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Abstract

First order phase transitions (FOPT) in the early Universe can be powerful emitters of both rel-
ativistic and heavy particles, upon the collision of ultra-relativistic bubble shells. If the particles
coupling to the bubble wall have CP-violating interactions, the same collision process can also
create a local lepton or baryon charge. This CP-violation can originate from different channels,
which have only been partially addressed in the literature. We present a systematic analysis
of the different channels inducing CP-violation during bubble collisions: 1) the decay of heavy
particles 2) the production of heavy particles and 3) the production of light and relativistic
Standard Model (SM) particles.

As an illustration of the impact that such mechanisms can have on baryon number and dark
matter (DM) abundance, we then introduce a simple model of cogenesis, separating a positive
and a negative lepton number in the SM and a dark sector. The lepton number asymmetry in
the SM can be used to explain the baryon asymmetry of the Universe (BAU), while the opposite
asymmetry in the dark sector is responsible for determining the abundance of DM. Moreover,
the masses of light neutrinos can be understood via the inverse seesaw mechanism, with the
lepton-violating Majorana mass originating from the FOPT.

A typical signal produced by a FOPT is the irreducible gravitational wave (GW) background.
We find that a substantial portion of the parameter space can be probed at future observatories
like the Einstein Telescope (ET).
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1 Introduction

In the era of multimessenger cosmology, phase transitions (PTs) occurring in the early Universe have enjoyed
an ever-increasing focus from the particle physics community. PTs are associated with a change in the order
parameter, which in particle physics is usually given by the vacuum expectation value (vev) of a scalar
field, responsible for spontaneously breaking a symmetry of the theory. A particularly interesting case is
a first order PT (FOPT) whereby the vev changes discontinuously across a barrier between the symmetric
and broken phases. FOPTs proceed via the nucleation of spherically symmetric true vacuum bubbles in
the false vacuum background. The nucleated bubbles then expand outwards until they collide with other
bubbles, and the true vacuum bubbles fill the whole Universe. The physics of the FOPT is rather subtle.
It entails a rich variety of phenomenological applications such as baryogenesis describing the observed
BAU [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], providing production mechanisms for heavy DM [14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26] and primordial black holes [27, 28, 29, 30, 31]. Complementarily to collider
experiments, FOPTs featuring GW signals also provide an additional avenue for testing models of new
physics [32, 33, 34, 35, 36, 37, 38]. An additional attractive feature of FOPTs is that, though not occuring
in the SM, they can rather easily be realized in a large variety of well-motivated beyond the SM (BSM)
models like composite Higgs [7, 8, 39, 40, 41, 42, 43], extended Higgs sectors [44, 45, 46, 47, 48, 49, 50, 51, 52],
axion models [53, 54], dark Yang-Mills sectors [55, 56] and B − L breaking sectors [57, 58].

The interactions between the bubble wall and the surrounding thermal plasma which we will refer to
as BP interactions in what follows have recently been studied in great detail. In the regime of relativistic
bubble expansion, when the boost factor grows very large, γw ≡ 1/

√

1− v2w ≫ 1 where vw denotes the
velocity of the wall, it was first shown in [59] that the ultra-fast bubble wall could allow exotic 1 → 2
interactions, otherwise forbidden in vacuum. Subsequently, [60] argued that particles much heavier than the
scale of the transition could be produced in 1 → 1 and 1 → 2 processes due to the Lorentz violating bubble
wall background, which will subsequently propagate in shells around the bubble wall [61]. The maximal
mass of particles that can be produced via such interactions scales like Mmax

BP ∼ √
γwvTnuc, where Tnuc is

the nucleation temperature to be defined later and v the scale of the symmetry breaking.
The later occurring collision of bubbles have been shown to also be a powerful source of heavy particles,

through the so-called bubble collision mechanism, that we will refer to as BC or the BC mechanism from now
on, whereby particles as heavy asMmax

BC ∼ γwv can be produced upon the collision of bubble walls[14, 62, 25].
This mechanism of production has been studied for different phenomenological purposes. Its impact on the
DM abundance was investigated in [14, 25], mainly in the context of heavy DM. Authors [63] discussed a
model where the heavy particles that are created by the collision of ultrarelativistic bubbles decay out-of-
equilibrium and violate the CP symmetry, contributing to the baryon number of the Universe. A similar
setup was studied in [64] and applied to baryogenesis via leptogenesis. In those two studies, the CP-violation
was assumed to lie only in the decay of the heavy particles produced during the BC. However, it is known
that in the context of the BP interactions, CP-violation in the production of heavy state can lead to the
dominant contribution to the final baryon number [10]. This CP-violation in production was neglected in
former studies on the BC mechanism. Hence, in this paper, we extend the previous studies by computing the
asymmetry resulting directly from the production of heavy particles, and we analyse the phenomenological
impact.

Our study contributes to three different aspects:

• First, we analyse the CP-violation in the production of the heavy particles in the case of the BC
mechanism.

• Secondly, we study the CP-violation in the 1 → 3 processes where the heavy particle is not produced
on-shell, but the light particles from the SM are produced via an off-shell heavy particle. We will see
that this process also contains CP-violation, and we will quantify it.

• Thirdly, we show the equivalence between the QFT formalism used in the studies of the BP interactions
(see for example [10]) and the formalism used in the literature on the BC mechanism [14, 62, 25].

The remainder of this paper is organised as follows. In section 2, we review the mechanism of particle
production via the collision of bubble walls and lay down a series of relevant expressions for the rest of
the paper. In section 3, we present the computation of the CP-violation during the BC. In section 4,
we introduce a minimal model, taking advantage of the BC mechanism to produce the observed BAU
and the DM abundance of the Universe while also providing a possible explanation for the masses of the
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light neutrinos via the seesaw mechanism. We finally evaluate the prospects for testing the model by GW
observatories. Eventually, in section 5, we conclude.

2 Production of relativistic and heavy particles via bubble to bubble
collisions

In this section, we first review the production mechanism of the BC and present most of the necessary
material for the rest of the study. We will consider two qualitatively different cases: in the first case the
collision of the scalar shells of the true vacuum bubbles results in the production of heavy particles, while
in the second case light boosted particles are produced instead.

2.1 General set-up

As a first toy model, let us augment the SM Lagrangian with the following terms

L ⊃ Y φPRN̄χ+
1

2
mNNN̄ +

1

2
mχχχ̄+

∑

α

yαPRN(H̃L̄α)− V (φ, T ), (1)

where N,χ are heavy Dirac fermions. In particular, N , that we will occasionally also refer to as a heavy
neutrino, is absent from the plasma during the bubble wall collision, due to Boltzmann suppression. The
lepton number assignments are as follows L(N) = L(Lα) = L(χ) = 1. We consider the following hierarchy
of scales:

mN ≫ mχ ≫ Treh ∼ v ≫ vEW , (2)

where 〈φ〉 = v is the scale of the symmetry breaking associated with the potential V (φ, T ) and vEW is the
electroweak (EW) symmetry breaking scale. The reheating temperature Treh denotes the temperature of
the plasma after the PT has completed. At this level, the lepton number is a symmetry of the Lagrangian
before and after the PT, and the field φ is not charged under the lepton number. Conversely, the φ vev,
associated to the minimum value of the potential V (φ, T ) which we assume to induce a FOPT, could break
some new global or gauge symmetry independently of the lepton number. We remain agnostic about the
exact form of the potential for simplicity and generality.

Before moving on, let us briefly comment on the terms not included in our toy Lagrangian in Eq.(1).
In principle, interactions of the type φN̄N, φχχ̄ are also allowed by symmetries, however they are only
subleading corrections to the masses of the heavy N and χ in the broken phase, and do not impact the
CP-violation in production. Notice that the chirality assignments in Eq.(1) are not the only possibility.
Thus, we also study the opposite possibility in Appendix A. Finally, another interaction allowed without
imposing additional symmetries is of the form L̄HPRχ. We will study the impact of such an operator at
the end of section 3.2. In Appendix B we discuss a concrete model with a new local U(1) symmetry where
such terms are avoided by construction.

2.1.1 First order phase transitions and particle production

Now let us connect our chosen toy model with the physics of FOPTs and the associated particle production
mechanism. FOPTs proceed via the nucleation of true vacuum bubbles surrounded by the false vacuum. At
the interface between the two phases, the scalar field φ interpolates between an unbroken 〈φ〉 = v = 0 and
a broken phase 〈φ〉 = v 6= 0. The energy difference ∆V between the two vacua corresponds to the latent
heat released by the PT. For strong PTs where vacuum energy dominates over thermal radiation ∆V can
be parameterized via

∆V ≡ V〈φ〉=0 − V〈φ〉=v = cV v
4 . (3)

After nucleation, the bubbles start to accelerate and can either i) reach a terminal velocity, or ii) enter the
so-called runaway regime, accelerating closer and closer to the speed of light until collision. In the first case,
most of the latent heat released by the transition goes to the formation of plasma sound waves and the
heating of the plasma, thus limiting the energy available for particle production processes. In the second
case, a significant (order 1) fraction of the latent heat goes to the shear stress in the scalar wall, which
accumulates energy until collision.
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Whether case i) or ii) is realized depends heavily on the model under consideration and depends on the
forces acting on the bubble wall, which in turn control the bubble expansion velocity. These forces include,
first, a driving force arising from the difference in vacuum energy between the false and true vacua:

Driving force = ∆V , (4)

as well as frictional forces due to interactions with plasma particles colliding with the bubble wall. In general,
computing these effects is quite complex. However, in the highly relativistic regime γw ≫ 1, the calculations
simplify significantly. At tree level (leading order, LO), the pressure exerted by the plasma on the bubble
wall [65] takes the form:

∆PLO →
∑

i

gici
∆m2

i

24
T 2
nuc , (5)

where Tnuc is the nucleation temperature (i.e., the temperature at which the phase transition occurs), ∆m2
i is

the change in the squared mass of particle i during the transition, and ci = 1 for bosons (1/2 for fermions).
When there is mixing between light and heavy particles, with coupling Y , a second leading-order (LO)
friction term arises, originating from the mixing itself [60]. For the models relevant to our analysis, this
friction contribution takes the form:

∆Pmixing
LO → T 2Y 2

48
v2Θ(γwTnuc −M2Lw) . (6)

So, for pure scalar and fermionic theories with mild supercooling or gauged theories, since the two sources
of pressure above saturate to a maximal value at large γw, one can conclude that if [65]

∆V > ∆PLO + Pmixing
LO (Bodeker-Moore criterion) , (7)

i.e. the so-called Bodeker-Moore criterion is satisfied, the wall can runaway, and display large amounts of
energy stored in the shear stress of the wall.

In the case of gauged theories, due to the emission of soft gauge bosons, the so-called transition radiation
effect, the friction on the wall scales linearly with the boost factor γw ≡ 1/

√

1− v2w [59, 60, 66, 67, 68]

Ptransition radiation ∼ γg3vT 3

16π2
, ⇒ γterm ∼ 16π2

g3

(
v

Tnuc

)3

. (8)

If this γterm is bigger than the boost factor at collision of bubbles γcollw (to be specified later, in Eq.(25)),
then one can consider the bubble being effectively in a runaway regime, it accelerating until collision.
Requiring effective runaway puts an upper bound on the gauge coupling g. For the numerical values that
will be considered in this paper, we find, using Eq.(25) below and definitions around it, an upper bound

gmax ∼ (4π)2/3
(
v5/T 4

nucMpl

)1/3
, which lies in the range gmax ∈ [0.001, 1] for the values of v/Tnuc ∈ [1, 10]

that are used in our numerical analysis. This corresponds to a regime of moderate supercooling.
Finally, we briefly summarize the different particle production mechanisms that can be sourced by

the PT dynamics, discussed above. First of all, a single bubble wall expanding in vacuum cannot produce
particles. This can be intuitively understood by going to the wall frame where the scalar field profile is at
rest, and no particle creation can thus occur. However, the interaction of a bubble with thermalized particles
in the plasma violates the Lorentz symmetry and thus facilitates the production of both light and boosted
particles [59, 66, 67] as well as heavy particles [60, 17, 10]. Moreover, the Lorentz invariance violation during
the collision of ultrarelativistic bubble walls provides another source for particle production independently
of the presence of thermal plasma. In the remainder of this section, we will study the two CP-violating
processes during the BC, that are encoded in the Lagrangian in Eq.(1): the production of a heavy fermion
N , via φ⋆ → χN and the production of two light SM particles via φ⋆ → χHL. On Fig.1, we present an
illustration of the process discussed in this paper, along with the intrinsic CP-violation.

2.2 The production of a pair of heavy particles

We start our investigation with the study of the process φ⋆ → χN . The probability of emitting heavy
particles is given by [14, 62] 1

1The factor of 2 in front of the integral comes from the fact that the probability of particle production from the dynamics
of the scalar is given by the imaginary part of its effective action, P = 2Im[Γ]. See [25] for more details.
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process, the yield of heavy particles is given by

YN ≡ nN
s

=
nχ
s

=
1

s(Treh)

production per surface
︷ ︸︸ ︷

N

A

∣
∣
∣
∣
N

×

diffusion
︷ ︸︸ ︷

3

2Rcoll

≈ 1

s(Treh)

3βH

4(8π)4/3vw
× |Y |2

2π2

∫ p2max

(mχ+mN )2
dp2

(p2 − (mχ +mN )
2)3/2

√

p2
f(p2), (14)

where Rcoll is the average radius of the bubbles at collision and the entropy density s is given by s(T ) ≡
g⋆

2π2

45 T
3 with g⋆ denoting the number of relativistic degrees of freedom. The radius of the bubbles at collision

is controlled by the typical dimensionless duration of the transition β(T )

Rcoll ≈
(8π)1/3vw

H(Treh)β(Treh)
, β(T ) = T

d

dT

(
S3
T

)

, (15)

where vw denotes the speed of the expanding wall and the Hubble rate is given by

H2(T ) =
ρrad
3M2

Pl

=
1

3M2
Pl

π2g⋆
30

T 4 , (16)

where MPl ≈ 2.4× 1018 GeV is the reduced Planck mass and S3 is the O(3)-symmetric Euclidean action of
the nucleating bubble, obtained by solving the bounce equation for the scalar profile, which determines the
rate of the PT. The nucleation temperature Tnuc can be estimated from S3 via

S3
Tnuc

≃ 4 log

(
Tnuc

H(Tnuc)

)

+
3

2
log

(
S3

2πTnuc

)

. (17)

Using energy conservation, both Treh and Tnuc can be expressed as

Treh =

(
30(1 + α)

g⋆π2α
cV

)1/4

v , Tnuc =

(
30

g⋆iπ2α
cV

)1/4

v . (18)

where g⋆, g⋆,i are the number of relativistic degrees of freedom at T = Treh, Tnuc respectively with g⋆ =
g⋆i = 106.75, and α the strength of the PT, determined by the ratio of the energy released in the transition
to the thermal energy of the plasma α ≡ ∆V/ρrad.

After the PT completes, the Universe is filled by the true vacuum, while the rest of the latent heat
is relased to the plasma, which heats up, increasing the entropy. To obtain the yield YN ≡ nN/s one can
perform an order of magnitude estimate:

∫ (2γwv)2

(mχ+mN )2
dp2

(p2 − (mχ +mN )
2)3/2

√

p2
f(p2) ≈ N × 16v2

∫ (2γwv)2

(mχ+mN )2
dp2

(p2 − (mχ +mN )
2)3/2

p5
, (19)

where N denotes the approximation for the p-dependent logarithm in the f-function, 2 log (
√
z2 − 1 + z) ≈ N ,

where z ≡ 2γwv/p, as explained in Appendix D. We will keep using this expression in the rest of the paper.
An important comment is now in order: before the results of [69] it was believed that only elastic

collisions could generate an appreciable abundance of very heavy particles. In [69], however, it was shown
numerically that both elastic and inelastic collision share the same dominant contribution term fPE for the
production, making the particle production almost independent of the type of the collision. As a conservative
model-independent assumption, in the following we will only consider the contribution from perfectly elastic
collisions, neglecting the oscillation around the peak that was also found in [69].

Combining Eqs. (14) and (19) the yield of heavy particles N due to BC will scale like3

Y BC
N ≃ 0.012N |Y |2 β

vw

(
π2α

30(1 + α)g⋆cV

)1/4 v

MPl
log

(
2γwv

mχ +mN

)

, (20)

We observe immediately that, except for the cases of very large v, the produced abundance Y BC
N is

much smaller than the abundance of light particles in the plasma, which is typically Ylight ∼ 10−3.

3Notice that this result differs by a factor 1/3.2 with respect to the one presented in [64]. A factor of 1/2 is explained by
the fact that we have accounted for a missed factor of 1/2 in Eq.(10).
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2.2.1 A possible saturation and implementation of the UV cut-off

For consistency, it is important to check that the energy of the particles produced via the BC mechanism
does not exceed the overall energy released by the PT, otherwise the production would backreact on the
wall dynamics and likely suppress the resulting number density. Before any rescattering with the plasma,
we can estimate the energy in the produced particles to be4

E

A

∣
∣
∣
∣
N

≈ E

A

∣
∣
∣
∣
χ

≈ 1

2

∫
dpzdω

(2π)28π
ω
(ω2 − p2z − (mχ +mN )

2)3/2
√

ω2 − p2z
|Y |2θ(ω2 − p2z − (mχ +mN )

2)|φ̃(ω2 − p2z)|2 . (21)

The overall factor of 1/2 is added to take into account the fact that more or less half of the energy goes into
each particle. After diffusion of the fast particles, the energy density becomes

ρi ≈
3βH

4(8π)4/3vw
× E

A

∣
∣
∣
∣
i

. (22)

In our model, those expressions can be estimated to give

ρBC
N = ρBC

χ ≈ 1

2

3βH

4(8π)4/3vw
× |Y |2

2π2

∫ p2max

(mχ+mN )2
dp2
(

p2 − (mχ +mN )
2

)3/2

f(p2) . (23)

Using Eq.(23) the energy density stored in the heavy particles at the production can be then estimated as

ρBC
N = ρBC

χ ≈ 0.0027N |Y |2 β
vw

√
g⋆T

2
rehv

2

MPl
pmax (24)

This energy density is a linear function of the wall boost factor, and thus the energy of produced
particles may grow without limit unless a cut-off is introduced. The boost factor for runaway bubbles at
collision is given by

γ(R) ∝ 2

3

R

Rnuc
∼ 2

3
RTnuc ⇒ γcollw ∼ 2

√
10MPlTnuc(8π)

1/3vw
π
√
g⋆βT 2

reh

≈ 5.9
MPlTnucvw√
g⋆βT 2

reh

. (25)

Using Eq.(25), the energy density in heavy particles becomes

ρBC
N ≈ 0.016N |Y |2v3Tnuc . (26)

Neglecting backreactions of the particle production on the wall motion would require

ρBC
N + ρBC

χ ≪ ∆V , (27)

The opposite regime ρBC
N +ρBC

χ ∼ ∆V denotes the regime of strong backreaction of the emission on the wall.

As a conjecture, let us now explain how to implement a cut-off to ensure that the energy of the particles
produced by the BC mechanism does not exceed the energy released by the PT, for all of parameter space.
To make this requirement more concrete, we define an upper cut-off µM by replacing the upper bound in
the integral of Eq.(23) pmax → µM

ρBC
N (µM ) = ρBC

χ (µM ) ≈ 1

2

3βH

4(8π)4/3vw
× |Y |2

2π2

∫ µ2M

(mχ+mN )2
dp2

p

2

(

p2 − (mχ +mN )
2
)3/2

√

p2
f(p2) . (28)

The value of the upper cut-off is then set by

2ρMAX
N (µM ) = ∆V , (29)

4Notice that we did not include the dilution factor due to the injection of entropy into this expression. This is because we
are computing the energy density injected in the daughter particles, to study the possibility of a backreaction on the collision
process. Consequently, we need to consider this energy density before any dilution.
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which can be solved for µM . The rationale behind this cut-off is that the production of particles, when it
starts to backreact on the wall shape, is naively expected to make the wall thicker, which decreases the upper
bound in the integral set by the thickness of the wall. Let us now estimate the effect of the backreaction
on the number of emitted particles. When we implement this same cut-off for the density produced, one
obtains

Y BC
N ≃ 0.012N |Y |2 β

vw

(
π2α

30(1 + α)g⋆cV

)1/4 v

MPl
log

(
Min[2γwv, µM ]

mχ +mN

)

. (30)

We conclude that the backreaction effects are only expected to lead to a logarithmic correction to the
number of particles produced. This is only an order one correction if µM ≫ mN +mχ. We will use Eq.(30)
in the remainder of this paper.

2.3 Emission of light boosted particles

Due to the hierarchy outlined in Eq.(2), the N produced during BCs will almost immediately decay either
to φχ or to HL. Importantly, however, for such production, N does not necessarily have to be on-shell. In
particular, if the scalar shells of the bubble walls are not boosted enough, i.e., if γwv ≪ mN , the production
of χHL or χφ can also occur via off-shell N . In this section, we make use of that observation to specifically
investigate the emission of light boosted particles via an off-shell N . In this case, the dominant interaction
is φ⋆ → χHL. The three-body decay rate, for HLχ, is given by

Γφ⋆→HLχ(p
2) =

2

(2π)3
|y|2|Y |2

32
√

p6

∫ smax
12

smin
12

∫ smax
23

smin
23

m2
N (s23 −m2

L −m2
χ)

(s12 −m2
N )

2 +m2
NΓ

2
N

ds12 ds23 , (31)

containing a sum over the outgoing spins and where ΓN denotes the total decay width of N . The integration
limits for s23 are given by

smax
23 = (E⋆L + E⋆χ)

2 −
(√

(E⋆L)
2 −m2

L −
√

(E⋆χ)
2 −m2

χ

)2

, (32)

smin
23 = (E⋆L + E⋆χ)

2 −
(√

(E⋆L)
2 −m2

L +
√

(E⋆χ)
2 −m2

χ

)2

, (33)

with

E⋆L =
s12 −m2

H +m2
L

2
√
s12

, E⋆χ =
p2 − s12 −m2

χ

2
√
s12

. (34)

The integration limits over s12 are

smin
12 = (mH +mL)

2, smax
12 = (p−mχ)

2. (35)

In our regime of interest mN > mχ ≫ mL,mH the asymptotic behaviour of the integral at low and high
energies can be described by simple analytic formulae:

Low energies: p≪ mN : Γφ⋆→HLχ ≃ 2
|y|2|Y |2
1536π3

p3

m2
N

(36)

High energies: p≫ mN : Γφ⋆→HLχ ≃ 2
|y|2|Y |2p
512π2

mN

ΓN
. (37)

We have explicitly checked the validity of these analytic estimates against the numerical evaluation of
Eq.(31). Let us now study those two regimes separately.

2.3.1 Emission of light particles at low energies

Assuming mL,mH ≪ p≪ mN , we now compute the number density and energy density of the emitted HL
pair (denoted by NSM and ρSM respectively), via an expression analogous to Eq.(13)

NH,L,χ

A

∣
∣
∣
∣
φ⋆→χHL

≈ 2
|y|2|Y |2
1536π3

∫ p2max

m2
χ

dp2

2π2
p4

m2
N

f(p2) , (38)

⇒ nH,L,χ ≈ 3βH

(8π)1/3vw
× |y|2|Y |2

1536π3

∫ p2max

m2
χ

dp2

2π2
p4

m2
N

f(p2) . (39)
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Following the same logic as in the previous subsection, one can estimate the yield of light boosted LH pair
and χ produced by the bubbles in the plasma to be

Y BC
H,L,χ ≈ 1

s(Treh)

3βH

(8π)1/3vw
× p2max

m2
N

N × 16|y|2|Y |2
1536π3(2π2)

v2

∼ 1.3× 10−5N |y|2|Y |2 β
vw

(
π2α

30(1 + α)g⋆cV

)1/4 p2maxv

m2
NMPl

. (40)

Similarly, the energy density is given by

ρH,L,χ = ρL + ρH + ρχ ∼ 4× 10−6N |y|2|Y |2 β
vw

(
30(1 + α)cV

π2α

)1/2 1

MPl

p3maxv
4

m2
N

, (41)

where both equations are valid in the limit p2max ≪ m2
N . Thus, we see that the number density and the

energy density from the light SM states is suppressed by p2max/m
2
N compared to the energy density released

by the PT. Consequently, backreaction effects can be safely neglected.

2.3.2 Emission of light particles at high energies

On the other hand, when p≫ mN , the number density of emitted particles for the process φ⋆ → χHL can
be written as

NL,H,χ

A

∣
∣
∣
∣
φ⋆→χHL

≈ 2

∫
dp2

(2π)2
|y|2|Y |2p2
512π2

mN

ΓN
f(p2) =

(
ΓN→LH

ΓN

)

× 1

2

NN

A

∣
∣
∣
∣
φ⋆→χN

︸ ︷︷ ︸

Production rate averaged over final N spins

(42)

with the total decay rate ΓN = 2ΓN→LH + 2ΓN→χφ and ΓN→LH = |y|2mN/(16π). We can interpret the
ratio

(
ΓN→LH

ΓN

)

≡ Br[N → HL] , (43)

as the branching ratio of the decay of N to the light SM species. Notice the factor of 1/2 in front of the
production φ⋆ → Nχ, which can be understood from the fact that NN/A

∣
∣
φ⋆→χN

is the rate of production
of N summed over final states. To correct for this, we average over the spin of the final state N -s.

This result hints that for energies larger than the resonance, the production of light HL is largely
dominated by the creation of on-shell fermion N , also in the case of very large energies.

3 The asymmetry produced by the bubble collision

3.1 Baryon asymmetry of the universe (BAU)

One of the most interesting open questions in modern cosmology is the observed asymmetry between matter
and antimatter, the so-called BAU.

BAU can be expressed as the net comoving number density of baryons. The numerical value, obtained
by the latest measurements of the cosmic microwave background (CMB) [70] and the primordial abundance
of light elements [71], is given by

Y∆B ≡ nB − nB
s

∣
∣
∣
∣
0

≈ (8.69± 0.22)× 10−11 (44)

where nB, nB and s denote the number densities of baryons, antibaryons and entropy at present. The
observed value of BAU cannot be simply interpreted as an initial condition in the very early Universe,
because inflation would dilute away any pre-existing asymmetry. Instead, the value given by Eq.(44) needs
to be generated during the evolution of the Universe via the so-called ‘baryogenesis’ mechanism occurring
after inflation. For a successful baryogenesis mechanism, the three Sakharov requirements need to be
satisfied [72]: i) violation of Standard Model (SM) baryon number, ii) violation of charge (C) and charge-
parity (CP ) symmetries, and iii) departure from thermal equilibrium in the early universe. In principle, all
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3.2.1 CP-violation in the production of heavy fermions

We start with the production of a pair of heavy on-shell particles via φ⋆ → Niχ
c
I , where we use capital indices

for χ, lower case indices for N and Greek letters for the SM families Lα.
5 Using the model in Eq.(45), there

are three distinct diagrams up to 1-loop level, which are illustrated in Fig.3.1. The CP-asymmetry in the
Ni and χI populations immediately after the collision of bubbles is given by

ǫiI ≡
|Mφ→Niχ̄I |2 − |Mφ→N̄iχI

|2
∑

iI |Mφ→Niχ̄I |2 + |Mφ→N̄iχI
|2

=
2
∑

j,J Im(YiIY
∗
iJYjJY

∗
jI)Imf

(χφ)
ij

∑

i,I |YiI |2
+

2
∑

α,j Im(YiIyiαy
∗
jαY

∗
jI)Imf

(HL)
ij

∑

i,I |YiI |2
, (46)

where ǫiI refers to asymmetry in the population of Niχ
c
I with respect to that of N c

i χI . At this point, let
us emphasize that the coupling to the SM is crucial to avoid the freedom to define a further U(1) which
would enforce the cancellation of the CP-violation (see, for example [80]). This can be avoided if N has two
different decay channels6.

In the limit mN ≫ mχ,mφ ≫ mL,mH the loop functions take the form7:

f
(HL)
ij (x) ≡ 2

∫
d4p

(2π)4
mimj

(p2 − iǫ)((p− pχ)2 − iǫ)(p2N −m2
j − iǫ)

Tr
[

/pχ/pPR

]

Tr
[

/pN/pχPL

] (48)

f
(χφ)
ij (x) ≡

∫
d4p

(2π)4
1

(p2 − iǫ)((p− pχ)2 − iǫ)(p2N −m2
j − iǫ)

Tr
[

/pN/pχ/pN/pPL

]

Tr
[

/pN/pχPL

] , (49)

where the upper index ((HL) or (χφ)) identifies the particles running in the loop, pχ, pN denote the
momentum of the respective final states and p denotes the momentum of H or χ in the loop.

The extra factor of 2 in the f
(HL)
ij (x) function comes from the SU(2) symmetry of the SM doublet.

The imaginary part of those loop functions can be easily computed:

Im[f
(HL)
ij (x)] =

1

16π

√
xij

1− xij
, Im[f

(χφ)
ij (x)] =

1

32π

1

1− xij
, xij =

m2
j

m2
i

. (50)

The final effect of the CP-violating interaction is to produce an imbalance between N̄iχj and Niχ̄j .
However, since no interaction is violating the lepton number, no net lepton number can be produced at this
step. What we observe instead is a separation of the lepton number in the χ and the N sector, respectively

nNi − nN̄i = ni∆Ni ≈
∑

I

ǫiInNi nχI − nχ̄I = n∆χI ≈ −
∑

i

ǫiInχI , (51)

with nNi and nχI denoting the number densities of Ni and χI from the BC mechanism and ǫiI given by only
the contribution from the HL loop:

ǫiIprod =
1

16π

∑

j 6=i,α Im
[
yiαy

∗
αjYiIY

⋆
jI

] mimj
m2
j−m2

i
∑

i,I |YiI |2
. (52)

5Notice that we do not use Einstein summation convention.
6For example, consider decoupling the heavy fermions Ni from the SM, by having a Lagrangian of the form

L =
∑

iI

YiIφN̄iPRχI +
∑

I

mN
i N̄iNi +

∑

I

mχ
I χ̄IχI + h.c. (47)

Then one could define a χ number such that χ[χ] = 1, χ[N ] = −1, χ[φ] = −2, this symmetry immediately enforces that
Γ[N → φχ] = Γ[N̄ → φ̄χ̄]. Thus we need two different decay channels for N , which are given by the coupling to the χ and φ
and the SM particles.

7From now on, for the sake of clarity, we will drop the subscript χ and N whenever they are not necessary, and so we will use
mi ≡ mN,i and mI = mχ,I , where the capitalisation of the index will indicate if the mass designates the χ or the N fermion.
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In particular, in the limit that mI ≃ m̃χ, where m̃χ is a typical mass of mI , after summing over flavors, the
χφ loop does not contribute in creating asymmetry in N.8

We have seen how the production of χ̄ and N can entail lepton number violation in their separate
populations. However, since we have not introduced any lepton number breaking terms, the total change in
the lepton number should still be zero. Indeed, one can easily check that

n∆N + n∆χ = 0 . (53)

The key difference between N and χ, however, is that only N interacts with the SM particles and thus can
decay to light SM states, transferring its asymmetry to the SM population. If the abundances in N and
χ were left as such, the efficient interactions between the χ, and N would equilibrate the lepton number.
However, once produced, the N will quickly decay to i) the SM via N → HL and transfer its lepton
asymmetry to the SM or ii) to the dark sector via N → φχ, partially equilibrating the asymmetry. Since χ
cannot directly decay into the SM, a net lepton asymmetry in the SM can thus be produced. Taking into
account the decay to the dark sector, we obtain

n∆Lα
∣
∣
prod

≡ nLα − nL̄α
∣
∣
prod

≈
∑

I

ǫiIprodnNiBr[Ni → HLα] . (54)

In section 4 we will discuss how such a scenario can be implemented in a concrete particle physics
model, leading to a realization of leptogenesis, and we explore how such a model can be modified to also
account for the observed amount of DM, inducing cogenesis.

3.2.2 CP-violation in the decay of the heavy Dirac fermion

In addition to CP-violation in the production, there will also be a contribution to CP-violation in the decay
of the produced N particles. In the decay of the heavy fermion N to HL, only the loop of φχ leads to
CP-violation9. The CP-violation parameter ǫiα from the decay of Ni is defined by:

ǫiα ≡
|MNi→LαH̃

|2 − |MN̄i→L̄αH |2
∑

iα |MNi→LαH̃
|2 + |MN̄i→L̄αH |2

. (55)

The contribution of the φχ-loop mentioned above, then gives

ǫiαdecay =
1

32π

∑

I,j 6=i Im
[
y∗jαyαiYiIY

⋆
jI

] mjmi
m2
j−m2

i
∑

i,α |yiα|2
. (56)

The lepton number asymmetry resulting from the decay of N is thus given by

n∆Lα
∣
∣
decay

≡ nLα − nL̄α
∣
∣
decay

≈
∑

i

ǫiαdecaynNiBr[Ni → HLα] . (57)

3.2.3 Total asymmetry from the production and decay of on-shell heavy states

Combining the lepton number asymmetry resulting from production and the decay of the heavy fermion N ,
the total lepton number in the SM sector produced during the BC is given by

n∆Lα
s(Treh)

≈ 1

s(Treh)

(
∑

i

ǫiαnNi +
∑

Ii

ǫiInNi

)

Br[Ni → HLα]

≈ 1

32π

∑

i,j 6=i

nNi
s(Treh)

mimj

m2
j −m2

i

(∑

I Im
[
y∗jαyαiYiIY

⋆
jI

]

∑

i,β |yiβ |2
+ 2

∑

β Im
[
yiβy

∗
βjY

∗
jIYiI

]

∑

i,I |YiI |2
)

Br[Ni → HLα] ,

(58)

8We have Im
∑
I ǫ

(φχ)
iI = 0, where the superscript emphasizes that we consider the contribution from the χ, φ loop. However,

one should remember that the sum over I is performed after multiplying with nNi
that implicitly also depends on mχI

(see

Eqs.(51) and (20) ). Instead in the limit that mI = m̃χ for all I, we have ni∆N = nNi
∑
I ǫ

(φχ)
iI = 0.

9Analogously to the production of N , in this case the contribution of the HL-loop to the nL − nL̄ asymmetry cancels when
summed over the final state leptons, assuming that mLα

≪ mN .
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Obviously, this combination of couplings has a vanishing imaginary part if i = j = k. Assuming two
generations for N , this leaves us with the cases i 6= j = k and k = i 6= j.10 Summing over all intermediate
states as well as over the outgoing χ̄ we then obtain for the HL-loop:

ǫ(HL)α = − 2

16π

∑

i 6=j

∑

β,I

(
Im[|YiI |2yiαy∗jαyβjy∗βi]m2

i p
2
N

(p2N−m2
i )

2(p2N−m2
j )

+
Im[|yjα|2YjIY ∗

iIyβjy
∗
βi]mjmip

2
N

(p2N−m2
i )(p

2
N−m2

j )
2

)

∑

k,l,I

(

ykαYkI
mk

(p2N−m2
k)

)(

ylαYlI
ml

(p2N−m2
l )

)∗ . (63)

This expression can be simply tested by scrutinizing its limit for pN → mi and pN → mj . We obtain
the two following limits

ǫ(HL)α (pN → mj) =
2

16π
∑

I |YIj |2
∑

j 6=i

∑

β,I

Im[YjIY
∗
Iiy

∗
iβyjβ]

mjmi

(m2
i −m2

j )
CP-violating prod of Nj (64)

ǫ(HL)α (pN → mi) =
2

16π|y2iα|
∑

i 6=j

∑

β

Im[yiαyjβy
∗
αjy

∗
βi]

m2
i

(m2
j −m2

i )
CP-violating decay of Ni. (65)

Those two pieces have a nice physical interpretation in terms of disconnected diagrams. ǫ
(HL)
α (pN → mj)

can be interpreted as the production of an on-shell Nj in CP-violating way with an inserted HL loop. In

this sense, it corresponds to CP-violation counted in Eq.(52). On the other hand, the term ǫ
(HL)
α (pN → mi)

is the CP-violating decay of the Ni with an HL loop. This term however, cancels after summing over α, as
was shown in the previous section.

Conversely, the CP-violation from the φχ loop reads

ǫ
(χφ)
α,β,I,i,j,k = − 1

16π

Im
[

ykαYkIy
∗
αjY

∗
jJYJiY

∗
Ii

]

∑

l,r,I

(

yrαYrI
mr

(p2N−m2
r)

)(

ylαYlI
ml

(p2N−m2
l )

)∗
p2Nmjmk

(p2N −m2
i )(p

2
N −m2

j )(p
2
N −m2

k)
(66)

Again, if we consider only two generations of N , then we have either j = k or i = k. Summing over
the intermediate states and the outgoing χ, we then have

ǫ(φχ)α = − 1

16π

∑

i 6=j

∑

I,J

(
mimjp

2
N |YIi|2Im[yαiy

∗
αjY

∗
jJYiJ ]

(p2N−m2
j )(p

2
N−m2

i )
2 +

m2
jp

2
N |yαj |2Im[YjIY

∗
IiY

∗
jJYJi]

(p2N−m2
j )

2(p2N−m2
i )

)

∑

k,l,I

(

ykαYkI
mk

(p2N−m2
k)

)(

ylαYlI
ml

(p2N−m2
l )

)∗ . (67)

Doing the same test as above by taking pN → mi,mj , we obtain

ǫ(φχ)α (pN → mi) =
1

16π|y2iα|
∑

j 6=i

∑

I,J

mimjIm[YJiY
∗
jJy

∗
αjyαi]

(m2
j −m2

i )
CP-violating decay of Ni (68)

ǫ(φχ)α (pN → mj) =
1

16π
∑

I |YIj |2
∑

i 6=j

∑

I,J

mimjIm[YjIYJiY
∗
IiY

∗
jJ ]

(m2
i −m2

j )
CP-violating prod of Nj . (69)

The piece ǫ
(φχ)
α (pN → mj) describes the CP-violating production of Nj and vanishes upon summation

of final states as we discussed before. On the other hand, ǫ
(φχ)
α (pN → mi) is the CP-violating decay of the

Ni, already captured in Eq.(56).
The regime of resonant leptogenesis m1 → m2 implies resonance in the CP-violating piece. We however

do not explicitly deal with this complication and assume Γ1,2 ≪ m1 −m2. We emphasize that our result
might have relevant consequences on the scenario of leptogenesis catalyzed by the decay of a heavy particle
like the inflaton [81, 82, 83] or heavy ALP [77].

10The case i = j, corresponds to a loop correction to the mass of N in the propagator and thus does contribute to the
CP-violation.
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As we have seen, the number of H,L and χ can be computed in the following way

N∆L

A

∣
∣
∣
∣
φ⋆→χHL

≈
∫
dpzdω

(2π)2
Γǫφ⋆→χHL(p)

∣
∣φ(p2)

∣
∣2 ⇒ n∆L ≈ 3βH

2
× N∆L

A

∣
∣
∣
∣
φ⋆→χHL

, (70)

where N∆L designates the NL −NL̄. Computing the lepton asymmetry requires including the CP-violation
into the integral for the particle rate. The rate of the asymmetry production takes the form

(
Γǫφ⋆→HLχ

)

αI
=

1

(2π)3
1

32p3

∫ smax
12

smin
12

∫ smax
23

smin
23

∣
∣MαI

0 (s12, s23)
∣
∣
2
ǫαI(s12)ds12 ds23 (71)

The ǫ - parameter is defined by

ǫα,I =
∑

i,j,k




∑

β

ǫ
(HL)
α,β,I,i,j,k +

∑

J

ǫ
(χφ)
α,I,J,i,j,k



 (72)

and the tree-level spin-summed amplitude squared, including the resonance, is given by

∣
∣MαI

0 (s12, s23)
∣
∣
2
=
∑

q,r

yα,qYq,Iy
∗
α,rY

∗
r,I

mqmr(s23 −m2
L,α −m2

χ,I)

(s12 −m2
q + imqΓN,q)(s12 −m2

r − imrΓN,r)
. (73)

3.3.1 CP-violation mediated by an on-shell N1

For simplicity, we assume that during the BC the N2 is never produced on-shell, i.e. m2 ≫ γwv. The
expression in Eq.(71) in the range where only m1 can be produced on-shell, namely when

mχ +mL +mH ≪ m1 < p < γwv ≪ m2 (74)

then simplifies in the following way: first, the CP-violating parameter becomes dominated by the peak,
so that ǫαI(s12) → ǫαI(s12 = m2

1) and can be factorised out of the integral. This CP-violating parameter
receives two contributions in Eq.(68) and Eq.(64). On the other hand, the pure production part can be
computed in a similar way as in Eq.(42). Putting everything together, the lepton number produced simplifies
to Eq.(58), accounting for the lepton number produced in the production and the decay of N .

3.3.2 CP-violation mediated by an off-shell Ni

When the asymmetry is produced by purely off-shell N, pmax < m1,2, where pmax denotes the upper limit of
the integral in Eq.(70), then for m2 ≫ m1 the production rate can be approximated as

N∆L

A

∣
∣
∣
∣
φ⋆→χHL

≈ 10−3N × C

16π6

(

|y|4|Y |2m1

m2
+

1

2
|y|2|Y |4

)
p4maxv

2

m3
1m2

, (75)

in excellent agreement with numerics as displayed on Fig. 4. Here C is a factor counting the number of
contributions with C ≈ 3, for the case where Y = y and C ≈ 1/3 for the case where Y ≪ y. Since we
mainly focus on the case |Y | = |y| in our numerical studies of the parameter space, we will use C ≃ 3.

Putting everything together, we obtain for the lepton asymmetry in the SM Lα, equal to the opposite
lepton asymmetry in the dark sector χI :

N∆L

A

∣
∣
∣
∣
φ⋆→χHL

≈
∫
dpzdω

(2π)2
Γǫ(p)

∣
∣φ(p2)

∣
∣2 ⇒ nLα − nL̄α ≈ 3βH

2(8π)1/3vw
× N∆L

A

∣
∣
∣
∣
φ→χHL

, (76)

where we called the asymmetry ∆L. For low energies this expression can be computed numerically.

16



Figure 4: Comparison of the off-shell production computed numerically (colored points) with analytic ap-
proximation (solid lines) using Eq.(75), for y = Y =

√
4π (left-panel) and y = Y = 1 (right panel).

3.4 A possible suppression of the asymmetry

Notice that we have not included another coupling, allowed by the present lepton number assignments, of
the form:

L ⊃ ySMχ̄(HL) , (77)

which induces a partial decay χ to the SM instead of the dark sector made of φ̃, χ̃, that will be introduced
in the next section. The presence of such a coupling would leave the relation in Eq.(79) intact but could
partially suppress the asymmetry. While the heavy N would decay partially to SM, successfully transmitting
the asymmetry to the SM, a part of the carriers of the opposite charge, χ, would also decay to the SM and
cancel this newly created asymmetry. The final asymmetry would then be suppressed by the following
branching ratio

YDS = −YSM, YSM = Y∆L × Br[χ→ φ̃χ̃]

Br[χ→ φ̃χ̃] + Br[χ→ HL]
≈ Y∆L × y21

y21 + y2SM
. (78)

In this paper, we will assume that
y21

y21+y
2
SM

∼ 1, such that the effects of the ySM can be neglected for simplicity.

4 Implementation into a viable scenario

In the previous section, we have shown how the BC mechanism can produce equal and opposite lepton
number asymmetries in the SM and dark sector,

Y∆L = −Y∆χ (BC separation). (79)

However, equilibrating reactions between the SM and the dark sector could still erase the imbalance
in the individual sectors. In this section, we compute the equilibration rates of these reactions and the
restrictions that are consequently imposed on the parameter space.

Moreover, the lepton number stored in the dark sector could also play a role in determining the abun-
dance of DM. This happens specifically if light dark sector particles with non-zero lepton number are coupled
to χ. In this case, when χ decays, it transfers its lepton number asymmetry to the light dark states, providing
a natural explanation to the coincidence problem via the well-known mechanism of cogenesis.

Finally, we explore the implications of our model on light neutrino masses. We will see how Majorana
masses for the heavy fermions can be induced by the PT, after φ gets a non-zero vev, allowing to explain
the light neutrino masses via the seesaw mechanism.

4.1 The danger of equilibration

Since the H,L particles are typically produced with very high initial energies, the qualitatively different
thermal and non-thermal processes could both lead to the elimination of the lepton number. We incorporate
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all of the suppressions into a prefactor of the form

Y fin
∆L ≈

(

ΠiWi

)

Y init
∆L , (80)

where the individual contributions to wash-outs Wi are computed in what follows.

4.1.1 Non-thermal equilibration

Particles emitted by the collisions of bubble walls are initially propagating in the plasma with very high
energies. This includes specifically the HL and φχ pairs which carry the newly created lepton number.

A fast particle produced by the bubble wall collision, such as for example L, could subsequently scatter
with a thermal H from the plasma to produce an on-shell heavy N , equilibrating the two sectors. To
estimate this effect, we follow the reasoning of [12]. The rate of production of an on-shell N via this process
can be estimated as [12]

ΓHL→N ∝ |y|2
8π

Tm2
N

E2
L,initial

× Exp

[

− m2
N

EL,initialT

]

, (81)

where EL,initial is the typical energy carried by the fast H or L, which is initially of the order γwT . By
inverting this relation, one can find the typical timescale for equilibration.

In thermal plasma, the fast L thermalises mostly due to t-channel scatterings with gauge bosons
with differential cross section of the form dσLW→LW /dt ∼ g4(u2 + s2)/64πt2s2, and with energy exchange
approximately given by δE ∼ −t/T [21]. The time evolution of the energy of a fast L-particle is thus given
by11

dEL
dτ

≈ nW

∫ −s

0
dtδE

dσLW→LW

dt
≈ −g

4T 2

64π3
. (82)

By integrating over τ , we find the typical thermalisation time:

τtherm ∼ 64π3

g4
EL,initial
T 2

. (83)

Comparing the typical thermalisation time in Eq.(83) with the time of inverse decay computed in Eq.(81), it
appears that even for larger energies EL, the inverse decay timescale is always larger than the thermalisation
timescale, and thus equilibration processes via non-thermal particles can be neglected. This can also be
understood intuitively by noticing that unsuppressed production of N via wall collision requires γwT & mN ,
while unsuppressed equilibration by scattering with the thermal plasma requires

√
γwT & mN , as we can

see from the exponential in Eq.(81).

4.1.2 Equilibration via thermal scatterings with off-shell N : WHL→φχ

Thermal reactions of the form HL → φχ mediated by the heavy fermion Ni could also erase the lepton
number from the two sectors. Since we are in the regime in which Treh ∼ v ≪ mN , we can compute the
equilibration rate by integrating out the Ni field. For E ≪ mN , the squared amplitude averaged over initial
spin states is given by

|MHL→χφ|2 = |y|2|Y |2
m2
χ − t

m2
N

,
dσHL→χφ

dt
=

1

2

1

| ~pL|2
|MHL→χφ|2

64πs
=

|MHL→χφ|2
16πs2

, (84)

where we used that in the center of mass frame, in the limit of zero masses for L,H, |~pL| = |~pH | =
√
s
2 .

Assuming that mH = mL = 0 for simplicity, we integrate over t, with the integration limits given by

tmin = m2
χ −

s

2
−
√
s

√
s

4
−m2

χ tmax = m2
χ −

s

2
+

√
s

√
s

4
−m2

χ , (85)

11Notice that elastic collisions of non-thermal particles on the bath could lead to even faster thermalisation, suppressed
however by the LPM effect [84, 85]. We ignore those complications as they do not modify our qualitative conclusion.
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and thus obtain

σHL→χφ(s) = |y|2|Y |2
√

1− 4m2
χ

s

64πm2
N

. (86)

The thermally averaged cross section γ(ij → kl) can be computed using [86]

γ(ij → kl) =
gigjT

32π4

∫

dss3/2K1(
√
s/T )λ

(

1,
m2
L

s
,
m2
H

s

)

σ(s) , (87)

where λ(a, b, c) = (a− b− c)2 − 4bc ≈ 1, K1 is a Bessel function of the second kind and gi are the internal
degrees of freedom of the particle i. This expression has two useful limits, at T ≫ mχ and T ≪ mχ which
are given by

γT≫mχ(HL→ χφ) = |y|2|Y |2 T 6

64π5m2
N

, (88)

γT≪mχ(HL→ χφ) ≈ |y|2|Y |2 T 6

32π4
× 2

64πm2
N

∫ ∞

mχ/T
dzz4

√
π

2z
e−z
(

1−
4m2

χ

z2T 2

)1/2

︸ ︷︷ ︸

∼ π√
2
(mχT )

7/2
e−2mχ/T

, (89)

where for T ≫ mχ we used that

2T 5

∫ ∞

0
dxx4K1(x) = 32T 5 , (90)

and for T ≪ mχ we used that

zK1(z) →
√
πz

2
e−z. (91)

This leads to the following Boltzmann equation for the equilibration of lepton number

H(x)x
dY∆L
dx

≈ −γ(HL→ χφ)
Y∆L
sYL

⇒ dY∆L
dx

≈ − MPlx
4

0.00031g
3/2
⋆ m5

χ

γ(HL→ χφ)(x)× Y∆L, (92)

where x = mχ/T and we have used YL ≈ 2.15 × 10−3 for the relativistic abundance of the SM leptons.
In order to estimate the maximum amount of wash-out, we solve the Boltzmann equation from reheating
xreh = mχ/Treh until the present time x→ ∞. In the relativistic regime Treh & mχ, we obtain

dY∆L
dx

≈ −|y|2|Y |2 MPlmχ

0.3× 64π5m2
Nx

2
Y∆L ⇒WHL→φχ ≈ Exp

[

− |y|2|Y |2MPlTreh
0.3× 64π5m2

N

]

. (93)

Instead, in the non-relativistic regime Treh ≪ mχ, we obtain approximately the following evolution equation

dY∆L
dx

≈ −|y|2|Y |2 MPlmχ

445π4m2
N

x3/2e−2xY∆L , (94)

which can be solved analytically to compute the value of WHL→φχ in the ultra non-relativistic case. We
observe that in the deep non-relativistic regime, the washout process are almost completely switched off due
to the Boltzmann suppression factor as one would expect. For the numerical studies of the parameter space
that will follow we numerically interpolate between the analytic solutions for the extremely relativistic and
nonrelativistic regimes.
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where y1,2 and λφ̃H are new dimensionless couplings.
In this case, all the asymmetry stored in the χ is transmitted to the χ̃ via an interaction of the type

y1φ̃χ̄χ̃, allowing for the decay χ → φ̃χ̃. The y2φχ̄χ interaction also makes the φ field unstable, and φ
consequently decays to the φ̃ and χ̃ 4-body finally state via 2 off-shell χ-s. In this minimal realisation, φ
remnants might lead to a period of early matter domination, which can however, be avoided by complexifying
the model. In this regard, we discuss in Appendix B another model of the dark sector with similar properties,
but free of any period of early matter domination.

Once an asymmetry has been produced in the dark sector, efficient interactions annihilate the symmetric
component, leaving only the asymmetric one intact. The annihilation of the symmetric component of the
dark sector proceeds via dark gauge-mediated χ̃χ̃→ φ̃φ̃ followed by the annihilation of φ̃ to the SM via the
Higgs portal. Efficient freeze-out of φ̃ imposes that mφ̃ . 500 GeV.

Note that another coupling of the form

L ⊃ ¯̃χ(HL) , (100)

which would induce a very efficient equilibration, is forbidden by the gauge symmetry imposed in the dark

sector. λφφ̃

∣
∣
∣φ̃
∣
∣
∣

2
|φ|2 coupling could also be there in principle, but it has to be very small so that φ vev does

not make φ̃ very heavy.
The energy fraction of the asymmetric component that remains unaffected by the annihilations depends

on the mass of χ̃. Requiring that its abundance explain that of DM, the DM mass is naturally set by the
ratio of the DM abundance and the BAU,

Y∆χ̃ = Y∆χ = −Y∆L = −79

28
Y∆B AND Ωχ̃ ≈ 5Ωb ⇒ mχ̃ ≈ 1.8mproton , (101)

as is well-known in the models of ADM. Notice that the factor 28
79 has been introduced to account for the

sphaleron conversion rate.

4.3 See-saw masses: light from heavy

So far, we have not introduced any explicit breaking of the lepton number in the Lagrangian. One can
however write the new terms

L ⊃
∑

I

λN,RφNR,IN̄
c
R,I + λN,LφNL,IN̄

c
L,I , (102)

which give Majorana masses to the N particle after symmetry breaking. Notice that such interactions break
the lepton number explicitly, which is then not an accidental symmetry of the Lagrangian anymore.

Assuming that λN,L = λN,R = λ and (Y v)2 ≪ m2
χ for simplicity, the Lagrangian in Eq.(102) generates

a dimension-5 Weinberg operator of the seesaw form [91, 92, 93, 94, 95]

OWeinberg =
∑

I,α,β

yαIy
∗
βI(L̄

c
αH)(LβH)λv

m2
N

, (103)

which induces a mass for the neutrinos

Max[mν ] ∼ Max

[
∑

I

|yαI |2
]
v2EWλv

m2
N

. (104)

Imposing that those masses recover the observed neutrino masses implies a constraint on our model,
which is of the type

λ ∼ 10−15 m2
N

GeV× y2αIv
. (105)

This scenario resembles the models of inverse seesaw [96, 97]. The perturbativity of the Yukawa
coupling λ .

√
4π then implies

√
4π & 10−15 m2

N

GeV× y2αIv
(effective see-saw condition) , (106)
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which is shown on the plot in Fig.6 with a dotted-dashed line. Above this line, the condition in Eq.(106)
cannot be fulfilled and one needs to assume another unrelated mechanism for the production of neutrino
masses.

On top of this constraint, of course, adding the interactions in the Lagrangian Eq.(102) opens the
possibility of producing two heavy fermions N via φ⋆ → NN , with subsequent CP-violating decays to
SM, thus creating some additional lepton number. For the sake of simplicity, we neglect this additional
contribution to the lepton number asymmetry in the present study.

4.3.1 Impact of wash-outs from lepton violating interactions

The Majorana mass introduced for the N implies that there are lepton-violating interactions that can be
a further source of washout of the lepton asymmetry. The most important among those processes is the
HcL→ HLc interaction, which is governed by the following Boltzmann equation

szH[z]
dY∆L
dz

= −2
γHcL→HLc

Y eq
L

Y∆L ⇒ dY∆L
dz

≃ − 6

g
1/2
⋆

MPl

m2
N

z
γHL→HcLc

sY eq
L

Y∆L . (107)

In the limit T ≪ mN , the scattering rate simplifies to [98]

γHL→HcLc

neqL
≡ ΓHcL→HLc = ΓLL→HcHc ≈ T 3

4π3

∑
m2
νi

v4EW
, (108)

which decouples for T ≪ Tdec ≈ 3× 1013 GeV. We thus obtain for the wash-out factor

dY∆L
dz

= − 6z−2

2π3g
1/2
⋆

MPlmN
∑
m2
νi

v4EW
× Y∆L ⇒ WHcL→HLc ≈ Exp

[

− 6

2π3g
1/2
⋆

MPlTreh
∑
m2
νi

v4EW

]

.(109)

4.4 Summary and study of the parameter space

Let us now summarize the different aspects of the model, which addresses the 1) baryon number of the
universe, 2) DM abundance and 3) mass of the light neutrinos by the inverse seesaw mechanism.

The first important aspect is the effect of the different wash-outs and equilibration processes, which
can be accounted by a simple multiplication

Y fin
∆L ≈WHcL→HLc

︸ ︷︷ ︸

Eq.(109)

×WHL→N
︸ ︷︷ ︸

Eq.(98)

× WHL→φχ
︸ ︷︷ ︸

Eq.(93) and Eq.(94)

× Y init
∆L , (110)

where the wash-out factors Wi have been computed previously and encode the different sources of suppres-
sion. On Fig.6, we present the numerical study of the mechanism we discussed in this paper. The contours
presented allow to recover the observed baryon abundance after sphaleron conversion via Y∆B = 28

79Y
fin
∆L in

the window v ∼ [107, 1016] GeV, where the final lepton abundance Y fin
∆L is given by Eq.(110). We present

four benchmark scenarios with fixed parameters mN2 = 10mN1 , cV = 1 while varying mχ and y, Y . Smaller
Yukawa couplings, e.g. y = Y = 1 (bottom panels in Fig.6), produce less lepton number carrying heavy
fermions N and, consequently, less baryon asymmetry, but allow to avoid backreactions (see Eq.(27)) in the
whole parameter space, which partially dominate with y = Y =

√
4π (top panels), even though we expect

that backreactions only affect the particle production by the BC mechanism logarithmically, as explained in
section 2.2.1. Instead, the value of the mass mχ affects the impact of the equilibration processes φχ→ HL:
a lighter χ can attain the relativistic regime in a larger portion of parameter space, thus washing-out the
BAU produced. Below the solid black line the χs are relativistic, while above that they are not. Notice that
for v & 3 × 1013 GeV, the produced abundance is washed out immediately by the HLc → HcL process,
which is only unavoidable if we require that our model is compatible with the inverse see-saw scenario,
that is possible only below the dotted-dashed curve. Moreover, the black-shaded region where mN1 < v is
excluded, since several assumptions of the BC particle production formalism do not hold there anymore.

In order to investigate the amount of BAU produced by the BC, we carefully distinguish between the
on-shell and off-shell contributions, represented by the solid and dashed lines in Fig.6, respectively. The
solutions for the on-shell N production via the decay φ∗ → χN , i.e. when mN,1 ≪ γwv, are computed using
Eq.(58). In this case, there are typically two solutions for mN1 for a given value of v - at small and large
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mN1 - determining thus two branches in mN1 : the upper one where the curves for different β and α are
split and the lower one where those curves merge. One can observe that the lower branch is controlled by
the equilibration rates φχ → HL, while the upper branch is due to the suppression of the production by
large mN1 . Imposing the perturbativity condition for the see-saw masses in Eq.(106) splits the parameter
space into a region in which the light neutrino masses can be explained (below the dotted-dashed line) and
a region in which they cannot (above the dotted-dashed line). Finally, let us stress that in our numerical
studies we also implement the production of the heavy fermion N from BP interactions, contributing to
the baryon asymmetry via Eq.(60) in parts of the parameter space. In particular, production from the BP
interactions dominates over the BC mechanism production in the lower-left corner of the plots, inducing a
spike in the solution Y fin

∆B.
The dashed lines denote the off-shell contribution, i.e. when γwv ≪ mN1 , where the production is

dominated by the process φ∗ → χLH. The lepton asymmetry produced is thus given by Eq.(76). This
extends the BC mechanism to even higher masses of mN1 .

One can see that the produced baryon asymmetry has a mild dependence on α, while increasing β
allows to reproduce the observed amount of BAU for smaller values of v and mN,1. To interpret this we
notice that a larger β reduces the boost factor, which decreases the yield of the BAU only logarithmically.
On the other hand, the increase of β also implies a larger amount of bubbles per Hubble volume, i.e. more
collisions, thus enhancing the particle number density and the BAU produced by the BC mechanism.

4.5 Gravitational wave (GW) detectability

In the previous sections we studied the production of BAU and DM as a consequence of PT dynamics. We
saw that it required runaway walls or at least γw ≫ 1, hinting at rather strong FOPTs. Such PTs are
expected to induce a large background of GW due to the sound waves in the plasma and the collision of
bubble walls, making this mechanism possibly detectable via GW interferometers. The GW signal from a
FOPT is expected to resemble a broken power-law with peak frequency around

fGW ∼ Hz× β

(
v

108GeV

)

. (111)

This suggests that part of the parameter space where the model we presented is successful overlaps with the
sensitivity range of the future Einstein Telescope (ET) observatory.

After the bubbles have collided, the energy of the PT is transmitted to very thin plasma and scalar
gradient shells, which keep propagating in the Universe. The anisotropic stress sourced by those shells
induces GWs. For γw ≫ 1, the behaviour of such shells of plasma and scalar field is best described by
the bulk flow model [99] 12 (see also [100] for another model adequate for strong interactions). In the
runaway or effectively runaway regime relevant to us, bubble wall motion is expected to produce extremely
thin and highly relativistic fluid shells around its scalar profile, which evolve into long-lived shock waves
following bubble collisions [101]. The significant disparity in scales between the bubble radius and the shock
front thickness presents a major challenge for numerical simulations. However, from the perspective of GW
generation, a sharply peaked momentum distribution in the plasma is expected to be indistinguishable from
the one carried by the scalar field. Consequently, the resulting gravitational wave signals in both cases
should be similar and be described by the bulk flow model, which was initially designed to capture the GW
signal from relativistic scalar shells. [102, 103]. Finally, a recent study[104] conducted in the moderately
relativistic regime (γw . 10) suggests that the GW spectrum once again resembles the one predicted by the
bulk flow model.

Following Ref. [99] the GW signal, assuming vw → 1, takes the form

h2Ωtoday
GW = h2ΩpeakS(f, fpeak) S(f, fpeak) =

(a+ b)f bpeakf
a

bf
(a+b)
peak + af (a+b)

, (a, b) ≈ (0.9, 2.1) , (112)

with the energy density parameter Ωpeak and the peak frequency fpeak given by

h2Ωpeak ≈ 1.06× 10−6β−2

(
ακ

1 + α

)2(100

g⋆

)1/3

,

fpeak ≈ 2.12× 10−3β

(
Treh

100GeV

)(
100

g⋆

)−1/6

mHz . (113)

12The authors thank Jorinde Van De Vis and Ryusuke Jinno for helpful discussions on the bulk flow model.
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interacting and decay fast: the N decays in a timescale τdecayN ∼ 8π
|y|2

γw
mN

∼ 8π
|y|2

MPl
βvmN

, which is parametrically

smaller than the duration of the PT by a factor v/mN .
We show the region of the parameter space that would be, in principle, observable at the future

Einstein Telescope (ET) observatory [106, 107, 108] (see [109] for a review) on Fig.7. We observe that
models reproducing the observed baryon asymmetry can be detected at the ET observatory if the transition
is slow enough, β . 100. As mentioned above, for a given value of the mN mass, there are typically two
solutions for the scale of the symmetry breaking v, one corresponding to the left and upper branches of
the triangle in Fig.6, controlled by the yield of fast particles, and one corresponding to the lower branch in
Fig.6, controlled by the wash-outs. For a given mN , the latter corresponds to a larger VEV than the former.
We infer that only the regime which is controlled by the “yield” (and not by the wash-out) can be detected.

Let us conclude with a word of caution. The complicated problem of the separation of the unavoidable
astrophysical background from the possible cosmological background is still under vivid investigation [110,
111, 112, 113]. This foreground is still subject to very large uncertainties and will depend on our abilities
to resolve individual sources. From the inspiral phase of the merger of black holes compact binaries, one
expects a background of the form

ΩGW
binaries = ΩCBC

(
f

25Hz

)2/3

× θ(fcut − f) , (114)

where ΩCBC is a constant that is expected to be extracted from observations. Its value is thought to be
around ΩCBC ∼ 10−9 [114, 112]. The cut of the background comes from the merging of the lightest compact
binaries, which we expect to be around a solar mass, corresponding to fcut ∼ 3 × 103 Hz. Indeed, the
frequency associated to the innermost stable circular orbit (ISCO) when the inspiral GW emission is close
to maximal is fISCO = 4400HzMsun/(m1 + m2), and so the merging of two solar mass black holes would
lead to a maximal frequency around fcut. Motivated by the recent development of subtraction methods (see
for example [115]), we assume in our analysis that this astrophysical background can be exactly removed,
which is probably an optimistic assumption.

Our mechanism is also successful for PTs with GW signal peaking at frequencies higher than the
ones observables at ET, in the range fpeak ≫ 103Hz. To be properly explored, this range necessitates the
development of new detectors, but has the virtue of being free from astrophysical GW background. Several
proposals of detectors have already been put forward in such directions [116].

5 Conclusion

In this paper, we have studied the production of heavy states from the collision of bubbles of a FOPT, and
the associated CP-violation. In our setup, the FOPT does not break the lepton number. We compute the
CP-violation during 1) the production of N , via φ⋆ → χN and via 2) the direct production of light SM
states φ⋆ → HLχ and 3) during the decay to the SM N → HL. Since the lepton number is not directly
broken in our setup, the lepton number in the visible sector is equal and opposite to the lepton number in
the dark sector: the result of the BC is to separate the lepton number into the visible and the dark sectors.

Through a direct implementation of our mechanism, we study a minimal model of cogenesis, where the
negative lepton number in the dark sector cascades down to lighter particles with masses of the order of a few
GeV. The BC mechanism is thus a natural process allowing for the separation of lepton number necessary
for cogenesis, which explains both BAU and DM abundance via ADM with mDM ∼ 1.8mproton. We observe
that such a cogenesis mechanism is compatible with the observations for a PT with the symmetry breaking
scale in the range v ∼ [107, 1016] GeV. For each given value of the VEV v, we observe that two values of
mN1 can explain the observed abundance.

To include the masses of the light neutrinos into the picture, we introduce an explicit lepton number
violating coupling between the scalar field φ and the heavy fermion N which produces a Majorana mass
for the heavy fermion N after the PT. The masses of the light neutrinos are then obtained via the familiar
seesaw mechanism. We, however, observe that such a mechanism is only efficient to explain the light neutrino
mass in a subset of the cogenesis parameter space. However, in the current analysis, we have neglected the
effect of the lepton number violating Yukawas in the production of asymmetry.

As a possible smoking gun of such a scenario, we discuss the GW signal emitted during the FOPT,
modelling the GW signal using the bulk flow model. We observe that a subset of the parameter space,
allowing cogenesis, could be detectable at the future GW observatory ET for v . 1010 GeV. The BC
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A.2 Off-shell production

The rate of production is now given by

Γφ⋆→HLχ(p
2) =

2

(2π)3
|y|2|Y |2

32
√

p6

∫ smax
12

smin
12

∫ smax
23

smin
23

s12(s23 −m2
L −m2

χ)

(s12 −m2
N )

2 +m2
NΓ

2
N

ds12 ds23 , (116)

where we notice that s12 factor replaced the factor mN appearing in the main text. Since for the off-shell
production s12 . m2

N , we conclude that the off-shell production with the current assignments receives a
further suppression roughly by a factor of p2max/m

2
N .

A.3 CP-violation in the on-shell production

The CP-violation for the on-shell production proceeds via very similar lines with the only difference that
the loop functions now read

f
(HL)
ij (x) ≡ 2

∫
d4p

(2π)4
1

(p2 − iǫ)((p− pχ)2 − iǫ)(p2N −m2
j − iǫ)

Tr
[

/pN/pχ/pN/pPL

]

Tr
[

/pN/pχPL

] (117)

f
(χφ)
ij (x) ≡

∫
d4p

(2π)4
1

(p2 − iǫ)((p− pχ)2 − iǫ)(p2N −m2
j − iǫ)

Tr
[

/pN/pχ/pN/pPL

]

Tr
[

/pN/pχPL

] (118)

leading to the imaginary part of the form

Im[f
(HL)
ij (x)] =

1

16π

1

1− xij
, Im[f

(χφ)
ij (x)] =

1

32π

1

1− xij
, xij =

m2
j

m2
i

. (119)

From this result, we observe that the asymmetry produced via this assignment is suppressed by a further
factor of mi/mj with respect to the scenario considered in the main text. Focusing on the regime where
m1 ≪ γwv ≪ m2 for the masses of N1 and N2 we then see that the CP-violation in production is suppressed
by a factor of m1

m2
for the chirality assignment in Eq.(115) as compared to that in Eq.(1). Similar conclusions

can also be drawn about the CP-violation in the decay of the heavy fermion N , and thus we conclude that
the contribution to CP-violation of the charge assignment in Eq.(115) is subdominant to that of Eq.(1).

A.4 Conclusion

We conclude that in general, the chirality assignments discussed in this Appendix show a further suppression
in the CP-violation and in the off-shell production with respect to the ones discussed in the main text.
Consequently, we do not discuss them further.

B U(1) gauged symmetry for the dark sector

In this Appendix, we present an alternative realisation of the dark sector we discussed in the main text. We
keep the same particle content, but now we introduce a new dark gauge symmetry U(1)D associated to a
dark gauge boson Xµ, and assign the following U(1)D charges

qφ = −1, qχ̃ = 1, qχ = 1 qφ̃ = 0, qSM = 0, qN = 0 . (120)

In this setting, after φ gets a vev, the U(1)D symmetry is spontaneously broken, and the PT can then be
associated with the breaking of this gauge symmetry. The Goldstone boson associated with the phase of
φ will be absorbed by the dark gauge boson Xµ longitudinal mode, and so Xµ becomes massive. In this
setting, a growing pressure from the emission of soft gauge bosons of the form [59, 60, 66, 67, 68]

Pa→bXµ ∝ γw
g3XvT

3
nuc

16π2
(121)

is unavoidable. Here a, b are emitters coupling to X, that can be scalars, fermions or gauge bosons. This
source of pressure leads to an upper bound on the terminal boost factor

γmax
w ∼ 16π2cV

g3X

(
v

Tnuc

)3

. (122)
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We thus impose gX ≪ 1 to still let the the bubble walls accelerate to very high velocities. In this framework,
the list of allowed Yukawa interactions includes 13

Lyukawa ⊃ y(L̄H)PRN + Y (N̄φ)PRχ+ y1χ̄(χ̃φ̃) + y3χ̄χφ̃+ y4 ¯̃χχ̃φ̃ . (123)

Notice that importantly, the dangerous Yukawas of the form yχ̃L̄HPRχ̃ and yχL̄HPRχ are forbidden by
the charge assignments. In this realisation, the decay of the φ remnants is quick via φ → XX and does
not lead to any early matter domination. The asymmetry in the dark sector is again transmitted via the
interaction y1χ̄(χ̃φ̃), χ→ χ̃φ̃. Freeze out of the χ̃ symmetric abundance proceeds in the same way as in the
former realisation: first from χ̃→ φ̃ via y4 ¯̃χχ̃φ̃ and then to the SM via the allowed interactions ρ1|H|2φ̃ and

λHφ̃|H|2
∣
∣
∣φ̃
∣
∣
∣

2
. The decay of the heavy dark photons can also be facilitated by a small kinetic mixing with

the SM photon.
The neutrino mass generation mechanism also proceeds in the same way with the explicit requirement

that χ has to be a Dirac fermion. Importantly, the form of Eq.(104) remains intact.

C Computation of the production from bubble collision: two methods,
one result

Production of particles due to the presence of a non-trivial classical field configuration requires modifica-
tion of typical QFT Feynman rules. In the literature different methods have been developed to estimate
the abundance of heavy particles produced by the collision between the plasma and the non-trivial scalar
condensate, that is the bubble wall; and between two bubble walls. More specifically, two different methods,
respectively presented in [62] and in [10] (which we will from now on refer to as WW [62] and AVY [10]) have
been used in those two physically similar processes. In this Appendix, we compare the two computations
and show that they are actually equivalent. In the main text, we have used the AVY approach to compute
loop correction and the related CP-violation.

As a toy model for the computation, we will consider the following interactions between the scalar
condensate φ and a heavy Dirac fermion ψ

L = Y φψψ̄ +
1

2
mψψψ̄ , (124)

where ψ is produced by the wall collision via φ → ψψ̄. We will designate the condensate with ϕ and the
quantized scalar particles with φ. We will assume that mψ ≫ v, so that the initial abundance of ψ particles
is vanishing and it is only produced by the bubble wall. We first review the computation following the AVY
approach and then show that the WW computation actually leads to the same result.

C.1 AVY computation of the production

To compute the production of heavy particles, we start by computing the following correlation function
〈0|T{ψ̄(x1)ψ(x2)}|0〉. We assume that the wall is located along the x − y plane. The correlation function
reads

〈0|T{ψ̄(x1)ψ(x2)}|0〉 = Y

∫

d4xϕ(x)Sψ(x1 − x|ϕ = 0)Sψ(x2 − x|ϕ = 0) +O
(
Y v

mψ

)2

, (125)

where we are expanding the correlation functions of the theory in the broken phase v 6= 0 in terms of the
correlation functions Sψ(x, y|ϕ = 0) of the unbroken v = 0 phase. Such an expansion is called VEV Insertion
Approximation which was for example justified in [68]. Defining the Fourier transform in the following way

φ(x) =

∫
d4p

(2π)4
eipxφ(p) , (126)

13For notational simplicity, we write this Lagrangian for only one family.
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and going to momentum space, the correlation function becomes

〈0|T{ψ̄(x1)ψ(x2)}|0〉 = Y

∫
d4xd4kd4q

(2π)8
eik(x1−x)+iq(x2−x)Sψ(k|ϕ = 0)Sψ(q|ϕ = 0)ϕ(z, t)

= Y

∫
d4kd4q

(2π)8
eikx1+iqx2Sψ(k|ϕ = 0)Sψ(q|ϕ = 0)

×
[

(2π)2δ(2)(~k⊥ + ~q⊥)
∫

dzdteiz(kz+qz)−it(k0+q0)ϕ(z, t)

]

, (127)

where by definition

δ(2)(~k⊥ + ~q⊥) ≡ δ(1)(kx + qx)δ
(1)(ky + qy) (128)

and in the second line, we assumed that all the energies involved in the transition are larger than the inverse
length scale of the wall

k0 ≈ q0 ≈ kz ≈ k′z ≫ 1/Lw, (129)

such that the Fourier transform can indeed be performed over a constant background.
Now we can use the LSZ reduction formula to relate the correlation function to the matrix element of

the ψ production 〈ψ, k;ψc, q〉. We obtain

〈ψ, k;ψc, q〉 =
[

(2π)2δ(2)(~k⊥ + ~q⊥)
∫

dzdteiz(kz+qz)−it(k0+q0)ϕ(z, t)

]

︸ ︷︷ ︸

wall effect

× ūψ(q) uψ(k)Y
︸ ︷︷ ︸

Mφ→ψψ̄

. (130)

This expression has a nice interpretation as a factorisation of a wall effect allowing the transition to occur
and a traditional matrix element, Mφ→ψψ̄. Squaring this amplitude and summing over final spins, one
obtains

|〈ψ, k;ψc, q〉|2 = 4|Y |2q · k ×
[

(2π)2δ(2)(k⊥ + q⊥)
∫

dzdteiz(qz+kz)−it(k0+q0)ϕ(z, t)

]2

. (131)

From this, we can integrate over the phase space to obtain the probability of production

PAVY
φ→ψψ̄ =

∫
d3qd3k

(2π)64q0k0
(2π)2δ(2)(k⊥ + q⊥)|Mφ→ψψ̄|2

∣
∣
∣
∣

∫

dzdteiz(kz+qz)−it(k0+q0)ϕ(z, t)

∣
∣
∣
∣

2

(132)

or, after integrating over the perpendicular momenta

PAVY
φ→ψψ̄ =

∫
dkzd

3q

(2π)44q0k0
|Mφ(kz+qz ,q0+k0)→ψψ̄|2

∣
∣
∣
∣

∫

dzdteiz(kz+qz)−it(q0+k0)ϕ(z, t)

∣
∣
∣
∣

2

. (133)

We first focus on the wall part, with the Fourier transform given by

ϕ̃(p) = (2π)2δ(px)δ(py)φ̃(pz, ω), (134)

and the wall part of the production probability simplifying to
∣
∣
∣
∣

∫

dzdteiz(kz+qz)−it(q0+k0)ϕ(z, t)

∣
∣
∣
∣

2

=

∣
∣
∣
∣

∫
d4p

(2π)4
dzdteiz(kz+qz)−it(q0+k0)e+ipxϕ̃(p)

∣
∣
∣
∣

2

=

∣
∣
∣
∣

∫
d4p

(2π)4
(2π)2δ(pz − kz − qz)δ(p0 − q0 − k0)e

−ip⊥x⊥ϕ̃(p)

∣
∣
∣
∣

2

=
∣
∣φ̃(pz = kz + qz, ω = q0 + k0)

∣
∣2 . (135)

Thus, we obtain

PAVY
φ→ψψ̄ =

∫
dkzd

3q

(2π)44q0k0
|Mφ(kz+qz ,q0+k0)→ψψ̄|2

∣
∣φ̃(pz = kz + qz, ω = q0 + k0)

∣
∣2

=

∫
dkzd

2q⊥dqz
(2π)44q0k0

|Mφ(kz+qz ,q0+k0)→ψψ̄|2
∣
∣φ̃(pz = kz + qz, ω = q0 + k0)

∣
∣2 . (136)
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The wall and the squared matrix element are independent of the x − y directions. We can thus directly
perform the qx, qy integration in cylindrical coordinates:

∫

0

d2q⊥
q0(ω − q0)

=

∫

0

πdq2⊥
q0(ω − q0)

=

∫

0

2πdω

ω
. (137)

The probability of emission then becomes

PAVY
φ→ψψ̄ = Y 2

∫
πdkzdqzdω

(2π)44ω
(8k · q − 8m2

ψ)
∣
∣φ̃(pz = kz + qz, ω = q0 + k0)

∣
∣2

= Y 2

∫
πdpzdPdω

(2π)44ω
(2ω2 − 2p2z − 8m2

ψ)
∣
∣φ̃(pz = kz + qz, ω = q0 + k0)

∣
∣2 , (138)

where we performed the change of variables P = kz − qz, pz = kz + qz. We can therefore integrate over P in
the range

P/ω ∈
[
−
√

1− 4m2
ψ/(ω

2 − p2z),
√

1− 4m2
ψ/(ω

2 − p2z)
]
. (139)

The production probability can thus be simplified to

PAVY
φ→ψψ̄ = Y 2

∫
dpzdω

(2π)24π

(ω2 − p2z − 4m2
ψ)

3/2

√

ω2 − p2z

∣
∣φ̃(ω2 − p2z)

∣
∣2 . (140)

Finally, to arrive at the number of particles produced per unit surface, one needs to multiply by the
number of emitted particles per interactions:

Nψ

A

∣
∣
∣
∣

AVY

φ→ψψ̄

= 2Y 2

∫
dpzdω

(2π)24π

(ω2 − p2z − 4m2
ψ)

3/2

√

ω2 − p2z
θ(ω2 − p2z − 4m2

ψ)
∣
∣φ(ω2 − p2z)

∣
∣2 . (141)

C.2 WW computation

On the other hand, the WW computation (which can be followed step by step in Ref. [62]) yields a result
of the form

PWW
φ→ψψ̄ = 2

∫
dpzdω

(2π)2
|φ̃2(pz, ω)|Im[Σφ→ψψ̄(ω

2 − p2z)], (142)

Im[Σφ→ψψ̄(p
2)] =

1

2

∫
d3qd3k

(2π)62Ek2Eq

∣
∣M2

φ→ψψ̄

∣
∣(2π)4δ(4)(p− k − q) . (143)

When considering the decay of φ into two identical fermions, the following expression can be derived from
Eq.(143)

Im[Σφ→ψψ̄(p
2)] =

Y 2

8π

(ω2 − p2z − 4m2
ψ)

3/2

√

ω2 − p2z
. (144)

And satisfactorily, the number of particles per unit area computed in the WW method is given by

Nψ

A

∣
∣
∣
∣

WW

φ→ψψ̄

= 2

∫
dpzdω

(2π)24π
Y 2 (ω

2 − p2z − 4m2)3/2
√

ω2 − p2z
θ(ω2 − p2z − 4m2)

∣
∣φ̃(ω2 − p2z)

∣
∣2 . (145)

D Computation of the Fourier transform of the wall

In this Appendix, we remind the basic formulae to compute the Fourier transform of the bubble wall collision,
which we called f function in the main text. Several papers attempted to estimate this function [14, 69, 118].
Here, we present the results obtained from the numerical simulations in [69, 118].

First of all, let us remind that two qualitatively different types of collisions have been analytically and
numerically studied: the elastic and the inelastic collisions. In the former case, occurring when the minima
are (almost) degenerate, the two colliding bubble walls reflect off each other several times. The energy of
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the collision is used to re-establish the false vacuum in the region between the receding walls. In the second
instance, the energy of the collision is directly converted in scalar waves and the false vacuum is never
re-established.

For a perfectly elastic collision, i.e. when the walls bounce back with the same relative speed and there
is no energy dissipation in scalar waves, the efficiency factor can be computed analytically [14]:

fPE(χ) ≡
16v2

χ2
× log







2(γw/Lw)
2 − χ+ 2γw

Lw

√
(
γw
Lw

)2
− χ

χ






Θ

[

(γw/Lw)
2 − χ

]

, (146)

where Lw denotes the length-scale of the wall in the wall frame, and χ ≡ p2 denotes the squared 4-momentum
of the off-shell φ.

As for the case of elastic and inelastic collision the fit functions for the Fourier transform of the wall
were obtained by the authors of [69] and are summarized below.

1. Elastic collision numerically: In the case of a purely elastic BC, a good fit of the numerical results
is provided by

felastic(χ) = fPE(χ) +
v2L2

p

15(mtrue
φ )2

exp

(

−
(χ− (mtrue

φ )2 + 12mtrue
φ /Lp)

2

440(mtrue
φ )2/L2

p

)

, (147)

where we denote the mass of the scalar field φ around the true vacuum by mtrue
φ . The second term

captures the contribution due to the frequency of oscillations around the false minimum, producing
a peak in the Fourier transform. This peak becomes more and more Gaussian for larger values of
space-time Lp considered. In those expressions, one defined

Lp = min
(
Rcoll,Γ

−1
)
, (148)

where Rcoll is the radius of the bubble at collision and Γ−1 is the inverse decay rate of the scalar
waves that gain energy from the oscillations. Notice that for χ≫ mtrue

φ only the fPE term contributes
because the oscillation around the true minima is exponentially suppressed. This will be the relevant
contribution in our study.

2. Inelastic collision numerically: In the case of a totally inelastic collision, the numerical fit becomes

finelastic = fPE(χ) +
v2L2

p

4(mfalse
φ )2

exp

(

−
(χ− (mfalse

φ )2 + 31mfalse
φ /Lp)

2

650(mfalse
φ )2/L2

p

)

. (149)

Here, one again encounters the fPE function already introduced for the elastic collisions, while the
second term describes the oscillation around the false vacuum characterised by the mass mfalse

φ .

In the main text, we will always neglect the contribution from the peak, either elastic or inelastic,
and keep the fPE(χ) piece. This is a conservative choice for the production mechanism motivated by the
hierarchy p ∼ mN ≫ mtrue

φ ,mfalse
φ . In other words, the oscillations around the peak can be neglected, and

the Fourier transform in our case is simply given by fPE(χ) regardless of whether we use elastic or inelastic
collisions.

To simplify the numerics further, we assume that the integral of the efficiency factor for elastic collisions
can be written as follows

∫ χmax

χmin

dχfPE(χ) ≃ N(z =
√

χmax/χ)

∣
∣
∣
∣

zmax

zmin

×
∫ χmax

χmin

dχ
16v2

χ2
, (150)

whereN = 2 log (
√
z2 − 1 + z). N is evaluated at the extrema zmax =

√

χmax/χmin and zmin =
√

χmax/χmax =
1. Let us remind that χmax = (2γwv)

2 and in our scenario χmin = (mχ+mN )
2 for the on-shell N production

and χmin = m2
χ for the off-shell one. The function N is plotted in Fig.8 as a function of the N mass mN .
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Figure 8: Evaluation of the function N = 2 log (
√
z2 − 1 + z), with z = (2γwv)/(mχ +mN ) for on-shell N

production and z = (2γwv)/mχ for off-shell one. We set mχ = mN/10, cV = 1.
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