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ABSTRACT: Electromagnetic corrections to hadronic vacuum polarization contribute sig-
nificantly to the uncertainty of the Standard Model prediction of the muon anomaly, which
poses conceptual and numerical challenges for ab initio lattice determinations. In this study,
we compute the non-singlet contribution from intermediate Euclidean current separations
in quantum chromo- and electrodynamics (QCD+QED) using C* boundary conditions in
two ways: either non-perturbatively by sampling the joint probability distribution directly
or by perturbatively expanding from an isospin-symmetric theory. This allows us to com-
pare the predictions and their uncertainties at a fixed lattice spacing and volume, including
fully the sea quarks effects in both cases. Treating carefully the uncertainty due to tuning
to the same renormalized theory with Ny = 1+241 quarks, albeit with unphysical masses,
we find it advantageous to simulate the full QCD+QED distribution given a fixed num-
ber of samples. This study lays the ground-work for further applications of C* boundary
conditions to study QCD+QED at the physical point, essential for the next generation of
precision tests of the Standard Model.
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1 Introduction

The Standard Model (SM) prediction for the muon anomalous magnetic moment a, =
(9—2),/2 [1, 2] is coming into sharper focus since several lattice quantum chromodynamics
(QCD) studies [3-6] have shown internal consistency and further highlighted the tension
between lattice and data-driven dispersive evaluations indicated in ref. [3]. The lattice



QCD [3-6] results' including a recent high-precision hybrid calculation [7] point towards
compatibility with the experimental results from BNL and Fermilab [8-11], and the no
new physics scenario. Further tensions in the e™e™ — hadrons cross sections have arisen
in light of the CMD-3 data [12], which call for scrutiny of all assumptions underpinning
the SM predictions from the data-driven determination of the HVP contribution [1, 13].

While an impressive array of lattice computations have been able to pin down sub-
contributions to the HVP [14-24], in particular from small and intermediate Euclidean
separations, the so-called short-distance and window quantities, certain lacunae still exist.
In particular, the final result from Fermilab’s E989 experiment has now achieved a precision
of 127 parts per billion (ppb) [11], thereby reinforcing the need for a per mille theoretical
determination of the HVP contribution that matches the experimental accuracy. Conse-
quently, the inclusion of leading QED corrections in such ab initio computations remains
essential. On the lattice, this requires either computing the corrections to the leading-order
(in QED) result, defined usually in a scheme which naturally incorporates isospin symme-
try such that the corrections become so-called isospin-breaking effects, or else computing
directly in QCD+QED without an intermediate determination in the isospin-symmetric
theory. In either case, the incorporation of QED is challenging on the lattice for a num-
ber of conceptual and technical reasons, a contributing factor to the BMW computation
remaining the only complete computation of the muon anomaly in QCD+QED that incor-
porates all dynamical isospin-breaking effects.

To compute hadronic quantities and their electromagnetic corrections in numerical
lattice simulations, it is convenient, although not necessary, to use the same cutoff provided
by the lattice size L and lattice spacing a for both QCD and QED. Alternative infinite-
volume QED approaches have also been explored [25, 26]. The implementation of QED
in a finite volume is, however, not trivial due to constraints imposed by the long-range
nature of electromagnetism, which forbid the existence of charged states. This has been
overcome in many ways [27-33], and in this work we make use of C* boundary conditions,
which permit a local and gauge-invariant formulation of finite-volume QED [34]. These
properties likely result in better finite-volume effects compared to other formulations [35]
and good scaling behaviour towards the continuum [36], making this setup ideal in the
pursuit of per mille accuracy on the gold-plated hadronic quantities that form the input
for precision tests of the SM.

In this work, we consider an observable closely related to the muon’s HVP contribution
in the intermediate window defined by the correlator of the U-spin vector current

V() = 5{5(2)yus(@) — d(@)yud(x)}, (1.1)

which is flavour non-singlet when mgq = mg even when isospin-symmetry is explicitly bro-
ken, as in the setup we use in this work. Due to its flavour quantum numbers, its correlation
function is represented by quark-line connected diagrams which are significantly less compli-
cated to compute than the full electromagnetic current correlator, whose isospin-violating
contributions have been recently considered in ref. [37]. If the full SU(3) symmetry of the

'For a recent updated SM prediction by the Muon g — 2 Theory Initiative see [2].



light quarks is manifest, the contribution of this current correlator represents exactly 75%
of their contribution to the hadronic vacuum polarization. In addition to this simplifica-
tion, the intermediate window we investigate is dominated by current separations between
0.4-1.0 fm, meaning it is neither afflicted by either large finite-volume effects nor discretiza-
tion effects. Therefore, this contribution to the muon anomaly, denoted ag’w, represents a
very good quantity to use as a probe observable to test our approach to QCD+QED using
C* boundary conditions.

In the following, we compare and contrast two implementations of QCD+QED with C*
boundary conditions, consistent at next-to-leading order in the electromagnetic coupling,
to test their efficiency and utility. On one hand, we expand around an action defined
by QCD in the isospin-symmetric limit, ¢ la Rome-123 (RM123) [38, 39|, while on the
other hand we simulate directly the joint QCD+QED distribution non-perturbatively. In
both cases, all effects from the sea quarks are completely included, making the comparison
unambiguous at leading order in the expansion parameters. We make the comparison in
two ways: (i) by fixing the bare parameters of the simulations in both implementations and
comparing the resulting predictions for both a}f’w as well as the hadronic observables used
to define the renormalized theory, and (ii) by fixing the line of constant physics using those
same hadronic observables and propagating their uncertainty to the physical prediction of
the muon anomaly. Our final results incorporating the uncertainty due to fixing to the
same lines of constant physics are

a,™ x 10" =

{1094(21) RM123
“w

1085(7) non-perturbative

We find the uncertainty in the RM123 method completely dominated by the statistical
uncertainty in the estimation of the isospin-breaking effects due to the sea quarks. This
uncertainty can only be reduced by sampling more gauge-field configurations. Moreover,
the variance is expected to grow linearly with the volume in lattice units, up to logarithmic
corrections in the lattice spacing, making the reduction of this uncertainty very costly
toward the infinite-volume and continuum limits. This work provides the first experience
on the computation of physical predictions with this setup and lays the crucial groundwork
for future computations and moving closer to the physical point.

The rest of this paper is organized as follows. In section 2, we describe the renor-
malization scheme used to define QCD+QED and isospin-symmetric QCD parameters.
Section 3 provides the details of the lattice setup and the discretization of the observ-
able with C* boundary conditions. In section 4, we derive in detail the isospin-breaking
corrections through the RM123 approach. The numerical implementation is described in
section 5 while the analysis and results are discussed in section 6, followed by our concluding
remarks.



2 Parameterization of QCD-+QED and isospin-symmetric QCD

The QCD+QED action with Ny = 4 quark flavors f = u,d, s, ¢ contains six bare parame-
ters: four quark masses m; and the electromagnetic and strong couplings e and g3. The
renormalized theory is defined by introducing constraints which fix the bare masses along
the lines of constant physics. Physical predictions for QCD+QED are then unambiguous
in the continuum limit once the lattice scale has been set and ignoring the running of
the electromagnetic coupling, which goes beyond the target accuracy of state-of-the-art
computations.

In this work, we follow the hadronic renormalization scheme of ref. [40] to set the
lattice scale and fix the quark masses. The lattice spacing is set using the gradient-flow
scale v/8tg. The bare masses of the up, down, strange, and charm quarks are tuned by
fixing the following set of dimensionless hadronic quantities

¢o = 8to(Mies — M22),

¢1 = 8to(Mpx + M2 + Miy),
2 = 8to(Mjo — Mp+)/am,

¢3 = V8lo(Mpz + Mp+ + Mpo),

(2.1)

where ag is the renormalized electromagnetic coupling computed at flow time ¢g, and the
masses denote those of the light 7%, K= and charmed D*°, DF pseudoscalar mesons.
The ¢; quantities are particularly sensitive to certain combinations of quark masses, as
discussed for example in refs. [41, 42]. Specifically, ¢o, ¢1, P2, and ¢3 probe (ms — mq),
(my +mq + myg), al_%l(md — my), and me, respectively. As we are only concerned with the
theory accurate to next-to-leading order in the electromagnetic coupling, which is more
than sufficient for the target precision, we can safely set the bare parameter 6(2) to its
physical value e? = 4o = 0.091701237 in the Thomson limit. In the following, we will use

the notation €2

or « to refer to the bare parameters for brevity.
The renormalization conditions we use to define our theory at unphysical quark masses

are given by matching the above quantities to the values
o5 =0, o7 = 2.11, @5 = 2.36, ¢ = 12.1, (2.2)

which do not match their physical values. We set the gradient-flow scale to the central
value of the Ny = 3 CLS determination [43]

V/8t5 = 0.415 fm. (2.3)

The specific choices for the ¢; and the scale correspond to a pseudoscalar mass of ap-
proximately M + ~ Mg+ = 400 MeV in physical units. In QCD+QED, where isospin
symmetry is explicitly broken, the condition ¢y = 0 corresponds to setting mgq = mg and
there remains a SU(2) flavour symmetry between the down and strange quarks, which we
refer to as U-spin symmetry.

We now turn our attention to QCD in the isospin-symmetric limit, which forms the



practical starting point of the perturbative approach to QCD+QED. While the parameter-
ization of QCD+QED is unambiguous at the level of accuracy that can be probed in Nature
and the renormalization scheme can be chosen as a matter of convenience, the same is not
true for QCD at the target percent level of precision. In ref. [44], a prescription for lattice
computations has been proposed to facilitate comparisons between high-precision lattice
QCD computations. In this work, because our renormalized theory is still far from the
physical point, where such considerations are important, we impose for isospin-symmetric
QCD the same conditions defined by the values in eq. (2.2) and take the limit of & — 0 at
a constant ¢o, leading to my = mgq = ms. In the following, we denote the corresponding
theory by isoQCD for brevity. While the definition of a renormalized isoQCD theory is not
strictly necessary to use as a starting point for QCD+QED computations as we perform
in this study, it is required for computing renormalized results for isospin-breaking effects.

In this work, we will not examine the isospin-breaking effects directly but compare
results for a specific probe observable, ag’w, described in detail in section 3.2, computed
in QCD+QED using either the perturbative expansion around the isoQCD action or the
non-perturbative simulation of the joint distribution of QCD+QED. Details about the
implementation of the perturbative approach, originally proposed by the RM123 Collab-
oration [38, 39], are contained in section 4. Firstly, we will compare the results for the

U,w
"

scale-setting quantities tg/a® and ¢; and for a at fixed bare parameters: in this case,

both the target observable and the scale-setting quantities will carry an uncertainty. Sec-

U,w
i

ondly, we will compare results for a at fixed renormalization scheme: this requires

propagating the uncertainty on the scale-setting quantities to our target observable.

3 QCD++QED on the lattice with C* boundary conditions

Implementing QED on a finite lattice presents additional challenges due to the zero modes
of the photon field, see e.g. ref. [36] for a discussion. One approach for handling these zero
modes is the application of C* boundary conditions, also known as C-periodic boundary
conditions [31-34]. This method provides a rigorous way to simulate QED on a lattice with-
out compromising the theory’s locality or requiring an additional regulator, such as a mass
term for the photon field. Although using C* boundary conditions increases computational
cost due to the need to effectively doubling the volume in the orbifold construction, studies
suggest that finite volume effects are relatively suppressed in such simulations, compensat-
ing at least part of the additional cost [35]. Here, we briefly outline our implementation of
C* boundary conditions; for a comprehensive review, we refer the reader to ref. [34].

On a lattice with a finite size L in & direction, C* boundary conditions on fermionic
and gauge fields are defined using charge conjugation matrix C as

(3.1)



Here, ¢ and 15 are the fermionic fields of flavour f, U,(x) € SU(3) are the QCD lattice
gauge fields, and A, (x) is the photon gauge field. The symbols C, T, and * denote charge
conjugation, transposition, and complex conjugation, respectively. Also note that in our
convention the charge conjugation matrix C' obeys Cv,C~! = —’ylj with the Euclidean
gamma matrices vy,. By imposing the C* boundary conditions in one or more directions,
the photon field A, (z) is antiperiodic in those directions, and therefore the zero-modes are
excluded by construction. In this work, we impose C* boundary conditions in three spatial
directions. The details of the computational implementation of C* boundary conditions
are discussed in ref. [45].

3.1 Lattice action

To simulate QCD+QED we discretize the Euclidean path integral of the theory,

z - /Dz/JDwDU'DZ e SFlU,2,9.9] =S¢ sU(3) U] e Sevle], (3.2)

on a (T/a) x (L/a)? lattice using (anti-)periodic boundary conditions in the time direction
and C* boundary conditions in the spatial directions. For the SU(3) gauge field we employ
the Liischer-Weisz discretization of the action [46, 47], while for the U(1) gauge field we
use the Wilson plaquette action in the compact formulation

U(1
Ssu(2) 87Tq e Z Z = P ) 7)), (3:3)

T pFr

where P,H,(l) represents the plaquette built using the U(1) links z,(z) = e*°%%14x(@)  While
the parameter g, drops out of the action in the continuum limit, at finite lattice spacing,
the compact formulation implies that the electric charge is quantized: only states with a
charge that is an integer multiple of the parameter g, exist in the Hilbert space of the
theory. In finite volume with C* boundary conditions, we use gs = 1/6 to construct
gauge-invariant interpolating operators for charged hadrons, as explained in ref. [34].

The fermionic part of the QCD+QED action has to be modified because of the effect
of the C* boundary conditions. Indeed, the boundaries mix the ) and 1) degrees of freedom
such that the Dirac operator does not act as a linear operator on the field ¥. The problem
is overcome by defining an extended spinor that contains both the fermion field and its

_ (vl
x(@) = ( u}%)) , (34)

for which the boundary conditions in the spatial directions are set by

charge conjugate, i.e.

x(z + Lk) = Kx(z), K= (? é) . (3.5)



In this new formulation, the measure of the path integral can be simply re-written as
Dy = DD, and the action reads

Sp = —Za‘lZ%X}(;p)chm(x). (3.6)
f x

The massive O(a)-improved Wilson-Dirac operator is defined by
Dy =Dy s+ 5Dsw,f +my, (3.7)

where the Wilson-Dirac term is defined as

3
1 * *
Duy=) 5 [%(V,{ + Vi) -V v,{} : (3.8)
n=0

with the covariant forward finite-difference operator acting on the spinor as

(Um)zﬁf () 0

Vixi(z)=at G
Pt 0 U@

) Xy(w +ajt) — Xf(fﬂ)] : (3.9)

The covariant derivative is not universal for all quarks due to the presence of the compact
U(1) link sz , with gy being the electric charge of the quark of flavour f in units of the
elementary charge ge. The second term in equation (3.7) is the Sheikholeslami-Wohlert
(SW) term

. 3 5 ~
1 g 0 F, 0
0Dgyp = ~ IR AN et ORI 3.10
.f 4MVZO UH {csw 0 g:w +qfcsw 0 f;l, ’ ( )

which removes O(a) discretization effects from the action with appropriately chosen coef-
ficients. G,, and F,, are the clover discretizations of the anti-hermitian SU(3) and U(1)
tensors. The SU(3) tensor is defined as in ref. [48] while the U(1) tensor is constructed as

. 1

flw (‘73) - 4(]el

Im{z, () + 2z (x — 1) + 2 (x — D) + 2 (@ — 1 — D)}, (3.11)

with z,, (z) = exp{iegaalAu(z) + Ay(x + ) — Ap(x + ) — Ay (2)]}.

The action of the Dirac operator on the doublet field x; may then be given through

Dyxy(x) =(my +4)xy(z) — % D (1 =) [e“U W, ] (2)x s (x + )
n

1 ; " .
=5 2 (L) [N TW] (@ — )X g (2 = ) + 6Daw g xp (@), (312)
I

where e?4724uTs 1, is the SU(3) x U(1) field, with the following definitions of the SU(3)



parallel transporter W, and the matrix 73:

W(x) = (Uuéx) U*O(x)> R (é _01> . (3.13)
o

The same action is used for isoQCD simulations with the electromagnetic charge of the
quarks in eq. (3.12) set to zero.

3.2 Flavour non-singlet contribution in the intermediate window

In this work, we consider the U-spin current

1 _ T3
Vulz) = 5 > QX (@) xs(2), (3.14)
f=d,s
defined using the doublet notation introduced in the previous subsection, with y = —x ' KC,
and the charge assignments Qs = 1 = —@q4, and compute the Euclidean-time correlator in

the time-momentum representation [49]

U 19 3
GY(t) = 3Z/d z (Viu(2) V4 (0)) . (3.15)
k=1

The intermediate window of this contribution to the muon’s HVP is obtained via the
integral

QU = ()2 /O T A G )R (6my)wn (). (3.16)

The kernel K is computed following ref. [50], while the intermediate window w(t) is equal
to the weight function

’w(t;tl,tQ,A) = @(t,tl,A) - @(t,tg,A), (317)

with the choice t; = 0.4fm, t3 = 1fm, A = 0.15fm [16], and the O function defined as

O(t,t',A) = = (1 + tanh[(t — ') /A]) . (3.18)

1
3
The intermediate window selects the contribution less susceptible to finite-volume and
lattice discretization effects, and yet provides a substantial fraction of the total.

With this definition of the current, we examine a contribution which is proportional
to the full light-quark contribution from the electromagnetic current when there is SU(3)
symmetry. At the physical point, the light quarks contribute the most to the HVP, as
indeed the charm and bottom quarks provide only 2% of the total. With SU(3) symmetry,
the contribution of the light quarks to the electromagnetic current is non-singlet thanks to
the vanishing sum of their charges and thus the correlator is represented by a single Wick
contraction (a quark-line connected diagram) once the quark fields have been integrated
out. When the SU(3) symmetry is broken, for example from isospin-breaking effects, quark-



line disconnected diagrams, which are computationally demanding to compute, no longer
cancel. In this investigation, even after including QED, we retain an SU(2) symmetry be-
tween the d and s quarks. With this choice, the current introduced in eq. (3.14) transforms
in the non-singlet representation of SU(2) when mgq = ms, and we avoid computing the
associated disconnected diagrams.

Although the absence of the singlet part of the current prevents us from computing
corrections to the full electromagnetic current correlator, one could still determine the
quark-line connected part of it, which can be defined in a partially-quenched theory. How-
ever, we do not expect that the isospin-breaking effects to that quantity to have any special
significance over the corrections to the non-singlet correlator, especially in the comparison
between the two approaches. Finally, we note that U-spin current is protected from mixing
with singlet operators, so there are no additive renormalizations required in our case, unlike
for the electromagnetic current, c.f. ref. [51].

3.3 Lattice discretization of ag’w

On the lattice, we must choose a discretization of the operators and integral appearing in
eq. (3.15). In this work, in addition to the local current defined in eq. (3.14), we make use
of the point-split current

+ —ieqra Z)T:
E Qy [Xf )( 4%) A @B (2)rx ()
f d,s
1-— , ) .
— ) T e (e o+ ) (3.19)

While this current satisfies a Ward identity at finite lattice spacing, and automatically
has the correct normalization, the local current in eq. (3.14) requires a finite multiplica-
tive renormalization to match it. Furthermore, both currents require O(a) improvement
counterterms whose coeflicients are not yet known for Ny = 4 Wilson fermions and the
Liischer-Weisz gauge action. Therefore, we use the unimproved currents.
We define the renormalized but unimproved local current via

V(@) = 2% (g5, €%, myp) Vi (), (3.20)
where Z{}“(gg e2m ) is the mass-dependent non-singlet renormalization factor. A suitable
renormalization condition to determine Z5;' can be constructed by imposing that the local
and point-split discretizations agree at large Euclidean separations

lim [Cjbare( )
t—oo  (G° ( )

bare

=1, (3.21)

where the bare correlators of the local current is defined through

GUL(1) = —2a* 305 (V@) V(0)) (3.22)



and the corresponding one with the point-split discretization at the sink
1 -
U7
Crinet) = —2a* Y 3" (Vel@)Va(0)) - (3.23)
k x

In practice, as our operators are not improved, this condition has the unfortunate feature
that it will be potentially subject to large cut-off effects. As we will use the same condi-
tion in both implementations and compare at finite lattice spacing, this does not pose a
particular problem for our study.

The renormalization thus defined, the two discretizations of the correlator we employ
are one using only the local currents

GUN(t) = (Z9)2 Gy (1) (3.24)

bare

and one using a local and a point-split current

GUC(t) = ZBGUE (t). (3.25)

bare

In practice, the normalization condition ensures that they agree at long distances, but in
this study we probe smaller Euclidean separations where they will differ due to cut-off
effects. Thus, we have two estimators for the lattice, finite-volume, U-spin observable

2 T/2

o =(3) 0} GHOREmu(e),  £=Le (326)

for either the local or point-split discretizations of the sink current.

4 Isospin-breaking effects a la RM123

While in the non-perturbative QCD+QED approach the computation of the observables
proceeds identically to isoQCD with no special treatment, the RM123 method requires the
estimation of new classes of diagrams which parameterize the linearization of the observ-
ables in the bare parameters. In this section, we derive the required diagrams that arise
from expanding the lattice action and currents in the bare parameters connecting isoQCD
and QCD+QED, as described in section 2. First, we introduce our notation for the leading
corrections order in the expansion parameters.

By Taylor-expanding an observable X at finite lattice spacing in the changes of the
bare parameters Ae = (€2, Amy, Amg, Amg, Am,) as

X(Ag) =X(0) + €02X(0) + > Amydm, X(0) + O(e*), (4.1)
f=u,d,s,c

where we denote the partial derivatives 0,2 = 9/0¢? and 0y, ; = 0/0my, we can estimate

,10,



our observable via X (A¢) ~ X + §X, where

XO=X(0), X=€02X0)+ > Amgdn,X(0). (4.2)
f=u,d,s,;c

Both terms can be computed in the isoQCD theory defined by Ae = 0. We note that given
our definitions of isoQCD and QCD+QED we have Am; = O(e?), and so corrections to
the above formula start at second order in that parameter. We recall that both theories
are defined at the same bare coupling gg, so no change in this parameter is needed, but
isoQCD and QCD+QED will have different lattice spacings. Furthermore, in the current
definition, no change in the O(a) improvement coefficients are included.

For fixed line of constant physics, the change in the bare masses Amy are computed
by expanding the hadronic observables defined in eq. (2.1) at first-order in Amj and e?
around the isoQCD point and imposing the renormalization conditions as before. This
amounts to solving the system of equations

$:(0) + €%026i(0) + > AmyOm,$i(0) = ¢}, (4.3)
f=u,d;s,c

where the right-hand side ¢ are the target values in the full theory, given in eq. (2.2).
The derivatives O.2¢; and Oy, ¢; can be related to the derivatives of the pseudoscalar
meson masses that enter the definitions of each ¢; and the derivatives of the scale setting
observable in lattice units fp = ¢ /a?.

When the same bare coupling is used in isoQCD and QCD+QED the lattice spacing
a also receives a correction to the value computed in the isoQCD ensemble

o_ [t~ da _ 1ok
CTE @ T T2 (44)
0 0

In the following, we derive the form of the required corrections with C* boundary con-
ditions and O(a)-improved Wilson fermions, where in practice, we find it more convenient
to expand the path integral after integrating over the Grassmann fields.

4.1 Derivation with C* boundary conditions

After integrating out the fermion fields, the expectation value of any observable O[U, z| in
QCD+QED with C* boundary conditions may be written

(O[U,2]) = 271 / DUDz [ [ PH(CK Dy[U, 2]) O[U, 2] e~ Sesue VI =SavmEl, (4.5)
f

where Pf(CK Dy) denotes the pfaffian of CK Dy, whose properties are discussed in ref. [40].
Note that O[U, z] now depends explicitly on the SU(3) and U(1) gauge field variables, but
not on the fermion fields and instead is in general a function of the inverse of the Dirac
operator DJII.

— 11 —



With the exception of the gradient flow scale tg, all hadronic observables we consider
in this work are extracted from two-point functions of fermion bilinears which result in a
single fermionic trace

g
O(w,y) = Te{ D} (yl2)TaD; (aly)Tp} = v > (4.6)
f

corresponding to quark-line connected diagram, where the trace is taken over the color,
Dirac and doublet spinor space. We stress that, in the doublet formulation introduced in
section 3.1, the Dirac operator and its inverse appearing in eqs. (4.5) and (4.6) are 24 x 24
matrices for fixed x,y. The indices f, g denote quark flavours, while A, B =P, V, V denote
the pseudoscalar density, local vector and point-split vector current defined in eq. (4.8).
The explicit form of the operators I'p,I'y is

I'p = 3751, Ty = $7,730 4, (4.7)

while the action of I'y; on doublet spinors is

- 77}(33)73WWM(x)eieqfaA“%f(x + ). (4.8)

Given these definitions, it is clear that none of these vertices depends explicitly on the
quark masses, and the only one depending on the electromagnetic coupling is I'y;.

In the following, we illustrate how to perturbatively expand the QCD+QED expec-
tation value (O(z,y)), which requires expanding the inverse Dirac operator, the pfaffian
and the vertex I'y; around the isoQCD point. We begin with the expansions of the inverse
Dirac operator

Dt = (D) [11 ~AD; (D) ¢ {ADf(D§°>)—1}2] , (4.9)

and the Pfaffian
PI(KCDy) = PIKCDY) |1+ 3 Tx {(D") ' AD; | (4.10)
0)y— 2 0)y— 0)\—
+§Tr{<D§)) 1Apf} —iTr{(D}U 'AD(D{) 1Apf}],

which both can be expressed in terms of the Dirac operator at the isoQCD point DEIO)

and its leading correction AD;. Given the form of the Wilson-Dirac operator Dy =
Dy 5 4+ 0Dgy s + my defined through egs. (3.7), (3.8), and (3.10), we expand the U(1)
gauge links up to order e? and the quark masses to order O(Amy), leading to the following
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three expressions:

Dy s = Dsf)f + eqy D! )f—i- -e qJ%D(Q) + 0(e?), (4.11)
0Dgws = 0DS) . + eqy 6D, ’f+0( ), (4.12)
my =m{) + Amy + O((Am)?), (4.13)

where DSB) and 5D§W)f are the terms at the isoQCD point, while qufV)]c, qféDéw)f and

qJ%DSV2 )f denote the first and second derivatives with respect to e at e = 0. Eq. (4.13)
accounts for the shifts in the quark masses.

We stress that the expansion of the SW term in eq. (4.12) relies solely on the expansion
of the U(1) improvement term. In principle, the SU(3) improvement coefficient SV6) could
also be expanded around its isoQCD value. However, since both isoQCD and QCD+QED

simulations are performed with the same value for CSW( )

, in practice, we neglect QED
corrections to this quantity in both approaches. Moreover, it can be shown that the
expansion of eq. (3.11) contains only odd powers of e, which explains the absence of a term

x e2q]2¢5Dé‘2N) Thus, 6D§O)f in eq. (4.12) can be matched to the SU(3) improvement term
in eq. (3.10), while eqy 5D( ) s is the first-order expansion of the U(1) improvement.

By using the definitions in egs. (4.11)-(4.13), we obtain D} ) and ADy as

D;O) — Dg)) + D( )f +m§c) (4.14)
1 2
ADy = Amy+ equ](c ) 4 ieQchst’)f +0(e%), (4.15)

where we have collected the first order derivative DS}) = stl )f + DSV) 2 After factoriz-
ing out the photon fields, the three operators appearing in eq. (4.15) can be represented
diagrammatically as the following vertices:

=164, 4.16
—}—*7 £f (4.16)

I N Y S (@17

A X VA A | 0A7

where the identity in eq. (4.16) is an identity in Dirac, color and coordinate space. The two
operators in eq. (4.17) depend only on the SU(3) gauge field, and their action on spinor
fields is readily obtained for the first derivative in e

5D}1) 1 1
' (@ 54 0@) = ZWT(ﬂf)(l = Yu)Wu(2)m3¢(z + ) — 2*77T(:1: + ) (1 + )W (x) ' m30(2)
L
U(1)
B C“g SN anl@+ ab + Bp)ouTsd(x + o + Bj), (4.18)
v a==xl1
3=0,1
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Q) O € GO
Table 1: Diagrammatic representations of the IB contributions to the valence-quark con-
nected two-point functions. The diagrams in the top row are those included in the electro-
quenched approximation, while the ones in the lower row represent the IB corrections from
sea quarks. Vacuum terms from the expansion of the denominator in eq. (4.5) must been
subtracted from the four diagrams at the very bottom. The right column collects additional
diagrams relevant when the point-split current is inserted at the sink. The meaning of the
various vertices is explained in eqs. (4.16), (4.17), and (4.21): red triangle, green square
and blue diamond for mass, single and double photon insertions from the expansion of Dy;

orange pentagon and yellow star for single and double photon insertion in the sink, when
the point-split current operator I'y; is used.

and for the second derivative in e

5D£V2)f 1 . 1 .
i (@) 5 o) = Jnl (0)(1 = ) Wal@)b(a + ) + ' (o + @)L+ 3 Wa(o) (2.
m

(4.19)

Although in our simulations we employ the leading order value in e? of the improvement

coefficient cgvél) = 1, we keep it generic in equation (4.18) to highlight the part of the

insertion that arises from improvement terms.

Finally, we expand I'y; in powers of the electromagnetic coupling e:
) W, CG e 3
F\} = F\? + eqy F\? + TF\? + 0(6 ), (4.20)

where Fg]) is the vertex defined in eq. (4.8) with e set to 0, and Fg) and Fg) are the first
and second derivatives of eq. (4.8) with respect to eqy, evaluated at e = 0. A diagrammatic
expression for the vertices and their derivatives is:

5T 5T
F(O):< A=P,V,V, v :w<, v :}(. (4.21)
A 5 A, 5 A2

By inserting the expansions in egs. (4.15) and (4.20) into the expectation value (4.5)

and into the trace (4.6), we obtain all the isospin-breaking corrections. Terms involving
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Ensemble T/a x (L/a)® B=6/g3 ! Ky Kd = Ks Ke

A400a00 64 x 323 3.24 0 0.13440733 0.13440733 0.12784
A380a07 64 x 323 3.24 0.007299 0.13457969 0.13443525 0.12806355

Table 2: Parameters of the two ensembles used in this work. The A400a00 ensemble has

Ku = K4 = Ks, while the A380a07 ensemble has x, > kq = ks. The improvement coefficients

used in the action are CSSV[VJ(3) = 2.18859 and cfél) =1 for both cases.

only a single photon vertex vanish when evaluated between vacuum states, and are therefore
discarded. The remaining contributions yield the Feynman diagrams shown in table 1, and
the expression for each diagram is detailed in appendix A. The symbols for vertices used
in the table reflect the operator insertions defined in eqs. (4.16), (4.17), and (4.21). Each
diagram includes only the statistically connected contributions, with vacuum-disconnected
terms from the Pfaffian expansion in the denominator of eq. (4.5) being subtracted.

5 Computational details

In this section, we describe the two ensembles used in this work and provide details about
the numerical implementation of the RM123 approach.

5.1 Ensembles

For this work, we perform measurements on two ensembles generated by the collaboration
using the openQ+*D code [52]. The parameters of the ensembles are summarized in table 2.
The two ensembles, here labeled A400a00 and A380a07, correspond to A400a00b324 and
A380a07b324+RW1 in ref. [40]. For the latter, a non-perturbative reweighting in the bare
mass has been implemented to improve the consistency with the line of constant physics.
The bare hopping parameters of A380a07 shown in table 2 are the target quark hopping
parameters obtained through the reweighting procedure. All quantities computed in this
work on A380a07 take into account this reweighting factor.

Both ensembles have the same lattice volume and value of the strong coupling constant
g =6/ gg, while they differ for the electromagnetic coupling constant « and the hopping
parameters. A380a07 is an ensemble close to the physical value of o, and with an (unphys-
ical) SU(2) symmetry in the down-strange quark sector. On the other side, A400a00 is
an ensemble generated following the line of constant physics with ar = 0 and degenerate
masses for the up and down quarks. This leads to the SU(3)-symmetric point k, = kq = Ks.

We use the SU(3) improvement coefficient tuned in isosymmetric QCD for both en-
sembles. In this way, we do not remove all O(a) effects in QCD+QED in this work. Never-
theless, the definition of the action is identical in both non-perturbative and perturbative
implementations of QCD+QED. The U(1) improvement coefficient provides tree-level im-
provement and is considered in both non-perturbative and perturbative implementations.
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5.2 Computation of the RM123 diagrams

In the perturbative RM123 approach, we use the non-compact formulation of the U(1)
gauge action

4 3
nc a
Seb =722 2 Falo), (5.1)

Tz p,v=0

where the discretization of the field-strength tensor is chosen to be F),, (v) = 0, A, (x)—(p <
v), in terms of the forward finite-difference operator 9, f(z) = a ' {f(z+aft) — f(x)}. This
formulation requires us to fix the gauge, and on the lattice we adopt an analogue of the
Coulomb gauge fixing condition

3
D Ok Ap(z) =0, (5.2)
k=1

where 0}, is the backward finite-difference operator 9}, f(z) = a Y f(x) — f(x — ap)}.
While all physical observables are independent of this choice, intermediate quantities may
be gauge dependent. In the non-compact formulation, the action is quadratic in the gauge
potential, and the photon field can be integrated out by hand. Nevertheless, a stochastic
representation is useful to estimate the integrals over the vertices, where samples of the
photon field distributed according to the lattice action including the gauge-fixing term are
generated by using the momentum-space representation. The coordinate-space fields can
then be efficiently computed using the fast Fourier transform.

In the rest of this section, we describe briefly the computation of the diagrams required
for the non-perturbative QCD+QED computation and the diagrams in the R123 approach
listed in table 1. Using translation invariance, it is sufficient to fix one of the coordinates
in eq. (4.6), which we choose to be y. To reduce the variance we use an additional three
translations of the coordinate on every gauge field configuration for all diagrams, i.e. we
use Ny = 4 point sources for every diagram required for both the non-perturbative and
RM123 approaches.

In the perturbative RM123 approach, the diagrams with additional vertices integrated
over the space-time volume must be included as shown in table 1. Diagrams with a single
fermion trace and just one insertion, i.e. the first two diagrams in the first row, require just
one additional inversion via the sequential propagator method, and therefore, in addition
to the last diagram of the first row, can be computed exactly without further special
treatment. The remaining single fermion trace diagrams are computed with one sample of
the stochastic photon field at the vertex. These diagrams constitute the contributions that
remain in the so-called electro-quenched approximation and require only the stochastic
estimation of the photon line to integrate exactly the additional vertices.

On the other hand, the diagrams in the second and third rows, which arise from the
expansion of the Pfaffian, involve at least two fermion traces and are referred to as sea-
valence (second row) and sea-sea (third row). Thanks to the SU(3) symmetry of the isoQCD
theory in our setup and the vanishing sum of the light quarks’ charges, > feuds 4f =0, only
the charm quark contributes to the additional traces in the sea-valence diagrams and the
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final sea-sea diagram. The additional fermion traces for all of diagrams involving the sea
quarks are estimated stochastically using pseudofermion fields. The hopping parameter
expansion was used for the charm-quark propagator where the first few hopping terms
have been estimated exactly using probing vectors [53, 54]. One level of frequency-splitting
was also applied for the light-quark propagators [55]. For the third diagram of the third
row, only one of the two sea-quark fermion propagators was estimated using one level
of frequency splitting, and only pseudofermion sources were used for the charm quark
propagator. A fixed number of N,, = 160 pseudofermion sources were used for all estimators
to reach the gauge noise where the variance is dominated by the fluctuations of the gauge
field. The approach to the gauge variance for the corresponding contributions to our final
observable is illustrated in figure 6.

The photon propagators were also estimated differently for the sea-valence and sea-
sea diagrams. For the sea-valence diagrams, the convolution of the photon propagator
and the additional fermion trace was computed using the fast Fourier transform and this
product was then inserted into the sequential propagator [56]. In the sea-sea case, the
stochastic photon field was used for the third and fourth diagrams. For the third diagram,
an inversion is required for every photon field and every pseudofermion field, so one photon
field was used per pseudofermion field. For the final diagram, the estimation of the photon
propagator is independent of the traces, and in this case we also choose Ny = 160 samples
for the photon field. In the last diagram, clearly the photon propagator could have been
estimated exactly by a convolution as in the sea-valence case.

In this work, the cost of the stochastic estimators was not optimized. As will be
illustrated later, we show, however, that the stochastic estimation is sufficient to reach the
gauge noise, and therefore, the dominant fluctuations are driven by the fluctuations of the
QCD gauge fields. The gauge noise itself is expected to be large for the sea-sea effects, in
particular the variance will diverge with (L/a)*. For a detailed study and discussion, we
refer to [57]. Even disregarding the extra cost of the sea-sea diagrams, which are reused for
every observable, the valence-valence and sea-valence diagrams require at least 5 additional
sequential propagators for every isoQCD propagator, without further differentiating the
individual terms, greatly increasing the computational cost of the measurement of the
observables.

6 Analysis and results

In this section, we present our analysis and results for the observables ¢; defining the line of
constant physics and ag’w in QCD+QED using either the perturbative expansion around
isoQCD or the fully non-perturbative QCD+QED simulation. This enables us to compare
the two implementations that we perform at a single lattice spacing and volume. The
physics parameters of the ensembles tuned to isoQCD and QCD+QED are provided in
table 3, which of course may differ before matching.

As can be seen from table 4, where we present the measured ¢; as in ref. [40], even
after a reweighting in the bare mass, there is still a slight mistuning of the bare parameters
compared with the target line of constant physics for the A380a07 ensemble. Since in
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Theory Ensemble a (fm) my+ (MeV) mpg+ (MeV)  Negg

iso0QCD  A400a00 0.05393(24)  398.5(4.7)  398.5(4.7) 2000
QCD+QED  A380207 0.05349(27) 398.8(3.7)  403.1(3.8) 2000

Table 3: Physics parameters of the ensembles used in this work and presented in ref. [40].
Note that there the two ensembles are referred to as A400a00b324 and A380a07b324+RW1,
with the latter including a mass-reweighting factor.

¢; LCP  A400a00 A380a07

¢1 211 2.107(50)  2.126(39)
by 2.36 - 2.13(17)
¢35 121 12.068(36) 12.122(47)

Table 4: ¢; measured on the A400a00 and A380a07 ensembles, together with the target
values used to define the lines of constant physics [40].

this work our goal is to compare the two implementations at fixed lattice spacing, which
will not depend on the precise definition of the line of constant physics, we modify the
renormalization condition, so the target matches the central value of the measured values
on the A380a07 ensemble and no further correction is required.

Explicitly expanding in the bare parameters to leading order around the simulated
parameters of the A400a00 ensemble, then we have the conditions

b0 + €202 + Z Amy Om,po — Argo = 0,
f

$1 4 021 + > Amy O b1 — Apgy = 2.126,
f

b2 + 02y + > Amy O b2 — Ay = 2.13,
f

¢3 + 023+ > Amy O b3 — Ay = 12122,
f

where the target values are slightly modified with respect to eq. (2.2). The last term on
the left-hand side of each condition accounts for the subtraction of the universal QED
finite-volume effects of the charged meson masses, which have already been subtracted for
the ¢; quantities computed on A380a07. The finite-volume effects on the hadron masses
in the case of C* boundary conditions have been derived in ref. [34]. From the equations
in (6.1), the shifts in the bare mass parameters can be determined. We reiterate that no
corrections have been considered to the O(a) improvement coefficients in either approach,
so that the coefficients of the two ensembles are identical.

When performing the comparison of the two methods at fixed line of constant physics,
in both the perturbative and non-perturbative approaches, we incorporate the uncertainty
derived from fixing to the lines of constant physics. In the perturbative approach, this
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is straightforwardly implemented by propagating the uncertainty on the bare mass shifts
obtained by solving the system of eqs. (6.1). In the non-perturbative approach, however,
we propagate the errors from the determination of the ¢; and #( to ag’w assuming Gaussian
statistics

—,

(da")2 =37 (O, al™) (dmp)?, dmp(d) =Y (J V)i dds, (6.2)
f i

where d¢; denotes the statistical uncertainty on the measured values in table 4 and J~!
is the inverse Jacobian of the change of variables from the hadronic quantities to the bare
quark masses. In practice, the derivatives of a}{’w will be the ones computed on the A400a00
ensemble, and any associated error is higher order in the expansion in the bare parameters,
so can be safely ignored.

An alternative way to compare the two strategies for making predictions in QCD+QED
is simply to fix the same bare parameters in the approaches and compare the predictions
for the ¢; and the scale o as well as aH’W. In this interpretation, the perturbative and
non-perturbative approaches are simply two algorithms for computing at fixed bare param-
eters, and such a comparison uses exactly the same data as fixing to the lines of constant
physics, presented in a different manner. In the former approach, all of the uncertainties
are combined, whereas in the latter, the uncertainties related to the tuning to the lines of
constant physics are presented separately. Given that we find both presentations useful,
we present both in the following. In particular, we show the results obtained for ag’w
in isoQCD and non-perturbative QCD+QED in section 6.1. In sections 6.2 and 6.3, we
present the corrections to the scale-setting quantity and to the hadronic observables defin-
ing the line of constant physics, then the corrections to ag’w are discussed in section 6.4.
In sections 6.5 and 6.6 we compare the final results first at fixed bare parameters, followed
by fixed line of constant physics.

6.1 Non-perturbative determination of aH’W

As the analysis of the correlation functions in the non-perturbative QCD+QED and iso-
QCD computations is identical, we present the two together.

As described in section 3.3, we have to determine the renormalization constant of
the local U-spin current. The renormalization factor is computed via the renormalization
condition (3.21), which translates in the following relation between the bare correlators

Glhre .
GyS (t
Z% = lim gaf() (6.3)
f=eo sz;re(t)

The renormalization constant is obtained by fitting the right-hand side at large ¢. The
results of the fit are shown in figure 1 for both ensembles and two different fit ranges. We
obtain the following result for the isoQCD theory

730 = 0.6767(10), (6.4)
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| —— Fit 1: 0.67695(52), 2,4 = 0.66
---- Fit 2: 0.6765(13), x%,; = 0.84
¥ A400a00 data

—— Fit 1: 0.67823(62), x2,; = 0.57
---- Fit 2: 0.6774(13), x%,; = 0.54
¥ A380a07 data
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Figure 1: Renormalization constant of the local vector current computed on A400a00
(left) and A380a07 (right) according to the renormalization condition in eq. (3.21).
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Figure 2: Integrand I(f) = (a/ﬂ')zéU’e(f)f((f)wl(f) computed on the two ensembles
A400a00 and A380a07 using the local-local (LL) and conserved-local (CL) discretization of
the bare correlator.

while using the same renormalization condition for the QCD+QED theory we have

Zy = 0.6776(12). (6.5)
The mean values and the errors are computed by combining the fit results for the different
fit ranges, based on the associated AIC weights, as in ref. [58]. We stress that the isoQCD
result represents only the leading-order piece of the renormalization factor.

™ using the local-local and the point-split local discretization of the

We compute aH
correlator defined in eq. (3.26). In figure 2, we show the plots of the (renormalized) in-
tegrands for the two ensembles and discretizations used in this work. We do not need
any extrapolation or model for the data at large distances since employing the intermedi-
ate window already removes this noisy region of the correlator. The results obtained by

integrating in time are shown in table 5. From comparing the two plots and the results
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an™ x 101

(=1 ¢
is0QCD 1083(6)  1086(5)
non-perturbative QCD+QED  1082(7) 1085(7)

Table 5: Results obtained for a,[f’w x 101, computed either in isoQCD or QCD+QED
non-perturbatively.

£0) Oamuto  Oam.to .oto
7.400(69) -76(24) -26.5(8.1) -6.1(1.9)

Table 6: Leading-order value of the dimensionless scale to = to / a? and its derivatives 351.2?0
evaluated at the isoQCD point for the ensemble A400a00. Due to the SU(3) symmetry of
the ensemble, the derivatives with respect to the light quark masses amy, amg and amsg
have the same value.

in the table, we see that there are no visible differences between the local-local and the
conserved-local estimators. We also notice that the signals on the two ensembles agree
with each other within the errors, although we have not yet considered the corrections for
the ensemble A400a00. Thus, we expect that these effects will not significantly change the
central value of ag’w, but they could still have an impact on the errors when computing
them using the RM123 approach.

In the next sections, we present the corrections in the bare parameters that connect
the A400a00 to the A380a07 ensemble, obtained by linearizing all of the observables and
computing the derivatives with the method of insertions @ la RM123, as described in section
4.

6.2 Corrections to the gradient-flow scale ¢,

In this work, we employ the gradient-flow scale t( for the scale setting. Its value is defined
implicitly through the condition
t5 (E(to)) = 0.3, (6.6)

where E/(t) is the action density at flow time ¢. In the perturbative approach, the QCD+QED
expectation value on the left-hand side of eq. (6.6) is expanded around the isoQCD point
as explained in section 4.1, leading to scale corrections. As E(t) is an observable indepen-
dent of the bare quark masses and the electromagnetic coupling, the corrections to tg arise
exclusively from the expansion of the pfaffian.

In table 6, we show the results in lattice units for the scale at leading-order and its

derivatives with respect to a bare parameter ¢; = my, e?.

The errors are statistical and
computed by using the I'-method described in ref. [59] and exploiting the implementation

of the pyerrors package [60]. This applies to all statistical errors computed in our analysis.
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6.3 Corrections to the hadronic observables ¢;

In the perturbative approach, we have to compute the derivatives of the hadronic ob-
servables defining the parametrization of QCD+QED. By employing the definitions in eq.
(2.1), we obtain the explicit form of the derivatives with respect to the quark masses

amf¢0 _ 16t0Mﬂ— (8MK+ _ 8M7r+) ’

8mf amf
OM .+ n OM ¢+ n OMyo  3M, Oty
me 8771]0 6mf 2tg amf ’

amf¢1 = 16750]\4# <

Oy g — 16tg My [ OMpo B OM g+ (6.7)
mitE T Ty dmy omy )’
OMp+ a]\41)+ OMpo  3Mp Oty
Om = /8t £ )
f¢3 0( 8mf + Gmf * Omf 2to ('9mf
and the derivatives with respect to e?
8MK+ 8M7r+
Op20p9 = 16tg M ( 92 9e2 > ,
OM.+ OMg+ OMgo 3 Oty
0 = 16to M sMra—5 ],
201 0 < 92 o2 9e2 2 8e2> 6.8
Doachy — 16to My [ OMyo B OM g+ (68)
P27 T, Oe? de2 )7
OMp+ 8MD‘+ OMpo 3Mp Oty
0 = /8t 2 — |-
203 0 ( 9z e gez 2ty Oe?

In the above equations, we exploit the SU(3) symmetry of the isoQCD ensemble to simplify
the expressions, and denote M, = M, + = Mg+ = Mgo and Mp = Mp+ = Mpo = Mp+
for the leading-order light and charmed meson masses. In addition, the contribution from
the scale derivatives cancels out in ¢y and ¢o as they depend on the mass difference of
mesons that are degenerate at the SU(3)-symmetric point.

To construct the quantities in egs. (6.7) and (6.8), we compute the derivatives of the
scale and meson masses and combine them. The computation of the scale derivatives was
explained in the previous subsection, leading to the results of table 6. Here we focus on the
meson mass derivatives. We consider the flavor-charged pseudoscalar correlator projected
to zero momentum in the doublet notation

c(t)=a* Y (07, :)071(0)) = —a* 3~ ( (LD T L) A (). (69)

At large times, the correlator is dominated by the lowest-energy state in the spectrum.
By taking into account the periodic boundary conditions in the temporal direction of the
lattice, it follows that, in the large time limit,

C(t) — A(eME=T/2) 4 ME=T/2)y, (6.10)
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where A and M are the amplitude of the correlator and the mass of the interpolated meson.
Assuming that the isospin-breaking corrections to the meson mass and the amplitude are
small, the correlator in equation (6.10) expands as follows

C(t) ~ COt) + 6C(t), (6.11)
with
CO(t) = A® cosh (MO (t — T/2)) (6.12)

and

6C(t) = CO(t) {j(‘;‘) —6M (t — Z) tanh [M(O) (g — tﬂ } : (6.13)

The effective derivatives with respect to a bare parameter ¢; as functions of ¢ are derived
from equation (6.13) and take the form

0:,C(t)  0.,C(t+1)
cO@)y  CO@t+1)

—(T/2 — (t+1)) tanh<M<0>(T/2 —(t+ 1)))} o

a., M(%) :{ } X [(T/z 1) tanh(M(O) (T/2 — t))

(6.14)

The derivatives of the meson masses are computed by fitting the quantity on the RHS to
a constant. The fits take as input the leading-order mass M©) extracted from
CO(t) cosh (MO (t — T/2))

CO(t+1) " cosh (MO(t+1-T/2)) (6.15)

The results of the fits to eq. (6.14) are shown in the appendix B.

Here, we adopt a different strategy to compute the derivatives of ¢;. In particular, we
notice that we can replace all the meson mass derivatives in egs. (6.7)-(6.8) with the corre-
sponding time-dependent expressions in eq. (6.14), obtaining the time-dependent quantities
0:,¢(t), which can be directly fitted to a constant at large ¢. This strategy is preferred here
because it enforces the cancellation of the sea-sea diagrams that contribute to ¢g, @2, due
to the linearity of 0., M (t) in the correlator derivatives 0.,C(t) and the SU(3) symmetry
of the ensemble. Figure 3 shows the fits to the derivatives of the hadronic quantities and
the results obtained by the fitting procedure are in table 7. We use two fit ranges for each
quantity and combine them based on the associated AIC weights [58].

To compute the corrections to the hadronic quantities, together with the derivatives,
we need to compute the finite-volume effects appearing in eq. (6.1). The explicit form of
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Figure 3: Fits of the ¢; derivatives with respect to the bare parameters

MMy, AT /g5 AN, e?, computed on A400a00. Note that all the other derivatives are identi-
cally zero.

these contributions on our SU(3)-symmetric ensemble is given by

Argg =0,

ApLd) = 628750347r (4‘2(2) N m@\‘ﬁ)ﬂ) |

Apdy = _624753J7\T47r (4‘2(]15) N MQ\X)B) ’ (6.16)
s ()4 2)
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€ amy amq ams ame e?

- 0 67.4(9)  67.4(9) 0 0
d-¢r  204(11)  204(11)  204(11) 33(6)  17(1)
D-0  -9234(121)  9234(121) 0 0 -370(5)
B¢ -27(25)  -27(25)  -27(25) 22(7) 0.2(1.5)

Table 7: Derivatives of the ¢; computed on the ensemble A400a00. The errors are obtained
by summing in quadrature the statistical and systematic uncertainties. The former is
computed using the I'-method, while the latter is estimated by considering several fit-ranges
for each meson mass’s derivative. In all cases, we find that the statistical uncertainty is
the dominant one.

A1 Arpo Arps
L0.00651(4) 0.446(3) -0.00323(2)

Table 8: Results for the universal QED finite-volume effects contribution to the ¢;, com-
puted on A400a00.

and the results are shown in table 8.

6.4 Corrections to ag’w

The derivation of the isospin-breaking corrections to ag’w, namely

(6.17)

5&5’“’ = Z Asia&a}j”,
i
requires computing the derivatives of the renormalized U-spin correlator defined in eq. (3.26)
and considering the effect of the scale corrections.

In particular, we write the correction to the observable in the form

5ag7w = 5Gag’w + 5ZVaB’W + (5aag’w, (6.18)
where the three contributions 5Gag’w, 07y ag’w, and 5aag’w denote the corrections arising
from the bare correlator, the renormalization constant and the scale. We stress that this
decomposition is unphysical as the individual contributions do not have a well-defined
continuum limit. However, the separation highlights the role of the scale correction, which
is neglected when the sea-quark effects are not considered.

To give an explicit expression for these contributions, we introduce the following quan-
tities in lattice units

AU (f 5 < (-
~ 0 Rmy = B,

t=at, GYt) 5
a a

(6.19)
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and write the point-split local estimator of the observable as

T/2
( ) Zf( (£ amy,) wr (af) Z{I}Gga(;e () (6.20)
and the local-local as
N , /2
Al = (2) S0 K (Bamy) wi () (Z0)2CH, (). (6:21)
t=0

where the intermediate window is defined as in eq. (3.17).

We define the contribution from the bare current correlator appearing in eq. (6.18) as
follows: for the point-split local estimator we have

T/2
5Gan = (%)2 K (f, a(o)mu) U}I( (© ) ) 5G}L)Iaie (A) (622)
t=0
and for the local-local one
[/2 R R
sca = (%)’ ZK (f:am, ) wila@D)(2)%6G, () (6:23)

The derivatives of Gba e(A) with respect to the bare parameters are combinations of the
diagrams in table 1. We obtain 5Gag’w by integrating in time the signals shown in figure
4. Each subplot represents the contribution from a different bare parameter, computed
with the two discretizations of the correlator. We observe that, in general, the signal
corresponding to the point-split local discretization is larger in magnitude than the local-
local one. This difference is compensated by the different signs of the m- and e2-insertion
diagrams and by the effect of the renormalization constant’s correction in (6.24)-(6.25).

Secondly, the contribution to the observable from the renormalization constant is given

by

T/2
5ZVaB’W = <%>2 K (f; a(o)m“) wr(a® )5ZmGga§e () (6.24)
i=0
for the point-split local discretization, and
T A~
dzea =2 (2 ) ZK( hmy ) w0 AP ZR G (i) (6.25)

for the local-local one. We obtain the derivative of the renormalization constant with
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Figure 4: Corrections to the integrand I(f) = (a/m)2GV (£) K (f)wi(f) due to the bare cor-
relator correction 5égal,e (t), computed using the local-local (green triangles) and conserved-
local (red dots) discretization. The four plots show the contributions from the different
bare parameters. To indicate the relative magnitude of the contributions, we have multi-
plied the correlator’s derivatives by the exact quark mass shifts defined in (6.29).

respect to a bare parameter by differentiating equation (6.3), which leads to
oo agi bare bare agi bare

U, _ U,1 _
0. 7 = Tim | 2Cbare (4 _ U (cid.m) %(t)] (G I CE

As the renormalization condition involves the correlators, it is computed using the same
graphs that contribute to the corrections of the bare correlators. We perform again a
constant fit of the right-hand side of equation (6.26), choosing appropriate fit ranges. In
table 9, we show the derivatives of Z3, obtained through the fit procedure.

Finally, the last contribution in eq. (6.18) arises from the correction to the scale and

,27,



Ouma 2% Oumy 78 Ouma 22 Oum 23 9 222
-1.30(26)  -1.75(27) -1.75(27) -0.39(10) -0.11(2)

Table 9: Derivatives of the renormalization constant Z3}' with respect to the bare param-
eters computed on the ensemble A400a00.

x10-8

0 5 10 15 20 25 30
Tp/a

Figure 5: Derivative of the integrand I(f) = (a/7)2GV () K (f)wi(f) with respect to the
lattice spacing a, computed using the local-local (blue triangles) and conserved-local (or-
ange dots) discretization of the correlator.

reads
a L2 .
Saal™ = (;) Y6 [K (# am,,) wl(a@} UL (8), (6.27)
=0
with
5 [I:( (£ amy,) wl(af)} = da X % [I:( (£ amy,) wl(af)} . (6.28)

The correction to the lattice spacing da is defined in eq. (4.4), while the derivative of
K(t;am,)wi(af) is computed as finite difference at each timeslice. Although our observ-
able is dimensionless, its definition depends on an external scale via the muon mass m, and
therefore on our scale setting. The signal corresponding to the derivative of the integrand
is shown in figure 5. The integrand has the same behavior for the two discretizations since
they only differ in discretization effects, which are reduced in the intermediate window.
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Also, the relative errors are the same as for the leading-order correlators. The main contri-
bution to the error on 5aag’w will come instead from the uncertainty on da. We stress again
that the corrections to the scale arise from the expansion of the pfaffian, and therefore are
due only to sea-sea effects given our definition of the lattice scale.

6.5 Comparison at fixed bare parameters

Now we turn to the first comparison between the two implementations of QCD+QED,
obtained by fixing the bare parameters and comparing the results for the observables ¢;
defining the renormalization scheme, the hadronic scale ¢y and the observable ag’w. The
bare parameter shifts between the A400a00 and A380a07 ensembles can be worked out from
table 2 and are explicitly

aAm, = —0.00476435, aAmqs = —0.00077259, aAm. = —0.00682735. (6.29)

In the perturbative approach, we use these values for the shifts and obtain predictions to
compare with the corresponding quantities measured in the non-perturbative QCD+QED
approach.

We show the results of this first comparison in table 10. The values in the first row are
computed using the perturbative approach in the electro-quenched setup. In this case, the
scale ty does not receive corrections, and the other observables are computed by neglecting
the sea-quark effects. The isoQCD+RM123 results in the second row include the effect of
the sea quarks and are obtained by adding the corrections, computed as described in the
previous subsections, to the isoQCD values of tables 4 and 5. The non-perturbative results
are instead obtained from direct calculation on the A380a07 ensemble. The errors are given
by the quadrature of the statistical uncertainties, computed using the I'-method [59, 60],
and the systematic errors, estimated by varying the fit range in all fit procedures involved
in the computation and then computing their standard deviation.

We observe a good agreement between the two approaches for the scale parameter
to and ¢; quantities. Specifically, the results for fo computed through the perturbative
approach perfectly agree with the non-perturbative value, and the errors are of similar
size. In addition, by comparing the precision of the full and electro-quenched results, we
see that the impact of the sea-quark effects on #g and ¢ observables is relatively small,
except for ¢1, where including the sea-quark effects results in almost three times larger
error.

The electro-quenched results for a,[j’w have the same precision as the observable com-
puted at the isoQCD point. The non-perturbative results for a,[f’w also show sub-percent
precision, confirming that the non-perturbative QCD+QED simulations at the physical
value of « yield precision comparable to that of the isoQCD computations, as previously
observed [40, 61]. In contrast, by using the perturbative approach including also the sea-
quark effects, we obtain results in agreement with the non-perturbative computation but
with 2.5-2.6 larger relative errors. In particular, the final uncertainty on the perturbative
result amounts to 1.6% of the central value and is dominated by the isospin-breaking cor-
rection term. A closer examination shows us that the sea-quark effects are unequivocally
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Figure 6: Variance of the sea-sea contribution to 5ag’w as a function of the number of
pseudofermions sources for 2000 configurations.

U,w —11
ay’ X 10

to ¢1 b2 ?3 =1 c
i50QCD-+RM123|eq 7.400(60) 2.257(34) 2.20(14) 12.100(44) 1078(5)  1080(5)
is0QCD+RM123 7.502(81) 2.198(92) 2.53(14) 12.151(66) 1090(18) 1092(18)
non-perturbative QCD+QED  7.523(94) 2.128(34) 2.37(12) 12.103(47) 1082(7)  1085(7)

Table 10: Results obtained for the hadronic quantities g, 1, ¢o, 3 and aH’W computed
either non-perturbatively or by exploiting the RM123 method with the local current ¢ =
1 or conserved current £ = c at the sink. For the latter, we show results both in the
electro-quenched setup and including the contributions from sea quarks. In both cases, we
incorporate the corrections at fixed bare parameters, using the shifts in eq. (6.29).

the dominant source of errors for the correction, as it is clear from the comparison with
the electro-quenched results. We stress that the uncertainty due to sea-quark effects can
only be reduced by sampling more gauge-field configurations, as the number of stochastic
sources used for estimating the sea-sea diagrams is sufficient to reach the gauge noise in
this setup. This is displayed in figure 6, where we plot the variance of CLB’W due to sea-sea
contributions and rescaled by the number of pseudofermion sources N,, as a function of N,
for a fixed number of configurations. We observe that the variance saturates for IV, 2 100.
In this work, we employ IV, = 160.

We also want to highlight that the ¢ observables in isoQCD and non-perturbative
QCD+QED, and their derivatives used for the RM123 approach, have been computed in
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units of 10~11 (=1 c

Saay™ 11(16)  12(17)
Szan" 3.8(3.4)  1.9(1.7)
Saap™ -8.4(2.3) -8.4(2.4)
Sag™ 7(18) 6(18)

Table 11: Results obtained for the corrections to a,[f’w x 10 computed by exploiting the
RM123 method. We incorporate the isospin-breaking corrections at fixed bare parameters.
The three corrections come from three sources: derivatives of the bare correlator, deriva-
tives of the renormalization constant, and derivatives of the scale.

this work using the same setup as our main observable a}f’w, i.e., by employing 4 quark

point sources per configuration.

For completeness, in table 11, we provide the results for the individual corrections
dgan’™, 67,0, and 6,a;", as introduced in equation (6.18), together with the total
correction. The two columns correspond to the two discretizations employed for the vector
correlator. We observe that the three contributions are of the same order of magnitude and
partially cancel out. At the current precision, the correction to ag’w amounts to (0.6+£1.7)%
of the leading-order value and so is consistent with zero.

6.6 Comparison at fixed line of constant physics

In the previous section, we compared the quantities computed in QCD+QED with fixed
bare parameters. Typically, in a lattice simulation, to approach the continuum limit we
prefer to fix the lines of constant physics defined by the renormalization scheme and propa-
gate the associated uncertainty to the physical prediction, to avoid a joint extrapolation to
the physical point. Here, we do such an exercise, which combines the resulting uncertainty
onto our physical prediction.

In the RM123 approach, this is simple to implement, given that we can fix to any
scheme a posteriori. The quark mass shifts are obtained by solving the system in eq. (6.1)
using the target values and the derivatives of the ¢; in tables 4 and 7. We derive the
following quark mass shifts

alAm, = —0.00477(17)5tat(4)sy8’
aAmgs = —0.00082(17)stat (4)syss (6.30)
—0.0083(28)stat (5)sys>

alAme

which, as expected, agree with those shown in eq. (6.29) within the quoted uncertainty.
The results for the individual contributions 5Gag’w, 87y a}f’w and 5aa,{f’w, together with the
total correction, are shown in table 12.

For the non-perturbative prediction we consider the uncertainties on the ¢; observable
and propagate them to aH’W via eq. (6.2). To this aim, we reuse the derivative of the ¢;
and the derivatives of ag’w computed at the isoQCD point (see tables 7 and 13). This
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units of 10711 ¢=1 C

Sqapn™ 15(18)  17(19)

Sza,™ 6(5)  3(2)
Saay™ -12(6)  -12(6)
Say™ 9(19)  8(19)

Table 12: Results obtained for the corrections to a,[f’w x 10 computed by exploiting the
RM123 method. We incorporate the isospin-breaking corrections at fixed line of constant
physics. The three contributions arise from derivatives of the bare correlator, derivatives
of the renormalization constant, and derivatives of the scale.

U7W U7W U,W U,W U,W
¢ Ogmnap Oamy s OamsQp OameOp 020y,

1 -12(31)  -113(32)  -113(32)  -9(15)  -2.5(3.4)
¢ -11(31)  -112(32) -112(32)  -9(15)  -2.5(3.4)

Table 13: Derivatives of a,[j’w x 10? computed on the ensemble A400a00.

ap™ x 101 (=1 c
is0QCD+RM123]oq 1084(5)  1087(5)
isoQCD+RM123 1093(20)  1094(21)

non-perturbative QCD+QED  1082(8)  1085(7)

Table 14: Final results obtained for ag’w x 10", computed either in the full theory or by
exploiting the RM123 method. For the latter, we show results both in the electro-quenched
setup and including the contributions from sea quarks. In both cases, we incorporate the
corrections at fixed line of constant physics, using the shifts derived by solving the system
in eq. (6.1)

approximation is valid at first order in the bare parameters. For both discretizations of the
sink operator, we obtain the same result

da, ™ =2(3) x 107, (6.31)

Since this value is consistent with zero, we take the 1o error 3 x 107! as an estimate of
the uncertainty due to the inexact tuning to the line of constant physics. This uncertainty
is summed in quadrature with the errors on ag’w in the last row of table 10. The effect
turns out to be negligible.

In table 14, we show the final results for ag’w, including the uncertainties from the
tuning propagated as described above. By comparing with the results in table 10, we
observe that the relative error on the isoQCD+RM123 results goes from 1.6% to 1.9%,
while the relative error on the QCD+QED results remain stable to 0.6-0.7%. Thus, we find
a reduction in the total uncertainty of 2.5-3 when using the non-perturbative simulation
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compared to the RM123 method including carefully the tuning to the same line of constant
physics. We stress that this factor considers only the different precision obtained on the
final observable using the same statistics, i.e., number of quark sources per configuration
and number of configurations, while the differing computational costs and costs associated
with tuning are not taken into account.

7 Conclusions

In this work, we computed the window contribution for a flavour non-singlet current to the
muon magnetic anomaly, a}f’w, with Ny = 1+ 2 + 1 quarks using two implementations of
QCD+QED. The lattice simulations were based on two ensembles generated by the RC*
collaboration: one QCD+QED ensemble and one isoQCD ensemble used as the starting
point for the perturbative RM123 approach. Both employ C* boundary conditions in the
spatial directions that allow the photon field to be included in a local, gauge-invariant for-
mulation, which also preserves lattice translational symmetry. The two ensembles share the
same fermion discretization and lattice volume and have similar bare parameters. There-
fore, it is possible to compare the results obtained in the non-perturbative QCD+QED
setup to the ones obtained with the RM123 approach by matching either the bare param-
eters or the renormalization conditions defining a fixed line of constant physics.

In the perturbative approach, we considered all effects at order O(Amy) and 0(e?),
including the complete contributions from sea quarks, which represent the most numerically
challenging components of the RM123 method. Given the renormalization schemes we used
for defining isoQCD and QCD+QED, we find the expected 1% correction to the isoQCD
result. Here we focus on the prediction of the full result in QCD+QED and the comparison
between the two implementations as the definition of the isospin-breaking corrections is
delicate at finite lattice spacing, and our simulated pion mass of around 400 MeV is far
from the physical point needed for phenomenological predictions.

In the first instance, we match the bare parameters of the QCD+QED simulation and
compare the result for ag’w along with the hadronic quantities defining the renormalized
theory ¢; and the lattice scale 5. On one hand, we find good compatibility between the
full QCD+QED results from the RM123 method ay ™ = 1092(18) x 107! and the non-
perturbative simulation aB’W = 1085(7)x 10711 in this case for the point-split discretization
of the sink current. On the other hand, we see that the RM123 method has a 2.5 times
larger uncertainty, which can be understood to originate from the sea-quark diagrams, given
that the electro-quenched result ag’wleq = 1080(5) x 107!, where they are neglected, has
a similar uncertainty to the non-perturbative result. The hadronic observables ¢; and the
lattice scale ¢ that define our line of constant physics all exhibit good consistency between
both approaches. The observable ¢1, related to the squared (hyper-)charged pseudoscalar
meson masses, has a 4% uncertainty in the RM123 approach in contrast to a 1.6% relative
precision in the non-perturbative simulation, which is again due to the sea-quark effects
by comparing to the electro-quenched result.

In order to determine the significance of the determination of the lines of constant
physics, in the second comparison we impose the same renormalization conditions described
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in the text in both setups and propagate the uncertainty from the hadronic quantities
¢; and ty to our prediction for ag’w. After this exercise, we see a mild increase in the

uncertainty in the RM123 method prediction ag’w = 1094(21) x 1071, but no change
U,w
m

in the relative uncertainty in the non-perturbative approach, where we obtain a
1085(7) x 107!, Therefore, we find a final result with 1.9% uncertainty in the RM123
method and 0.6% precision with non-perturbative QCD+QED. To perform this exercise,
we use the same derivatives for the non-perturbative QCD+QED ensemble as those worked
out in the isoQCD ensemble for convenience, but in principle they could be estimated in
many other ways, and likely they do not need to be precise in any case.

We would like to emphasize that we have so far compared the total uncertainty in both
methods with a fixed number of gauge field configurations, but have made no attempt to
quantify the true cost of both approaches, which is subtle and likely not universal. However,
the cost of the generation of the gauge field configurations has been investigated in ref. [40],
which estimated that the generation of the non-perturbative QCD+QED simulations costs
a factor 2.5 times more than isoQCD, given the orbifold construction used here. This
does not account for the fact that the tuning of the non-perturbative simulation with more
parameters is an onerous task and, in practice, even here we needed to include a small
reweighting in the bare masses as in a realistic situation. Instead, in the RM123 method,
the cost of computing the required extra diagrams is not negligible: the valence diagrams
need to be computed for every observable, and while the sea-sea may be reused, typically
the cost to reach the gauge noise is extensive, given the approximations required to perform
the volume averages. While some suggestions have been put forward to reduce the cost [56],
it is expected that the gauge variance will be large in large volumes [56, 57]. In particular,
in our setup with SU(3) flavour symmetry in the isoQCD setup, some classes of diagrams
do not contribute at all in the RM123 method. Therefore, we expect the RM123 method
to become challenging close to the physical point and in large volumes, even though the
variances of the diagrams presented here should be largely insensitive to the quark mass.

As a final remark, in the non-perturbative QCD+QED case, we applied bare-mass
reweighting to ensemble A380a07, reproducing a typical step when tuning an ensemble to
specific lines of constant physics. This reweighting has hardly any impact on the statistical
uncertainty of the observables we compute. In contrast, the precision lost from applying
the RM123 method including all sea effects to the isoQCD ensemble is significantly larger,
although this may depend on the scheme used to define the isoQCD point. To ensure the
generality of our results, it would be valuable to explore how different definitions of isoQCD
affect our conclusions and whether certain trajectories in the parameters space are more
favorable for the RM123 method. We leave this exploration for future work.

This work represents one of the first experiences in making predictions in QCD+QED
with C* boundary conditions. The main conclusion that can be drawn is the apparent
advantage of the non-perturbative simulation method over the RM123 approach, as may
be expected on theoretical grounds. The difficulty in the non-perturbative tuning of the
simulation parameters with more bare parameters is an issue that still needs to be ad-
dressed. The RC* collaboration is generating new ensembles with smaller lattice spacings,
larger volumes, and smaller quark masses to approach the physical point and have an im-

— 34 —



pact on state-of-the-art and phenomenogically-relevant computations for precision physics
of the Standard Model. In particular, for the muon anomaly, the extension to compute
the full electromagnetic current correlator including singlet contributions is essential, as
well as extending the work to the long-distance window, where QED effects remain very
challenging [2].
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A Isospin-breaking corrections

In this appendix, we provide the expressions for the isospin-breaking diagrams represented
in table 1. We recall that our goal is to compute the QCD+QED expectation value

(O, ) = (e[ D} ()T a Dy (aly)Ts | ) (A1)

using the perturbative approach, at leading order in e and Am - To simplify the notation,
and given that e? ~ Amy, we adopt the convention that O((Amg)*) = O(e?*); thus,
terms of O(e?) also account for higher-order mass corrections. We recall that the specific
interpolators I' 4 g used in this work are the pseudoscalar (I'p), and the local and point-split
vector currents (I'v and I'y) defined in eqs. (4.7) and (4.8).

By using the expansions in egs. (4.9) and (4.20), we can write the observable as

O =0y+ 01+ 0y +0(e3). (A.2)
The operator Oy represents the isoQCD observable

Oo(z,) = Tr | (DY)~ (yla)T'D (D) (aly)T |, (A.3)
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while O}, denotes the correction at order e”. FES)B coincide with I'4 g for pseudoscalar and

local vector interpolators. We also define the reweighting factor

o _ 1 PHCEDy)

— I, Pf(CKDjP))’ (A.4)
where the nominator is expanded according to eq. (4.10), leading to
R=1+Ri+Ra+O(e), (A.5)
where Ry, is the correction at order eF.
Given egs. (A.2)-(A.4), we write the perturbative expansion for (A.1) as
(O0) = (O0)g + (O2) 1y + (O1R1) 4y + (O0R2)g4r  + O(e), (A.6)

where (), ()., denote the expectation value in isoQCD and over the free photon field
distribution. The subscript c refers to the connected expectation value, where the vacuum-
disconnected term has been subtracted.

In writing the equation above, we have noticed that Og does not depend on the pho-
ton field, while Ry and O; are linear in the photon field, and therefore, the expectation
values (OgR1)g
expansion of the observable and is dubbed wvalence-valence contribution. We refer to the

and (O1)g,., vanish. The correction term (O2), ., arises purely from the

correction term (O1R1), 4oy 88 sea-valence contribution, since it involves a photon propa-
gator connecting a quark line in the observable to the quark line arising from the pfaffian.
Finally, we refer to the correction term (OgR2), 4~ a8 sea-sea contribution. The latter in-
volves either a mass term or a photon propagator connecting quark lines from the fermionic
pfaffian.

A.1 Valence-valence diagrams

The first set of diagrams comes from the expansion of the inverse Dirac operators (quark
propagators) or the I" in the trace (A.1). We first consider the cases where I'y,I'p = I'p, I'p
or 'y, I'p = I'y,I'y, i.e., none of the I' depends on e. Diagrammatically, we have the
following expression:

f f f
(Oaf,y))y = — Amy 2 eu ] m<‘8-y T+ oS (AT)
g g g

f

+ {z ey, fog) +efag x@-y,

)

— 36 —



which applies for any f # g for the pseudoscalar correlator or any f = g for the local-local
vector correlator. We give explicit expressions for the diagrams:

f
v =T {[(DP) DI ] (yla)Ta(DP) M aly)T s (A.8)
g
f 2)
o S a0 { [0 0| o)
g w
x rA<D§,°>>—1<m|y>rB} | (A.9)
! (0)y—19D%” (0)y—19D%" (0)y—1
7> = > At =T { [PV RE @) 0 o)
wzuy
< TADY) (el . (A10)
f 1)
T = Y Ml —2) 1 { [(0) 5 o) o
wzuy
< |09 O elors b )

where Ay (z —y) = (Au(2)Ay(y)), The remaining diagrams are obtained from the first
three by exchanging x <+ y and f < g.

For f = g and A, B=V,V, there are three additional diagrams contributing to (O3) .
with coefficient —e2qj2c, which are the following two

@ v =M T {0yl (D) @ly)T v, } (A.12)

! (0)y—16D§" (0)y-1
S = 3 tnle - { [0 FE D) o
zp
< T <D<U>>1<x\y>rv,u} , (A13)

and the last one is obtained from (A.13) with z <> y and f < g¢.
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A.2 Sea-valence diagrams

The sea-valence contributions are obtained by combining the O(e) contributions from the
observable and the pfaffian

h

! !
(Or(x,)R1), = — a5 Y an m<§y}— X v, (A.14)
h g h g

h

The first diagram has the following explicit expression
h

-ég} .

x Yy = —

7 2

while the second diagram is obtained from the first one by exchanging x <> y and f < g.

5 1 { |01 e @)D (lraDP) elTa

WEUY

(1)
% Ay (w — 2) Tr {(D;(”)—l‘szfy (Z)} , (A.15)

When A, B =V,V, an additional diagram should be added to eq. (A.14), leading to

h h

! /
<(’)1(ac,y)7€1>7 = —262qf2qh Re [w<§3 } —ququh x£\>-y (A.16)
h ! h /
where
h
! 1
_ (0)y—1 (1) (0)y-1
x&y _2;Tr{(Df ) (y‘x)r\*/’#(Df ) (x‘y)FV,V} (A.17)

A.3 Sea-sea diagrams

The sea-sea contributions (OyRa) can also be written as <(90 (Ra) ,Y> as Oy does

O+7.e 0,c
not depend on the photon field. The contribution of the reweighing factor turns out to be:

(Ra)y =3 ams 35+ 3 af (KX
! f
f
OIS ESONT RIS SO (A18)
f f fa
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where the diagrams are given by the following explicit expressions

7 :%ZTT[(DEP))*(ZV)} ) (A.19)

(2)
{:@f Z% ZAMM(O) Tr [(D§O))1(2|Z)6£{2(z)] , (A.20)
zp

m

f

(1) (1)
@ _ i S Al — z)Tr[(DJ(CO))_l(w|z)6;Z(z)(DJ(cO))_l(z|w)65DA’;(w) :
(A.21)
(1)
8 S0 Y WURSLAITURIERL. 2]
ZWHUY
(1)
x Tr [(Déo))_l(wlw)i&# (w))] : (A.22)

These diagrams are independent on Oy, and therefore, they can be computed and recycled
for different observables.

B Meson mass derivatives

In this appendix, we show the results of the fits to the meson mass derivatives.

In figure 7, we show example fits for the charged-pion mass derivatives. The plots in
the upper panel show the quantities O, Ja M+ and O, M+, the plots in the lower panel
Om. M+ and O,2aM_+. In each plot, the lattice data and the results of the fit obtained for
two fit ranges are shown. The fitting procedure minimizes the uncorrelated x? statistic.
Notice that the derivative with respect to m,, /3 shown in figure 7a receives valence-valence
and sea-sea contributions, while the derivatives with respect to mgs and m., in figures 7b
and 7c respectively, are due only to sea-sea effects. The derivative with respect to e?
shown in figure 7d receives all contributions. Due to the SU(3) symmetry of the ensemble
A400a00, the sea-sea effects from m,, mg, ms are equal. Thus, 8mu/dM7r+ is the sum of
two pieces, a quark-line connected graph correpsonding to the valence-valence effects and
a sum of quark-line disconencted graphs for the sea-effects, effectively equal to Op, M, +.
Moreover, as a consequence of the SU(3) symmetry and that ) feudsdf = 0, all sea-
valence effects to d.2 M.+ due to light sea quarks cancel out, as well as some of the sea-sea
diagrams. The fact that the absolute errors of J

My /d
size indicates that the uncertainty is dominated by the sea-sea contributions. Similar plots

M+ and Op, M, + are of comparable

for the charged D meson are shown in figure 8.

In tables 15 and 16, we show the leading-order value and the derivatives of all meson
masses appearing in the renormalization system (6.1). Some of the derivatives are equal
due to the unphysical SU(3) symmetry of the ensemble. The result for each quantity in
the table is obtained by considering several fit ranges and combining the fit results based
on the associated AIC weights [58].
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Figure 7: Fits of the charged-pion mass derivative with respect to the up/down (a),
strange (b), charm (c) quark mass, and to e? (d), computed on A400a00.

0) (0) OM 4 g+ OM_y OM 1 et 0 aOM .y g adM o
aMz" = aMy I ams me de? 9e”

0.1092(6) 7.55(29) 2.35(27)  1.05(14)  0.564(29) 0.355(28)

Table 15: Leading-order masses and derivatives of the light mesons computed on A400a00.
The derivatives that are not listed can be obtained by using SU(3) flavour symmetry.

oM F oM oM T oM oM
M) —aMp) —gapiel  fpe  gpmel o o
0.5240(8) 2.65(22)  0.95(21)  1.88(12)  0.270(31) 0.210(30)

Table 16: Leading-order masses and derivatives of the charmed mesons computed on
A400a00. The derivatives that are not listed can be obtained by using SU(3) flavour
symmetry.
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Figure 8: Fits of the charged D mass derivative with respect to the up/strange (a), down

(b), charm (c) quark mass, and to e? (d), computed on A400a00.
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