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Abstract- An algorithm for calculating the radiation field of a charged point particle performing a spiral motion 
in an infinite cylindrical waveguide with a multilayer side wall is found. The number of layers and their filling 
is arbitrary. The axis of the spiral is aligned with the axis of the waveguide, so that the geometry of the problem 
has cylindrical symmetry. Explicit expressions for modal frequency distributions and equations for resonant 
frequencies for single-layer and double-layer waveguides are given. Examples of graphical constructions of 
modal frequency distributions of modes for single-layer (resistive), double-layer (metal-dielectric) and triple-
layer (metal-dielectric with internal NEG coating) waveguides are presented. 

1. INTRODUCTION 

Placing a helical undulator in a cylindrical waveguide with a metal wall transforms its radiation 

spectrum from continuous to discrete [1-5], which can expand its scope of application, allowing, by 

selecting waveguide and undulator parameters, to obtain narrow-band and narrow-beam radiation, and 

to optimize its radiation by establishing a single-mode regime [5]. 

      The radiation spectrum of a particle moving along a spiral trajectory in a cylindrical waveguide with 

ideally conducting walls has the form of discretely located infinitely thin spectral lines and has 

singularities at critical points [4]. Replacing the ideal waveguide with a waveguide with resistive walls 

allows the elimination of the specified singularity [6]. The solution in [6] contains an indefinite function, 

the form of which is selected from the condition of coincidence of the limit transition of the obtained 

solution to the existing solution for an ideal waveguide [4]. In the present work, as a component of the 

solution for a waveguide with a multilayer wall, the recently obtained exact solution for the radiation 

of a particle moving along a spiral trajectory in free space [7] is used, which eliminates the need for 

artificial introduction of an additional function. 

The use of a waveguide with a multilayer wall can improve the radiation properties: the addition of an 

internal dielectric layer weakens the mode attenuation, and an additional NEG gasket serves to maintain 

a high vacuum in the waveguide. 

2. STATEMENT OF THE PROBLEM 

The problem of determining the radiation field of a particle moving along a helical trajectory in an 

infinite cylindrical waveguide with a multilayer wall is considered. Initially, it is assumed that the axes 

of the boundary cylindrical surfaces of the layers that make up the waveguide wall coincide with the 

common axis of the waveguide. 

 
Figure 1: Multilayer cylindrical waveguide with a particle moving along a helical trajectory 

The contents of each layer consist of isotropic metallic or dielectric materials. The number of layers N 

is arbitrary, but finite. The electromagnetic properties of the layer materials are described by their 

relative permittivity and magnetic permeability  ,  with their arbitrary dependence 
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waveguide  and the radii of the cylindrical surfaces , separating the adjacent 

layers. The outer layer has an infinite thickness: it can be a medium with characteristics  or 

a vacuum with relative permittivity and magnetic permeability . When considering the 

problem, a cylindrical coordinate system  is used, combined with the waveguide axis (Fig. 1). 

The method of partial regions is used to solve the problem. In this case, each of the layers that make up 

the wall is taken as a separate region. Previously, a similar method was widely used to solve problems 

of radiation of linearly moving particles in cylindrical waveguides with single-layer [8] and multilayer 

[9] walls. An attempt to generalize the method to the case of particle motion along a helical trajectory 

was made in [6, 10]. The final version of the solution to this problem is given in this paper. 

The standard technique for constructing a solution to the system of inhomogeneous Maxwell equations 

by the partial domain method in the case of a waveguide with layered walls consists of constructing 

partial solutions in each of the selected partial domains using elementary solutions of Maxwell's 

equations in a cylindrical coordinate system and stitching their tangential electric and magnetic 

components on cylindrical surfaces that separate adjacent domains (adjacent layers of the waveguide 

wall), including the internal vacuum cavity of the waveguide  and the external infinite layer 

 filled with vacuum, a dielectric, or a finitely conducting medium. 

The algorithm for constructing radiation fields of a particle performing linear motion parallel to the axis 

of a cylindrical waveguide with a multilayer wall was first derived in [9]. We present its universalized 

modification, convenient for constructing radiation fields of particles with linear and spiral trajectories, 

determining their resonant frequencies, as well as the eigenvalues of the free oscillation fields in a 

multilayer waveguide. 

The complete solution of the inhomogeneous Maxwell equations contains the sum of the general 

solution of the homogeneous Maxwell equations with undetermined weighting coefficients and a 

particular solution of the inhomogeneous Maxwell equations containing currents and charges generated 

by a moving particle. 

3. GENERAL SOLUTION OF HOMOGENEOUS MAXWELL EQUATIONS 

The components of the general solution are the electric  and magnetic  components of the 

frequency-time representations of partial waves propagating in each of the layers that make up the 

wall of the waveguide: 

  ,     

 

 

, 

 .                    (2) 

,  and 

,  If  , (Bessel function of the first kind) and if 

 (Hankel function of the first kind);   is the impedance of free space;  ,    ,    

,                                                            (3) 

In (3)  is the longitudinal eigenvalue of the mth mode. For a given mode it is the same for all layers; 

 is the transverse eigenvalue of the mth mode in the ith layer. Its relationship with the transverse 
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eigenvalue of the same mode in the internal vacuum cavity (  is the frequency,  is the speed 

of light in vacuum,   ) is: 

                   (4) 

Here  is the transverse eigenvalue of the m-th harmonic in the vacuum cavity of the waveguide. 

The homogeneous system of equations (in the absence of charges and currents in the cavity of the 

waveguide), obtained by matching the tangential field components at the boundaries, reduces to a 

system of four equations (similar to [10]): 

,                                                                                            (5)    

where  is a four-element single-column matrix  is  

,                                         (6) 

The matrix  corresponds to the values of the tangential components of the fields on the inner surface of the 

vacuum cavity of the waveguide (see (1) for and ), and the matrix  describes the tangential 

components of the fields on the boundary of the outer infinite layer (see (1) for and ): 

   (7) 

The harmonic fields in the vacuum cavity of the waveguide are characterized by the absence of 

components diverging on the waveguide axis (containing Hankel functions of the first kind), and when 

describing the fields in the outer infinite region, only components satisfying the radiation condition at 

infinity are preserved (there are no Bessel functions of the first kind). This explains the presence of 

columns with zero elements in (7). Explicit expressions for the nonzero elements of these matrices are 

given below: 

, ,  

,  ,            (8) 

The elements of the matrix   contain geometric  and electromagnetic  parameters 

corresponding to the i-th layer with a finite thickness . It is represented using two two-

dimensional matrices  and  (9) and contains 6 independent elements (10): 

,      ,         (9) 

 

  (10) 

The explicit form of the functions included in (10) is presented in (11). They have a form typical for 

similar problems (see [11, 9]): 

 

 

 

   (11) 

The following identity holds: 
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    (12) 

When  , matrix (9) degenerates into a unit diagonal matrix: in this case , and 

. For  the equation   

      (13) 

defines the complex transverse eigenvalue  as a function of k, i.e., is a dispersion relation. Examples 

of constructing dispersion curves for single-layer (resistive), two-layer (metal-dielectric) and three-

layer (metal-dielectric-NEG) can be found in [10] and [12]. 

In the presence of a particle moving in a waveguide along a rectilinear trajectory parallel to the axis 

with a velocity v, we should set ,  (  is the Lorentz factor 

of the particle), then the equation 

         (14) 

will determine the complex resonance frequencies of the wake radiation during rectilinear motion of 

the particle. If the particle moves along a helical trajectory (longitudinal component of velocity , 

rotation frequency ), then we should set [7]  and . In 

this case, the equation defining the complex resonance frequencies is: 

      (15) 

Note that the resonance frequencies do not depend on the displacement of the trajectory from the axis 

in the case of a linear trajectory of the particle and on the radius of the spiral in the case of helical 

motion of the particle. 

4. PARTICULAR SOLUTION OF INHOMOGENEOUS MAXWELL EQUATIONS 

As a particular solution of the inhomogeneous Maxwell equations, the solution for the radiation field 

of a particle moving along an infinite helicoidal trajectory in free space, obtained in [7], is taken. The 

particular solution, as a general one, is obtained by the method of partial regions. In this case, the space 

is divided into two regions: the region outside the cylinder containing the helicoidal trajectory of the 

particle  and the region inside this surface : 

    ,       .     (16)  

Each term of the multipole expansion is represented as a superposition of TM   and TE   

modes, with  or , and arbitrary weight factors , i. e. it is composed of fundamental 

solutions of the homogeneous Maxwell equations in cylindrical coordinates: 

    ,     (17) 

where        .       (18) 

As before, if , i.e., ,   and if , i.e. ,  , where   

and  are the Bessel function and the Hankel function of the first kind. In (18)  and 

 are the longitudinal and transverse eigenvalues of the mth mode. In the case of a linear 

motion of the particle  (v is total velocity of the particle) and  (  is the imaginary 

unit), while for the helical motion:   
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.   (19) 

where  is longitudinal component of the particle velocity and  is a rotational frequency of the 

particle. 

The amplitudes   and  are determined using the boundary conditions [13], which determine 

the discontinuity of the fields on the surface r=a, containing charges and currents caused by the motion 

of the particle along this surface [7]: 

,       

   (20) 

5. COMPLETE SOLUTION OF INHOMOGENEOUS MAXWELL'S EQUATIONS 

Taking into account the particular solution (16)-(20) transforms equation (5) into a linear 

inhomogeneous equation (with non-zero right-hand sides): 

     (21) 

The arguments  in (21) correspond to the notations (12);  is a single-column four-element 

matrix, the elements of which are the values of the tangential electric and magnetic components of the 

fields (17) on the inner surface of the waveguide :  

    (22) 

The solution of equation (21), which determines the sought amplitudes   , is 

      (23) 

where   is the matrix inverse to the matrix . Thus, the complete solution of 

the inhomogeneous Maxwell equations, describing the radiation of a particle moving along a helicoidal 

trajectory in a cylindrical waveguide with a multilayer wall, in the vacuum cavity of the waveguide 

 is:      

     
                       (24) 

The radiation field in the outer infinite layer  is written as follows: 

       

   (25) 

If the outer layer is filled with vacuum , then field (25) can be interpreted as 

radiation emanating from the outer wall of the waveguide into the surrounding space. 

6. SPECIAL CASES 

In this section, explicit expressions are given for the amplitudes  ,  of the radiation fields of a 

particle in a vacuum cavity of a waveguide for two-layer  and single-layer  walls. They 

are conveniently expressed through the amplitudes ,  (20) of a particular solution: 

,  ,     (26) 

The inner layer of the wall of a two-layer waveguide with electromagnetic characteristics  has a 

thickness ,, while the outer layer with characteristics  is infinite: . The 

coefficients  and  included in (26) are represented in the form of polynomials in powers of : 
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     (27) 

The explicit form of the expansion coefficients is given below: 

 

 

 

    (28) 

 

In (28) the following notations are introduced: 

 

 

,       

 

     (29) 

To go from a two-layer waveguide to a single-layer one, it is sufficient to set  in Equations (28), 

(29). In this case, the Equations are significantly simplified: 

 

,       (30) 

where 

.    (31) 

As a result, we have a waveguide with an internal radius  and with an infinite wall, the material of 

which is characterized by electric and magnetic permeability . If  (  is the 

conductivity of the wall material) and , we have a waveguide with an infinite resistive wall. 

7. NUMERICAL EXAMPLES 

As is known [1-6], the frequency distributions of the radiation fields of a particle in a waveguide with 

ideally conducting walls have a discrete character. The radiation fields in a waveguide with a metal 

wall, the material of which has a high but finite conductivity (a waveguide with a resistive wall), have 

the same properties. In an ideal waveguide, the distribution consists of infinitely thin spectral lines fixed 

at a discrete set of resonant frequencies. In a resistive waveguide, as well as in waveguides with layered 

walls, the spectral lines have a finite width and a fixed amplitude at the resonant frequency. Both in free 

space [7] and in an ideal waveguide, and in waveguides with layered walls (with an arbitrary number 

of layers), the allowed frequency band of the m-th term of the multipole expansion is determined by the 

inequality 
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      (32) 

(  is the longitudinal component of the particle velocity), determined from the condition 

 The geometry of the spiral trajectory of the particle is determined by three parameters: 

the total v and longitudinal  velocities of the particle (assumed to be constant) and the spiral period . 

In this case, the orbital velocity of the particle , the rotation frequency  and the orbital radius  are 

determined by the formulas  , . In the numerical examples 

considered below,  and . The conductivity of the outer 

infinite wall is taken to be equal to  (copper). 

Figures 2-6 (a) show the distributions of the amplitudes , :  for a single-layer 

resistive waveguide (Fig. 2, 3) and  for waveguides with two- and three-layer walls (Fig. 3-6). 

For comparison, the distributions of the amplitudes  of the radiation field of a spirally moving 

particle in free space are given, which we use as a particular solution of the inhomogeneous Maxwell 

equations and which is an integral part of the complete solution. The same Figures 2-6 (b) show the 

corresponding frequency distributions of the radial component of the field for a certain value of the 

radial coordinate  with and without taking into account the particular solution. The 

amplitude distributions contain resonances corresponding to certain modes of the cylindrical waveguide 

with the corresponding number of layers in the wall. The amplitude distributions, calculated using the 

above-developed method, correspond to TM and TE modes separately. The hybrid nature of the modes 

is manifested in the presence of certain bursts in TM modes at resonant frequencies corresponding to 

TE modes, and vice versa. When constructing the field components (Figures 2-6, (b)), the amplitudes 

and the corresponding synchronous (located at the same frequencies) bursts form a superposition with 

weighting coefficients determined by the expressions for the fields (3). The resonant frequencies of the 

local maxima of the distributions remain unchanged. 

Let us note one feature characteristic of all five presented examples: the modules of the TM and TE 

amplitudes have equal-sized bursts (Fig. 2-6, a) at the extreme points of the allowed region (32). They 

are marked with crosses on the graphs. As can be seen from the same Figures located on the right, they 

are mutually compensated when constructing the field components. For a particle performing a 

helicoidal motion in free space, the mutual conjugacy of the TM and TE modes is proven analytically. 

Here we limit ourselves to a graphical demonstration. 

In the case of a single-layer resistive waveguide (Fig. 2, 3), the high conductivity of copper leads to 

values of the dimensionless transverse eigenvalues  (Fig. 2) and  (Fig. 3) that are close, at 

resonant frequencies, to the transverse eigenvalues of a waveguide with perfectly conducting walls, i.e., 

to the roots of the Bessel functions (for TM modes) or to the roots of its derivative (for TE modes). The 

transverse eigenvalues are determined by substituting the values of the resonant frequencies into 

formula (19). For the first term of the multipole expansion , the resonant values of the 

dimensionless transverse eigenvalues are close to the roots of the first-order Bessel functions or their 

derivatives (Fig. 2), and for the second term of the multipole expansion , they are close to the 

roots of the second-order Bessel functions or their derivatives. The numbering (or qualification) of the 

hybrid modes of a resistive waveguide is carried out accordingly: the conventional designation  

 corresponds to modes whose normalized transverse eigenvalues are close to the n-th root of 

the Bessel function of the -th order (or its derivative). From Figures 2 and 3 it follows that there is a 

pairwise coincidence: each mode with a certain transverse eigenvalue excited in the low-frequency 

region  corresponds to a mode with a close transverse eigenvalue located in the high-frequency 

region . This is a consequence of the Doppler effect: the part of its radiation directed forward 

acquires a high frequency, while the low-frequency part of the radiation is directed backward. In an 

ideal waveguide, both branches (low-frequency and high-frequency) of the same mode have equal 

transverse eigenvalues [4]. The presence of a resistive wall (Fig. 2, 3) and additional dielectric (Fig. 4) 

and metallic (Fig. 5, 6) layers leads to differences in their values. The high-frequency branch of the 

spectral distribution, corresponding to the radiation directed forward, is most sensitive to distortions 

caused by the resistivity of the wall and additional layers. In the case of linear motion of a particle in a 

resistive waveguide, the spectral distribution of its radiation (impedance) is a smooth curve with a 

broadband resonance [14]. If the wall of the resistive waveguide is coated on the inside with a thin 
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dielectric layer, the smooth curve is transformed into a curve with a single narrowband resonance (or 

multiple narrowband resonances, if the dielectric coating is thick enough) [15]. In the case of helical 

motion of a particle, its radiation in a resistive waveguide already has a resonant character. Adding a 

thin dielectric layer does not change the number of resonances and does not significantly affect their 

location and amplitude characteristics (Fig. 3): there is an insignificant shift in the resonances of the 

lower-order modes corresponding to forward radiation , towards low frequencies, which leads 

to an increase in their transverse eigenvalues. The positive effect of the additional dielectric layer is 

manifested in the possibility of a significant reduction in the exponential attenuation decrement of 

forward-directed radiation, which can be achieved by optimally selecting the permittivity and thickness 

of the dielectric layer (see [10]). The attenuation decrement is found by solving equation (15), which 

determines a discrete set of complex resonant frequencies for a given term of the multipole expansion, 

the real parts of which correspond to the real resonant frequencies, and their imaginary components are 

proportional to the values of the attenuation decrement. 

In Figures 2-6 (a), in addition to the distributions of the amplitudes , , which serve as 

weighting coefficients for the field components caused by the general solution, the distributions of the 

amplitudes , included in the particular solution of the inhomogeneous Maxwell's equations 

are also shown. Accordingly, the Figures 2-6 (b) show the frequency distributions of the radial electric 

components of the radiation field caused by both the full and the general solutions. The contribution of 

the particular solution to the general picture of the amplitude and field distributions can be either 

insignificant (Figs. 2-4) or significant (Figs. 5,6). In the first case, the elements of the particular solution 

introduce a weak homogeneous background into the general picture, which does not have a significant 

effect on it. In the second case, the background is on the same level with the amplitudes and field 

distributions of the general solution, which distorting and suppressing the forward-directed radiation.   

                        

                                                    (a)                                                                    (b) 

Figure 2: Spectral distribution of amplitudes (a) and radial electric component at  (b) in a single-layer resistive 

waveguide; .     

 

                                                  (a)                                                                    (b) 

Figure 3: Spectral distribution of amplitudes (a) and radial electric component at  (b) in a single-layer resistive 

waveguide; .     

An additional NEG layer applied over the dielectric (Fig. 5, 6) is designed to eliminate residual gas 

molecules in the waveguide and maintain a high vacuum in it. Two types of NEG materials were used 

in the calculations: with conductivities   (Fig. 5) and  (Fig. 

6), developed at PSI and intended for coating the vacuum chambers of the SLS-2 storage ring [16]. 

Their effect on the properties of radiation of a particle performing linear motion in a three-layer 

waveguide was studied in [12]. It was found that at  (note that ) the NEG coating does 

not have a destructive effect on the resonance properties of the radiation even at a fairly large thickness 
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, whereas at  the resonance nature of the radiation is disrupted even at very small 

thicknesses of the NEG layer . It is obvious that other regularities take place during the helical 

motion of the particle, which are yet to be established. Perhaps a thinner layer of the NEG coating 

should be used. 

 

                                                  (a)                                                                     (b) 

Figure 4: Spectral distribution of amplitudes (a) and radial electric component at  (b) in a two-layer copper-dielectric 

waveguide; thickness of the dielectric layer ; permittivity ; .     

 

                                                  (a)                                                                     (b) 

Figure 5: Spectral distribution of amplitudes (a) and radial electric component at  (b) in a three-layer copper-

dielectric waveguide with internal NEG coating; thickness of the dielectric layer ; permittivity 

; thickness of NEG coating ; conductivity ;  .     

 

                                                  (a)                                                                     (b) 

Figure 6: Spectral distribution of amplitudes (a) and radial electric component at  (b) in a three-layer copper-

dielectric waveguide with internal NEG coating; thickness of the dielectric layer ; permittivity 

; thickness of NEG coating ; conductivity ;  .     

8. CONCLUSION 

The main content of this paper is the presentation of an algorithm for determining the radiation field of 

a particle moving along a spiral trajectory in a cylindrical waveguide with a multilayer wall. An 

important component of this algorithm is the exact solution for the radiation of a particle moving along 

a spiral trajectory in free space, first obtained in [7]. Numerical examples demonstrate its effectiveness 

in constructing fields and reveal some of their features, in particular, the narrow-resonance nature of 

the fields in a single-layer resistive and two-layer metal-dielectric waveguide, a certain pattern is visible 

in the formation of the values of resonant frequencies and transverse eigenvalues when passing from a 

resistive to a metal-dielectric waveguide. Naturally, it is impossible to conduct an exhaustive analysis 

based on the five examples given. It is necessary to conduct an in-depth analysis to determine the 

optimal geometric and electromagnetic parameters of the layers of two- and three-layer waveguides 
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according to several criteria: maximum power and narrow-band radiation at resonant frequencies, 

minimization of the distorting effect of the NEG coating, minimization of attenuation decrements, the 

possibility of establishing a single-mode radiation regime, etc. Some results remained outside the scope 

of this article: for example, it can be shown that the phase velocities of both branches of the mode field 

generated by a particle with a spiral trajectory are synchronous with the longitudinal component of the 

particle velocity . 
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