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1. Introduction: The H.E.S.S. Extragalactic Sky Survey (HEGS)

This contribution highlights the main results presented in [1] from the High Energy Stereo-

scopic System (H.E.S.S.) collaboration. H.E.S.S. is an array of Imaging Atmospheric Cherenkov

Telescopes located in Namibia, observing the southern hemisphere sky in the very high-energy

(VHE; � > 100 GeV) domain. This paper presents results covering the extragalactic observations

of H.E.S.S. from 2004 to the end of 2012. In this time period, the array was in its initial configuration

with four 12-meter diameter telescopes. The extragalactic observations strategy primarily involved

pointed observations towards bright X-ray or Fermi-LAT gamma-ray sources, alongside target-of-

opportunity observations. This approach, while successful in detecting various extragalactic object

classes, led to a highly non-uniform exposure distribution across the sky. The primary motivation

for this work was to perform a consistent re-analysis of this large dataset.

Data selection ensured good atmospheric and instrumentation conditions, excluding observa-

tions at large zenith angles (>60°) to minimize systematic uncertainties. The data were grouped into

98 spatially separated observational clusters using the DBSCAN algorithm [2] of the scikit-learn

library [3], as presented on Fig. 1. Regions within the Galactic plane (|1 | < 10◦) and specific

Galactic sources (e.g., Magellanic Clouds, 47 Tucanae) were discarded. These clusters collectively

covered approximately 5.7% of the total sky and accounted for 6500 observation runs, for a total of

2720 hours of observations.

2. Analysis Methodology

The data were analyzed using the likelihood reconstruction technique within the Model frame-

work [4], optimized for a low energy threshold ("Loose cuts"). Sky maps were created with

0.01◦ × 0.01◦ pixels, where each pixel represented a test region for gamma-ray detection. The ring

background method [5] was employed to estimate the hadronic background, with known gamma-ray

emitters masked to prevent contamination.

A source detection significance threshold of 5.7f was determined using Monte Carlo simu-

lations, ensuring a false detection probability of 3.89% or less. For detected sources, a spectral

analysis was conducted considering two models: a power-law (PL) and a log-parabola (LP). The

preferred model was selected based on a likelihood ratio test (TS difference of 9, approximately

3f). Spectral results are affected by EBL absorption, which was corrected using the model from

[6]. A systematic uncertainty of 20% on the flux and 0.2 on the spectral index are expected [7].

In addition, variability searches were conducted on two timescales (run-wise and night-wise)

using the ON-OFF test [8], fractional variability [9], and chi-squared fitting against a constant flux.

Consistency checks with independent pipelines and archival H.E.S.S. publications confirmed the

reliability of the results with differences generally within estimated systematic uncertainties.

3. The HEGS Catalogue and Source Properties

The HEGS analysis led to the detection of 23 sources, all of which were already known VHE

gamma-ray emitters. The vast majority of these (18 out of 23) are BL Lacertae objects (BL Lacs).

Other detected source types include two radiogalaxies (RGs; Centaurus A and M 87, as well as PKS
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