for c
SU(3)
sw , in practice, we neglect QED

corrections to this quantity in both approaches. Moreover, it can be shown that the

expansion of eq. (3.11) contains only odd powers of e, which explains the absence of a term

∝ e2q2fδD
(2)
sw,f . Thus, δD

(0)
sw,f in eq. (4.12) can be matched to the SU(3) improvement term

in eq. (3.10), while eqf δD
(1)
sw,f is the first-order expansion of the U(1) improvement.

By using the definitions in eqs. (4.11)-(4.13), we obtain D
(0)
f and ∆Df as

D
(0)
f = D

(0)
w,f +D

(0)
sw,f +m

(0)
f , (4.14)

∆Df = ∆mf + eqfD
(1)
f +

1

2
e2q2fD

(2)
w,f +O(e3), (4.15)

where we have collected the first order derivative D
(1)
f = D

(1)
w,f + D

(1)
sw,f . After factoriz-

ing out the photon fields, the three operators appearing in eq. (4.15) can be represented

diagrammatically as the following vertices:

f f
= 1δff , (4.16)

f f
=
δD

(1)
f

δAµ
,

f f
=
δD

(2)
w,f

δA2
µ

, (4.17)

where the identity in eq. (4.16) is an identity in Dirac, color and coordinate space. The two

operators in eq. (4.17) depend only on the SU(3) gauge field, and their action on spinor

fields is readily obtained for the first derivative in e

η†(x)
δD

(1)
f

δAµ
φ(x) =

1

2i
η†(x)(1− γµ)Wµ(x)τ3φ(x+ µ̂)− 1

2i
η†(x+ µ̂)(1 + γµ)Wµ(x)

†τ3φ(x)

− c
U(1)
sw

8

∑

ν

∑

α=±1
β=0,1

α η†(x+ αν̂ + βµ̂)σµντ3φ(x+ αν̂ + βµ̂), (4.18)
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Ensemble T/a× (L/a)3 β = 6/g20 α κu κd = κs κc

A400a00 64 × 323 3.24 0 0.13440733 0.13440733 0.12784

A380a07 64 × 323 3.24 0.007299 0.13457969 0.13443525 0.12806355

Table 2: Parameters of the two ensembles used in this work. The A400a00 ensemble has
κu = κd = κs, while the A380a07 ensemble has κu > κd = κs. The improvement coefficients

used in the action are c
SU(3)
sw = 2.18859 and c

U(1)
sw = 1 for both cases.

only a single photon vertex vanish when evaluated between vacuum states, and are therefore

discarded. The remaining contributions yield the Feynman diagrams shown in table 1, and

the expression for each diagram is detailed in appendix A. The symbols for vertices used

in the table reflect the operator insertions defined in eqs. (4.16), (4.17), and (4.21). Each

diagram includes only the statistically connected contributions, with vacuum-disconnected

terms from the Pfaffian expansion in the denominator of eq. (4.5) being subtracted.

5 Computational details

In this section, we describe the two ensembles used in this work and provide details about

the numerical implementation of the RM123 approach.

5.1 Ensembles

For this work, we perform measurements on two ensembles generated by the collaboration

using the openQ*D code [52]. The parameters of the ensembles are summarized in table 2.

The two ensembles, here labeled A400a00 and A380a07, correspond to A400a00b324 and

A380a07b324+RW1 in ref. [40]. For the latter, a non-perturbative reweighting in the bare

mass has been implemented to improve the consistency with the line of constant physics.

The bare hopping parameters of A380a07 shown in table 2 are the target quark hopping

parameters obtained through the reweighting procedure. All quantities computed in this

work on A380a07 take into account this reweighting factor.

Both ensembles have the same lattice volume and value of the strong coupling constant

β = 6/g20, while they differ for the electromagnetic coupling constant α and the hopping

parameters. A380a07 is an ensemble close to the physical value of α, and with an (unphys-

ical) SU(2) symmetry in the down-strange quark sector. On the other side, A400a00 is

an ensemble generated following the line of constant physics with αR = 0 and degenerate

masses for the up and down quarks. This leads to the SU(3)-symmetric point κu = κd = κs.

We use the SU(3) improvement coefficient tuned in isosymmetric QCD for both en-

sembles. In this way, we do not remove all O(a) effects in QCD+QED in this work. Never-

theless, the definition of the action is identical in both non-perturbative and perturbative

implementations of QCD+QED. The U(1) improvement coefficient provides tree-level im-

provement and is considered in both non-perturbative and perturbative implementations.
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5.2 Computation of the RM123 diagrams

In the perturbative RM123 approach, we use the non-compact formulation of the U(1)

gauge action

Snc
g,U(1) =

a4

4

∑

x

3
∑

µ,ν=0

F 2
µν(x), (5.1)

where the discretization of the field-strength tensor is chosen to be Fµν(x) = ∂µAν(x)−(µ↔
ν), in terms of the forward finite-difference operator ∂µf(x) = a−1{f(x+aµ̂)−f(x)}. This
formulation requires us to fix the gauge, and on the lattice we adopt an analogue of the

Coulomb gauge fixing condition
3
∑

k=1

∂∗kAk(x) = 0, (5.2)

where ∂∗µ is the backward finite-difference operator ∂∗µf(x) = a−1{f(x) − f(x − aµ̂)}.
While all physical observables are independent of this choice, intermediate quantities may

be gauge dependent. In the non-compact formulation, the action is quadratic in the gauge

potential, and the photon field can be integrated out by hand. Nevertheless, a stochastic

representation is useful to estimate the integrals over the vertices, where samples of the

photon field distributed according to the lattice action including the gauge-fixing term are

generated by using the momentum-space representation. The coordinate-space fields can

then be efficiently computed using the fast Fourier transform.

In the rest of this section, we describe briefly the computation of the diagrams required

for the non-perturbative QCD+QED computation and the diagrams in the R123 approach

listed in table 1. Using translation invariance, it is sufficient to fix one of the coordinates

in eq. (4.6), which we choose to be y. To reduce the variance we use an additional three

translations of the coordinate on every gauge field configuration for all diagrams, i.e. we

use Ns = 4 point sources for every diagram required for both the non-perturbative and

RM123 approaches.

In the perturbative RM123 approach, the diagrams with additional vertices integrated

over the space-time volume must be included as shown in table 1. Diagrams with a single

fermion trace and just one insertion, i.e. the first two diagrams in the first row, require just

one additional inversion via the sequential propagator method, and therefore, in addition

to the last diagram of the first row, can be computed exactly without further special

treatment. The remaining single fermion trace diagrams are computed with one sample of

the stochastic photon field at the vertex. These diagrams constitute the contributions that

remain in the so-called electro-quenched approximation and require only the stochastic

estimation of the photon line to integrate exactly the additional vertices.

On the other hand, the diagrams in the second and third rows, which arise from the

expansion of the Pfaffian, involve at least two fermion traces and are referred to as sea-

valence (second row) and sea-sea (third row). Thanks to the SU(3) symmetry of the isoQCD

theory in our setup and the vanishing sum of the light quarks’ charges,
∑

f=u,d,s qf = 0, only

the charm quark contributes to the additional traces in the sea-valence diagrams and the
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final sea-sea diagram. The additional fermion traces for all of diagrams involving the sea

quarks are estimated stochastically using pseudofermion fields. The hopping parameter

expansion was used for the charm-quark propagator where the first few hopping terms

have been estimated exactly using probing vectors [53, 54]. One level of frequency-splitting

was also applied for the light-quark propagators [55]. For the third diagram of the third

row, only one of the two sea-quark fermion propagators was estimated using one level

of frequency splitting, and only pseudofermion sources were used for the charm quark

propagator. A fixed number ofNη = 160 pseudofermion sources were used for all estimators

to reach the gauge noise where the variance is dominated by the fluctuations of the gauge

field. The approach to the gauge variance for the corresponding contributions to our final

observable is illustrated in figure 6.

The photon propagators were also estimated differently for the sea-valence and sea-

sea diagrams. For the sea-valence diagrams, the convolution of the photon propagator

and the additional fermion trace was computed using the fast Fourier transform and this

product was then inserted into the sequential propagator [56]. In the sea-sea case, the

stochastic photon field was used for the third and fourth diagrams. For the third diagram,

an inversion is required for every photon field and every pseudofermion field, so one photon

field was used per pseudofermion field. For the final diagram, the estimation of the photon

propagator is independent of the traces, and in this case we also choose NA = 160 samples

for the photon field. In the last diagram, clearly the photon propagator could have been

estimated exactly by a convolution as in the sea-valence case.

In this work, the cost of the stochastic estimators was not optimized. As will be

illustrated later, we show, however, that the stochastic estimation is sufficient to reach the

gauge noise, and therefore, the dominant fluctuations are driven by the fluctuations of the

QCD gauge fields. The gauge noise itself is expected to be large for the sea-sea effects, in

particular the variance will diverge with (L/a)4. For a detailed study and discussion, we

refer to [57]. Even disregarding the extra cost of the sea-sea diagrams, which are reused for

every observable, the valence-valence and sea-valence diagrams require at least 5 additional

sequential propagators for every isoQCD propagator, without further differentiating the

individual terms, greatly increasing the computational cost of the measurement of the

observables.

6 Analysis and results

In this section, we present our analysis and results for the observables φi defining the line of

constant physics and aU,w
µ in QCD+QED using either the perturbative expansion around

isoQCD or the fully non-perturbative QCD+QED simulation. This enables us to compare

the two implementations that we perform at a single lattice spacing and volume. The

physics parameters of the ensembles tuned to isoQCD and QCD+QED are provided in

table 3, which of course may differ before matching.

As can be seen from table 4, where we present the measured φi as in ref. [40], even

after a reweighting in the bare mass, there is still a slight mistuning of the bare parameters

compared with the target line of constant physics for the A380a07 ensemble. Since in
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Theory Ensemble a (fm) mπ± (MeV) mK± (MeV) Ncfg

isoQCD A400a00 0.05393(24) 398.5(4.7) 398.5(4.7) 2000
QCD+QED A380a07 0.05349(27) 398.8(3.7) 403.1(3.8) 2000

Table 3: Physics parameters of the ensembles used in this work and presented in ref. [40].
Note that there the two ensembles are referred to as A400a00b324 and A380a07b324+RW1,
with the latter including a mass-reweighting factor.

φi LCP A400a00 A380a07

φ1 2.11 2.107(50) 2.126(39)
φ2 2.36 − 2.13(17)
φ3 12.1 12.068(36) 12.122(47)

Table 4: φi measured on the A400a00 and A380a07 ensembles, together with the target
values used to define the lines of constant physics [40].

this work our goal is to compare the two implementations at fixed lattice spacing, which

will not depend on the precise definition of the line of constant physics, we modify the

renormalization condition, so the target matches the central value of the measured values

on the A380a07 ensemble and no further correction is required.

Explicitly expanding in the bare parameters to leading order around the simulated

parameters of the A400a00 ensemble, then we have the conditions

φ0 + e2∂e2φ0 +
∑

f

∆mf ∂mf
φ0 −∆Lφ0 = 0,

φ1 + e2∂e2φ1 +
∑

f

∆mf ∂mf
φ1 −∆Lφ1 = 2.126,

φ2 + e2∂e2φ2 +
∑

f

∆mf ∂mf
φ2 −∆Lφ2 = 2.13,

φ3 + e2∂e2φ3 +
∑

f

∆mf ∂mf
φ3 −∆Lφ3 = 12.122,

(6.1)

where the target values are slightly modified with respect to eq. (2.2). The last term on

the left-hand side of each condition accounts for the subtraction of the universal QED

finite-volume effects of the charged meson masses, which have already been subtracted for

the φi quantities computed on A380a07. The finite-volume effects on the hadron masses

in the case of C⋆ boundary conditions have been derived in ref. [34]. From the equations

in (6.1), the shifts in the bare mass parameters can be determined. We reiterate that no

corrections have been considered to the O(a) improvement coefficients in either approach,

so that the coefficients of the two ensembles are identical.

When performing the comparison of the two methods at fixed line of constant physics,

in both the perturbative and non-perturbative approaches, we incorporate the uncertainty

derived from fixing to the lines of constant physics. In the perturbative approach, this
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is straightforwardly implemented by propagating the uncertainty on the bare mass shifts

obtained by solving the system of eqs. (6.1). In the non-perturbative approach, however,

we propagate the errors from the determination of the φi and t̂0 to a
U,w
µ assuming Gaussian

statistics

(daU,wµ )2 =
∑

f

(

∂mf
aU,wµ

)2
(dmf )

2, dmf (~φ) =
∑

i

(J−1)fi dφi, (6.2)

where dφi denotes the statistical uncertainty on the measured values in table 4 and J−1

is the inverse Jacobian of the change of variables from the hadronic quantities to the bare

quark masses. In practice, the derivatives of aU,wµ will be the ones computed on the A400a00

ensemble, and any associated error is higher order in the expansion in the bare parameters,

so can be safely ignored.

An alternative way to compare the two strategies for making predictions in QCD+QED

is simply to fix the same bare parameters in the approaches and compare the predictions

for the φi and the scale t̂0 as well as aU,wµ . In this interpretation, the perturbative and

non-perturbative approaches are simply two algorithms for computing at fixed bare param-

eters, and such a comparison uses exactly the same data as fixing to the lines of constant

physics, presented in a different manner. In the former approach, all of the uncertainties

are combined, whereas in the latter, the uncertainties related to the tuning to the lines of

constant physics are presented separately. Given that we find both presentations useful,

we present both in the following. In particular, we show the results obtained for aU,wµ

in isoQCD and non-perturbative QCD+QED in section 6.1. In sections 6.2 and 6.3, we

present the corrections to the scale-setting quantity and to the hadronic observables defin-

ing the line of constant physics, then the corrections to aU,wµ are discussed in section 6.4.

In sections 6.5 and 6.6 we compare the final results first at fixed bare parameters, followed

by fixed line of constant physics.

6.1 Non-perturbative determination of aU,wµ

As the analysis of the correlation functions in the non-perturbative QCD+QED and iso-

QCD computations is identical, we present the two together.

As described in section 3.3, we have to determine the renormalization constant of

the local U -spin current. The renormalization factor is computed via the renormalization

condition (3.21), which translates in the following relation between the bare correlators

GU,ℓ
bare

Zm
V = lim

t→∞

GU,c
bare(t)

GU,l
bare(t)

. (6.3)

The renormalization constant is obtained by fitting the right-hand side at large t. The

results of the fit are shown in figure 1 for both ensembles and two different fit ranges. We

obtain the following result for the isoQCD theory

Z
m,(0)
V = 0.6767(10), (6.4)
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aU,wµ × 1011

ℓ = l c

isoQCD 1083(6) 1086(5)
non-perturbative QCD+QED 1082(7) 1085(7)

Table 5: Results obtained for aU,wµ × 1011, computed either in isoQCD or QCD+QED
non-perturbatively.

t̂
(0)
0 ∂amu t̂0 ∂amc t̂0 ∂e2 t̂0

7.400(69) -76(24) -26.5(8.1) -6.1(1.9)

Table 6: Leading-order value of the dimensionless scale t̂0 ≡ t0/a
2 and its derivatives ∂εi t̂0

evaluated at the isoQCD point for the ensemble A400a00. Due to the SU(3) symmetry of
the ensemble, the derivatives with respect to the light quark masses amu, ams and ams

have the same value.

in the table, we see that there are no visible differences between the local-local and the

conserved-local estimators. We also notice that the signals on the two ensembles agree

with each other within the errors, although we have not yet considered the corrections for

the ensemble A400a00. Thus, we expect that these effects will not significantly change the

central value of aU,wµ , but they could still have an impact on the errors when computing

them using the RM123 approach.

In the next sections, we present the corrections in the bare parameters that connect

the A400a00 to the A380a07 ensemble, obtained by linearizing all of the observables and

computing the derivatives with the method of insertions à la RM123, as described in section

4.

6.2 Corrections to the gradient-flow scale t0

In this work, we employ the gradient-flow scale t0 for the scale setting. Its value is defined

implicitly through the condition

t20 〈E(t0)〉 = 0.3, (6.6)

where E(t) is the action density at flow time t. In the perturbative approach, the QCD+QED

expectation value on the left-hand side of eq. (6.6) is expanded around the isoQCD point

as explained in section 4.1, leading to scale corrections. As E(t) is an observable indepen-

dent of the bare quark masses and the electromagnetic coupling, the corrections to t0 arise

exclusively from the expansion of the pfaffian.

In table 6, we show the results in lattice units for the scale at leading-order and its

derivatives with respect to a bare parameter εi = mf , e
2. The errors are statistical and

computed by using the Γ-method described in ref. [59] and exploiting the implementation

of the pyerrors package [60]. This applies to all statistical errors computed in our analysis.
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6.3 Corrections to the hadronic observables φi

In the perturbative approach, we have to compute the derivatives of the hadronic ob-

servables defining the parametrization of QCD+QED. By employing the definitions in eq.

(2.1), we obtain the explicit form of the derivatives with respect to the quark masses

∂mf
φ0 = 16t0Mπ

(

∂MK+

∂mf
− ∂Mπ+

∂mf

)

,

∂mf
φ1 = 16t0Mπ

(

∂Mπ+

∂mf
+
∂MK+

∂mf
+
∂MK0

∂mf
+

3Mπ

2t0

∂t0
∂mf

)

,

∂mf
φ2 =

16t0Mπ

α

(

∂MK0

∂mf
− ∂MK+

∂mf

)

,

∂mf
φ3 =

√
8t0

(

∂MD+

∂mf
+
∂MD+

s

∂mf
+
∂MD0

∂mf
+

3MD

2t0

∂t0
∂mf

)

,

(6.7)

and the derivatives with respect to e2

∂e2φ0 = 16t0Mπ

(

∂MK+

∂e2
− ∂Mπ+

∂e2

)

,

∂e2φ1 = 16t0Mπ

(

∂Mπ+

∂e2
+
∂MK+

∂e2
+
∂MK0

∂e2
+

3

2
Mπ

∂t0
∂e2

)

,

∂e2φ2 =
16t0Mπ

α

(

∂MK0

∂e2
− ∂MK+

∂e2

)

,

∂e2φ3 =
√
8t0

(

∂MD+

∂e2
+
∂MD+

s

∂e2
+
∂MD0

∂e2
+

3MD

2t0

∂t0
∂e2

)

.

(6.8)

In the above equations, we exploit the SU(3) symmetry of the isoQCD ensemble to simplify

the expressions, and denote Mπ = Mπ+ = MK+ = MK0 and MD = MD+ = MD0 = MD+
s

for the leading-order light and charmed meson masses. In addition, the contribution from

the scale derivatives cancels out in φ0 and φ2 as they depend on the mass difference of

mesons that are degenerate at the SU(3)-symmetric point.

To construct the quantities in eqs. (6.7) and (6.8), we compute the derivatives of the

scale and meson masses and combine them. The computation of the scale derivatives was

explained in the previous subsection, leading to the results of table 6. Here we focus on the

meson mass derivatives. We consider the flavor-charged pseudoscalar correlator projected

to zero momentum in the doublet notation

C(t) ≡ a3
∑

~x

〈

Ofg(t, ~x)Ofg,†(0)
〉

= −a3
∑

~x

〈

χ̄f (t, ~x)
γ5
2
χg(t, ~x)χ̄g(0)

γ5
2
χf (0)

〉

. (6.9)

At large times, the correlator is dominated by the lowest-energy state in the spectrum.

By taking into account the periodic boundary conditions in the temporal direction of the

lattice, it follows that, in the large time limit,

C(t) → A(e−M(t−T/2) + eM(t−T/2)), (6.10)
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where A andM are the amplitude of the correlator and the mass of the interpolated meson.

Assuming that the isospin-breaking corrections to the meson mass and the amplitude are

small, the correlator in equation (6.10) expands as follows

C(t) ≃ C(0)(t) + δC(t), (6.11)

with

C(0)(t) = A(0) cosh (M (0)(t− T/2)) (6.12)

and

δC(t) = C(0)(t)

{

δA

A(0)
− δM

(

t− T

2

)

tanh

[

M (0)

(

T

2
− t

)]}

. (6.13)

The effective derivatives with respect to a bare parameter εi as functions of t are derived

from equation (6.13) and take the form

∂εiM(t) =

[

∂εiC(t)

C(0)(t)
− ∂εiC(t+ 1)

C(0)(t+ 1)

]

×
[

(T/2− t) tanh
(

M (0)(T/2− t)
)

−(T/2− (t+ 1)) tanh
(

M (0)(T/2− (t+ 1))
)]−1

.

(6.14)

The derivatives of the meson masses are computed by fitting the quantity on the RHS to

a constant. The fits take as input the leading-order mass M (0) extracted from

C(0)(t)

C(0)(t+ 1)
=

cosh (M (0)(t− T/2))

cosh (M (0)(t+ 1− T/2))
. (6.15)

The results of the fits to eq. (6.14) are shown in the appendix B.

Here, we adopt a different strategy to compute the derivatives of φi. In particular, we

notice that we can replace all the meson mass derivatives in eqs. (6.7)-(6.8) with the corre-

sponding time-dependent expressions in eq. (6.14), obtaining the time-dependent quantities

∂εiφ(t), which can be directly fitted to a constant at large t. This strategy is preferred here

because it enforces the cancellation of the sea-sea diagrams that contribute to φ0, φ2, due

to the linearity of ∂εiM(t) in the correlator derivatives ∂εiC(t) and the SU(3) symmetry

of the ensemble. Figure 3 shows the fits to the derivatives of the hadronic quantities and

the results obtained by the fitting procedure are in table 7. We use two fit ranges for each

quantity and combine them based on the associated AIC weights [58].

To compute the corrections to the hadronic quantities, together with the derivatives,

we need to compute the finite-volume effects appearing in eq. (6.1). The explicit form of
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ε amu amd ams amc e2

∂εφ0 0 -67.4(9) 67.4(9) 0 0
∂εφ1 204(11) 204(11) 204(11) 33(6) 17(1)
∂εφ2 -9234(121) 9234(121) 0 0 -370(5)
∂εφ3 -27(25) -27(25) -27(25) 22(7) 0.2(1.5)

Table 7: Derivatives of the φi computed on the ensemble A400a00. The errors are obtained
by summing in quadrature the statistical and systematic uncertainties. The former is
computed using the Γ-method, while the latter is estimated by considering several fit-ranges
for each meson mass’s derivative. In all cases, we find that the statistical uncertainty is
the dominant one.

∆Lφ1 ∆Lφ2 ∆Lφ3

-0.00651(4) 0.446(3) -0.00323(2)

Table 8: Results for the universal QED finite-volume effects contribution to the φi, com-
puted on A400a00.

and the results are shown in table 8.

6.4 Corrections to aU,wµ

The derivation of the isospin-breaking corrections to aU,wµ , namely

δaU,wµ =
∑

i

∆εi∂εia
U,w
µ , (6.17)

requires computing the derivatives of the renormalized U -spin correlator defined in eq. (3.26)

and considering the effect of the scale corrections.

In particular, we write the correction to the observable in the form

δaU,wµ = δGa
U,w
µ + δZV

aU,wµ + δaa
U,w
µ , (6.18)

where the three contributions δGa
U,w
µ , δZV

aU,wµ , and δaa
U,w
µ denote the corrections arising

from the bare correlator, the renormalization constant and the scale. We stress that this

decomposition is unphysical as the individual contributions do not have a well-defined

continuum limit. However, the separation highlights the role of the scale correction, which

is neglected when the sea-quark effects are not considered.

To give an explicit expression for these contributions, we introduce the following quan-

tities in lattice units

t = at̂, GU,ℓ(t) =
ĜU,ℓ

(

t̂
)

a3
, K̃(t;mµ) =

ˆ̃K
(

t̂; amµ

)

a2
, (6.19)
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and write the point-split local estimator of the observable as

aU,wµ =
(α

π

)2
T̂ /2
∑

t̂=0

ˆ̃K
(

t̂; amµ

)

wI

(

at̂
)

Zm
V Ĝ

U,c
bare

(

t̂
)

(6.20)

and the local-local as

aU,wµ =
(α

π

)2
T̂ /2
∑

t̂=0

ˆ̃K
(

t̂; amµ

)

wI

(

at̂
)

(Zm
V )2ĜU,l

bare

(

t̂
)

, (6.21)

where the intermediate window is defined as in eq. (3.17).

We define the contribution from the bare current correlator appearing in eq. (6.18) as

follows: for the point-split local estimator we have

δGa
U,w
µ ≡

(α

π

)2
T̂ /2
∑

t̂=0

ˆ̃K
(

t̂; a(0)mµ

)

wI(a
(0)t̂)Zm

V δĜ
U,c
bare

(

t̂
)

, (6.22)

and for the local-local one

δGa
U,w
µ ≡

(α

π

)2
T̂ /2
∑

t̂=0

ˆ̃K
(

t̂; a(0)mµ

)

wI(a
(0)t̂)(Zm

V )2δĜU,l
bare

(

t̂
)

. (6.23)

The derivatives of ĜU,ℓ
bare(t̂) with respect to the bare parameters are combinations of the

diagrams in table 1. We obtain δGa
U,w
µ by integrating in time the signals shown in figure

4. Each subplot represents the contribution from a different bare parameter, computed

with the two discretizations of the correlator. We observe that, in general, the signal

corresponding to the point-split local discretization is larger in magnitude than the local-

local one. This difference is compensated by the different signs of the mf - and e
2-insertion

diagrams and by the effect of the renormalization constant’s correction in (6.24)-(6.25).

Secondly, the contribution to the observable from the renormalization constant is given

by

δZV
aU,wµ ≡

(α

π

)2
T̂ /2
∑

t̂=0

ˆ̃K
(

t̂; a(0)mµ

)

wI(a
(0)t̂)δZm

V Ĝ
U,c
bare

(

t̂
)

(6.24)

for the point-split local discretization, and

δZV
aU,wµ ≡ 2

(α

π

)2
T̂ /2
∑

t̂=0

ˆ̃K
(

t̂; a(0)mµ

)

wI(a
(0)t̂)Zm

V δZ
m
V Ĝ

U,l
bare

(

t̂
)

, (6.25)

for the local-local one. We obtain the derivative of the renormalization constant with
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Also, the relative errors are the same as for the leading-order correlators. The main contri-

bution to the error on δaa
U,w
µ will come instead from the uncertainty on δa. We stress again

that the corrections to the scale arise from the expansion of the pfaffian, and therefore are

due only to sea-sea effects given our definition of the lattice scale.

6.5 Comparison at fixed bare parameters

Now we turn to the first comparison between the two implementations of QCD+QED,

obtained by fixing the bare parameters and comparing the results for the observables φi
defining the renormalization scheme, the hadronic scale t̂0 and the observable aU,wµ . The

bare parameter shifts between the A400a00 and A380a07 ensembles can be worked out from

table 2 and are explicitly

a∆mu = −0.00476435, a∆md,s = −0.00077259, a∆mc = −0.00682735. (6.29)

In the perturbative approach, we use these values for the shifts and obtain predictions to

compare with the corresponding quantities measured in the non-perturbative QCD+QED

approach.

We show the results of this first comparison in table 10. The values in the first row are

computed using the perturbative approach in the electro-quenched setup. In this case, the

scale t0 does not receive corrections, and the other observables are computed by neglecting

the sea-quark effects. The isoQCD+RM123 results in the second row include the effect of

the sea quarks and are obtained by adding the corrections, computed as described in the

previous subsections, to the isoQCD values of tables 4 and 5. The non-perturbative results

are instead obtained from direct calculation on the A380a07 ensemble. The errors are given

by the quadrature of the statistical uncertainties, computed using the Γ-method [59, 60],

and the systematic errors, estimated by varying the fit range in all fit procedures involved

in the computation and then computing their standard deviation.

We observe a good agreement between the two approaches for the scale parameter

t̂0 and φi quantities. Specifically, the results for t̂0 computed through the perturbative

approach perfectly agree with the non-perturbative value, and the errors are of similar

size. In addition, by comparing the precision of the full and electro-quenched results, we

see that the impact of the sea-quark effects on t̂0 and φ observables is relatively small,

except for φ1, where including the sea-quark effects results in almost three times larger

error.

The electro-quenched results for aU,wµ have the same precision as the observable com-

puted at the isoQCD point. The non-perturbative results for aU,wµ also show sub-percent

precision, confirming that the non-perturbative QCD+QED simulations at the physical

value of α yield precision comparable to that of the isoQCD computations, as previously

observed [40, 61]. In contrast, by using the perturbative approach including also the sea-

quark effects, we obtain results in agreement with the non-perturbative computation but

with 2.5-2.6 larger relative errors. In particular, the final uncertainty on the perturbative

result amounts to 1.6% of the central value and is dominated by the isospin-breaking cor-

rection term. A closer examination shows us that the sea-quark effects are unequivocally
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Figure 6: Variance of the sea-sea contribution to δaU,wµ as a function of the number of
pseudofermions sources for 2000 configurations.

aU,wµ × 10−11

t̂0 φ1 φ2 φ3 ℓ = l c

isoQCD+RM123|eq 7.400(69) 2.257(34) 2.20(14) 12.100(44) 1078(5) 1080(5)
isoQCD+RM123 7.502(81) 2.198(92) 2.53(14) 12.151(66) 1090(18) 1092(18)

non-perturbative QCD+QED 7.523(94) 2.128(34) 2.37(12) 12.103(47) 1082(7) 1085(7)

Table 10: Results obtained for the hadronic quantities t̂0, φ1, φ2, φ3 and aU,wµ computed
either non-perturbatively or by exploiting the RM123 method with the local current ℓ =
l or conserved current ℓ = c at the sink. For the latter, we show results both in the
electro-quenched setup and including the contributions from sea quarks. In both cases, we
incorporate the corrections at fixed bare parameters, using the shifts in eq. (6.29).

the dominant source of errors for the correction, as it is clear from the comparison with

the electro-quenched results. We stress that the uncertainty due to sea-quark effects can

only be reduced by sampling more gauge-field configurations, as the number of stochastic

sources used for estimating the sea-sea diagrams is sufficient to reach the gauge noise in

this setup. This is displayed in figure 6, where we plot the variance of aU,wµ due to sea-sea

contributions and rescaled by the number of pseudofermion sources Nη as a function of Nη

for a fixed number of configurations. We observe that the variance saturates for Nη & 100.

In this work, we employ Nη = 160.

We also want to highlight that the φ observables in isoQCD and non-perturbative

QCD+QED, and their derivatives used for the RM123 approach, have been computed in
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units of 10−11 ℓ = l c

δGa
U,w
µ 11(16) 12(17)

δZa
U,w
µ 3.8(3.4) 1.9(1.7)

δaa
U,w
µ -8.4(2.3) -8.4(2.4)

δaU,wµ 7(18) 6(18)

Table 11: Results obtained for the corrections to aU,wµ × 1011 computed by exploiting the
RM123 method. We incorporate the isospin-breaking corrections at fixed bare parameters.
The three corrections come from three sources: derivatives of the bare correlator, deriva-
tives of the renormalization constant, and derivatives of the scale.

this work using the same setup as our main observable aU,wµ , i.e., by employing 4 quark

point sources per configuration.

For completeness, in table 11, we provide the results for the individual corrections

δGa
U,w
µ , δZV

aU,wµ and δaa
U,w
µ , as introduced in equation (6.18), together with the total

correction. The two columns correspond to the two discretizations employed for the vector

correlator. We observe that the three contributions are of the same order of magnitude and

partially cancel out. At the current precision, the correction to aU,wµ amounts to (0.6±1.7)%

of the leading-order value and so is consistent with zero.

6.6 Comparison at fixed line of constant physics

In the previous section, we compared the quantities computed in QCD+QED with fixed

bare parameters. Typically, in a lattice simulation, to approach the continuum limit we

prefer to fix the lines of constant physics defined by the renormalization scheme and propa-

gate the associated uncertainty to the physical prediction, to avoid a joint extrapolation to

the physical point. Here, we do such an exercise, which combines the resulting uncertainty

onto our physical prediction.

In the RM123 approach, this is simple to implement, given that we can fix to any

scheme a posteriori. The quark mass shifts are obtained by solving the system in eq. (6.1)

using the target values and the derivatives of the φi in tables 4 and 7. We derive the

following quark mass shifts

a∆mu = −0.00477(17)stat(4)sys,

a∆md,s = −0.00082(17)stat(4)sys,

a∆mc = −0.0083(28)stat(5)sys,

(6.30)

which, as expected, agree with those shown in eq. (6.29) within the quoted uncertainty.

The results for the individual contributions δGa
U,w
µ , δZV

aU,wµ and δaa
U,w
µ , together with the

total correction, are shown in table 12.

For the non-perturbative prediction we consider the uncertainties on the φi observable

and propagate them to aU,wµ via eq. (6.2). To this aim, we reuse the derivative of the φi
and the derivatives of aU,wµ computed at the isoQCD point (see tables 7 and 13). This
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units of 10−11 ℓ = l c

δGa
U,w
µ 15(18) 17(19)

δZa
U,w
µ 6(5) 3(2)

δaa
U,w
µ -12(6) -12(6)

δaU,wµ 9(19) 8(19)

Table 12: Results obtained for the corrections to aU,wµ × 1011 computed by exploiting the
RM123 method. We incorporate the isospin-breaking corrections at fixed line of constant
physics. The three contributions arise from derivatives of the bare correlator, derivatives
of the renormalization constant, and derivatives of the scale.

ℓ ∂amua
U,w
µ ∂amd

aU,wµ ∂amsa
U,w
µ ∂amca

U,w
µ ∂e2a

U,w
µ

l -12(31) -113(32) -113(32) -9(15) -2.5(3.4)
c -11(31) -112(32) -112(32) -9(15) -2.5(3.4)

Table 13: Derivatives of aU,wµ × 109 computed on the ensemble A400a00.

aU,wµ × 1011 ℓ = l c

isoQCD+RM123|eq 1084(5) 1087(5)
isoQCD+RM123 1093(20) 1094(21)

non-perturbative QCD+QED 1082(8) 1085(7)

Table 14: Final results obtained for aU,wµ × 1011, computed either in the full theory or by
exploiting the RM123 method. For the latter, we show results both in the electro-quenched
setup and including the contributions from sea quarks. In both cases, we incorporate the
corrections at fixed line of constant physics, using the shifts derived by solving the system
in eq. (6.1)

approximation is valid at first order in the bare parameters. For both discretizations of the

sink operator, we obtain the same result

daU,wµ = 2(3)× 10−11. (6.31)

Since this value is consistent with zero, we take the 1σ error 3 × 10−11 as an estimate of

the uncertainty due to the inexact tuning to the line of constant physics. This uncertainty

is summed in quadrature with the errors on aU,wµ in the last row of table 10. The effect

turns out to be negligible.

In table 14, we show the final results for aU,wµ , including the uncertainties from the

tuning propagated as described above. By comparing with the results in table 10, we

observe that the relative error on the isoQCD+RM123 results goes from 1.6% to 1.9%,

while the relative error on the QCD+QED results remain stable to 0.6–0.7%. Thus, we find

a reduction in the total uncertainty of 2.5–3 when using the non-perturbative simulation
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compared to the RM123 method including carefully the tuning to the same line of constant

physics. We stress that this factor considers only the different precision obtained on the

final observable using the same statistics, i.e., number of quark sources per configuration

and number of configurations, while the differing computational costs and costs associated

with tuning are not taken into account.

7 Conclusions

In this work, we computed the window contribution for a flavour non-singlet current to the

muon magnetic anomaly, aU,wµ , with Nf = 1 + 2 + 1 quarks using two implementations of

QCD+QED. The lattice simulations were based on two ensembles generated by the RC⋆

collaboration: one QCD+QED ensemble and one isoQCD ensemble used as the starting

point for the perturbative RM123 approach. Both employ C⋆ boundary conditions in the

spatial directions that allow the photon field to be included in a local, gauge-invariant for-

mulation, which also preserves lattice translational symmetry. The two ensembles share the

same fermion discretization and lattice volume and have similar bare parameters. There-

fore, it is possible to compare the results obtained in the non-perturbative QCD+QED

setup to the ones obtained with the RM123 approach by matching either the bare param-

eters or the renormalization conditions defining a fixed line of constant physics.

In the perturbative approach, we considered all effects at order O(∆mf ) and O(e2),

including the complete contributions from sea quarks, which represent the most numerically

challenging components of the RM123 method. Given the renormalization schemes we used

for defining isoQCD and QCD+QED, we find the expected 1% correction to the isoQCD

result. Here we focus on the prediction of the full result in QCD+QED and the comparison

between the two implementations as the definition of the isospin-breaking corrections is

delicate at finite lattice spacing, and our simulated pion mass of around 400MeV is far

from the physical point needed for phenomenological predictions.

In the first instance, we match the bare parameters of the QCD+QED simulation and

compare the result for aU,wµ along with the hadronic quantities defining the renormalized

theory φi and the lattice scale t̂0. On one hand, we find good compatibility between the

full QCD+QED results from the RM123 method aU,wµ = 1092(18) × 10−11 and the non-

perturbative simulation aU,wµ = 1085(7)×10−11, in this case for the point-split discretization

of the sink current. On the other hand, we see that the RM123 method has a 2.5 times

larger uncertainty, which can be understood to originate from the sea-quark diagrams, given

that the electro-quenched result aU,wµ |eq = 1080(5)× 10−11, where they are neglected, has

a similar uncertainty to the non-perturbative result. The hadronic observables φi and the

lattice scale t̂0 that define our line of constant physics all exhibit good consistency between

both approaches. The observable φ1, related to the squared (hyper-)charged pseudoscalar

meson masses, has a 4% uncertainty in the RM123 approach in contrast to a 1.6% relative

precision in the non-perturbative simulation, which is again due to the sea-quark effects

by comparing to the electro-quenched result.

In order to determine the significance of the determination of the lines of constant

physics, in the second comparison we impose the same renormalization conditions described
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in the text in both setups and propagate the uncertainty from the hadronic quantities

φi and t̂0 to our prediction for aU,wµ . After this exercise, we see a mild increase in the

uncertainty in the RM123 method prediction aU,wµ = 1094(21) × 10−11, but no change

in the relative uncertainty in the non-perturbative approach, where we obtain aU,wµ =

1085(7) × 10−11. Therefore, we find a final result with 1.9% uncertainty in the RM123

method and 0.6% precision with non-perturbative QCD+QED. To perform this exercise,

we use the same derivatives for the non-perturbative QCD+QED ensemble as those worked

out in the isoQCD ensemble for convenience, but in principle they could be estimated in

many other ways, and likely they do not need to be precise in any case.

We would like to emphasize that we have so far compared the total uncertainty in both

methods with a fixed number of gauge field configurations, but have made no attempt to

quantify the true cost of both approaches, which is subtle and likely not universal. However,

the cost of the generation of the gauge field configurations has been investigated in ref. [40],

which estimated that the generation of the non-perturbative QCD+QED simulations costs

a factor 2.5 times more than isoQCD, given the orbifold construction used here. This

does not account for the fact that the tuning of the non-perturbative simulation with more

parameters is an onerous task and, in practice, even here we needed to include a small

reweighting in the bare masses as in a realistic situation. Instead, in the RM123 method,

the cost of computing the required extra diagrams is not negligible: the valence diagrams

need to be computed for every observable, and while the sea-sea may be reused, typically

the cost to reach the gauge noise is extensive, given the approximations required to perform

the volume averages. While some suggestions have been put forward to reduce the cost [56],

it is expected that the gauge variance will be large in large volumes [56, 57]. In particular,

in our setup with SU(3) flavour symmetry in the isoQCD setup, some classes of diagrams

do not contribute at all in the RM123 method. Therefore, we expect the RM123 method

to become challenging close to the physical point and in large volumes, even though the

variances of the diagrams presented here should be largely insensitive to the quark mass.

As a final remark, in the non-perturbative QCD+QED case, we applied bare-mass

reweighting to ensemble A380a07, reproducing a typical step when tuning an ensemble to

specific lines of constant physics. This reweighting has hardly any impact on the statistical

uncertainty of the observables we compute. In contrast, the precision lost from applying

the RM123 method including all sea effects to the isoQCD ensemble is significantly larger,

although this may depend on the scheme used to define the isoQCD point. To ensure the

generality of our results, it would be valuable to explore how different definitions of isoQCD

affect our conclusions and whether certain trajectories in the parameters space are more

favorable for the RM123 method. We leave this exploration for future work.

This work represents one of the first experiences in making predictions in QCD+QED

with C⋆ boundary conditions. The main conclusion that can be drawn is the apparent

advantage of the non-perturbative simulation method over the RM123 approach, as may

be expected on theoretical grounds. The difficulty in the non-perturbative tuning of the

simulation parameters with more bare parameters is an issue that still needs to be ad-

dressed. The RC⋆ collaboration is generating new ensembles with smaller lattice spacings,

larger volumes, and smaller quark masses to approach the physical point and have an im-
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pact on state-of-the-art and phenomenogically-relevant computations for precision physics

of the Standard Model. In particular, for the muon anomaly, the extension to compute

the full electromagnetic current correlator including singlet contributions is essential, as

well as extending the work to the long-distance window, where QED effects remain very

challenging [2].
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A Isospin-breaking corrections

In this appendix, we provide the expressions for the isospin-breaking diagrams represented

in table 1. We recall that our goal is to compute the QCD+QED expectation value

〈O(x, y)〉 =
〈

Tr
[

D−1
f (y|x)ΓAD−1

g (x|y)ΓB
]〉

(A.1)

using the perturbative approach, at leading order in e2 and ∆mf . To simplify the notation,

and given that e2 ∼ ∆mf , we adopt the convention that O((∆mf )
k) = O(e2k); thus,

terms of O(e3) also account for higher-order mass corrections. We recall that the specific

interpolators ΓA,B used in this work are the pseudoscalar (ΓP), and the local and point-split

vector currents (ΓV and ΓṼ) defined in eqs. (4.7) and (4.8).

By using the expansions in eqs. (4.9) and (4.20), we can write the observable as

O = O0 +O1 +O2 +O(e3). (A.2)

The operator O0 represents the isoQCD observable

O0(x, y) = Tr
[

(D
(0)
f )−1(y|x)Γ(0)

A (D(0)
g )−1(x|y)Γ(0)

B

]

, (A.3)
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while Ok denotes the correction at order ek. Γ
(0)
A,B coincide with ΓA,B for pseudoscalar and

local vector interpolators. We also define the reweighting factor

R =

∏

f Pf(CKDf )
∏

f Pf(CKD
(0)
f )

, (A.4)

where the nominator is expanded according to eq. (4.10), leading to

R = 1 +R1 +R2 +O(e3), (A.5)

where Rk is the correction at order ek.

Given eqs. (A.2)-(A.4), we write the perturbative expansion for (A.1) as

〈O〉 = 〈O0〉0 + 〈O2〉0+γ + 〈O1R1〉0+γ + 〈O0R2〉0+γ,c +O(e4), (A.6)

where 〈〉0 , 〈〉γ denote the expectation value in isoQCD and over the free photon field

distribution. The subscript c refers to the connected expectation value, where the vacuum-

disconnected term has been subtracted.

In writing the equation above, we have noticed that O0 does not depend on the pho-

ton field, while R1 and O1 are linear in the photon field, and therefore, the expectation

values 〈O0R1〉0+γ and 〈O1〉0+γ vanish. The correction term 〈O2〉0+γ arises purely from the

expansion of the observable and is dubbed valence-valence contribution. We refer to the

correction term 〈O1R1〉0+γ as sea-valence contribution, since it involves a photon propa-

gator connecting a quark line in the observable to the quark line arising from the pfaffian.

Finally, we refer to the correction term 〈O0R2〉0+γ as sea-sea contribution. The latter in-

volves either a mass term or a photon propagator connecting quark lines from the fermionic

pfaffian.

A.1 Valence-valence diagrams

The first set of diagrams comes from the expansion of the inverse Dirac operators (quark

propagators) or the Γ in the trace (A.1). We first consider the cases where ΓA,ΓB = ΓP,ΓP

or ΓA,ΓB = ΓV,ΓV, i.e., none of the Γ depends on e. Diagrammatically, we have the

following expression:

〈O2(x, y)〉γ = −∆mf
g

f

x y − e2q2f
g

f

x y + e2q2f
g

f

x y (A.7)

+ {x↔ y, f ↔ g} + e2qfqg
g

f

x y ,
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which applies for any f 6= g for the pseudoscalar correlator or any f = g for the local-local

vector correlator. We give explicit expressions for the diagrams:

g

f

x y = Tr
{[

(D
(0)
f )−1(D

(0)
f )−1

]

(y|x)ΓA(D(0)
g )−1(x|y)ΓB

}

, (A.8)

g

f

x y =
∑

wµ

Λµµ(0)Tr

{[

(D
(0)
f )−1 δD

(2)
f

δA2
µ
(w)(D

(0)
f )−1

]

(y|x)

× ΓA(D
(0)
g )−1(x|y)ΓB

}

, (A.9)

g

f

x y =
∑

wzµν

Λµν(w − z) Tr

{[

(D
(0)
f )−1 δD

(1)
f

δAµ
(w)(D

(0)
f )−1 δD

(1)
f

δAν
(z)(D

(0)
f )−1

]

(y|x)

× ΓA(D
(0)
g )−1(x|y)ΓB

}

, (A.10)

g

f

x y =
∑

wzµν

Λµν(w − z) Tr

{[

(D
(0)
f )−1 δD

(1)
f

δAµ
(w)(D

(0)
f )−1

]

(y|x)

× ΓA

[

(D(0)
g )−1 δD

(1)
f

δAν
(z)(D(0)

g )−1

]

(x|y)ΓB
}

, (A.11)

where Λµν(x − y) = 〈Aµ(x)Aν(y)〉γ The remaining diagrams are obtained from the first

three by exchanging x↔ y and f ↔ g.

For f = g and A,B = Ṽ,V, there are three additional diagrams contributing to 〈O2〉γ
with coefficient −e2q2f , which are the following two

x

g

y

f

=Λµµ(0)Tr
{

(D
(0)
f )−1(y|x)Γ(2)

Ṽ,µ
(D(0)

g )−1(x|y)ΓV,ν

}

(A.12)

x

g

y

f

=
∑

zρ

Λµρ(x− z) Tr

{[

(D
(0)
f )−1 δD

(1)
f

δAµ
(z)(D

(0)
f )−1

]

(y|x)

× Γ
(1)

Ṽ,µ
(D(0)

g )−1(x|y)ΓV,ν

}

, (A.13)

and the last one is obtained from (A.13) with x↔ y and f ↔ g.
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A.2 Sea-valence diagrams

The sea-valence contributions are obtained by combining the O(e) contributions from the

observable and the pfaffian

〈O1(x, y)R1〉γ = − e2qf
∑

h

qh x

g

y

f

h

− e2qg
∑

h

qh x

g

y

f

h

, (A.14)

The first diagram has the following explicit expression

x

g

y

f

h

=
1

2

∑

wzµν

Tr

{[

(D
(0)
f )−1 δD

(1)
f

δAµ
(w)(D

(0)
f )−1

]

(y|x)ΓA(D(0)
g )−1(x|y)ΓB

}

× Λµν(w − z) Tr

{

(D
(0)
f )−1 δD

(1)
f

δAν
(z)

}

, (A.15)

while the second diagram is obtained from the first one by exchanging x↔ y and f ↔ g.

When A,B = Ṽ,V, an additional diagram should be added to eq. (A.14), leading to

〈O1(x, y)R1〉γ = −2e2qf
∑

h

qh Re

[

x

f

y

f
h
]

− e2qf
∑

h

qh x

f

y

f

h

(A.16)

where

x

f

y

f

h

=
1

2

∑

zρ

Tr
{

(D
(0)
f )−1(y|x)Γ(1)

Ṽ, µ
(D

(0)
f )−1(x|y)ΓV,ν

}

× Λµρ(x− z) Tr

{

(D
(0)
f )−1 δD

(1)
f

δAρ
(z)

}

.

(A.17)

A.3 Sea-sea diagrams

The sea-sea contributions 〈O0R2〉0+γ,c can also be written as
〈

O0 〈R2〉γ
〉

0,c
as O0 does

not depend on the photon field. The contribution of the reweighing factor turns out to be:

〈R2〉γ =
∑

f

∆mf f + e2
∑

f

q2f f

+ e2
∑

f

q2f
f

f

+ e2
∑

fg

qfqg f g , (A.18)
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where the diagrams are given by the following explicit expressions

f =
1

2

∑

z

Tr
[

(D
(0)
f )−1(z|z)

]

, (A.19)

f =
1

2

∑

zµ

Λµµ(0)Tr

[

(D
(0)
f )−1(z|z) δD

(2)
f

δA2
µ
(z)

]

, (A.20)

f

f

=− 1

4

∑

zwµν

Λµν(w − z) Tr

[

(D
(0)
f )−1(w|z) δD

(1)
f

δAν
(z)(D

(0)
f )−1(z|w) δD

(1)
f

δAµ
(w)

]

,

(A.21)

f g =
1

8

∑

zwµν

Λµν(w − z) Tr

[

(D
(0)
f )−1(z|z) δD

(1)
f

δAν
(z)

]

× Tr

[

(D(0)
g )−1(w|w) δD

(1)
f

δAµ
(w))

]

. (A.22)

These diagrams are independent on O0, and therefore, they can be computed and recycled

for different observables.

B Meson mass derivatives

In this appendix, we show the results of the fits to the meson mass derivatives.

In figure 7, we show example fits for the charged-pion mass derivatives. The plots in

the upper panel show the quantities ∂mu/d
Mπ+ and ∂msMπ+ , the plots in the lower panel

∂mcMπ+ and ∂e2aMπ+ . In each plot, the lattice data and the results of the fit obtained for

two fit ranges are shown. The fitting procedure minimizes the uncorrelated χ2 statistic.

Notice that the derivative with respect to mu/d shown in figure 7a receives valence-valence

and sea-sea contributions, while the derivatives with respect to ms and mc, in figures 7b

and 7c respectively, are due only to sea-sea effects. The derivative with respect to e2

shown in figure 7d receives all contributions. Due to the SU(3) symmetry of the ensemble

A400a00, the sea-sea effects from mu,md,ms are equal. Thus, ∂mu/d
Mπ+ is the sum of

two pieces, a quark-line connected graph correpsonding to the valence-valence effects and

a sum of quark-line disconencted graphs for the sea-effects, effectively equal to ∂msMπ+ .

Moreover, as a consequence of the SU(3) symmetry and that
∑

f=u,d,s qf = 0, all sea-

valence effects to ∂e2Mπ+ due to light sea quarks cancel out, as well as some of the sea-sea

diagrams. The fact that the absolute errors of ∂mu/d
Mπ+ and ∂msMπ+ are of comparable

size indicates that the uncertainty is dominated by the sea-sea contributions. Similar plots

for the charged D meson are shown in figure 8.

In tables 15 and 16, we show the leading-order value and the derivatives of all meson

masses appearing in the renormalization system (6.1). Some of the derivatives are equal

due to the unphysical SU(3) symmetry of the ensemble. The result for each quantity in

the table is obtained by considering several fit ranges and combining the fit results based

on the associated AIC weights [58].
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[47] Lüscher, M. and Weisz, P., On-shell improved lattice gauge theories, Commun. Math. Phys.

98 (1985) 433.
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