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ABSTRACT

The phenomenon of liquid metal embrittlement (LME) poses safety concerns for welded joints in the
manufacturing field. In present study, LME was observed in refill friction stir spot welding (refill FSSW)
of dissimilar magnesium (Mg) to galvanized steel. This marks the first reported proof of evidence of
LME in the field of solid-state welding. Microstructural characterization of cracks formed during the
welding process revealed typical characteristics of LME, specifically the penetration and enrichment
of Zn at the Mg alloy grain boundaries and the formation of a liquefied phase. Tensile tests of Zn-
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coated Mg alloy were conducted at elevated temperatures to validate the LME phenomenon in refill
FSSW and to identify the temperature range in which LME occurs. Based on these observations, a
mechanism of LME formation for the Mg-Zn system in refill FSSW is proposed. Additionally, strategies

to prevent LME are suggested and experimentally validated.

Liquid metal embrittlement (LME) is a critical phe-
nomenon that affects various structural materials, includ-
ing steel [1-3], aluminum [4-6], brass [7,8], and nickel
[9], particularly during high-temperature processes such
as welding, hot deformation, brazing, heat treatment,
and in-service operations. In industries like automotive,
aerospace, and nuclear, LME is a significant safety con-
cern due to its impact on material performance. LME
occurs when a normally ductile material loses its ductility
upon contact with a liquid metal, leading to brittle frac-
ture under tensile stresses. This phenomenon arises from
the combined effect of three factors [10]: (a) the presence
of an aggressive liquid metal with a relatively low melt-
ing point, (b) a susceptible solid material prone to liquid

metal penetration, and (c) the application of external or
internal (residual) tensile stresses.

One of the most pressing LME concerns in the auto-
motive industry is the increased use of zinc (Zn)-coated
advanced high-strength steels (AHSS) in vehicle con-
struction [11-13], particularly during resistance spot
welding (RSW) [14-16]. During the RSW process, liquid
Zn comes into contact with solid steel at both the joint
sheet-to-sheet interface and the electrode/sheet inter-
face. This contact occurs when temperatures rise above
the Zn’s melting point (419°C) but remain below the
melting point of steel (~ 1475°C). The liquid Zn pen-
etrates steel grain boundaries under the tensile stresses
generated during welding, leading to the initiation and
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propagation of LME cracks [17]. It has been concluded
that LME occurs at the temperature range of 700 ~ 900°C
or below the melting point of steel [10]. Notably, LME was
so far not observed in solid-state welding processes due
to the lower welding temperatures involved [18,19].

The need to reduce vehicle weight while maintain-
ing load capacity has led to the development of hybrid
magnesium (Mg)/steel structures [20]. However, joining
Mg to steel is challenging because the Mg/Fe system is
immiscible, exhibiting almost no inter-solubility or reac-
tion [21]. Zn coatings have been shown to improve the
quality of Mg/steel welds by preventing oxidation and
aiding the brazing process [22]. Nevertheless, these coat-
ings also pose a risk of LME in Mg alloys, potentially
compromising the mechanical properties of the welded
joints. This study is the first to identify clearly LME in
solid-state welding of Mg alloys to galvanized steel. It
explores the underlying mechanism of LME in Mg-Zn
couple and proposes strategies to prevent its occurrence.

The base materials (BM) used in this study were com-
mercial AZ31B Mg alloy sheets with a thickness of 2
and 1.5 mm thick hot-dip galvanized DP600 steel sheets.
To investigate the effects of Zn coating, the results are
compared to bare DP600 steel. The BM (Mg/Steel) were
welded by refill friction stir spot welding (refill FSSW).
The tool system and the procedure of refill FSSW are pre-
sented in Figure 1(a) and (b). The tool system consists of a
clamping ring (diameter of 14.5 mm), a shoulder (9 mm)
and a probe (6 mm). It was assembled on the RPS200 pro-
cess system manufactured by Harms & Wende to perform
refill FSSW. The welding procedure consists of prepara-
tion, plunge, dwell and retraction stages, and the welding
parameters are summarized in Table S1. During welding,
the temperature history was measured using K-type ther-
mocouples, positioned at the AZ31B/DP600 interface
underneath the clamping ring, see supplementary Figure
1(by). The surface appearance of the welds was mea-
sured using a Keyence 3D VR-5200 laser scanning micro-
scope. The cross-sections of the welds were polished and
examined by a FEI Quanta 650 field-emission scanning
electron microscope (SEM) equipped with EDAX Apollo
X energy dispersive X-ray spectroscopy (EDS) capabil-
ity and Velocity electron backscatter diffraction (EBSD)
system. Samples for transmission electron microscopy
(TEM) were prepared by a focus ion beam (FIB), and
the observations were conducted via a Thermo Fisher
Talos F200 TEM. Moreover, the phases in the weld were
identified by high-energy synchrotron X-ray diffrac-
tion (HEXRD) at PO7B beamline, which is partly oper-
ated by the Helmholtz-Zentrum Hereon, of PETRA III,
Deutsches Elektronen-Synchrotron (DESY). The LME
crack in the weld was examined in transmission mode by
a monochromatic X-ray beam with an energy of 87.1 keV

and a size of 0.5 x 0.5 mm?, see supplementary Figure S1.
In order to understand the LME mechanism, a Gleeble-
3500C thermal simulator was used to carry out hot tensile
tests on the bare and Zn-coated AZ31B alloy. The Zn
coating on the AZ31B alloy, see Figure S2, was produced
by cold spray using a commercial high-pressure cold
spray system (5/11, Impact Innovations, Germany). For
details on the cold spray process, the interested reader is
referred to our previous work [23]. The hot tensile tests
were conducted at temperatures from 300 to 550°C with
a heating rate of 200°C/s. After the target temperature
was reached, a strain rate from 107> to 107! s™! was
applied.

The surface appearances of refill FSSW welds of Mg
alloys to bare/galvanized steel are compared in Figure
1(c) and (d). With the presence of Zn coating, deep open
cracks appeared on the surface, see Figure 1(d). SEM
micrographs reveal that cracks are partially filled with
a certain material, and eutectic structures are observed
along the crack edges, as shown in Figure S3. Addi-
tionally, bulges were found near the small cracks on the
surface of some joints welded under the same parameters
(Figure S4(a)). The microstructure and chemical compo-
sition of these bulges were analyzed by SEM and EDS, as
presented in Figure S4(b) and Table S2. The presence of
a typical eutectic lamellar structure with high Zn content
indicates the formation of a liquid Mg-Zn phase during
welding.

In order to further understand the formation of the
crack, the cross-section of the welds was characterized,
see Figure 1(e). Deep cracks through the Mg alloy sheet
are observed under the outer edge of the clamping ring
(crack A), while there are still some short cracks under
the clamping ring (crack B). The crack A is character-
ized by a lamellar coupled eutectic structure, consisting
of eutectic a-Mg (dark region) and Mg,;Zn,5 (bright
region) according to the results from EDS (Figure 1(g))
and HEXRD (Figure 1(h)). This eutectic structure indi-
cates that liquid Mg-Zn phase filled in the crack during
refill FSSW, and was transported from the weld inter-
face toward the upper surface through the cracks under
the combined effects of the clamping ring’s downward
force and thermal expansion, occasionally resulting in
the formation of surface bulges when the cracks were rel-
atively small, as shown in Figure S4. During cooling, the
a-Mgand Mg;; Zn;5 were generated by eutectic reaction:
L— a-Mg+ Mg>1Znys5 according to the Mg-Zn phase
diagram [24]. The presence of liquid metal is a neces-
sary condition for LME to occur, and it is also a typical
characteristic of the LME phenomenon [25].

Except for the existence of liquid metal, another typ-
ical feature of LME is that the liquid metal penetrates
grain boundaries and cracks occur in an intergranular
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Figure 1. (a) Refill FSSW tool system and (b) procedure of refill FSSW, and surface appearance including (c1, d1) OM image and (cp, dy)
height information of (c) Mg/bare steel weld and (d) Mg/galvanized steel weld with cracks marked by red arrows. (e) Cross section of
AZ31/galvanized DP600 refill FSSW joint. (f) Enlarged image of the crack marked as region A in (e) with open crack marked by red arrow.
(g) Eutectic microstructure locally filling the crack marked in (f) and its corresponding EDS maps of Zn and Mg, indicating the formation
of liquid phase during refill FSSW. (h) Indexed HEXRD diffractograms of base AZ31 and crack, indicating the formation of the Mg;;Zn;s

phase in the crack.

fracture mode [26-28]. Therefore, a short crack at region
B (Figure 1(e)) was characterized by EBSD. Figure 2 dis-
plays the distribution of grains and Zn content within
region B to understand the propagation of the crack.
The liquid Mg-Zn phase (brightest region) is mainly dis-
tributed at high angle (> 15 degree) grain boundaries
(HAGB:s), see Figure 2(a;). Chemical composition line
profile and mapping were carried out on regions I, IT and
III to further investigate the distribution of Zn element,
as shown in Figure 2(d) and Figure S5. The Zn content
in the region marked in Figure 2(b) is higher, indicat-
ing the Zn diffusion and concentration during welding
in this region. It has been reported that HAGBs exhibit
higher grain boundary energy [29,30], leading to a higher
tendency of Zn penetration [31,32]. Combined with the
grain morphologies, see Figure 2(c), it was found that
the diffusion region of Zn extends through the HAGBs.
Moreover, this region is positioned closer to the crack tip
compared to the liquid Mg-Zn phase. This observation
suggests that crack nucleation and propagation were ini-
tiated by Zn penetration along the HAGBs, followed by
the melting of the Mg-Zn phase.

In order to further investigate the Zn concentration
at HAGBs, TEM was carried out near the crack tip, as
shown in Figure 3. The phase along the HAGB near the
crack tip exhibits the highest Zn content (~ 50 at. %), and
the diffusion layer with higher Zn content (~2 at. %)
than base AZ31B alloy is also detected near the HAGB.
The large phase and the thin phase (e and f in Figure
3(a)) at the HAGB are both distinguished as Mg>;Zn;s5

by selected area electron diffraction (SAED) pattern and
high-resolution TEM, respectively, see Figure 3(e) and
(f). These results further indicate that crack nucleation
and propagation started from Zn penetration at HAGBs
and the subsequent Mg-Zn phase melting.

Another necessary condition for LME is the applica-
tion of tensile stress [33,34]. During welding, the AZ31B
sheet was bended at the outer edge of the clamping ring
due to the downward pressure of the clamping ring and
the increase in temperature during welding, see Figure
1(d) and (e), indicating that horizontal tensile stresses,
o, were applied on the crack nucleation position of the
AZ31B sheet. These horizontal tensile stresses drove the
LME crack propagation through the thickness of the Mg
sheet.

Horizontal tensile stresses in the AZ31B sheet are
likely to develop during the clamping and heating stages
of the welding cycle. The downward compressive force
exerted by the clamping ring induces lateral expansion
in the sheet due to the Poisson effect, thereby generating
radial tensile stresses. As the temperature increases and
the material softens, the geometric constraints imposed
by the clamping ring lead to localized bending deforma-
tion, which further induces both radial and circumferen-
tial tensile stresses in the bottom region surrounding the
ring, consistent with the observed deformation behavior
and the crack propagation direction shown in Figure 1(d)
and (e). Further validation and quantitative analysis of
the stress evolution is needed to confirm this hypothesis
in future works.
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Figure 2. (a;) Crack marked as region B in Figure 1(e), and (a;) corresponding IQ map with low/high angle grain boundaries and distribu-
tion of Aland Zn, and (a3) IPF map of the region marked in (a1). (b) Microstructure and (c) corresponding low/high angle grain boundaries
marked as regions I, II, and Il in (aq). The diffusion region of Zn is marked within red dash line. (d) EDS line profiles marked in (b). The
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Figure 3. TEM results at the HAGB near the crack tip marked in Figure 2(b1). (a) Bright-field image, (bq) High-angle annular dark-field
(HADDF) image and (b;) EDS mapping of Zn marked in (a). (c) EDS line profiles marked in (b;), indicating the Zn concentration at the HAGB.
(d)-(e) selected area electron diffraction (SAED) patterns marked in (a), verifying the existence of Mg,1Zn;s5 at HAGBs. (f) High-resolution
TEM micrograph of the interphase area marked in (a). (g1)—(g2) High-resolution TEM micrograph labeled in (f).

In order to further understand the crack mecha-
nism in refill FSSW of Mg/galvanized steel and to ver-
ify the LME phenomenon, the welding thermal cycle
at the position near the crack nucleation was mea-
sured, see Figure 1(b;) and Figure 4(a). During welding,
the temperature increased significantly with a heating
rate of about 150 ~200°C/s and reached about 360°C
at the plunge stage, i.e. above the eutectic tempera-
ture of Mg-Zn phase (342°C). The temperature kept
increasing during the dwell stage from 360 to 430°C,

where the temperature decreased slightly from 430°C
to about 360°C during the retracting stage. After weld-
ing, the temperature decreased significantly. During the
whole welding procedure, the temperature underneath
the clamping ring is maintained above the eutectic point
for approximately 5 s, indicating the formation of lig-
uid Mg-Zn phase. Furthermore, the temperatures within
the shoulder and probe regions can be assumed even
higher as shown in numerical simulations of refill FSSW
[35].
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Figure 4. (a) Thermal cycle during refill FSSW as well as the simulated temperature history in hot tensile test, Ts. (b) Engineering
Stress—Strain curve of bare/Zn coated AZ31B alloy in hot tensile test with peak temperature of 400°C at different strain rates (1073,

1072,and 107" s7). (c) Stress—Strain curve of bare/Zn-coated AZ31B alloy in hot tensile test at a strain rate of 10~

s~ at different peak

temperatures. (d) Relative reduction of energy (RRE) at different peak temperatures, indicating that LME occurs at temperatures above

350°C.

Hot tensile tests are usually used to identify the occur-
rence of LME and investigate the conditions of the
LME phenomenon [36,37]. At first, the hot tensile test
simulating the condition of welding was carried out at a
peak temperature of 400°C at different strain rates (1073,
1072, and 107! s™!) on the bare and Zn-coated Mg alloy,
see Figure 4(b). The ductility of the Zn-coated AZ31B
Mg alloy was severely reduced compared with that of
the bare AZ31B Mg alloy. The fracture mode changes
from ductile fracture with necking characteristics to brit-
tle fracture due to the effects of Zn coating. The typical
brittle intergranular fracture morphology of Zn-coated
samples with higher Zn content, see Figure S7, further
verified the occurrence of the LME phenomenon [38].
Additionally, the increase of the strain rate also enhanced
the reduction of ductility of the Zn-coated Mg.

Hot tensile tests at different temperatures were also
carried out to investigate the occurrence conditions of
LME phenomenon on Zn coating Mg alloy. The relative
reduction of energy (RRE) was calculated to determine

the occurrence of LME [39]. At 300°C (below the eutectic
temperature of Mg-Zn phase), the Zn-coated AZ31B Mg
alloy exhibited similar mechanical behavior and ductility
with ductile fracture compared to the bare AZ31B Mg
alloy, and the RRE is near 0. As the temperature increased
above the eutectic temperature of the Mg-Zn phase,
the Mg-Zn phase melted and the ductility of Zn-coated
AZ31B Mg alloy decreased significantly, further indicat-
ing the presence of melting Mg-Zn phase, which led to
the occurrence of LME.

The identification of the penetration of Zn and the
subsequent formation of liquid Mg-Zn phase (Figures 3
and 4), as well as the temperature of LME occurrence
(Figure 4) allow to develop a hypothesis for a possible
LME mechanism in refill FSSW of Mg/galvanize steel. At
the plunge stage of refill FSSW, the increasing tempera-
ture softens the Mg alloy under the clamping ring. Then
the Mg alloy bends and a tensile stress is induced at the
outer clamping ring due to the compression. At the same
time, the mutual diffusion of Zn and Mg at the interface
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between Zn coating and upper Mg sheet is enhanced due
to the increasing temperature, and Mg-Zn melts when
the temperature reaches its eutectic temperature (Figure
5(az)). As the welding process progresses, due to the
formation of liquid Mg-Zn phase and the application
of tensile stresses, the Zn atoms prefer to diffuse at the
HAGBs in the Mg alloy (Figure 5(a3)). The penetration of
Zn increases the local Zn content at HAGBs and reduces
the liquidus temperature of the Mg alloy, Ty, see Figure
5(b). With the diffusion of Zn, the Mg alloy with higher
Zn content at GBs starts to melt when Ty, is below the
processing temperature, and the liquidus Mg-Zn phase
subsequently stimulates the penetration of further Zn
into subsequent HAGBs (Figure 5(as)). With the pen-
etration of Zn atoms and propagation of liquid Mg-Zn
phase at Mg HAGBs, LME crack initiates at the inter-
face between Zn and the Mg alloy, and propagates along
the HAGBs in the Mg alloy (Figure 5(as)), presenting a
decrease of ductility of the Mg alloy at high temperature.

In currently well-studied Zn-containing systems sus-
ceptible to LME, such as the Fe-Zn system, there are
no eutectic points below the melting temperature of
pure Zn [10]. According to Fe-Zn phase diagram, as
the Zn content increases from 0% to 42 at.%, the onset
of partial melting decreases from 1538 to 782°C, which
is still substantially higher than the melting point of
pure Zn. Therefore, grain boundaries enriched with
Zn in the Fe matrix generally do not liquefy within a

short period. Instead, the diffusion of Zn atoms may
lead to the formation of brittle intermetallic I'-phase
along the grain boundaries [3], causing grain boundary
embrittlement. Under applied tensile stress, these embrit-
tled grain boundaries are prone to cracking. Subse-
quently, the liquid Zn may infiltrate into the crack tip,
promoting further crack propagation [35]. In such sys-
tems, higher temperatures and strain rates are typically
required to maintain the presence of a liquid phase,
which facilitates the initiation and propagation of LME.
In contrast, in the Mg-Zn system, when the Zn con-
tent increases to just 2.4 at.%, the onset temperature for
partial melting drops to approximately 342°C, which is
below the melting point of pure Zn. This significantly
enhances the tendency for liquefaction of Zn-enriched
grain boundaries. The presence of a stable liquid phase
at the crack tip increases the susceptibility to rapid and
sustained LME crack propagation, even under relatively
low temperatures and strain rates.

Based on the experimental results and the devel-
oped LME mechanism model, two potential strategies
are proposed to prevent the occurrence of LME cracks:
(i) Decreasing the heat input during refill FSSW, such
as decreasing the rotational speed. When the tempera-
ture beneath the clamping ring is kept below the eutectic
temperature of the Mg-Zn phase, one of the necessary
conditions, i.e. the formation of liquid phase, will be pre-
vented; (ii) Minimizing bending of the Mg sheet and of



the horizontal tensile stresses in the Mg, such as decreas-
ing the welding force or increasing the diameter of the
clamping ring, since the tensile stress is another necessary
condition of LME. Refill FSSW of Mg/galvanized steel
using different welding parameters has been carried out,
as shown in Table S3, which preliminarily verifies that
these potential strategies could prevent the occurrence of
LME cracks.

In summary, LME phenomenon, characterized by the
presence of liquid phase at HAGBs and intergranular
crack, was discovered in refill FSSW of Mg/galvanized
steel for the first time. The nucleation and propagation of
the LME crack are driven by the penetration of Zn at Mg
HAGBs under tensile stresses and the subsequent forma-
tion of liquid Mg-Zn phase. Therefore, decreasing heat
input and horizontal tensile stresses are potential strate-
gies to avoid LME cracks in refill FSSW of Mg/galvanized
steel.
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