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We present a comprehensive tensor network study of staggered, Wilson, and twisted mass fermions
in the Hamiltonian formulation, using the massive two-flavor Schwinger model as a benchmark.
Particular emphasis is placed on twisted mass fermions, whose properties in this context have not
been systematically explored before. We confirm the expected O(a) improvement in the free theory
and observe that this improvement persists in the interacting case. By leveraging an electric-
field-based method for mass renormalization, we reliably tune to maximal twist and establish the
method’s applicability in the two-flavor model. Once mass renormalization is included, the pion
mass exhibits rapid convergence to the continuum limit. Finite-volume effects are addressed using
two complementary approaches: dispersion relation fits and finite-volume scaling. Our results show
excellent agreement with semiclassical predictions and reveal a milder volume dependence for twisted
mass fermions compared to staggered and Wilson discretizations. In addition, we observe clear
isospin-breaking effects, suggesting intriguing parallels with lattice QCD. These findings highlight
the advantages of twisted mass fermions for Hamiltonian simulations and motivate their further
exploration—particularly in view of future applications to higher-dimensional lattice gauge theories.

I. INTRODUCTION

Lattice gauge theory (LGT) provides a powerful non-
perturbative framework for studying gauge theories [1, 2].
By discretizing the Lagrangian on a Euclidean space-time
lattice, it becomes amenable to numerical treatment via
Markov Chain Monte Carlo (MC) methods. These tech-
niques have enabled high-precision studies of hadronic
physics in Quantum Chromodynamics (QCD) [3]. How-
ever, standard MC methods suffer from the infamous sign
problem in certain regimes, which severely restricts their
applicability. Notably, QCD at finite baryon chemical
potential or in the presence of a topological #-term re-
mains largely inaccessible, as do real-time dynamical phe-
nomena that require a formulation in Minkowski space-
time [4].

The Hamiltonian formulation of LGTs [5] offers a
promising alternative. Numerical methods based on this
formulation typically do not rely on sampling configura-
tions, thus avoiding the sign problem that hinders MC
techniques in certain regimes. In particular, numerical
methods based on tensor network states (TNS), which
provide an efficient representation of moderately entan-
glement quantum states, have proven themselves as a
powerful tool for accessing LGTs in sign-problem afflicted
regimes. Tensor network approaches have achieved im-
pressive success for 1 + 1 dimensional models [6-13].
While generalizing this success to higher dimensions is
not an immediate task, recent years have shown promis-
ing developments and the first simulations with TNS in
higher dimensions have been carried out [14-17].

A crucial aspect of lattice formulations is the treatment
of the fermionic degrees of freedom. Naively discretized
fermion fields lead to redundant species when taking

the continuum limit—a phenomenon know as fermion
doubling—necessitating specialized discretization schemes
to recover the correct continuum theory [1]. Although a
wide range of fermion discretization schemes exists [5, 18—

], each comes with its own set of advantages and limi-
tations.

In the context of TNS, the majority of existing work
has focused on staggered fermions [6—8]. This formula-
tion effectively thins out the fermionic degrees of free-
dom, making it computationally efficient. However, it
does not fully eliminate fermion doublers beyond 1 +
1 dimensions, limiting its suitability for computations
in higher dimensions that aim to take the continuum
limit. Recently, the first TNS simulations using Wilson
fermions have been carried out for the lattice Schwinger
model [27], introducing a procedure for computing the
additive mass renormalization in the Hamiltonian formu-
lation. While this discretization fully removes the dou-
blers in arbitrary dimensions, it is generally computation-
ally more expensive than the staggered formulation. In
addition, it explicitly breaks chiral symmetry, resulting
in a larger additive mass renormalization.

A very important aspect of LGT simulations is the ap-
proach to the continuum limit, achieved by taking the
lattice spacing a to zero. Staggered fermions are ex-
pected to scale with O(a?) corrections, whereas Wil-
son fermions exhibit linear O(a) scaling. To suppress
these leading-order discretization effects, the Symanzik
improvement programme was developed and successfully
applied in LGT simulations. This approach involves im-
proving both the lattice action and relevant observables,
leading to O(a?) scaling for Symanzik-improved Wilson
fermions. However, this procedure is technically demand-
ing and must be tailored to each observable individually.
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As an alternative, twisted mass fermions [28] at max-
imal twist provide automatic O(a) improvement with-
out requiring the full Symanzik programme. This makes
them an attractive formulation for precision studies. De-
spite their successful use in the Lagrangian formalism,
twisted mass fermions have not yet been systematically
explored in the Hamiltonian framework. While they en-
sure faster convergence to the continuum limit at max-
imal twist, they also introduce explicit isospin breaking
at finite lattice spacing, resulting in characteristic effects
such as pion mass splitting. Related isospin-breaking ef-
fects due to nondegenerate quark masses have also been
studied recently in Ref. [29].

In this work, we study three representative fermion dis-
cretizations, staggered fermions [5], Wilson fermions [30],
and twisted mass Wilson fermions [19] using the two-
flavor Schwinger model as a benchmark. This 1 + 1 di-
mensional Abelian gauge theory shares important qual-
itative features with QCD, such as confinement and a
nontrivial vacuum structure, while remaining compu-
tationally accessible. The one-flavor Schwinger model
has been extensively studied using TNS methods [9,

], and recent work has extended these studies to the
two-flavor model [34-38], which exhibits a rich vacuum
structure and excitation spectrum. Moreover, the lat-
tice Schwinger model has recently attracted significant
attention as a testbed for quantum simulations [39-43],
including applications such as the computation of ex-
cited states [44]. The two-flavor model was also the sub-
ject of early scaling studies of various fermion discretiza-
tions—including twisted mass fermions—within the La-
grangian framework [15].

The additive mass renormalization in the Schwinger
model has received renewed attention in recent years. An
analytical prediction was derived for staggered fermions
with periodic boundary conditions [46], and its inclu-
sion was shown to significantly improve continuum con-
vergence. A subsequent study introduced a numerical
method based on the electric field density within the
Hamiltonian formalism, successfully applying it to Wil-
son fermions in the one-flavor case [27]. Here, we extend
this method to the two-flavor model, which presents addi-
tional challenges due to a gapless phase near the region of
interest. We demonstrate that the method remains appli-
cable, even in this regime. This allows us to investigate
the continuum-limit behavior for all three fermion dis-
cretizations with high accuracy and to test the expected
scaling with the lattice spacing.

We then turn our attention to the low-energy spec-
trum, focusing on the extraction of the pion mass. In
particular, twisted mass fermions are known to exhibit
isospin breaking at finite lattice spacing, a phenomenon
familiar from lattice QCD [28]. To correct for finite-
volume effects and obtain precise estimates of the pion
mass, we employ two complementary techniques: finite-
volume scaling [17] and dispersion relation fits [35, 37].
The resulting values are compared against analytical pre-
dictions [18, 49] and serve to investigate discretization

effects across the different fermion formulations.

This paper is structured as follows. In Sec. 11, we intro-
duce the massive two-flavor Schwinger model and sum-
marize relevant analytical predictions. In Sec. III, we
review the staggered and Wilson fermion discretizations.
We then move on to twisted mass fermions in Sec. V, be-
ginning with their formulation in the continuum, followed
by a discussion of their lattice implementation and the
mechanism of automatic O(a) improvement. After these
theoretical considerations, we describe the setup of our
TNS simulations in Sec. VI, and present our numerical
results in Sec. VII. We begin with the scaling behavior
of the electric field density and demonstrate automatic
O(a) improvement in Sec. VIT A. The determination of
the mass renormalization and its influence on scaling is
presented in Sec. VII B. We then analyze the low-energy
spectrum for the different discretizations in Sec. VIIC.
To compute the pion mass, we account for finite volume
effects via the dispersion relation in Sec. VIID and via
finite-volume scaling in Sec. VIIE. We conclude with a
summary and outlook in Sec. VIII.

II. THE MASSIVE TWO-FLAVOR SCHWINGER
MODEL

The massive two-flavor Schwinger model describes
quantum electrodynamics in (1 + 1)-dimensions coupled
to massive Dirac fermions [50]. The Lagrangian density
is given by
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where the Lagrangian consists of a fermionic part Lp
and a gauge field part Lg. In the expression above, the
covariant derivative is defined as D, = 0, + igA, with
the gauge field A, and the coupling constant g, mediates
the interaction between the matter fields. The tensor
F,, = 0,A, — 0,A, corresponds to the field strength.
The topological f-term, with 6§ € [0,2x], describes the
background electric flux and explicitly violates parity.
The fermionic fields ¢ are two-component Dirac spinors,
and we assume equal masses m for the all flavors. The
model with equal masses exhibits an SU(2) isospin sym-
metry between the flavors, with symmetry generators
given by

5=y [ deirr, @

where 7% are the Pauli matrices acting in flavor space on
the flavor doublet .



The Hamiltonian density of the massive Schwinger
model in the temporal gauge, Ay = 0, is given by
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Physically relevant states must satisfy Gauss’s law,
—51A1 = Q&WOW (4)

This equation fixes the electric field — Al up to an integra-
tion constant g/2m, which corresponds to a homogenous
background electric field.

The massless one-flavor Schwinger model is exactly
solvable through bosonization, and for small fermion
masses, relevant observables can be studied using mass
perturbation theory [51]. In contrast, the two-flavor
Schwinger model exhibits a more intricate structure.
In the chiral limit (m = 0), the model possesses an
SU(2) x SU(2) chiral symmetry. At low energies, it re-
duces to the SU(2) Wess-Zumino-Witten (WZW) model,
a conformal field theory [52, 53].

When fermion masses are introduced, the system be-
comes gapped and develops a non-degenerate ground
state for § # m. Unlike the one-flavor case, the ana-
lytical study of the two-flavor model requires additional
approximations. In the strong coupling regime and for
small fermion masses m/g < 1, Ref. [18] derives the fol-
lowing dependence of the mass gap on the fermion mass
using effective field theory and scaling arguments. The
prefactor is fixed by matching to known universal am-
plitude ratios, previously computed using the thermody-
namic Bethe ansatz in integrable models:
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where v =~ 0.577 is the Euler-Mascheroni constant, and
I'(-) denotes the Gamma function.

In contrast, a semiclassical analysis based on a general-
ized Hartree-Fock approximation by Ref. [19], also valid
in the small mass regime m/g < 1, yields
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These two theoretical predictions differ by approxi-
mately 7% and are valid only in the regime of small
fermion masses, m/g < 1. This relatively small discrep-
ancy necessitates accurate simulations with all system-
atic errors under control, making the massive two-flavor
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Schwinger model a compelling target for numerical stud-
ies. Such simulations can be used to assess the validity
and precision of these analytical approximations.

Additionally, the presence of the topological 6-term
modifies the overall mass scale, leading to the following
dependence of the mass gap on 6 [54]:

(7)

IIT. LATTICE DISCRETIZATIONS

To enable numerical simulations within the Hamil-
tonian formalism, the spatial dimension of the theory
must be discretized on a lattice. However, a naive dis-
cretization of fermions introduces additional, unphysi-
cal fermion species. In d spatial dimensions, this so-
called fermion doubling problem leads to 2?¢ fermion
species [1, 2]. Two widely used strategies to resolve this
issue are the staggered and Wilson formulations. In this
work, we summarize the corresponding Hamiltonians and
define the relevant observables for both approaches.

A. Staggered fermions

One approach to discretizing the model on a lattice
with an even number of sites IV, lattice spacing a, and
open boundary conditions is the Kogut-Susskind Hamil-
tonian [5]:
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The central idea behind this formulation is to distribute
the spinor components across neighboring lattice sites.
Here, ¢, ¢ denotes a single-component fermionic field of
flavor f at site n. In the continuum limit @ — 0, the fields
on even sites correspond to the upper spinor components,
and those on odd sites to the lower ones.

The operator L,, acts on the link between sites n and
n + 1, representing the dimensionless, quantized electric
flux. Tts conjugate operator U,, satisfying [U,, L,/] =
Onn' Uy, acts as a lowering operator for the electric flux.
Gauss’s law on the lattice reads

Ln - Lnfl = Qna (9)

with the staggered charge operator defined as
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For open boundary conditions, fixing Ly = [y allows for
a recursive solution:

Ln=1lo+ Y Q. (11)
k=0

Here, the background field iy = 6/(27) corresponds to
the topological #-term in the continuum limit.

To facilitate numerical simulations, we rescale the
Hamiltonian to a dimensionless form W = (2/ag?)H.

After applying a residual gauge transformation [55], the
rescaled staggered Hamiltonian becomes
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where z = 1/(ag)? denotes the inverse squared lattice
spacing in units of the coupling.

Our primary observable is the electric field density. To
mitigate staggering artifacts and boundary effects, we de-
fine it as the average over two adjacent links near the
lattice center:
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In order to enable the extraction of dispersion rela-
tions, we start from the continuum expression for the
momentum operator [2]:

1
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We then adopt a standard symmetric discretization for
the momentum operator on the lattice [35, 47]:
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where the prefactor ensures proper normalization in
terms of the dimensionless coupling parameter = =
1/(ag)?. This pseudo-momentum operator does not ex-
actly commute with the Hamiltonian due to the use of
open boundary conditions, which break translational in-
variance. However, it still provides a reliable estimate for
the momentum and can be used to approximately char-
acterize excitation energies as a function of momentum.

Similarly, a discretization of the continuum isospin
generators defined in Eq. (2) yields corresponding lat-
tice operators J; for the three isospin components. The
total isospin is then given by J2 = J2 + Jy2 + J2.

Another key observable is the excitation gap, defined
as

AE_W-Wo
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where Wy and W denote the ground state and first ex-
cited state energies of the rescaled Hamiltonian W, re-
spectively. The division by 24/x converts the dimension-
less energy difference obtained from the numerical sim-
ulations into a physical quantity with dimensions of en-
ergy, expressed in units of the coupling g.

In one spatial dimension (d = 1), staggered fermions
completely eliminate the doubling problem. However,
in higher dimensions, they leave behind residual degrees
of freedom, commonly referred to as tastes [2]. A for-
mulation that removes all fermion doublers in arbitrary
dimensions is provided by Wilson fermions, which we dis-
cuss in the next section.

(16)

B. Wilson fermions

The Wilson fermion formulation resolves the fermion
doubling problem by introducing an additional second-
derivative term—known as the Wilson term—into the
Hamiltonian [30]. This term acts as a momentum-
dependent mass that suppresses the unwanted fermion
doublers by giving them masses of order 1/a, where a is
the lattice spacing. While this term explicitly breaks
chiral symmetry at finite lattice spacing, it vanishes
smoothly in the continuum limit, restoring the correct
symmetries of the theory. Intuitively, the Wilson term
modifies the fermion dispersion relation so that only one
low-energy mode remains physical, while the spurious
modes acquire large masses and decouple from the low-
energy physics as a — 0. This approach trades exact
chiral symmetry for the ability to control fermion dou-
bling in lattice simulations.

The Wilson formulation has also been argued to of-
fer advantages over staggered fermions in the context
of simulating the Schwinger model with ultracold atoms
in optical lattices [56]. Building on the approach of
Refs. [27, 56, 57], we generalize their single-flavor re-
sults to construct the Hamiltonian for the two-flavor
Schwinger model:




Unlike the staggered formulation, ¢, ; denotes a di-
mensionless two-component Dirac spinor at site n with
flavor index f. We choose the convention 7° = X,
~' = iZ, where X and Z are Pauli matrices. The lo-

cal charge operator is given by

1
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As in the staggered case, the gauge fields can be inte-
grated out using Gauss’s law. Applying this and rescal-
ing to a dimensionless Hamiltonian W = (2/ag?)H, we
obtain:

(19)

where x = 1/(ag)?.

The electric field density becomes approximately ho-
mogeneous for sufficiently large systems. To suppress
boundary effects, we evaluate it at the center of the chain
using

L V21
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IV. MASS RENORMALIZATION

The bare lattice mass parameter m,,; does not directly
correspond to the physical fermion mass in the contin-
uum, m, due to the presence of an additive mass renor-
malization [2]. The renormalized fermion mass is thus
given by

My = Miag + Meghitt (21)

where mgpire denotes the mass shift. In general, mgpig
depends on the lattice spacing ag, the physical volume
Lg, and the background electric field ly.

For the staggered fermion discretization, an analytical
prediction for the mass shift in the multi-flavor Schwinger
model with N flavors was recently derived in Ref. [416]:

Mishift _ Np
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While this mass shift vanishes in the continuum limit,
its inclusion has been shown to significantly improve the
convergence rate of continuum extrapolations [27, 40].

(22)

For Wilson fermions, no closed-form analytical expres-
sion for the mass shift is known. A numerical method
to determine this quantity within the Hamiltonian for-
malism was proposed in Ref. [27], and applied to a de-
tailed study of the one-flavor Schwinger model. The cen-
tral idea of this approach is that the vacuum expectation
value of the electric field density vanishes when the renor-
malized fermion mass satisfies m, = 0.

To determine the corresponding bare lattice mass, one
computes the electric field density F/g for several small,
negative values of miat /g and identifies the value m;,, for
which the electric field vanishes. The mass shift is then
defined as

Mihify = —Myq- (23)

This approach requires simulations at negative values
of the lattice mass, which are typically inaccessible to
standard Monte Carlo methods due to the sign prob-
lem. In contrast, tensor network techniques do not suffer
from this limitation, allowing us to extend the method
to the more challenging two-flavor Schwinger model. As
in the one-flavor case, the electric field density vanishes
when the renormalized mass satisfies m, = 0 in the two-
flavor theory [54], enabling a direct application of the
same strategy.

In the absence of a background electric field (lo = 0),
however, the electric field density remains zero for all
values of my,t, rendering the method inapplicable. To
overcome this, one can introduce a small nonzero back-
ground field and determine the mass shift as a function
of 1y, followed by an extrapolation to [ — 0.

V. TWISTED MASS FERMIONS

The twisted mass approach modifies the fermion mass
term by introducing a chirally rotated component [19].
When the untwisted fermion mass is tuned to zero, this
setup allows for automatic O(a) improvement of many
physical observables, reducing leading-order lattice dis-
cretization errors to O(a?) [21, 55].

In this section, we first introduce the twisted mass for-
mulation in the continuum and outline its relation to the
standard (untwisted) theory. We then describe its im-
plementation using Wilson fermions on the lattice and
discuss the required tuning of the bare mass. Finally,
we explain the mechanism behind automatic O(a) im-
provement. Our discussion follows Ref. [28], which pro-
vides a comprehensive review of twisted mass Wilson lat-
tice QCD. Note that the continuum discussion is framed
within the Lagrangian formalism, while the lattice for-
mulation and all numerical simulations are carried out in
the Hamiltonian formalism.



A. Twisted Mass fermions in the continuum

The fermionic part of the twisted mass Lagrangian
density is given by

1
LEM = " X5 (V" Dyubypr — (mSgpr + ipn°hp) xgrs
I, =0
(24)
where Xy is a two-component Dirac spinor with flavor
index f. The parameter p is the twisted mass, and all
other symbols are as in the untwisted case.
For a more compact expression, we introduce flavor
doublets:

X = (’“)), x= (% x1)- (25)
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In terms of these doublets, the Lagrangian becomes:
LM =x (iv"Dy — (m +ipy°7)) x. (26)

Here, 72 is the third Pauli matrix acting in flavor space,
and {x, x} define the so-called twisted basis.

To relate the twisted and standard formulations, the
mass term can be rewritten as

m 4 iuy’m® = M(cos a +isinay®r%) = Mem“’sTg, (27)

where M = /m? + u? is the polar mass and tana =
u/m defines the twist angle.
Applying an axial rotation,
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transforms the mass term into
Mei(afw)'y5‘r3’ (29)

while leaving the kinetic term invariant.

Choosing w = « rotates the theory into the so-called
physical basis {1, 1}, where the Lagrangian assumes the
standard form:

LM = (i Dy — M)y (30)

Thus, in the continuum, the twisted mass formulation is
physically equivalent to the standard formulation—just
written in a rotated basis.

This equivalence also holds for lattice discretizations
that preserve chiral symmetry [21, 58].

B. Wilson twisted mass fermions

Wilson fermions explicitly break chiral symmetry. In
this context, the twist angle « parameterizes a family
of lattice discretizations that share the same continuum

limit. However, the specific choice of o can have a bene-
ficial impact on lattice discretization errors at finite lat-
tice spacing. The dimensionless Hamiltonian for the two-
flavor twisted mass Schwinger model is given by:
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Up to the twisted mass term, this Hamiltonian is equiv-
alent to the standard Wilson formulation. However, it
is important to emphasize that WVTVM is written in the
twisted basis, which alters the structure of certain oper-
ators—such as the first two isospin components—within
this framework. The electric field density operator, how-
ever, retains the same form as in the untwisted Wilson
case.

To effectively reduce lattice discretization errors, it is
advantageous to work at or near maximal twist, which
corresponds to a twist angle & = 7/2 in the continuum.
On the lattice, this condition is realized by tuning the
renormalized mass m, to zero, or equivalently, by setting
the bare lattice mass to my,y = —mgnir- Crucially, this
tuning only needs to be accurate up to corrections of
order O(a), as required for automatic O(a) improvement.

In other words, the residual renormalized mass after
tuning may still be as large as O(a), yet parity-even ob-
servables will exhibit leading discretization effects only
at O(a?). This makes the twisted mass formulation par-
ticularly attractive in practice, as it permits improved
scaling behavior without the need for extremely precise
tuning. It is noteworthy that there exists an improved
definition of the twist angle, ensuring robust O(a) im-
provement without any restriction on the quark masses
in the context of lattice QCD [59].

C. Automatic O(a) improvement

Automatic O(a) improvement [21, 58, 59] refers to the
suppression of linear lattice discretization errors such
that the leading artifacts scale as O(a?), provided the
fermion mass is tuned to zero, as discussed in the previ-
ous section.

In the action (Lagrangian) formalism, this improve-
ment can be proven via the Symanzik effective theory
by analyzing the symmetries of the continuum action
[60]. Specifically, it can be shown that expectation val-
ues of chirally even observables are automatically O(a)



improved, while chirally odd observables vanish in the
continuum limit.

In the Hamiltonian formalism, a corresponding proof
of O(a) improvement is less straightforward due to the
absence of full Euclidean spacetime symmetries. Never-
theless, we can explicitly demonstrate O(a) improvement
for the spectrum of the free twisted mass Dirac Hamilto-
nian, i.e., in the absence of gauge interactions.

For the eigenvalues of the free Hamiltonian in a finite
volume L with periodic boundary conditions, we compute
in App. A:

2 2
A\ = j:\/;ﬂ +m? + Tm(l — cosak) + aj(l — cosak),

k:27rn7

7 n=0,1,...,N — 1.

(32)

Expanding this expression in powers of the lattice spac-
ing a, we obtain:

mk? 3m2kt + C?kt 3
50 4 TTe a®+ O0(a’), (33)

where C'= /p? + m? + k2.

This expansion clearly shows that the O(a) term van-
ishes at maximal twist (m = 0), leaving only O(a?) cor-
rections. Furthermore, a mistuning of the mass by an
amount O(a) results only in a O(a?) deviation in the
spectrum, confirming the robustness of the improvement
mechanism.
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VI. MATRIX PRODUCT STATES

Matrix Product States (MPS) are an entanglement-
based ansatz for describing one-dimensional quantum
many-body systems [61]. For a system with N spins o;
on a lattice with open boundary conditions, the MPS
representation of the system’s state [¢) is given by:
)= D APAT AT |o0)®lo) @ -Blon-1).
00,--;0ON—1

(34)

For 0 < k < N — 1, each tensor A7* is a complex
D x D matrix associated with a specific spin configura-
tion 0. The parameter D, known as the bond dimension,
governs the number of variational parameters and deter-
mines the maximum amount of entanglement the MPS
can faithfully represent. The boundary tensors AJ° and
AN are row and column vectors of dimension D, re-
spectively, ensuring that the full tensor contraction yields
a complex scalar coeflicient for each basis state.

The bond dimension D is directly related to the entan-
glement structure of the state. To quantify this, consider
a bipartition of the system into two contiguous subsys-
tems, A and B, and define the entanglement entropy as
the von Neumann entropy of the reduced density matrix

pa = Trpl)(y:
Sa=—-Tr(palogpa). (35)

For an MPS with bond dimension D, the maximum
entanglement entropy across any bipartition is bounded
by:

Sa <logD. (36)

This means that MPS with small bond dimensions are
well suited for representing weakly entangled states, such
as ground states of gapped one-dimensional local Hamil-
tonians, which obey an area law for entanglement. In
contrast, highly entangled states, such as those in criti-
cal systems, may require significantly larger bond dimen-
sions for accurate representation.

To approximate ground states of the Hamiltonians con-
sidered in our study, we employ the two-site variational
ground state search implemented in the ITensors library
[62]. This algorithm iteratively updates pairs of tensors
A7" while keeping the remaining tensors fixed, minimiz-
ing the energy expectation value (¢)|W|¢). A full update
from one boundary to the other and back is referred to
as a sweep. The algorithm is terminated once the rela-
tive change in the energy expectation value falls below
a threshold of n = 1071°, which corresponds to a rela-
tive uncertainty of approximately /7 for the electric field
density [63].

Although tensor network algorithm can directly deal
with fermionic degrees of freedom [64-66], in (1 + 1)-
dimensions it is convenient to translate them to spins by
applying a Jordan-Wigner transformation. This trans-
formation simplifies the implementation and improves
computational efficiency by allowing us to work entirely
within the well-established spin framework of tensor net-
work libraries.

The same algorithm can also be used to estimate ex-
cited states by minimizing the expectation value of a
modified effective Hamiltonian,

Wer = W+ XD |Eil|¢3) (8, (37)

where |1);) are the previously computed low-lying states
and F; their corresponding energies. The tunable pa-
rameter A controls the strength of the penalty for overlap
with lower-lying states, thereby suppressing ground state
components in the variational search.

An additional important aspect of our implementation
is the restriction of the MPS to the sector of vanishing
total charge, >, @, = 0. This is achieved by explicitly
incorporating the symmetry into the MPS ansatz.

The bond dimension of the MPS was chosen in the
range D = 100 to D = 2000, depending on the excita-
tion level, fermion discretization, and system size. For
the smallest bond dimension, the initial MPS was ini-
tialized randomly. For larger bond dimensions, we used
the optimized states from previous runs with lower bond
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Figure 1. Convergence of the ground state energy for twisted
mass fermions at maximal twist as a function of bond dimen-
sion D, for N = 200, Lg = 30, and pu/g = 0.1. Shown is
the difference between the computed energy at a given bond
dimension and the value at the maximum bond dimension
Dmax. The final extrapolated value is indicated by a red cir-
cle, with its numerical value shown in the legend.

dimension as initial states. This warm-start strategy sig-
nificantly reduces the computational cost, as simulations
at lower bond dimension are much faster while still pro-
viding a good approximation to the ground state.

To estimate the uncertainty of the numerical method,
we implement the following strategy. We consider the
values of observables obtained for bond dimensions larger
than 250, as these are typically already close to their con-
verged values. If a strictly monotonic behavior in 1/D
is observed, we perform a linear extrapolation using the
three largest bond dimension values in 1/D. The final
value is then taken as the mean of the extrapolated value
and the result at the largest bond dimension, with an as-
sociated uncertainty given by half the difference between
the two. An illustration of this procedure is shown in
Fig. 1.

If, on the other hand, a non-monotonic dependence on
the bond dimension is observed, we take the result at the
largest bond dimension as the final value and assign an
uncertainty that encompasses the full spread of values
within the non-monotonic region. The total uncertainty
is obtained by combining this finite bond dimension un-
certainty with the uncertainty from the energy conver-
gence stopping criterion in quadrature.

VII. NUMERICAL RESULTS

We begin by analyzing the scaling behavior of the
electric field density to demonstrate automatic O(a) im-
provement for twisted mass fermions. Next, we deter-
mine the mass renormalization and study its impact
on the scaling behavior. We then investigate the low-

energy spectrum for all three fermion discretizations,
with particular focus on the pion mass, which we ex-
tract using both dispersion relation fits and finite-volume
scaling. All simulations are performed in the presence
of a large background electric field, corresponding to
lo = 0/(27) = 0.4, which introduces a sign problem for
Monte Carlo approaches.

A. Electric field density

The electric field density is a fundamental observable
in the Schwinger model, directly reflecting the gauge dy-
namics and vacuum structure of the theory. As a lo-
cal, gauge-invariant quantity, it is sensitive to confine-
ment and vacuum polarization effects, and serves as a
stringent test for the accuracy of numerical methods and
discretizations. In particular, its scaling behavior with
lattice spacing provides insight into discretization errors
and the effectiveness of improvement schemes. Despite
its physical relevance, the electric field density lacks ex-
act analytical predictions in the massive two-flavor case,
making it an ideal target for precision tensor network
studies.

As a first step, we investigate the scaling behavior of
the electric field density at fixed lattice fermion masses
Miat/g. Previous studies of the Schwinger model using
tensor network methods have successfully performed con-
tinuum extrapolations without applying mass renormal-
ization. This approach avoids the computational over-
head associated with determining mass counterterms and
eliminates the risk of introducing related systematic er-
rors, thereby enabling a clean and precise study of scaling
behavior.

To assess how different fermion discretizations ap-
proach the continuum limit, we consider a fixed physical
volume of Lg = N/y/x = 30 and simulate system sizes
ranging from 130 to 200 sites in steps of ten. Account-
ing for the number of fermion flavors, this corresponds
to systems with up to 400 spins in the staggered formu-
lation and up to 800 spins for Wilson and twisted mass
fermions. For the fixed volume, these system sizes corre-
spond to lattice spacings as small as ag = 0.15.

In Fig. 2, we present our numerical results for lat-
tice fermion masses miy,/g = 0.1,0.2,0.4. The small
error bars of the individual data points reflect the uncer-
tainty due to finite bond dimension effects, as described
in Sec. VI. To investigate the continuum limit in the ab-
sence of exact analytical predictions, we employ the fol-
lowing strategy:

First, we fit the data points for each fermion discretiza-
tion separately using a quadratic function of the form
A(1/y/7)*+ B/\/z + C and extrapolate to vanishing lat-
tice spacing 1/4/z = 0. The individual fits are shown as
faint lines in Fig. 2. For improved visibility, the extrap-
olated continuum values are slightly offset from zero.

To estimate the uncertainty of the extrapolation, we
employ a jackknife resampling procedure [67]. Let z(®
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Figure 2. Scaling behavior of the electric field density F'/g as a function of the lattice spacing 1/4/z. Faint lines show individual
quadratic fits for each fermion discretization, while bold lines represent the combined fit with a shared continuum limit. The

continuum extrapolation points from the individual fits are horizontally offset from zero for better visibility.

denote the extrapolated continuum value obtained by
leaving out the i-th data point from the fit, and let M
be the number of such jackknife samples (equal to the
number of data points). The jackknife estimate of the
mean is

=
Tjack = M ZO x(l)a (38)
and the corresponding variance is given by
M-1
M—-1 - 2
2 - @ _ 7.

Ojack = (1: —J:Jack) . (39)

M i=0

We report the full-sample fit result as the final extrap-
olated value, and assign the jackknife standard deviation
as its uncertainty.

Next, we perform a combined quadratic fit across all
three fermion discretizations, constrained to a shared
continuum value C, shown by the bold lines in Fig. 2.
This approach yields a stable and precise continuum es-
timate that serves as a reference point against which
the individual fits can be compared. The uncertainty
is again estimated using the jackknife method, this time
with each stripped dataset omitting three points—one
for each fermion discretization. For all three masses, the
resulting uncertainties are smaller than the marker size
in the figure.

Across all masses, twisted mass fermions exhibit the
fastest convergence to the continuum, followed by stag-
gered fermions. Wilson fermions show the slowest conver-
gence. The individual fits for staggered and twisted mass
fermions are consistent with the combined fit within un-



certainties, whereas the individual fit for Wilson fermions
slightly overestimates the continuum value compared to
both the other individual extrapolations and the com-
bined extrapolation.

More specifically, the Wilson fits appear almost linear
over the accessible range of lattice spacings, while the
combined fit—which provides a more reliable estimate
of the continuum limit—displays a non-negligible curva-
ture. This discrepancy indicates that a broader range
of lattice spacings, and in particular finer lattice spac-
ings, is necessary to control discretization effects when
using Wilson fermions. These observations highlight the
practical advantage of improved fermion discretizations,
such as twisted mass fermions, which enable more reliable
continuum extrapolations at comparable lattice spacings
and computational cost.

To support these qualitative observations, we present
the fit parameters from the combined continuum extrap-
olation in Tab. I. The quoted uncertainties are 95% con-
fidence intervals obtained via the jackknife procedure.

While the fit coefficients A, B, and C' characterize the
extrapolation function, their numerical values alone do
not convey the relative importance of each term over the
finite range of lattice spacings considered. For instance,
a larger quadratic coefficient A can have less impact than
a smaller linear coefficient B if the corresponding powers
of 1/4/z differ significantly across the data range.

To quantify this, we define the relative contributions of
the linear and quadratic terms within the sampled data
range as

[B(1/v)|
|B(1/v/@)| + |A((1/vz)*)]
A1/ va)?)|
(

[B(1/Va)| + [A((1/v)?)|
(40)

Linear Contribution:

Quadratic Contribution:

where the averages (-) are taken over the values of 1/y/z
used in the fit. These ratios offer a more intuitive mea-
sure of the relative influence of each term across the range
of data points included in the extrapolation. Uncertain-
ties are estimated using the jackknife method.

The main observation is that staggered and Wilson
fermions exhibit predominantly linear discretization er-
rors across all fermion masses considered. For staggered
fermions, the linear contribution exceeds 0.9 throughout
the data range, while for Wilson fermions it remains
slightly lower, at approximately 0.83. This behavior
appears largely insensitive to variations in the fermion
mass within the explored parameter regime. In contrast,
twisted mass fermions display a distinct scaling pattern:
the quadratic contribution becomes increasingly domi-
nant as the fermion mass increases, rising from 0.29 at
Mmiat/g = 0.1 to 0.98 at mya/g = 0.4. For the largest
mass, the linear coefficient is zero within its confidence in-
terval, indicating that the data is consistent with a purely
quadratic scaling in this regime.

This behavior can be interpreted in the context of
the automatic O(a) improvement inherent in the twisted
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mass formulation. When mass renormalization is omit-
ted and the untwisted lattice fermion mass is set to zero,
increasing the twisted mass parameter effectively tunes
the system toward maximal twist. At maximal twist, the-
oretical arguments guarantee the cancellation of leading-
order discretization effects (O(a)) for parity-even, multi-
plicatively renormalizable observables, based on the sym-
metry structure of the Symanzik effective theory in the
Lagrangian formalism.

A corresponding analysis in the Hamiltonian frame-
work is considerably more subtle. In particular, the lack
of full Euclidean space-time symmetry complicates the
derivation of an analogous Symanzik expansion. For this
reason, we do not attempt a formal proof of automatic
O(a) improvement here. Instead, we rely on explicit nu-
merical evidence to support the presence of this improve-
ment mechanism in the Hamiltonian setting.

While the electric field density is formally a gauge
observable and thus not directly covered by standard
fermionic improvement arguments, it is a non-dynamical
quantity in the Schwinger model, entirely determined by
the distribution of fermionic charges. In particular, it
can be expressed as a sum over local charge densities.
From this perspective, the electric field density inherits
its discretization behavior from the underlying fermionic
dynamics. Therefore, even though it lies outside the class
of observables traditionally addressed by standard im-
provement proofs, our numerical results suggest that it
exhibits effective O(a?) scaling in practice when com-
puted with twisted mass fermions. This indicates that
the improvement mechanism may extend to a broader
class of observables in specific models, such as QED in
1+1 dimensions, and warrants further theoretical inves-
tigation.

B. Mass renormalization

In Sec. IV, we highlighted the usefulness of mass renor-
malization for improving the convergence to the contin-
uum limit. In the case of twisted mass fermions, sub-
tracting the additive mass shift to set the untwisted mass
to zero corresponds to tuning the theory to maximal
twist. Within the Lagrangian formalism, this is typically
achieved by enforcing a vanishing PCAC mass, defined
via an axial Ward identity. However, since the definition
of the PCAC mass relies on a symmetry relation that
does not hold in the Hamiltonian formulation, we instead
adopt the alternative procedure proposed in Ref. [27] and
summarized in Sec. IV, originally introduced in the con-
text of Wilson fermions. The method is based on iden-
tifying the value of the lattice mass my,, for which the
electric field density vanishes.

To accurately determine this zero crossing, we compute
the electric field density for several values of my,; in the
vicinity of the expected crossing point and fit a quadratic
function to the data. The mass shift mgp;s is then de-
fined as the root of this fitted function. Its uncertainty is



Fermion Linear Quadratic
M A((1 2 B (1 C(
ass Type ((1/va)") (1/vz) 1) Contribution Contribution
Staggered —0.09979:57 0.2275:01 0.92+5:03 0.08%0:07
0.1 Wilson —0.38370921 0.3670 01 0.063913-5907 0.83510:902 0.1650 505
Twisted Mass 0.134%99%5 0061552 0.71%9%8 0.29+0-06
Staggered —0.09613:5% 0.1867050% 0.91373:502 0.0870 003
0.2 Wilson —0.33419:519 0.31570:95%  0.148879-0004 0.83613:502 0.16479 004
Twisted Mass 0.127+5:92 0.017+5:992 0.43+5-05 0.5715:02
Staggered —0.050515-5025 0.08879-002 0.90479-008 0.09679-958
0.4 Wilson -0 21*38?28 0 184*8ggi 0.266570 0008 0 827*8‘882 0 173*8882
: . —0.02 . —0.001 . —0.0002 . —0.006 . —0.004

Twisted Mass 0.058170-5013

0.00015 957

0.02+5:09 0.9870:03

Table I. Constrained fits for the electric field density: Comparison of coefficients for (1/y/z)? (A), 1/+/x (B), and the constant
(C), along with the corresponding linear and quadratic contributions for masses 0.1, 0.2, and 0.4 for different fermion types.

The fits are given in the form AT (1//z)2 + BT (1/\/z) + C o
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Figure 3. Electric field density F'/g and entanglement entropy
S as functions of the lattice mass mia;/g for Wilson fermions
at the smallest lattice spacing 1/4/x = 0.15. The first zero
crossing of F'/g, indicated by the black vertical line, can be
used to determine the additive mass renormalization on the
lattice.

estimated using the jackknife method, following the same
procedure employed for estimating the uncertainty of the
continuum extrapolation in the previous section.

The mass shift exhibits a strong dependence on the
lattice spacing. Consequently, we compute it separately
for each lattice spacing considered in this study, for both
staggered and Wilson fermions. In Fig. 3, we illustrate
the previously described procedure for the case of Wil-
son fermions at the finest lattice spacing 1/y/2 = 0.15.
In addition to the electric field density, we also monitor
the entanglement entropy. This leads to the following
observations:

The quadratic fit provides an accurate description of
the electric field density across the scanned mass range

—erT]oyw "

and allows for a reliable determination of the zero cross-
ing point. As the lattice fermion mass becomes more neg-
ative, the entanglement entropy increases. As discussed
in Sec. VI, higher entanglement entropy requires a larger
bond dimension in the MPS ansatz to maintain numeri-
cal accuracy, thereby increasing computational complex-
ity. This is reflected in the larger uncertainties observed
in the electric field density in the regime of high entan-
glement, where the bond dimension becomes a limiting
factor.

During the computation of the mass shift, we observed
mixing between the ground state and excited states, as
indicated by a non-vanishing isospin J?. This mixing
complicates the reliable extraction of the mass shift and
points to a small or vanishing energy gap between the
ground state and nearby excitations. Such behavior is
reminiscent of the phase structure in lattice QCD with
Wilson fermions, where two critical points enclose an in-
termediate phase characterized by a vanishing gap. In-
terestingly, for both Wilson and staggered fermions, we
observed two distinct zero crossings of the electric field
density, further suggesting the presence of a nontrivial
phase structure in this regime.

To ensure robust ground state extraction and suppress
undesired mixing, we enforce vanishing isospin J2 = 0 by
adding a penalty term to the Hamiltonian. This modifi-
cation stabilizes the ground state and enables a reliable
determination of the mass shift.

In Fig. 4, we present the mass shift estimates for all
lattice spacings considered in our study for staggered and
Wilson fermions. We also include the analytical predic-
tion for staggered fermions from Ref. [16], allowing us to
provide a finite-volume, open-boundary test of this pre-
diction in the two-flavor Schwinger model. For staggered
fermions, we observe good agreement with the theoretical
prediction, with the agreement improving at smaller lat-
tice spacings. As expected, we verify that the mass shift
vanishes in the continuum limit by fitting a quadratic
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Figure 4. Additive mass renormalization msnit/g as a func-
tion of the lattice spacing 1/y/z, extracted from the zero
crossing of the electric field density for staggered and Wilson
fermions. Dashed lines indicate quadratic continuum extrap-
olations. The solid black line represents the analytical predic-
tion for staggered fermions with periodic boundary conditions
from Ref. [40].

function to the data and estimating uncertainties using
the procedure described in Sec. VIT A.

For Wilson fermions, the mass shift is significantly
larger than for staggered fermions across all lattice spac-
ings. The quadratic fit extrapolates to zero in the con-
tinuum limit, with a small residual deviation that can
be attributed to the limited fitting range, as previously
observed in the case of the electric field density for Wil-
son fermions. To further validate the mass shift estimate
and assess its impact, we will compare continuum ex-
trapolations of the electric field density with and without
including mass renormalization.

In Fig. 5, we compare purely quadratic fits of the form
A(1/4/x)*+C (bold lines) obtained at fixed renormalized
mass to the previously obtained continuum extrapola-
tions at fixed lattice mass (faint markers). As before, the
continuum extrapolations are slightly offset from zero to
improve readability. For all three masses considered, we
observe that the inclusion of mass renormalization signif-
icantly enhances the rate at which the continuum limit
is approached (note the much smaller y-axis scale for the
electric field density). This behavior is consistent with
the findings reported in Refs. [27, 46] for the one-flavor
case.

In particular, the systematic overestimation observed
for Wilson fermions at fixed lattice mass is significantly
reduced after mass renormalization, bringing the results
into much closer agreement with those of the other two
fermion discretizations. This supports our interpretation
that the deviations seen in the unrenormalized case are
primarily due to the limited range of accessible lattice
spacings. The improvement achieved upon renormaliza-
tion further underscores the practical advantages of using
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improved fermion discretizations for reliable continuum
extrapolation.

For the two larger masses, we find perfect agreement
between staggered and twisted mass fermions within
their respective uncertainties. For the smallest mass, we
observe a very small relative deviation below 1%, which
disappears at larger masses. This suggests a minor sys-
tematic bias introduced by the heuristic method used to
determine the mass renormalization.

Across all three masses, the continuum values obtained
from Wilson fermions are consistently slightly larger than
those from the other two discretizations. This deviation
is very small with a maximum relative deviation of ap-
proximately 1%.

C. Mass spectrum

Having studied the scaling behavior of the electric field
density in the ground state, we now turn to the low-
lying mass spectrum of the two-flavor Schwinger model
for the three fermion discretizations. We begin by ana-
lyzing the scaling behavior of the energy gap between the
ground state and the first excited state. As in the case
of the electric field density, we present quadratic fits for
the data without mass renormalization (faint lines) and
purely quadratic fits for the data including mass renor-
malization (bold lines). Results are shown in Fig. 6 for
m/g=0.1 and m/g = 0.2.

Several observations are noteworthy. The extrapo-
lated data with and without mass renormalization agree
well for each fermion discretization individually. The
inclusion of the renormalization significantly improves
the convergence toward the continuum limit. For both
masses, the energy gap obtained from staggered and Wil-
son fermions matches precisely, while the energy gap from
twisted mass fermions lies significantly lower. This sug-
gests that the energy gap is strongly affected by addi-
tional systematic effects, most notably finite volume cor-
rections, which must be carefully addressed in order to
reliably extract the pion mass from the excitation gap.

For the smaller fermion mass, the energy gap obtained
from twisted mass fermions matches the analytical esti-
mate for the mass gap from Ref. [19] with great precision.
This indicates that the continuum extrapolation using
twisted mass fermions is less sensitive to finite-volume
effects and other systematic uncertainties. For the larger
mass, the energy gaps extracted from staggered and Wil-
son fermions lie above those from twisted mass fermions,
and all three discretizations yield continuum values ex-
ceeding the analytical prediction. It is important to note,
however, that the analytical estimates of Refs. [48, 49] are
derived under the assumption of small fermion masses,
which may explain the observed discrepancy with the
numerical results at larger masses.

We now turn to analyzing the systematic effects that
influence the extraction of the pion mass. To keep the
computational cost manageable, we focus on a fixed lat-
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Figure 5. Scaling behavior of the electric field density F/g at fixed renormalized mass m./g. Bold lines indicate purely
quadratic fits for all three fermion discretizations; the continuum extrapolation points are again horizontally offset for clarity.
Faint markers show the previously obtained extrapolations at fixed lattice mass. Note the significantly smaller y-axis scale

compared to Fig. 2.

tice spacing of 1/y/x = 0.273, corresponding to a sys-
tem size of N = 110 sites and a renormalized fermion
mass m,/g = 0.1. Within the Hamiltonian formulation of
the Schwinger model, two principal approaches are com-
monly employed in the literature to extract the pion mass
from the excitation gap.

The first approach involves taking the thermodynamic
limit N — oo at fixed lattice spacing before performing
the continuum extrapolation [47]. This is equivalent to
taking the infinite-volume limit, as the physical volume
is given by Lg = N/y/x. While this method provides
a clean separation of infrared and ultraviolet effects, it
requires simulations at multiple large volumes, making it
computationally expensive.

The second approach extracts the pion mass from a fit

to the dispersion relation [35, 37]. In this method, multi-
ple excited states are computed to reconstruct the pion’s
dispersion curve. While this avoids the need for multi-
ple volume simulations, it introduces its own complica-
tions: it relies on a pseudo-momentum operator that does
not commute with the Hamiltonian when open boundary
conditions are used. As a result, although this method
has been successfully applied, it may be less suitable for
high-precision computations due to its reliance on ap-
proximate quantum numbers.

To compare these two approaches, we begin by ana-
lyzing the low-lying spectrum of the theory. In Fig. 7,
we show the energy gap between the ground state
and the nine lowest excited states, the corresponding
pseudo-momentum differences, and the third component
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Figure 6. Scaling behavior of the energy gap (E; — Eo)/g of the pion for the three different fermion discretizations. Faint lines
show quadratic fits to the data obtained at fixed lattice mass, while bold lines show purely quadratic fits for data at fixed
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from Ref. [19] (Hosotani) and Ref. |

] (Smilga) for the pion mass are included for comparison. Note that the energy gap does

not directly correspond to the pion mass without accounting for additional systematic effects.

of isospin J,. Following the ground state, we observe
three triplets which correspond to momentum excita-
tions of the pion. For staggered and Wilson fermions,
these triplet states are degenerate in both energy and
pseudo-momentum, reflecting the intact isospin symme-
try at finite lattice spacing. In contrast, for twisted mass
fermions, isospin symmetry is explicitly broken at finite
lattice spacing. This breaking is most pronounced in the
first triplet, where the charged pions appear at lower en-
ergy than the neutral pion, which in turn carries less
pseudo-momentum. While this energy splitting is siz-
able—around 20% at this lattice spacing—it is expected
to vanish quadratically in the continuum limit due to
automatic O(a) improvement.

Isospin breaking also manifests in the structure of the
variationally obtained eigenstates. In the twisted mass
formulation, the ground state search yields pion states
that are essentially exact eigenstates of J,. For the first
two triplets, the algorithm finds the charged pions first,
while for the third triplet it finds one charged pion, then
the neutral pion, and finally the second charged pion.
For staggered and Wilson fermions, on the other hand,
the variational search yields states that are admixtures
of multiple isospin components.

D. Pion mass from the dispersion relation

Having computed the energy gaps AE; = E; — Ey and
the pseudo-momentum estimates AK? = (K?); — (K?)o,
we proceed to determine the pion masses via the dis-
persion relation, following the approach of Ref. [35]. At
finite lattice spacing, the continuum dispersion relation is

modified by lattice artifacts. To account for these effects,
we perform dispersion fits using the form

AE = /m2 + BPAK?, (41)

where the parameter b effectively captures deviations
from the continuum relation induced by discretization
effects. The pion mass m, is then extracted by extrapo-
lating to zero pseudo-momentum, AK? — 0.

The resulting dispersion fits for the three fermion dis-
cretizations are shown in Fig. 8, and the corresponding
fit parameters are summarized in Tab. II.

Fermion Type Pion b mx/g
Staggered at0 1.02 0.213
Wilson 70 0.997  0.204
+
1. A71
Twisted Mass 7r0 07 0.17
b 0.922 0.210

Table II. Fit parameters from the dispersion relations in
Fig. 8. The parameter b quantifies lattice-induced deviations
from the continuum dispersion, while m,/g gives the pion
mass at finite lattice spacing.

For staggered and Wilson fermions, the extracted
masses of the charged and neutral pion are degener-
ate within numerical precision. The corresponding dis-
persion relations closely follow the expected continuum
form. The pion mass obtained from staggered fermions
shows excellent agreement with the analytical prediction
of Ref. [49], while the result for Wilson fermions is slightly
smaller but remains in close proximity to both the ana-
lytical value and the staggered result.
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Figure 7. Key observables for the ten lowest-energy states of the massive two-flavor Schwinger model, computed using a
variational ground state search with staggered, Wilson, and twisted mass fermions. Panels show (a) the energy gap relative to
the ground state, (b) the pseudo-momentum gap, and (c) the third component of the isospin J,. The explicit isospin breaking
in the twisted mass formulation gives rise to distinct features, which are discussed in the main text.

In the case of twisted mass fermions, the neutral pion
agrees well with both the staggered result and the the-
oretical prediction. Its dispersion relation is noticeably
flatter, consistent with a reduced pseudo-momentum con-
tribution. In contrast, the charged pion exhibits a signif-
icantly steeper dispersion curve, leading to a substantial
underestimation of the pion mass. This suggests that the
dominant finite-volume effects in this channel cannot be
adequately described by a simple kinetic correction.

Interestingly, the energy gap of the lowest-momentum
charged pion excitation lies remarkably close to the pion
mass values extracted from dispersion fits across all three
fermion discretizations. While this agreement may be co-
incidental, it could also hint at a deeper physical mecha-
nism, meriting further investigation.

E. Pion mass from finite-volume scaling

Ultimately, the momentum correction observed in the
previous analysis arises from simulating the system in
a large but finite volume of Lg = 30. In the infinite-
volume limit, an excitation representing a stable particle
with a well-defined mass must be at rest, i.e., carry zero
momentum. Finite-volume scaling thus provides an effec-
tive approach for extracting pion masses directly from the
energy gap. This method accounts for all finite-volume
effects—not only momentum corrections—and does not
rely on any specific assumption about the dispersion re-
lation. While it requires simulations at multiple volumes,
it has the advantage that only the ground state and one
excited state need to be computed.
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Figure 8. Dispersion fits at finite lattice spacing for the three
fermion discretizations, using excitation energy and pseudo-
momentum estimates. Staggered and Wilson fermions yield
degenerate pion states, while twisted mass fermions show
isospin splitting due to lattice artifacts. Extrapolations to
zero momentum are compared to analytical predictions for
the pion mass from Refs. [18, 49].

For the simpler one-flavor Schwinger model, this finite-
volume scaling approach has already been successfully
applied in Ref. [17]. In our study, we consider volumes
Lg = 20,25,30,35. To keep the lattice spacing fixed
across these volumes, we adjust the number of lattice
sites N according to the relation Lg = N/\/x, where z
is chosen based on the reference setup with Lg = 30
and N = 110. This yields a fixed lattice spacing of
1/yv/z = 0.273, which is also used in the dispersion re-
lation analysis presented in the previous section.

The renormalized fermion mass is again set to m,/g =
0.1, consistent with the dispersion-based study of the
pion mass. We reuse the mass renormalization obtained
in the initial volume of Lg = 30, justified by the observa-
tion in Ref. [42] for the one-flavor case that the volume
dependence of the mass shift plateaus for Lg = 30.

In Ref. [55], it was observed that finite-volume effects
in the Schwinger model with open boundary conditions
exhibit a polynomial scaling behavior. It was argued
that the leading finite-volume corrections arise from a
kinetic energy contribution of order O(1/(Lg)?), in con-
trast to the exponential suppression typically expected
for periodic boundary conditions. We therefore follow
the approach of Ref. [47] and fit the energy gaps using
the functional form

A 1
AE =m,; + (Lo)? +O<(Lg)3>’ (42)
with fit parameters A and m,. This ansatz accurately
captures the finite-volume dependence for staggered and
Wilson fermions, as well as for the neutral pion in the
twisted mass formulation. We also apply this form to
model the volume dependence of the pseudo-momentum
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for all three fermion discretizations.

For the charged pion in the twisted mass formulation,
however, this polynomial form leads to inconsistent ex-
trapolations compared to the other discretizations, given
the range of volumes considered. Furthermore, the failure
of the dispersion relation approach for the charged pion
in Sec. VIID suggests that the dominant finite-volume
effects in this case cannot be attributed solely to kinetic
corrections.

Instead, we employ the universal form of finite-volume
corrections in massive quantum field theories derived for
periodic boundary conditions [68], fitting the charged
pion mass using

AE =m, + Bme*mw, (43)
VLg
with fit parameters B and m,. We find that this func-
tional form describes the data for the charged pion in the
twisted mass formulation well and yields results consis-
tent with those of the other discretizations. In contrast,
it does not provide an accurate description of the volume
dependence for staggered and Wilson fermions, which re-
main better captured by the polynomial ansatz.
The resulting fits for the three fermion discretizations
are shown in Fig. 9, and the corresponding fit parameters
are summarized in Tab. III.

Fermion Type Pion A B mx/g

Staggered at0 28.4 0.216

Wilson 70 29.4 0.205
+

Twisted Mass 7r0 16.9 0.207

m 18.0 0.209

Table III. Fit parameters from the finite-volume scaling anal-
ysis in Fig. 9. The coefficient A captures the leading volume
dependence, while m /g denotes the pion mass at finite lat-
tice spacing.

The study of the volume dependence of the excitation
gaps reveals several noteworthy features. For sufficiently
large volumes (Lg = 25), the data is well described by
the expected quadratic scaling in 1/(Lg). At smaller vol-
umes, however, higher-order corrections become visible,
leading to deviations from the quadratic behavior. The
magnitude of these deviations depends on the fermion
discretization: they are more pronounced for staggered
fermions and for the neutral pion in the twisted mass for-
mulation, while they remain comparatively mild for Wil-
son fermions. In contrast, the charged pion in the twisted
mass formulation is well described by the universal expo-
nential form derived for massive quantum field theories,
which accurately captures its volume dependence.

The pseudo-momentum differences follow the expected
quadratic scaling with good accuracy and extrapolate to
zero in the infinite-volume limit, as anticipated. Over-
all, all pion masses obtained from the three fermion dis-
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Figure 9. Finite-volume scaling of energy gaps (a) and pseudo-momentum differences (b) at fixed renormalized mass m./g = 0.1.
Lines show fits in 1/Lg: a quadratic fit is used for staggered and Wilson fermions and for the neutral pion in the twisted mass
formulation, while an exponential fit is applied for the charged pion in the twisted mass case. The infinite-volume extrapolations

are compared to analytical predictions for the pion mass from Refs. [48, 49].

expected.

cretizations differ by at most 5%, even at the fixed lattice
spacing of 1/v/x = 0.273.

In a final step, we combine finite-volume scaling with
a continuum extrapolation. We perform this computa-
tion for staggered and Wilson fermions, as well as for
the charged pion in the twisted mass formulation. The
neutral pion in twisted mass fermions is excluded from
this analysis, as it requires access to higher excited states.
We note, however, that both pion channels in the twisted
mass formulation are expected to yield the same contin-
uum limit, since isospin breaking effects vanish as a — 0.

At each fixed lattice spacing, we simulate at volumes
Lg = 20,25,30,35. For staggered and Wilson fermions,
the infinite-volume value is extracted via a linear fit in
1/(Lg)?* using the two largest volumes. The associated
uncertainty is estimated using the jackknife resampling
procedure described in Sec. VII A, applied across all vol-
umes to account for potential nonlinearities. This analy-
sis employs the polynomial form introduced in Eq. (42).

For the charged pion in the twisted mass formulation,
we use the exponential ansatz from Eq. (43), fitting all
available volumes and estimating uncertainties via the
same jackknife procedure.

Following this finite-volume analysis, we perform a
purely quadratic extrapolation to the continuum limit,
with uncertainties again obtained using the jackknife
method. The resulting fits are shown in Fig. 10. For
comparison, we include analytical predictions. We find
excellent agreement across all lattice data within uncer-
tainties.

We conclude with an overview of our results for the
pion mass, as summarized in Fig. 11 and Tab. IV.
We compare continuum extrapolations performed in the

The momentum gap extrapolates to zero, as

thermodynamic limit with two complementary extraction
methods applied at fixed lattice spacing 1//z = 0.273:
the dispersion relation approach (AK? — 0) and finite-
volume scaling (1/(Lg) — 0). These comparisons provide
a comprehensive consistency check across discretizations
and methods, and allow us to assess both discretization
and finite-volume effects.

Result m/g=01 m/g=02
Staggered 0.211(5) 0.386(11)
Wilson 0.2103(22)  0.389(7)
Twisted Mass  0.2117(11) 0.3880(8)
Hosotani 0.213 0.338
Smilga 0.198 0.314

Table IV. Continuum-extrapolated pion mass for staggered,
Wilson and twisted mass fermions, compared to analytical
predictions from Refs. [48, 49]. Results are shown for two
values of the fermion mass, m/g = 0.1 and m/g = 0.2. The
data show excellent agreement with the Hosotani prediction
at m/g = 0.1, while the Smilga estimate lies systematically
below the numerical results.

We observe excellent agreement between the
continuum-extrapolated pion masses for the three
fermion discretizations, with all results compatible
within their respective uncertainties. These continuum
values incorporate all sources of uncertainty addressed
in our study: numerical errors due to finite bond
dimension, systematic uncertainties from finite-volume
extrapolation, and statistical uncertainties from the
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Figure 11. Pion mass results from various fermion discretiza-
tions and extraction methods for fermion mass m/g = 0.1.
Shown (from top to bottom) are: results from dispersion re-
lation fits at fixed lattice spacing 1/4/z = 0.273 and fixed
volume Lg = 30; finite-volume scaling results at the same
lattice spacing; and continuum extrapolations performed in
the thermodynamic limit. Horizontal lines indicate analytical
predictions from Refs. [48, 49]. The charged pion mass from
the dispersion relation for twisted mass fermions lies well be-
low the plot range at m,/g = 0.171.

continuum limit fits. We therefore regard these values
as our most precise results and use them as reference
benchmarks.

The comparatively larger uncertainty associated with
staggered fermions is primarily due to their more pro-
nounced sensitivity to finite-volume effects in the param-

eter regime explored. These uncertainties could be fur-
ther reduced by performing simulations at larger phys-
ical volumes. However, since the primary aim of this
study was to assess and compare the scaling behavior
of different fermion discretizations under identical lattice
parameters, we did not individually optimize simulation
volumes for each formulation.

At finite lattice spacing, differences between fermion
discretizations dominate over the specific method used to
account for finite-volume effects—whether via dispersion
relation fits or finite-size scaling. For staggered fermions
and the neutral pion in the twisted mass formulation,
the deviation from the continuum limit remains below
approximately 1%. In contrast, Wilson fermions yield
systematically lower values with deviations around 3%.
The finite-size scaling result for the charged pion in the
twisted mass formulation lies slightly below its neutral
counterpart due to isospin breaking effects. Notably, the
dispersion relation result for the charged twisted mass
pion lies significantly below all other values, indicating
that finite-volume effects in this channel are not well cap-
tured by a simple kinetic correction.

Our numerical results show excellent agreement with
the analytical prediction of Ref. [19], while the estimate
from Ref. [48] lies significantly below all lattice results,
suggesting that it underestimates the pion mass in the
intermediate mass regime explored here.

VIII. DISCUSSION AND OUTLOOK

In this paper, we have presented extensive numerical
studies of staggered, Wilson, and for the first time of
twisted mass fermions within the Hamiltonian formal-



ism. As a benchmark, we employed the massive two-
flavor Schwinger model—a physically rich yet computa-
tionally accessible setting. The uncertainties introduced
by the here employed tensor network method were con-
trolled to a level that enabled precise and statistically
significant results.

A particular focus of this work was the investiga-
tion of twisted mass fermions, which extend the set of
fermion discretizations commonly used in Hamiltonian-
based TNS simulations. While most previous studies
have relied on staggered fermions due to their simplic-
ity and efficiency, and only a few have explored Wilson
fermions, this work constitutes the first systematic study
of twisted mass fermions in this context. As a preliminary
check, we confirmed the expected O(a) improvement at
maximal twist in the free theory, providing initial evi-
dence that this may also hold in the interacting case.

Analyzing the scaling behavior of different fermion dis-
cretizations is challenging, since it turned out that lattice
artifacts are small and the computational cost of access-
ing sufficiently fine lattice spacings is high. By increasing
the fermion mass—thereby effectively tuning the theory
closer to maximal twist—we were able to observe auto-
matic O(a) improvement for twisted mass fermions, using
the electric field density as a representative observable.
In contrast, staggered and Wilson fermions exhibited pre-
dominantly linear scaling behavior.

Standard techniques for computing the mass renormal-
ization in the Lagrangian formalism do not directly carry
over to the Hamiltonian setting. We therefore adopted an
alternative method based on identifying the zero cross-
ing of the electric field density. This required scanning
small negative values of the lattice mass, where the sys-
tem becomes nearly gapless and numerically challenging.
Nevertheless, by enforcing appropriate quantum number
constraints, we were able to reliably extract the ground
state in this regime.

Our results confirm that this electric-field-based
method is applicable to the two-flavor model and is
suitable for tuning twisted mass fermions to maximal
twist. Moreover, we verified the analytical prediction
for the additive mass renormalization derived under pe-
riodic boundary conditions, using simulations with open
boundary conditions.

We then proceeded to study the pion mass. Once mass
renormalization was included, we observed rapid conver-
gence of the excitation energy to the continuum limit,
with finite-volume effects becoming the dominant source
of systematic uncertainty. To correct for these, we ap-
plied two complementary approaches: one based on the
dispersion relation and one based on finite-volume scal-
ing. Both yielded consistent results for the pion mass
and allowed us to compare and relate the methods.

We compared our numerical results to analytical pre-
dictions available in the literature. Remarkably, we found
excellent agreement with the estimate by Ref. [19], which
is based on a semiclassical Hartree-Fock treatment of the
model. In contrast, our results showed a modest but sys-
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tematic deviation from the prediction by Ref. [18], de-
rived via effective field theory arguments and matched
to universal amplitude ratios obtained from the thermo-
dynamic Bethe ansatz. Since our simulations were per-
formed at an intermediate fermion mass of m/g ~ 0.1,
this suggests that the semiclassical approach better cap-
tures the physics in this parameter regime. We expect the
effective field theory result to become increasingly accu-
rate in the deep infrared, i.e., for asymptotically small
fermion masses beyond the range explored here.

Importantly, we found that twisted mass fermions ex-
hibit significantly milder volume dependence compared
to staggered and Wilson fermions, making them espe-
cially attractive for simulations at moderate volumes. In
addition, we clearly resolved isospin breaking effects in
the twisted mass formulation—well known from lattice
QCD.

In computing the mass renormalization, we also en-
countered an intriguing phase structure, reminiscent
of lattice QCD, where multiple mass renormalization
schemes—particularly in the context of twisted mass
fermions—are well established. Exploring analogous
structures within the Hamiltonian formalism would be
an interesting direction for future work. In addition, the
electric-field-density method for determining the mass
shift warrants further study. In particular, it would be
valuable to understand how the method’s intrinsic un-
certainties propagate to final observables. This could re-
veal both limitations and potential strengths and may
motivate alternative strategies, for instance based on en-
tanglement entropy, the mass gap [14], or other order
parameters.

In this work, we have carried out a combined con-
tinuum and finite-volume extrapolation for all three
fermion discretizations—staggered, Wilson, and twisted
mass fermions—yielding precise and consistent results for
the pion mass in the two-flavor Schwinger model. These
results provide a reliable benchmark for future studies
and highlight the capabilities of tensor network meth-
ods in extracting physical observables with controlled
uncertainties. Looking ahead, the main challenge re-
mains extending these techniques to higher dimensions,
ultimately aiming toward simulations of lattice QCD.
In this context, our findings underscore the potential
of twisted mass fermions as a promising discretization
choice: they fully resolve the doubling problem in 3 + 1
dimensions—unlike staggered fermions—and exhibit im-
proved scaling behavior compared to standard Wilson
fermions.
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Appendix A: Free Fermion Spectrum for Wilson and
Twisted Mass Fermions

The lattice theory of free fermions can be solved ex-
actly. For staggered fermions, this was done in Ref. [9]
for periodic boundary conditions and in Ref. [31] for
open boundary conditions. Here, we demonstrate how
to obtain the spectrum of free Wilson and twisted mass
fermions, extending the approach to the two-flavor case.

1. Hamiltonian and Conventions

The Dirac Hamiltonian for two flavors of free Wilson
(twisted mass) fermions with periodic boundary condi-
tions is given by

N-1 1
) r
o= 3 S aul 1 (m s 1+ ) s
n=0 f=0
(N1
2 Z (djjl,f'yo(i'}’l + 1)1, + h.c.) ,
n=0 f=0
(A1)
where f = 0,1 indexes the two fermion flavors, and

the twisted mass term introduces a relative sign between
them.

We adopt the conventions
7’ =X, (A2)

r=1, Y =iz, +° =%,

which imply
. 02\ . . -10
Oyt = (0 0) , =iyt = ( 0 1) - (A3)

We rescale the fields via ¢, ; = \/ai, s, eliminating
factors of a from the kinetic terms and ensuring the fields
are dimensionless. This also simplifies the normalization
of the Fourier transform and delta functions.

The Hamiltonian in terms of components becomes

21: ( > ( g2+ h.c.)

n=0 f=0
fﬂ (¢L’f,1¢n,f7l - ¢Il,f,2¢n)f72)

N-1

N-1 1
_ Z Z(_
n=0 f=0
N-1 1

_%ZZ( nf1¢n+1f2+hc)

n=0 f=0
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2. Fourier Transform and Momentum-Space
Hamiltonian

We apply the discrete Fourier transform:

1 N-1 )
¢k,f,a = N Z eizQWkn/N(bn,f,a
n=0
N1 (A5)

i2mkn /N
¢n,f,a = e n/ d)k,f,a-

==

k=0

Using the identity

N-1
ez27r(k k') n/N _ N(skk/a (AG)
n=0
we find
N-1
Zcbnfao;nffa/—qummf/a, (A7)
n=0

and similarly,

Z Oh fabnit o = Z EPTIINGL - aBhprare (AS8)

= k=0
The Hamiltonian in momentum space becomes

N-1

Hp = Z (m-f— >(¢kf1¢kf2+h0)
k=0 f=0
— (=1 1 (0] g1 0.pn — 0L p20ns2)

_ - (eizwk/NQSL’f’lqsk’f’z + h.c.) 1 :

(A9)

—_

a

3. Matrix Form and Spectrum

We express the Hamiltonian in matrix form:

.
Pp ((Ufﬂ AV )<¢k '1)
H = o1 * oA )
"I (%m An (=D u) \@r.p2
Ap =m+ 1 (1 _ 6i27rk/N> .
a
(A10)

In the case of standard Wilson fermions (u = 0), the
diagonal entries vanish. The eigenvalues are given by:
A2 +|BJ?,

with A = (—1)fpu, B=A;.

(A11)



The resulting expression gives the energy dispersion of
free Wilson (twisted mass) fermions:

2
Ay = \//ﬂ + (m + 2(1 - cos(27r/<:/N))) + % sin?(27k/N)

= \//ﬂ +m2+ %(m + %)(1 — cos(2mk/N)).

(A12)
The ground state energy is given by
N—-1
Ey=-2) Ay, (A13)
k=0
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where the factor of 2 accounts for the two fermion flavors,
each filling the negative-energy states in the Dirac sea.

4. Continuum Expansion

Expanding in the lattice spacing a and defining the
physical momentum k' = 27k /L, we obtain:

mk'? 3m?k™ + Ck* 3
2\FCa_ T A +0(a?), (Al4)

where C = p? + m? + k2.

We observe that the O(a) term vanishes for m = 0, in
line with the expected automatic @(a) improvement of
twisted mass fermions at maximal twist.
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