000645036 001__ 645036
000645036 005__ 20260202104240.0
000645036 0247_ $$2doi$$a10.1142/S0217751X26480015
000645036 0247_ $$2ISSN$$a0217-751X
000645036 0247_ $$2ISSN$$a1793-656X
000645036 037__ $$aPUBDB-2026-00559
000645036 041__ $$aEnglish
000645036 082__ $$a530
000645036 1001_ $$0P:(DE-H253)PIP1102852$$aAmbrosino, Federico$$b0$$udesy
000645036 245__ $$aTranslation invariant defects as an extension of topological symmetries
000645036 260__ $$aSingapur$$bWorld Scientific Publ.$$c2026
000645036 3367_ $$2DRIVER$$aarticle
000645036 3367_ $$2DataCite$$aOutput Types/Journal article
000645036 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770025032_3939688
000645036 3367_ $$2BibTeX$$aARTICLE
000645036 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000645036 3367_ $$00$$2EndNote$$aJournal Article
000645036 520__ $$aThe modern way to understand symmetries of a quantum field theory is via its topological defects in various dimensions. In this contribution to the proceedings, we focus on line defects in 2dQFT and we point out that topological defects naturally embed into a larger class, namely, translation invariant defects. The latter still allow for nonsingular fusion and one obtains a monoidal category of translation invariant defects which contains that of topological defects as a full subcategory. We give a simple perturbative description of translation invariant defects in a perturbed conformal field theory via chiral three-dimensional topological field theory. We show in the example of the Ising CFT and the Lee–Yang CFT that even if no topological defects survive the deformation, some translation invariant defects still do.
000645036 536__ $$0G:(GEPRIS)390833306$$aDFG project G:(GEPRIS)390833306 - EXC 2121: Das Quantisierte Universum II (390833306)$$c390833306$$x0
000645036 536__ $$0G:(GEPRIS)506632645$$aDFG project G:(GEPRIS)506632645 - SFB 1624: Höhere Strukturen, Modulräume und Integrabilität (506632645)$$c506632645$$x1
000645036 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x2
000645036 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000645036 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000645036 7001_ $$00000-0002-0496-3096$$aRunkel, Ingo$$b1$$eCorresponding author
000645036 7001_ $$00000-0002-9066-2838$$aM. T. Watts, Gérard$$b2
000645036 773__ $$0PERI:(DE-600)2006508-5$$a10.1142/S0217751X26480015$$gp. 2648001$$p2648001$$tInternational journal of modern physics / A$$v0$$x0217-751X$$y2026
000645036 8564_ $$uhttps://bib-pubdb1.desy.de/record/645036/files/translation-invariant-defects-as-an-extension-of-topological-symmetries.pdf$$yRestricted
000645036 8564_ $$uhttps://bib-pubdb1.desy.de/record/645036/files/translation-invariant-defects-as-an-extension-of-topological-symmetries.pdf?subformat=pdfa$$xpdfa$$yRestricted
000645036 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1102852$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000645036 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000645036 9141_ $$y2026
000645036 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOD PHYS A : 2022$$d2024-12-18
000645036 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000645036 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000645036 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000645036 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000645036 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000645036 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000645036 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000645036 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000645036 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000645036 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
000645036 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000645036 980__ $$ajournal
000645036 980__ $$aEDITORS
000645036 980__ $$aVDBINPRINT
000645036 980__ $$aI:(DE-H253)T-20120731
000645036 980__ $$aUNRESTRICTED