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Abstract In this paper, we investigate a digitised SU(2) lat-
tice gauge theory in the Hamiltonian formalism. We use par-
titionings to digitise the gauge degrees of freedom and show
how to define a penalty term based on finite element methods
to project onto physical states of the system. Moreover, we
show for a single plaquette system that in this framework the
limit g — 0 can be approached at constant cost.

1 Introduction

The implementation of SU(N) lattice gauge theories in the
original formulation by Kogut and Susskind [1] is notori-
ously difficult on both classical and quantum computers, at
least if one is interested in the limit of gauge coupling g — O,
corresponding to the continuum limit of the lattice theory. In
combination with local gauge invariance, the non-Abelian
structure of such theories and the practical requirement for
digitization and truncation lead to non-localities in formu-
lations suitable for this limit, or severe increase in resource
requirements.

While the widely used Clebsch—Gordan expansion [2] is
working well at large g, it is not well suited for the limit
of g — 0: the number of terms required in the expansion
grows quickly with decreasing values of g. The reason for
this behaviour is likely the fact that the electric part of the
Hamiltonian is diagonal in this formulation, which becomes
less and less dominant in the foreseen limit.
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Therefore, there is a significant effort to construct a basis
in which the magnetic part of the Hamiltonian is diagonal,
which in general involves some kind of gauge fixing and
a suitable basis choice for the gauge field degrees of free-
dom. Recently, in Ref. [3] a fully gauge fixed SU(2) Hamil-
tonian has been developed, based on ideas worked out in
Ref. [4]. While the latter approach involves a functional
basis, the works in Refs. [5,6] are based on discrete tetra-
hedral and octahedral sub-groups of SU(2). Also, in Ref.
[7] a Gauge Loop-String-Hadron formulation is developed
on general graphs. For earlier work see for instance Refs.
[8—11]. Of course, one can also try to find alternative Hamil-
tonians to the one derived by Kogut and Susskind. Examples
are quantum link models [12—14], a Hamiltonian based on
a Heisenberg-Comb [15] or the orbifold approach presented
in [16].

In Ref. [17] we have presented a formulation using parti-
tionings of SU(2) based on Ref. [18] (see also Refs. [19,20]),
which has the advantage that the number of elements can be
chosen freely while working in the magnetic basis. In these
references we have shown how the canonical momenta and in
particular their square can be constructed based on finite ele-
ment methods. We have tested this approach in the free theory
and found that the continuum energy levels and eigenstates
are recovered in the limit of continuous gauge symmetry.
The disadvantage of this approach is that gauge invariance is
realised only approximatively. For ways to mitigate this see
Ref. [21].
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In this paper we will use the same formalism and investi-
gate its behaviour in the interacting theory: for this, we show
how to construct the Gauss operator again based on finite
element methods. This Gauss operator can then be used to
construct a penalty term, which lets one single out the phys-
ically relevant states. We also introduce a truncation which
makes it possible to take the limit of gauge coupling g> — 0
(continuum limit) at constant cost and constant error stem-
ming from the group discretisation. This is exemplified for a
single plaquette system in the maximal tree gauge.

2 Theory

The Kogut and Susskind Hamiltonian [1] of lattice gauge
theory we alluded to in the previous section is defined on a
cubical lattice, discretising the spatial dimensions only. Sim-
ilarly to Wilson’s famous Lagrangian formulation of lattice
gauge theories [22], the gauge degrees of freedom take the
form of links connecting the spatial lattice sites. Each link is
classically described by a colour matrix U in the fundamental
representation of the gauge group G.

Quantum states of the system are described by a wave
function

¥ ({Uxk}) : GNie - €, (1)

assigning a complex probability amplitude to every classical
configuration {Uy ¢} of the gauge links. The indices x and k
here label the location and direction of each link.

2.1 Operators

To define the Kogut—Susskind Hamiltonian operators lA]x,k
are introduced, defined by the action

Ui ¥ = Uxse ¥ (-, Uxkes .. )

on wave functions v, with U0 = 1 and detU = 1. Like
the position operator in quantum mechanics the link operator
modifies the wave function by multiplying with the gauge
link degree of freedom labelled by x and . U and U can then
be combined to define the plaquette operator P. As depicted
in Fig. 1 it connects four gauge links to an oriented loop:
Prij= Uxi Ugpi U7, 5 U4 - 3)
Furthermore, we define the left and right momentum oper-
ators i; . and I%; - They take the shape of Lie derivatives
and are defined as

~ o d .
i v :ﬂ@w(“.,e *ﬁ’(-Ux,k,...)m:o &)
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Fig. 1 Sketch of the plaquette operator f’x’; 1

and

. d .
R, v = _I@Ip(...,Ux,kelﬂ’c,...) lp=0. )

where the 7. denote the generators of the gauge group. The
momentum operators obey the following canonical commu-
tation relations

(LS, Oy, j1 = —bxy 8ijte Uxi (6)
(RS ;. Uy.j1 = 8xy8ij Usite. (7
and

[I:;l,i’ i‘g,j] =1 fabc Oxy 3ij Le 8)
[ﬁ;’i, 1%;,7’]-] =1 fabc Oxy Sij Re. 9)

Here f,. are the structure constants of the gauge group.
2.2 The Hamiltonian

With these ingredients the Kogut—Susskind Hamiltonian for
a pure lattice gauge theory reads

2 2 2
~ g ~ A
A= 53 (L) + = Z'Tr[]l —Re Py - (10)
X,c,k X, j<i

The first term encodes the local kinetic energy and is typically
referred to as the electric term. Its ground state is

¥s" ({Uxk}) = const. (11)

The second term implements an interaction between the four
links of each plaquette and is typically referred to as the
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magnetic term. Its ground state reads

Yo s ({Ua}) = [] 8@ = Pui) - (12)
X,i<j

The physical Hilbert space of the theory is further restricted

by a constraint referred to as Gauss law. It states that any

physical state |Y) needs to satisfy

Gty = Y (Les+ RS, ) w0 =0. (13)
k

This can be understood as demanding colour charge conser-

vation at each vertex in the lattice. It significantly reduces the

dimensionality of the Hilbert space of the theory.

2.3 Dual formulation

By considering the ground states of the electric and mag-
netic parts of the Hamiltonian alone, respectively, we can
make some educated guesses about the ground state of the
full Hamiltonian. For large g we expect it to be quite uniform
with little entanglement between the links. This is because
here we mostly have a free theory, perturbed by a weak poten-
tial implemented by the magnetic term.

When decreasing g? the entanglement between links
increases with the wave function only being non-vanishing
for configurations where all the Py ;; ~ 1. All other config-
urations will be suppressed due to the then large 1/g2. Thus,
it would be highly beneficial to rewrite the Hamiltonian in
terms of plaquette degrees of freedom instead of the original
gauge links

v ({Uxi}) = v ({Pig}) - (14)

which would lead to a magnetic term, consisting of a sum
of single site operators and nearest neighbour interactions in
the electric term. As a result, the entanglement between the
individual degrees of freedom would no longer increase for
g2 — 0. Furthermore, one could now make use of the fact
that the wave function of the system only is non-vanishing
for Px;; close to the identity. This could be exploited by
choosing a basis for the wavefunctions that is suitable for
approximating wavefunctions distributed around Py ;; = 1
well.

While this idea can be implemented in an Abelian U(1)
theory, it is obfuscated in non-Abelian theories by their
non-commutative nature, which makes it necessary to add
additional terms to the Hamiltonian, which introduce non-
localities. For SU(N) multiple dual Hamiltonians are under
consideration [4,23-25].

Since this is not the focus of this paper, we avoid this
complication by studying a single plaquette lattice only. By
squaring Gauss’ law it is easy to show that

DUEHF =Y (L5 =) (L5 =) (LY (15)

c c c c

where the indices 1, 2, 3 and 4 label the four links in the
plaquette. Thus, one can express the Hamiltonian in terms
of a single gauge degree of freedom (equivalent to the single
plaquette operator)

=283 (L) + %Tr [11 - 0] . (16)

The remaining Gauss law constraint at the origin then takes
the shape of

O°lY) = (L€ + R)|y) = 0. (17)

In the following we will enforce Gauss’ law by adding a
penalty term

I:Ipenalty =K Z (Q”)z (18)

to the Hamiltonian of the theory. Here, « is a large positive
constant. Such a penalty term will shift unphysical states to
higher energies [26], allowing for simulations of the low-
lying physical spectrum of the theory.

Furthermore, it is analytically known [4] that the physical
states are the ground state and the fourth excited state of
the unconstrained Hamiltonian. Therefore, this system also
allows us to study the practicability of using a penalty term.

The gauge group of interest in the following is SU(2).
Thus, the generators are given by 7, = %ac, where o, are
the Pauli matrices. The structure constants f,. are the com-
ponents of the Levi-Civita tensor. SU(2) serves as a useful
toy model to explore the challenges surrounding Hamilto-
nian simulations with non-abelian gauge groups. The lessons
learned here should hopefully lead the way to Hamiltonian
simulations of quantum chromodynamics.

3 Discretising the operators

As the Hilbert space of wave functions is in principle infinite-
dimensional, in general a discretisation and possibly a trun-
cation is needed for a practical numerical simulation. The full
Hilbert space of the theory can be decomposed into products
of wave functions on single gauge links

{feid) = Q) fk)- (19)
X,k

Thus, it is sufficient to find discretisation schemes for the

single link wave functions

fxxW):G— C. (20)

More specifically, we will use the finite element canonical
momenta we presented in Ref. [17]. The idea here is to
approximate each link wave function at a finite set of gauge
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group elements
{D;} C SU(Q). 21

In the following we will refer to such a subset as a parti-
tioning of SU(2). Any such partitioning can be connected to
a simplical mesh {(io, i1, i2, i3)} via a Delaunay triangula-
tion [27]. Here, the integers i ; label the four group elements
spanning each simplex in the mesh.

Next one can introduce the basis functions qAb,' with the

property
¢3i(Dj) = i), (22)

and interpolate linearly inside each simplex of the mesh.
Within each simplex we introduce local coordinates &z /r
defined by

U =exp(—iag 1) D (23)
and
U = D;, exp (i&R ~f) , (24)

respectively. The local coordinates are chosen such that
the left and right canonical momentum operators take the
shape of the components of Lie derivatives on S3. By Tay-
lor expanding the function around the value at each vertex,
one can calculate the Lie derivatives within each cell to be
defined by

LR F(Dy) = F(Dyy)
@l 1k | Vewr £=| F(Diy) — F(Diy) | . (25)
al f(Diy) — f(Djy)

where &/T denotes the coordinates of the vertices D; i found
in the simplex C. To then further improve the estimate of the
momentum operators at a given vertex, one can average the
Lie derivative over the simplices surrounding a given vertex.
In our implementation this average is weighted by each cell’s
volume. The operator matrices are thus calculated as

L

i —i S

L | ==——<=—= Y, Vol©) Vcird;. (26)
ilgj 2 _icliec) Vol(©) (ClieC)

Using the L? operators obtained above to construct the Lapla-
cian operator ), (L%)? will result in a poor approximation
because the L“ construction relies on a linear approximation.
A direct construction of the Laplacian operator ), (L)? can
be obtained as in [17]

S = T

{CeCli,jeC}

(Vedi) - (Ved;) Vol (C).

27)

@ Springer

where v (i) here denotes the barycentric weight at vertex i.
They are obtained by equally distributing the volume of each
simplex onto its vertices

v(i):% Z Vol(C) . (28)

{ClieC}

Again, using the L and R operators naively to construct the
squared Gauss operator needed for the penalty term leads to
a large artefacts. However, similarly to the Laplacian, also
the squared Gauss operator

A . A\ 2
Y 02=Y (Le+R) . (29)
c c
can be constructed directly. One obtains

;(Qcy:% Y wol©)

(CeCli, jeC) (30)
(Ver +Ver)di) - (Ve +Ver)d)).

Here %C,L(%C, r) denote the cell gradient taken in the left
(right) local coordinates.

All these momentum operators are local in the sense that
a given vertex is only ever mapped to vertices it shares a sim-
plex with. Furthermore, the gauge link operator U is diago-
nal in this basis. However, for these operators the canonical
commutation relations and the low-lying spectrum are only
exactly recovered in the limit of infinitely fine meshes. For a
finite set of gauge group elements the canonical commutation
relation are only approximatively fulfilled.

3.1 SU(2) partitioning
In the following we will use the rotated simple cubic (RSC)

partitionings. These are obtained by constructing a simple
cubical lattice in the unit cube:

A = {55 e [0, 1)’

¥ =dsc(n)Rm +a,m 6Z3} )

3D

Here n denotes the target number of points in the lattice.
dsc(n) is the distance between neighbouring points given by

dsc(n) = n13, (32)

The rotation matrix R is needed to ensure that the planes of
the lattice are not aligned with the faces of the unit cube. In
our implementation successive rotations of 7 /8 around ey,
é, and é3 seem to work well. The vector 4 is tuned such that
the number of points actually in the cube equals the target n.
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Fig. 2 Sketch of the truncation procedure used in the dual Hamilto-
nian: On the left sphere we show the expected shape of the plaquette
wave function towards weaker coupling. Warmer colours symbolise
bigger probability amplitudes in the wavefunction. By using partition-
ings fulfilling Eq. (36), we effectively restrict our simulations to a cone

This lattice is then mapped SU(2) via the volume preserv-
ing map:

p(x1) = P1(x1),
0(x2) = cos™! (1 —2x7) (33)
and  ¢(x3) =2mx3.

Here the function ®{(p) is defined via its inverse

1 1
el (p) = — (p -3 sin(2p>> : (34)

The angles (p, 0, ¢) parametrise an SU(2) elements by
U(p,0,¢) =cospl +isinpé,(0,¢)-o, (35)

where ¢, (0, ¢) = (sinf cos ¢, sin 6 sin ¢, cos 0) is a point
on S;. For more details we refer to [17,18].

Moreover, as depicted in Fig. 2, we expect the plaquette
wave function of low-lying states at weak couplings to vanish
for points far away from 1. For this purpose we implement
a truncation by modifying the volume preserving map such
that

Tr[D;] > 2cos (wety) - (36)

Here the parameter e1; € (0, 1] controls how much of the
gauge group is approximated by the partitioning around the
identity. eT, = 1 gives points covering the entire group, while
etr = 0 only allows for D; = 1.

In the following we will denote different partitionings as
RSC‘;}’ describing a set of N points found within the hyper-
sphere cap defined by Eq. (36).

surrounding the north-pole of the sphere. This is shown on the right.
Note that SU(2) is isomorphic to the 3-sphere embedded in four dimen-
sions, i.e. the pictures shown here should be understood as a lower
dimensional sketch of the procedure

4 Numerical results

To study the performance of the proposed discretisation
scheme, the ground state and first excited state for the single
plaquette system are determined via exact diagonalisation.
Gauss’ law will be enforced either by manual selection of
the correct states or by the penalty term Eq. (18).

As observables, we will consider the ground state energy
Ey, the mass gap M defined as

M = E, — E (37)

and the ground state plaquette expectation value

1

(P) =
2NPlaq

> T [ ol Aislvo) | - (38)
X,i<j

Our numerical results can be compared to the analytic solu-
tion derived in Ref. [28]. There the energy levels are calcu-
lated to be

4 g2 4
Ey=— + 5 (b (-16/8%) - 4). (39)
g 8
Here b, denotes the Mathieu characteristic numbers. Note
that some of the prefactors differ from the cited source due
to a difference in convention used for the Hamiltonian. The
theoretical prediction of the plaquette expectation value is
obtained by numerically integrating the eigenfunctions also
given in Ref. [28].

4.1 Tuning the penalty term

For simulations with a penalty term Eq. (18), a value for the
parameter « needs to be chosen. For formulations with only

@ Springer
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approximative gauge invariance, this can be delicate. Since
0° only approximates the exact Gauss operator, Q"W) can
be non-zero even for a physical wave function |y). While
this is expected to be a small effect in QC |Y), large values
of «k can inflate it. Thus, ¥ should not be chosen much larger
than needed to move unphysical states beyond the energies of
interest. Otherwise, the ground state of the total system will
simply be the one with the most favourable discretisation
error.

A good estimate of the correct value of a suitable « can be
obtained as follows: Similarly to the Laplace Beltrami oper-
ator, the eigenvalues of ZC(Q”)2 are analytically known to
be A, = n(n + 1). As ZC(QC)2 commutes with H both
can be diagonalised simultaneously. Therefore, a minimally
Gauss law violating state has an expectation value of 2« with
respect to the penalty term. As the ground state of pure gauge
theories typically fulfils the Gauss law constraint, violating
states will be pushed to energies of at least Ey + 2«x. When-
ever the energies of interest are below this threshold, « is
large enough. In our case the most sensitive observable will
be the mass gap, which fulfils M < 4 at the couplings studied
here. Therefore, our choice of ¥k = 5 is more than sufficient.
However, these considerations only hold up to discretisation
effects after digitising the gauge group. So leaving some mar-
gin is likely advisable.

Furthermore, much better matching with the analytic pre-
dictions can be achieved, when correcting for energy con-
tributions by the penalty term. This is done by simply sub-
tracting the expectation value of the penalty term from the
eigenvalues obtained from the solver:

Ei =X — <Hpenalty>- (40)

One way to test whether « is sufficiently large is to study the
expectation value of Hpenaity. This shows a sharp drop, once
the unphysical states are projected out.

4.2 Overview

In Fig. 3 we show all three observables as a function of
the squared coupling g2. For Fig. 3a, physical states were
selected manually — which is possible since the analytic solu-
tion is known, while in Fig. 3b the penalty term with « = 5
was used. The data points are obtained for partitionings with
256 (red diamonds), 1024 (blue squares) and 4096 (orange
triangles) elements and cover the whole gauge group without
truncation (corresponding to et = 1).

At larger values of the coupling, we see good agreement
of all observables with the corresponding analytic prediction
represented by the black, continuous lines. Towards smaller
couplings, however, the simulation results increasingly devi-
ate. As expected, these deviations are biggest for the coarse
partitioning and decrease when going to finer partitionings.

@ Springer

Curiously, the amount and sign of the deviation changes,
depending on whether physical states are selected manually
or via the penalty term. For the former the mass gap and
ground state energy are underestimated towards small g
The penalty term however, leads to an overestimation of the
ground state energy and mass gap, while the plaquette expec-
tation value is notably smaller than predicted. Note that the
energies as plotted are already corrected for the penalty term
expectation value as described in Eq. (40).

To explain this we can take a look at the plaquette expecta-
tion value. For the manual state selection the analytic predic-
tion is matched well, even for very small g2. This suggests,
that the correct states are still found, but their electric energy
is underestimated by the meshed operators.

When using the penalty term however, the measured pla-
quette expectation values are found to be smaller than the
prediction. This is likely because states with a large plaque-
tte expectation value have more electrical energy and thus
also lead to larger discretisation errors in the penalty term.

Lastly we note, that deviations appear to be largest in the
mass gap. Thus, we will focus on this observable for our
remaining tests.

4.3 Truncation

Next we would like to test partitionings with ey < 1. We
expect an interval I in g2 where the approximation works
best: At large gz-values errors due to too small 1, will dom-
inate, while at small values of gz, the resolution around the
identity is insufficient.

Moreover, increasing the resolution of the partitioning at
fixed et should move this interval to smaller values of g°
and decrease the overall deviation in this interval region to
the exact result.

This expectation is confirmed by our simulations. As an
example we show in Fig. 4 the mass gap as a function of the
coupling for three different partitioning sizes with e, = 0.5.
As predicted there is a matching interval at g> & 0.2, which
increases in size and moves to smaller couplings with finer
partitionings.

In practice, this means one would rather choose eT; too
large than to small, as the former will still recover the correct
result in the limit of infinitely fine partitionings, be it at higher
cost.

In order to determine an appropriate truncation for a given
coupling, we determined 851{?[ such that the deviation from
the analytic prediction of the mass gap is minimized. The
results can be found in Fig. 5, where the such determined
a%ft is plotted as a function of g2, again for three different
partitioning sizes. For about g? < 0.1 the dependence is to
a good approximation linear in g. This is in agreement with
the results in Ref. [4]. &?ft also increases with partitioning
size. This is the same effect mentioned earlier: the matching
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g 050 1 RSC%"PQ
s o RSCis
' RSCihe

0.00 analytic

100

(a) Gauss law implemented via manual state selection.

Fig. 3 Shown are the mass gap M, the ground state energy E( and the
ground state plaquette expectation value (P) (as defined in Eq. (38))
as a function of the coupling g2 for three different partitioning sizes.

interval moves to smaller coupling values with increasing
partitioning size at fixed &?ft.

To predict the optimal truncation for a given coupling, we
performed linear fits in g to the data. As we are most inter-
ested in small couplings, only the five leftmost points in the
plot were used for the fit. The truncation parameters derived
from these fits will be referred to as gop in the following.

Finally, in Fig. 6 we show the mass gap M as a function
of g2, again for three resolutions simulated with the corre-
sponding S%Et (g?) and compared to the analytical results. The
finer the resolution, the smaller the deviation from the ana-
lytical curve at each g2-value. And, the deviation for each
partitioning size appears to become independent of g in the
g — 0 limit.

4.4 Convergence and cost

To get a more quantitative idea of this and the accuracy of
the partitionings, we study the relative deviation

SM — M — Manalytic ' (41)

M analytic

Y9905

& 050 1 * RSC%i%
s o RSCiys
' RSCiie

0.00 1 analytic

T
100

g2

(b) Gauss law implemented via penalty term with x = 5.

On the left physical states are selected manually while on the right a
penalty term is used. The solid line shows the analytic prediction of
each observable

5.5 L)
o RSCY%
91 ®  RSCHj
4.5 4 RSCgl%Q ¢
—— Theory

25641 ¢ A

Fig. 4 Plotted is the mass gap M as a function of the coupling g2 for
three partitioning sizes with e1, = 0.5. The analytic prediction is again
shown in black

8M is plotted as a function of g2 in Fig. 7. There one can
observe more clearly that the deviations are mostly indepen-
dent of the coupling for g — 0, which means the weak
coupling limit can be approached at approximately constant
simulation cost and uncertainty.

@ Springer
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RSCgly,  Fit: 0.905¢9 & noo 00
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2 10~ 4 o 0
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107 4 go® 0 9
(=
o ' 0 ¢
00?
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10~2 4 0o ?
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103 102 101 100 1074 1073
9’ 1/N

Fig. 5 Plotted are the optimal values for ey as a function of the cou-
pling for three different partitionings. The optimal value is found by
minimizing the deviation from the analytic prediction of the mass gap.
The error bars show the resolution of the scan used to find this minimum.
Also shown are fits to 5 leftmost points in the plot

4.0
3.9 1
38 unnununnuuuDDDDDD
3.7 1
o
E 3.6 o
(=
3-5 1 00000000004,00000,
0
] RSCEy RSCIm, 0o
43 ¢ 512 8192 0
4 o RSC5%% —— Theory 0
3.2
T T
10—2 10~1

92

Fig. 6 The mass gap M as a function of the coupling g2 for differ-
ent fixed partitioning sizes. ety is chosen separately at each coupling
according to the fits found in Fig. 5

0000000006000
9000460000,

- 00
1071 1 ont
1 o RSCjy
Eopt
o RSCyjs
Eopt
RSC8192
E DDDDDDDDDUDDDDDDDDDD
23 fog
o

T T T T L
10—2 10—1

g2

Fig. 7 The relative deviation § M of the mass gap shown in Fig. 6 as a
function of g2 at fixed partitioning sizes
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Fig. 8 The relative deviation of the mass gap § M as a function of the
inverse partitioning size 1/N at a coupling of g = 0.01 and ey, =
0.92g. Results are obtained with penalty term (blue) and without (red)

Next, we plot the relative deviation as a function of the
inverse partitioning size in Fig. 8 at g = 0.01. Here, the
red diamonds are obtained by manual selection of the phys-
ical states from the Hamiltonian, while the blue points are
obtained using the penalty term with x = 5. The results
obtained with the penalty term show larger deviations, but
both approaches seem to have a similar convergence rate.
While selecting the physical state manually seems to pro-
duce more accurate results, it becomes quickly unfeasible
when the system size increases.

4.5 Extrapolating to the full group

Lastly, we would like to test whether we can successfully
extrapolate first to the full gauge group and then to g2 = 0.
To do so we collect data at eight different couplings 0.005 <
g% < 0.05 and partitioning sizes up to N = 2! = 16384.
When using the penalty term with k = 5, e, = 1.1g was
chosen, for the manual state selection e = 0.95g. Choosing
€ abit larger, when using the penalty term appears to improve
results significantly, which at this point is a purely empirical
observation.

In the first step we then perform a least squares fit to extrap-
olate to infinitely fine partitionings at fixed coupling. The
Ansatz for the fit function reads

0\ b

N,
M (N) = Mgz + ==

N (42)

Here MY, and N, are treated as separate parameters for each
coupling, while the exponent b is fitted globally to all eight
datasets for different couplings. The sign is chosen positive

for manual state selection and negative for the penalty term
data.
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(a) Plotted is the mass gap M as a function of the inverse
partitioning size at a coupling of g2 = 0.01341. Results are
obtained with penalty term (blue) and without (red). In
black, we plot the analytic solution. Also included are fits
according to eq. (42). These allow us to extrapolate to
N — oco.

Fig. 9 These two figures contain extrapolations for the mass gap M
first in the limit of N — oo (left) and then g2 — 0 (right). This is
done to determine the mass gap one would expect for the full gauge

This ansatz appears to describe the data well, while the
global fit produces more stable results as compared to sepa-
rate fits per g-value. As an example, we show the resulting
fit for g2 = 0.01341 together with the data in Fig. 9a. The
(global) convergence rate is measured to be b = 1.00(11)
with and b = 0.88(6) without the penalty term, respectively.
The remaining best fit parameters can be found in Table 1.
Uncertainties are estimated from the inverse hessian, rescaled
by the variance of the residuals. The analytically predicted
result at this gZ-value is reproduced well in the limit N — oo,
with and without penalty term.

Furthermore, the results of the extrapolations at all our
g2-values can be found in Fig. 9b. Here we also show linear
fits of the expected weak coupling form

M(g®) =My +cg? (43)

to the data with and without penalty term. These allow us to
extrapolate to g = 0, i.e. take the weak coupling limit. Both
of these fits agree within the estimated uncertainty with the
analytic prediction plotted in black. At g2 = 0 we get My =
4.008(27) with and My = 3.999(3) without the penalty term,
both of which are compatible with My = 4.

5 Discussion

A few of our observations deserve further discussion. The
newly constructed Q2 operator, needed for the Gauss law
penalty term, seems to work well. The deviations from the
analytic prediction increase, but the convergence rate seems
to be unchanged. It is likely that this effect can be further

4.08

analytic

w/o H

4.06
) penalty

4.04 1

W. Hpenalty

4.02 1

M

o0 ] ..............

3.98 1

3.96 -

3.94 A

3.92 -

T T T T T
0.00 0.01 0.02 0.03 0.04 0.05

92

(b) Plotted is the mass gap in the limit N — oo as a
function of the coupling ¢g2. The data is obtained from fits
like the one shown on the left. The analytic solution is again
plotted in black. Also included are linear fits to the data.
These allow us to extrapolate to g2 — 0.

group in the continuum limit. The truncation parameter is chosen to be
e1r = 1.1g when the penalty term is used, and e, = 0.95g without

Table 1 Fit parameters according to Eq. (42) for the extrapolation to
the full gauge group at the eight different couplings

w/o I:Ipenalty Ww. I:Ipenalty

g2 Mgz Ngz Mgz Ngz

0.0050 3.992(6) 3.0(4) x 10? 4.00(5) 2.97(16) x 103
0.0069 3.992(6) 3.0(4) x 10? 3.99(5) 2.96(16) x 103
0.0097 3.992(6) 3.0(4) x 10? 4.00(5) 2.88(15) x 103
0.0134 3.991(6) 2.9(4) x 10? 4.00(4) 2.81(15) x 103
0.0186 3.988(5) 2.7(4) x 10? 4.01(4) 2.61(15) x 103
0.0259 3.981(5) 2.5(4) x 10? 3.98(4) 2.67(15) x 103
0.0360 3.973(5) 2.2(4) x 10? 4.00(4) 2.41(15) x 103
0.0500 3.959(4) 1.93) x 10% 3.96(4) 2.55(15) x 103

reduced by tuning «, the prefactor of the penalty term, more
carefully. Penalty terms constructed from the dual Gauss laws
found in Ref. [4] and Ref. [24] would also both contain this
operator. The fact, that it can be used in simulations without
major complications is thus quite reassuring.

Furthermore, considering partitionings with points only
distributed in the vicinity of 1 seems to be a valid strategy
to approach the weak coupling limit. When tuning the trun-
cation parameter eT; appropriately, the relative deviations of
the mass gap were shown to be largely independent of the
coupling at fixed operator dimension. Similar to the approach
presented in Ref. [4], we showed that the truncation param-
eter ey scales linearly with g at small couplings.

Simulations using the penalty term typically were more
reliable when slightly increasing et compared to the sim-

@ Springer
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ulations with manual state selection. This is likely because
discretisation errors at the boundary of the truncation have
more of an impact when filtering for physical states. Increas-
ing the size of the sphere cap means that these effects are
more suppressed. One possibility to address this in the future
would be to test whether non-uniform partitionings can be
used. Here one would aim for a high density of points around
1 and adecreasing density in the rest of the group. This should
in principle reduce boundary effects and might lead to more
accurate simulations.

Another open question is the convergence rate of the
observables. Reliable extrapolations for N — oo were only
possible when including the exponent of convergence as a fit
parameter. In our previous tests [17] we found a convergence
rate of N~2/3 for the spectrum of Y C(I:C )2 which would be
proportional to the lattice spacing squared in the partitioning.
Here we observe rates of N ~0-88(®) and N =100 depending
on whether a penalty term to enforce Gauss law is used or
not. Currently, we do not have an analytic prediction of these
rates available.

Lastly, it should be mentioned that similar numerical tests
have been conducted in Ref. [4]. They propose a different
discretisation scheme and achieve good matching with the
analytic prediction at significantly smaller operator dimen-
sion.

6 Conclusion and outlook

In this paper we have shown, that the digitised canonical
momentum operators for the Hamiltonian formulation of an
SU(2) gauge theory, originally proposed in Ref. [17], rep-
resent an efficient choice for simulations at very weak cou-
plings.

In this approach the Hilbert space is digitised by choosing
a finite set of gauge group elements, called a partitioning.
The canonical momentum operators are then approximated
by finite element methods. While these operators break the
fundamental commutation relations of the theory, they are
local in the gauge group. We have shown here how to define
a penalty term based on the squared Gauss operator approxi-
mated again using finite element methods to project to phys-
ical states of the system. Given a suitable dual formulation of
the Kogut-Susskind Hamiltonian with a local magnetic term,
one can thus use partitionings with points distributed only
around the identity. We show numerically that this ansatz
allows us to approach the weak coupling limit at constant
operator dimensions for a single plaquette system.

For this we first study how to truncate these partitionings
at a given coupling gZ. We showed, that the cut-off parameter
etr as defined in Eq. (36) scales linearly with g, in agreement

@ Springer

with results from Ref. [4]. By choosing et optimally for each
coupling value, we then numerically show that the relative
deviations of the mass gap of the theory are independent of
the coupling value.

Lastly we have demonstrated that the correct mass gap of
the theory is recovered, when extrapolating first to infinitely
fine partitionings and then to g — 0. This leaves us hopeful
that, similarly to the magnetic basis in U(1), they enable sim-
ulations of larger systems, once a suitable dual Hamiltonian
is established. As the link operator is diagonal when using
partitionings the introduction of matter fields should also be
straight forward.

The breaking of the fundamental commutation relations is
likely to cause minor complications when calculating observ-
ables of more physical interest, such as the time evolution of
an initial state. Additional steps will need to be taken to stay
within the gauge invariant sector, and should be investigated
in the future.

Lastly it is worth noting, that other approaches like e.g.
the one from Ref. [4] achieve the same, but currently appear
to be more resource efficient for the system investigated here.
In general though, it is still unclear which approach of the
many available on the market will be most suitable for the
simulation of larger systems with three spatial dimensions
and SU(3) as the gauge group.
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