000645035 001__ 645035
000645035 005__ 20260202100614.0
000645035 0247_ $$2doi$$a10.1016/j.apmate.2025.100374
000645035 037__ $$aPUBDB-2026-00558
000645035 041__ $$aEnglish
000645035 1001_ $$0P:(DE-H253)PIP1091286$$aMa, Shuailing$$b0
000645035 245__ $$aUnlocking superior mechanical properties: the synergistic enhancement of hardness and fracture toughness in nanopolycrystalline tantalum diboride
000645035 260__ $$c2026
000645035 3367_ $$2DRIVER$$aarticle
000645035 3367_ $$2DataCite$$aOutput Types/Journal article
000645035 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770023081_3939694
000645035 3367_ $$2BibTeX$$aARTICLE
000645035 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000645035 3367_ $$00$$2EndNote$$aJournal Article
000645035 500__ $$aMissing Journal: Advanced Powder Materials (Advanced Powder Materials) = 2772-834X (import from CrossRef, Journals: bib-pubdb1.desy.de)
000645035 520__ $$aAchieving optimal mechanical properties, including hardness and fracture toughness, by controlling grain size is a fundamental and long-standing objective in the development of hard and superhard transition metal borides (TMBs) ceramics. It is expected that the mechanical performance of TMBs will be substantially enhanced in nano-crystalline ceramics. However, the fabrication of dense, nano-scale TMBs compacts presents challenges due to poor sintering behavior and pronounced grain growth at high temperature. Here, thanks to the pressure reduced activation energy effect, nano-polycrystalline tantalum diboride (NP-TaB2) monoliths were fabricated under high pressure and moderate temperature conditions. These NP-TaB2 bulks achieve dense microstructure with an average grain size as fine as 36 nm, due to the high nucleation rates and minimal grain growth induced by high pressure. With the decreasing of grain size, the hardness of NP-TaB2 reaches up to 27.5 GPa by the Hall-Petch effect, making it nearly 45% harder than dense, micron-scale grain specimens. Additionally, the fracture toughness of NP-TaB2 is enhanced by 70% at the same time in the nano scale specimens, attributed to the effective energy dissipation by nano grains through crack deflection, branching, and bridging, which enhances fracture toughness with synergistic hardness improvement. This discovery demonstrates that correlating grain size and microstructure with mechanical properties offers valuable insights for enhancing the mechanical properties of TMBs, and potentially benefiting the manufacturing of scientific and industrial tools.
000645035 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000645035 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000645035 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000645035 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000645035 7001_ $$aGe, Yufei$$b1
000645035 7001_ $$0P:(DE-H253)PIP1107509$$aLian, Min$$b2$$eCorresponding author
000645035 7001_ $$aMa, Xiao$$b3
000645035 7001_ $$00000-0002-3377-0816$$aZhu, Pinwen$$b4$$eCorresponding author
000645035 7001_ $$0P:(DE-H253)PIP1015104$$aTayal, Akhil$$b5
000645035 7001_ $$aZhao, Xingbin$$b6
000645035 7001_ $$aLi, Wei$$b7
000645035 7001_ $$aSong, Hao$$b8
000645035 7001_ $$aZhang, Zihan$$b9
000645035 7001_ $$aLiu, Yunxian$$b10
000645035 7001_ $$aLiu, Xiaobing$$b11
000645035 7001_ $$0P:(DE-HGF)0$$aCui, Tian$$b12$$eCorresponding author
000645035 773__ $$0PERI:(DE-600)0000000-0$$a10.1016/j.apmate.2025.100374$$gVol. 5, no. 3, p. 100374 -$$n3$$p100374 -$$tMissing Journal / Fehlende Zeitschrift$$v5$$y2026
000645035 8564_ $$uhttps://bib-pubdb1.desy.de/record/645035/files/1-s2.0-S2772834X25001101-main.pdf$$yRestricted
000645035 8564_ $$uhttps://bib-pubdb1.desy.de/record/645035/files/1-s2.0-S2772834X25001101-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000645035 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1091286$$aExternal Institute$$b0$$kExtern
000645035 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1107509$$aExternal Institute$$b2$$kExtern
000645035 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1015104$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000645035 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1015104$$aEuropean XFEL$$b5$$kXFEL.EU
000645035 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000645035 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000645035 9141_ $$y2026
000645035 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000645035 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x1
000645035 980__ $$ajournal
000645035 980__ $$aEDITORS
000645035 980__ $$aVDBINPRINT
000645035 980__ $$aI:(DE-H253)HAS-User-20120731
000645035 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000645035 980__ $$aUNRESTRICTED