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Abstract In this paper, we investigate a digitised SU(2) lat-

tice gauge theory in the Hamiltonian formalism. We use par-

titionings to digitise the gauge degrees of freedom and show

how to define a penalty term based on finite element methods

to project onto physical states of the system. Moreover, we

show for a single plaquette system that in this framework the

limit g → 0 can be approached at constant cost.

1 Introduction

The implementation of SU(N ) lattice gauge theories in the

original formulation by Kogut and Susskind [1] is notori-

ously difficult on both classical and quantum computers, at

least if one is interested in the limit of gauge coupling g → 0,

corresponding to the continuum limit of the lattice theory. In

combination with local gauge invariance, the non-Abelian

structure of such theories and the practical requirement for

digitization and truncation lead to non-localities in formu-

lations suitable for this limit, or severe increase in resource

requirements.

While the widely used Clebsch–Gordan expansion [2] is

working well at large g, it is not well suited for the limit

of g → 0: the number of terms required in the expansion

grows quickly with decreasing values of g. The reason for

this behaviour is likely the fact that the electric part of the

Hamiltonian is diagonal in this formulation, which becomes

less and less dominant in the foreseen limit.

a e-mail: jakobs@hiskp.uni-bonn.de (corresponding author)

Therefore, there is a significant effort to construct a basis

in which the magnetic part of the Hamiltonian is diagonal,

which in general involves some kind of gauge fixing and

a suitable basis choice for the gauge field degrees of free-

dom. Recently, in Ref. [3] a fully gauge fixed SU(2) Hamil-

tonian has been developed, based on ideas worked out in

Ref. [4]. While the latter approach involves a functional

basis, the works in Refs. [5,6] are based on discrete tetra-

hedral and octahedral sub-groups of SU(2). Also, in Ref.

[7] a Gauge Loop-String-Hadron formulation is developed

on general graphs. For earlier work see for instance Refs.

[8–11]. Of course, one can also try to find alternative Hamil-

tonians to the one derived by Kogut and Susskind. Examples

are quantum link models [12–14], a Hamiltonian based on

a Heisenberg-Comb [15] or the orbifold approach presented

in [16].

In Ref. [17] we have presented a formulation using parti-

tionings of SU(2) based on Ref. [18] (see also Refs. [19,20]),

which has the advantage that the number of elements can be

chosen freely while working in the magnetic basis. In these

references we have shown how the canonical momenta and in

particular their square can be constructed based on finite ele-

ment methods. We have tested this approach in the free theory

and found that the continuum energy levels and eigenstates

are recovered in the limit of continuous gauge symmetry.

The disadvantage of this approach is that gauge invariance is

realised only approximatively. For ways to mitigate this see

Ref. [21].
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In this paper we will use the same formalism and investi-

gate its behaviour in the interacting theory: for this, we show

how to construct the Gauss operator again based on finite

element methods. This Gauss operator can then be used to

construct a penalty term, which lets one single out the phys-

ically relevant states. We also introduce a truncation which

makes it possible to take the limit of gauge coupling g2 → 0

(continuum limit) at constant cost and constant error stem-

ming from the group discretisation. This is exemplified for a

single plaquette system in the maximal tree gauge.

2 Theory

The Kogut and Susskind Hamiltonian [1] of lattice gauge

theory we alluded to in the previous section is defined on a

cubical lattice, discretising the spatial dimensions only. Sim-

ilarly to Wilson’s famous Lagrangian formulation of lattice

gauge theories [22], the gauge degrees of freedom take the

form of links connecting the spatial lattice sites. Each link is

classically described by a colour matrix U in the fundamental

representation of the gauge group G.

Quantum states of the system are described by a wave

function

ψ
({

Ux,k

})

: G Nlinks → C , (1)

assigning a complex probability amplitude to every classical

configuration
{

Ux,k

}

of the gauge links. The indices x and k

here label the location and direction of each link.

2.1 Operators

To define the Kogut–Susskind Hamiltonian operators Ûx,k

are introduced, defined by the action

Ûx,k ψ = Ux,k ψ
(

. . . , Ux,k, . . .
)

(2)

on wave functions ψ , with Û †Û = 1 and detÛ = 1. Like

the position operator in quantum mechanics the link operator

modifies the wave function by multiplying with the gauge

link degree of freedom labelled by x and k. Û and Û † can then

be combined to define the plaquette operator P̂ . As depicted

in Fig. 1 it connects four gauge links to an oriented loop:

P̂x,i j = Ûx,i Û
x+a î, j

Û
†

x+aĵ,i
Û

†
x, j . (3)

Furthermore, we define the left and right momentum oper-

ators L̂c
x,k and R̂c

x,k . They take the shape of Lie derivatives

and are defined as

L̂c
x,k ψ = − i

d

dβ
ψ

(

. . . , e− i βtc Ux,k, . . .

)

|β=0 (4)

Fig. 1 Sketch of the plaquette operator P̂x,i j

and

R̂c
x,k ψ = − i

d

dβ
ψ

(

. . . , Ux,k ei βtc , . . .

)

|β=0 , (5)

where the tc denote the generators of the gauge group. The

momentum operators obey the following canonical commu-

tation relations

[L̂c
x,i , Ûy, j ] = −δxy δi j tc Ûx,i , (6)

[R̂c
x,i , Ûy, j ] = δxy δi j Ûx,i tc , (7)

and

[L̂a
x,i , L̂b

y, j ] = i fabc δxy δi j L̂c (8)

[R̂a
x,i , R̂b

y, j ] = i fabc δxy δi j R̂c . (9)

Here fabc are the structure constants of the gauge group.

2.2 The Hamiltonian

With these ingredients the Kogut–Susskind Hamiltonian for

a pure lattice gauge theory reads

Ĥ =
g2

2

∑

x,c,k

(

L̂c
x,k

)2
+

2

g2

∑

x, j<i

Tr
[

1− Re P̂x,i j

]

. (10)

The first term encodes the local kinetic energy and is typically

referred to as the electric term. Its ground state is

ψel.
0

({

Ux,k

})

= const . (11)

The second term implements an interaction between the four

links of each plaquette and is typically referred to as the
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magnetic term. Its ground state reads

ψ
mag.
0

({

Ux,k

})

=
∏

x,i< j

δ(1− Px,i j ) . (12)

The physical Hilbert space of the theory is further restricted

by a constraint referred to as Gauss law. It states that any

physical state |ψ〉 needs to satisfy

Ĝc
x|ψ〉 =

∑

k

(

L̂c
x,k + R̂c

x−ak̂,k

)

|ψ〉 = 0 . (13)

This can be understood as demanding colour charge conser-

vation at each vertex in the lattice. It significantly reduces the

dimensionality of the Hilbert space of the theory.

2.3 Dual formulation

By considering the ground states of the electric and mag-

netic parts of the Hamiltonian alone, respectively, we can

make some educated guesses about the ground state of the

full Hamiltonian. For large g2 we expect it to be quite uniform

with little entanglement between the links. This is because

here we mostly have a free theory, perturbed by a weak poten-

tial implemented by the magnetic term.

When decreasing g2 the entanglement between links

increases with the wave function only being non-vanishing

for configurations where all the Px,i j ≈ 1. All other config-

urations will be suppressed due to the then large 1/g2. Thus,

it would be highly beneficial to rewrite the Hamiltonian in

terms of plaquette degrees of freedom instead of the original

gauge links

ψ
({

Ux,i

})

→ ψ
({

Px,i j

})

, (14)

which would lead to a magnetic term, consisting of a sum

of single site operators and nearest neighbour interactions in

the electric term. As a result, the entanglement between the

individual degrees of freedom would no longer increase for

g2 → 0. Furthermore, one could now make use of the fact

that the wave function of the system only is non-vanishing

for Px,i j close to the identity. This could be exploited by

choosing a basis for the wavefunctions that is suitable for

approximating wavefunctions distributed around Px,i j = 1

well.

While this idea can be implemented in an Abelian U(1)

theory, it is obfuscated in non-Abelian theories by their

non-commutative nature, which makes it necessary to add

additional terms to the Hamiltonian, which introduce non-

localities. For SU(N ) multiple dual Hamiltonians are under

consideration [4,23–25].

Since this is not the focus of this paper, we avoid this

complication by studying a single plaquette lattice only. By

squaring Gauss’ law it is easy to show that
∑

c

(L̂c
1)

2 =
∑

c

(L̂c
2)

2 =
∑

c

(L̂c
3)

2 =
∑

c

(L̂c
4)

2, (15)

where the indices 1, 2, 3 and 4 label the four links in the

plaquette. Thus, one can express the Hamiltonian in terms

of a single gauge degree of freedom (equivalent to the single

plaquette operator)

Ĥ = 2g2
∑

c

(L̂c)2 +
2

g2
Tr

[

1− Û
]

. (16)

The remaining Gauss law constraint at the origin then takes

the shape of

Q̂c|ψ〉 = (L̂c + R̂c)|ψ〉 = 0. (17)

In the following we will enforce Gauss’ law by adding a

penalty term

Ĥpenalty = κ
∑

c

(

Q̂c
)2

(18)

to the Hamiltonian of the theory. Here, κ is a large positive

constant. Such a penalty term will shift unphysical states to

higher energies [26], allowing for simulations of the low-

lying physical spectrum of the theory.

Furthermore, it is analytically known [4] that the physical

states are the ground state and the fourth excited state of

the unconstrained Hamiltonian. Therefore, this system also

allows us to study the practicability of using a penalty term.

The gauge group of interest in the following is SU(2).

Thus, the generators are given by tc = 1
2
σc, where σc are

the Pauli matrices. The structure constants fabc are the com-

ponents of the Levi-Civita tensor. SU(2) serves as a useful

toy model to explore the challenges surrounding Hamilto-

nian simulations with non-abelian gauge groups. The lessons

learned here should hopefully lead the way to Hamiltonian

simulations of quantum chromodynamics.

3 Discretising the operators

As the Hilbert space of wave functions is in principle infinite-

dimensional, in general a discretisation and possibly a trun-

cation is needed for a practical numerical simulation. The full

Hilbert space of the theory can be decomposed into products

of wave functions on single gauge links

|{ fx,k}〉 =
⊗

x,k

| fx,k〉. (19)

Thus, it is sufficient to find discretisation schemes for the

single link wave functions

fx,k(U ) : G → C . (20)

More specifically, we will use the finite element canonical

momenta we presented in Ref. [17]. The idea here is to

approximate each link wave function at a finite set of gauge
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group elements

{Di } ⊂ SU(2) . (21)

In the following we will refer to such a subset as a parti-

tioning of SU(2). Any such partitioning can be connected to

a simplical mesh {(i0, i1, i2, i3)} via a Delaunay triangula-

tion [27]. Here, the integers i j label the four group elements

spanning each simplex in the mesh.

Next one can introduce the basis functions φ̂i with the

property

φ̂i (D j ) = δi j , (22)

and interpolate linearly inside each simplex of the mesh.

Within each simplex we introduce local coordinates �αL/R

defined by

U = exp
(

− i �αL · �t
)

Di0 (23)

and

U = Di0 exp
(

i �αR · �t
)

, (24)

respectively. The local coordinates are chosen such that

the left and right canonical momentum operators take the

shape of the components of Lie derivatives on S3. By Tay-

lor expanding the function around the value at each vertex,

one can calculate the Lie derivatives within each cell to be

defined by







�αT
1,L/R

�αT
2,L/R

�αT
3,L/R







�∇C,L/R f =





f (Di1) − f (Di0)

f (Di2) − f (Di0)

f (Di3) − f (Di0)



 , (25)

where �αT
j denotes the coordinates of the vertices Di j

found

in the simplex C . To then further improve the estimate of the

momentum operators at a given vertex, one can average the

Lie derivative over the simplices surrounding a given vertex.

In our implementation this average is weighted by each cell’s

volume. The operator matrices are thus calculated as







L̂1
i j

L̂2
i j

L̂3
i j






=

− i
∑

{C|i∈C} Vol(C)

∑

{C|i∈C}

Vol(C) �∇C,L φ̂ j . (26)

Using the La operators obtained above to construct the Lapla-

cian operator
∑

c(L̂c)2 will result in a poor approximation

because the La construction relies on a linear approximation.

A direct construction of the Laplacian operator
∑

c(L̂c)2 can

be obtained as in [17]

∑

c

(

L̂c
)2

=
1

v(i)

∑

{C∈C|i, j∈C}

( �∇C φ̂i ) · ( �∇C φ̂ j ) Vol(C).

(27)

where v(i) here denotes the barycentric weight at vertex i .

They are obtained by equally distributing the volume of each

simplex onto its vertices

v(i) =
1

4

∑

{C|i∈C}

Vol(C) . (28)

Again, using the L̂ and R̂ operators naïvely to construct the

squared Gauss operator needed for the penalty term leads to

a large artefacts. However, similarly to the Laplacian, also

the squared Gauss operator

∑

c

Q̂2
c =

∑

c

(

L̂c + R̂c

)2
. (29)

can be constructed directly. One obtains

∑

c

(

Q̂c
)2

=
1

v(i)

∑

{C∈C|i, j∈C}

Vol(C)

(( �∇C,L + �∇C,R)φ̂i ) · (( �∇C,L + �∇C,R)φ̂ j ).

(30)

Here �∇C,L ( �∇C,R) denote the cell gradient taken in the left

(right) local coordinates.

All these momentum operators are local in the sense that

a given vertex is only ever mapped to vertices it shares a sim-

plex with. Furthermore, the gauge link operator Û is diago-

nal in this basis. However, for these operators the canonical

commutation relations and the low-lying spectrum are only

exactly recovered in the limit of infinitely fine meshes. For a

finite set of gauge group elements the canonical commutation

relation are only approximatively fulfilled.

3.1 SU(2) partitioning

In the following we will use the rotated simple cubic (RSC)

partitionings. These are obtained by constructing a simple

cubical lattice in the unit cube:

	SC
n =

{

�x ∈ [0, 1)3

∣

∣

∣

∣

�x = dSC(n) R �m + �a, �m ∈ Z
3

}

.

(31)

Here n denotes the target number of points in the lattice.

dSC(n) is the distance between neighbouring points given by

dSC(n) = n−1/3 . (32)

The rotation matrix R is needed to ensure that the planes of

the lattice are not aligned with the faces of the unit cube. In

our implementation successive rotations of π/8 around ê1,

ê2 and ê3 seem to work well. The vector �a is tuned such that

the number of points actually in the cube equals the target n.
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Fig. 2 Sketch of the truncation procedure used in the dual Hamilto-

nian: On the left sphere we show the expected shape of the plaquette

wave function towards weaker coupling. Warmer colours symbolise

bigger probability amplitudes in the wavefunction. By using partition-

ings fulfilling Eq. (36), we effectively restrict our simulations to a cone

surrounding the north-pole of the sphere. This is shown on the right.

Note that SU(2) is isomorphic to the 3-sphere embedded in four dimen-

sions, i.e. the pictures shown here should be understood as a lower

dimensional sketch of the procedure

This lattice is then mapped SU(2) via the volume preserv-

ing map:

ρ(x1) = �1(x1),

θ(x2) = cos−1 (1 − 2 x2)

and φ(x3) = 2πx3 .

(33)

Here the function �1(ρ) is defined via its inverse

�−1
1 (ρ) =

1

π

(

ρ −
1

2
sin(2ρ)

)

. (34)

The angles (ρ, θ, φ) parametrise an SU(2) elements by

U (ρ, θ, φ) = cos ρ1+ i sin ρ �eρ(θ, φ) · �σ , (35)

where �eρ(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ) is a point

on S2. For more details we refer to [17,18].

Moreover, as depicted in Fig. 2, we expect the plaquette

wave function of low-lying states at weak couplings to vanish

for points far away from 1. For this purpose we implement

a truncation by modifying the volume preserving map such

that

Tr [Di ] ≥ 2 cos (πεTr) . (36)

Here the parameter εTr ∈ (0, 1] controls how much of the

gauge group is approximated by the partitioning around the

identity. εTr = 1 gives points covering the entire group, while

εTr = 0 only allows for Di = 1.

In the following we will denote different partitionings as

RSC
εTr

N describing a set of N points found within the hyper-

sphere cap defined by Eq. (36).

4 Numerical results

To study the performance of the proposed discretisation

scheme, the ground state and first excited state for the single

plaquette system are determined via exact diagonalisation.

Gauss’ law will be enforced either by manual selection of

the correct states or by the penalty term Eq. (18).

As observables, we will consider the ground state energy

E0, the mass gap M defined as

M = E1 − E0 (37)

and the ground state plaquette expectation value

〈P〉 =
1

2 NPlaq

∑

x,i< j

Tr
[

〈ψ0|P̂x,i j |ψ0〉
]

. (38)

Our numerical results can be compared to the analytic solu-

tion derived in Ref. [28]. There the energy levels are calcu-

lated to be

En =
4

g2
+

g2

8

(

b2n

(

−16/g4
)

− 4
)

. (39)

Here bn denotes the Mathieu characteristic numbers. Note

that some of the prefactors differ from the cited source due

to a difference in convention used for the Hamiltonian. The

theoretical prediction of the plaquette expectation value is

obtained by numerically integrating the eigenfunctions also

given in Ref. [28].

4.1 Tuning the penalty term

For simulations with a penalty term Eq. (18), a value for the

parameter κ needs to be chosen. For formulations with only
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approximative gauge invariance, this can be delicate. Since

Q̂c only approximates the exact Gauss operator, Q̂c|ψ〉 can

be non-zero even for a physical wave function |ψ〉. While

this is expected to be a small effect in Q̂c|ψ〉, large values

of κ can inflate it. Thus, κ should not be chosen much larger

than needed to move unphysical states beyond the energies of

interest. Otherwise, the ground state of the total system will

simply be the one with the most favourable discretisation

error.

A good estimate of the correct value of a suitable κ can be

obtained as follows: Similarly to the Laplace Beltrami oper-

ator, the eigenvalues of
∑

c(Q̂c)2 are analytically known to

be λn = n(n + 1). As
∑

c(Q̂c)2 commutes with Ĥ both

can be diagonalised simultaneously. Therefore, a minimally

Gauss law violating state has an expectation value of 2κ with

respect to the penalty term. As the ground state of pure gauge

theories typically fulfils the Gauss law constraint, violating

states will be pushed to energies of at least E0 + 2κ . When-

ever the energies of interest are below this threshold, κ is

large enough. In our case the most sensitive observable will

be the mass gap, which fulfils M ≤ 4 at the couplings studied

here. Therefore, our choice of κ = 5 is more than sufficient.

However, these considerations only hold up to discretisation

effects after digitising the gauge group. So leaving some mar-

gin is likely advisable.

Furthermore, much better matching with the analytic pre-

dictions can be achieved, when correcting for energy con-

tributions by the penalty term. This is done by simply sub-

tracting the expectation value of the penalty term from the

eigenvalues obtained from the solver:

Ei = λi − 〈Hpenalty〉. (40)

One way to test whether κ is sufficiently large is to study the

expectation value of Ĥpenalty. This shows a sharp drop, once

the unphysical states are projected out.

4.2 Overview

In Fig. 3 we show all three observables as a function of

the squared coupling g2. For Fig. 3a, physical states were

selected manually – which is possible since the analytic solu-

tion is known, while in Fig. 3b the penalty term with κ = 5

was used. The data points are obtained for partitionings with

256 (red diamonds), 1024 (blue squares) and 4096 (orange

triangles) elements and cover the whole gauge group without

truncation (corresponding to εTr = 1).

At larger values of the coupling, we see good agreement

of all observables with the corresponding analytic prediction

represented by the black, continuous lines. Towards smaller

couplings, however, the simulation results increasingly devi-

ate. As expected, these deviations are biggest for the coarse

partitioning and decrease when going to finer partitionings.

Curiously, the amount and sign of the deviation changes,

depending on whether physical states are selected manually

or via the penalty term. For the former the mass gap and

ground state energy are underestimated towards small g2.

The penalty term however, leads to an overestimation of the

ground state energy and mass gap, while the plaquette expec-

tation value is notably smaller than predicted. Note that the

energies as plotted are already corrected for the penalty term

expectation value as described in Eq. (40).

To explain this we can take a look at the plaquette expecta-

tion value. For the manual state selection the analytic predic-

tion is matched well, even for very small g2. This suggests,

that the correct states are still found, but their electric energy

is underestimated by the meshed operators.

When using the penalty term however, the measured pla-

quette expectation values are found to be smaller than the

prediction. This is likely because states with a large plaque-

tte expectation value have more electrical energy and thus

also lead to larger discretisation errors in the penalty term.

Lastly we note, that deviations appear to be largest in the

mass gap. Thus, we will focus on this observable for our

remaining tests.

4.3 Truncation

Next we would like to test partitionings with εTr < 1. We

expect an interval I in g2 where the approximation works

best: At large g2-values errors due to too small εTr will dom-

inate, while at small values of g2, the resolution around the

identity is insufficient.

Moreover, increasing the resolution of the partitioning at

fixed εTr should move this interval to smaller values of g2

and decrease the overall deviation in this interval region to

the exact result.

This expectation is confirmed by our simulations. As an

example we show in Fig. 4 the mass gap as a function of the

coupling for three different partitioning sizes with εTr = 0.5.

As predicted there is a matching interval at g2 ≈ 0.2, which

increases in size and moves to smaller couplings with finer

partitionings.

In practice, this means one would rather choose εTr too

large than to small, as the former will still recover the correct

result in the limit of infinitely fine partitionings, be it at higher

cost.

In order to determine an appropriate truncation for a given

coupling, we determined ε
opt
Tr such that the deviation from

the analytic prediction of the mass gap is minimized. The

results can be found in Fig. 5, where the such determined

ε
opt
Tr is plotted as a function of g2, again for three different

partitioning sizes. For about g2 < 0.1 the dependence is to

a good approximation linear in g. This is in agreement with

the results in Ref. [4]. ε
opt
Tr also increases with partitioning

size. This is the same effect mentioned earlier: the matching
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Fig. 3 Shown are the mass gap M , the ground state energy E0 and the

ground state plaquette expectation value 〈P〉 (as defined in Eq. (38))

as a function of the coupling g2 for three different partitioning sizes.

On the left physical states are selected manually while on the right a

penalty term is used. The solid line shows the analytic prediction of

each observable

interval moves to smaller coupling values with increasing

partitioning size at fixed ε
opt
Tr .

To predict the optimal truncation for a given coupling, we

performed linear fits in g to the data. As we are most inter-

ested in small couplings, only the five leftmost points in the

plot were used for the fit. The truncation parameters derived

from these fits will be referred to as εopt in the following.

Finally, in Fig. 6 we show the mass gap M as a function

of g2, again for three resolutions simulated with the corre-

sponding ε
opt
Tr (g2) and compared to the analytical results. The

finer the resolution, the smaller the deviation from the ana-

lytical curve at each g2-value. And, the deviation for each

partitioning size appears to become independent of g2 in the

g → 0 limit.

4.4 Convergence and cost

To get a more quantitative idea of this and the accuracy of

the partitionings, we study the relative deviation

δM =

∣

∣M − Manalytic

∣

∣

Manalytic
. (41)

Fig. 4 Plotted is the mass gap M as a function of the coupling g2 for

three partitioning sizes with εTr = 0.5. The analytic prediction is again

shown in black

δM is plotted as a function of g2 in Fig. 7. There one can

observe more clearly that the deviations are mostly indepen-

dent of the coupling for g2 → 0, which means the weak

coupling limit can be approached at approximately constant

simulation cost and uncertainty.
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Fig. 5 Plotted are the optimal values for εTr as a function of the cou-

pling for three different partitionings. The optimal value is found by

minimizing the deviation from the analytic prediction of the mass gap.

The error bars show the resolution of the scan used to find this minimum.

Also shown are fits to 5 leftmost points in the plot

Fig. 6 The mass gap M as a function of the coupling g2 for differ-

ent fixed partitioning sizes. εTr is chosen separately at each coupling

according to the fits found in Fig. 5

Fig. 7 The relative deviation δM of the mass gap shown in Fig. 6 as a

function of g2 at fixed partitioning sizes

Fig. 8 The relative deviation of the mass gap δM as a function of the

inverse partitioning size 1/N at a coupling of g2 = 0.01 and εTr =
0.92g. Results are obtained with penalty term (blue) and without (red)

Next, we plot the relative deviation as a function of the

inverse partitioning size in Fig. 8 at g2 = 0.01. Here, the

red diamonds are obtained by manual selection of the phys-

ical states from the Hamiltonian, while the blue points are

obtained using the penalty term with κ = 5. The results

obtained with the penalty term show larger deviations, but

both approaches seem to have a similar convergence rate.

While selecting the physical state manually seems to pro-

duce more accurate results, it becomes quickly unfeasible

when the system size increases.

4.5 Extrapolating to the full group

Lastly, we would like to test whether we can successfully

extrapolate first to the full gauge group and then to g2 = 0.

To do so we collect data at eight different couplings 0.005 ≤

g2 ≤ 0.05 and partitioning sizes up to N = 214 = 16 384.

When using the penalty term with κ = 5, εTr = 1.1g was

chosen, for the manual state selection εTr = 0.95g. Choosing

ε a bit larger, when using the penalty term appears to improve

results significantly, which at this point is a purely empirical

observation.

In the first step we then perform a least squares fit to extrap-

olate to infinitely fine partitionings at fixed coupling. The

Ansatz for the fit function reads

Mg2(N ) = M0
g2 ±

(

N 0
g2

N

)b

. (42)

Here M0
g2 and N 0

g2 are treated as separate parameters for each

coupling, while the exponent b is fitted globally to all eight

datasets for different couplings. The sign is chosen positive

for manual state selection and negative for the penalty term

data.
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Fig. 9 These two figures contain extrapolations for the mass gap M

first in the limit of N → ∞ (left) and then g2 → 0 (right). This is

done to determine the mass gap one would expect for the full gauge

group in the continuum limit. The truncation parameter is chosen to be

εTr = 1.1g when the penalty term is used, and εTr = 0.95g without

This ansatz appears to describe the data well, while the

global fit produces more stable results as compared to sepa-

rate fits per g-value. As an example, we show the resulting

fit for g2 = 0.01341 together with the data in Fig. 9a. The

(global) convergence rate is measured to be b = 1.00(11)

with and b = 0.88(6) without the penalty term, respectively.

The remaining best fit parameters can be found in Table 1.

Uncertainties are estimated from the inverse hessian, rescaled

by the variance of the residuals. The analytically predicted

result at this g2-value is reproduced well in the limit N → ∞,

with and without penalty term.

Furthermore, the results of the extrapolations at all our

g2-values can be found in Fig. 9b. Here we also show linear

fits of the expected weak coupling form

M(g2) = M0 + c g2 (43)

to the data with and without penalty term. These allow us to

extrapolate to g2 = 0, i.e. take the weak coupling limit. Both

of these fits agree within the estimated uncertainty with the

analytic prediction plotted in black. At g2 = 0 we get M0 =

4.008(27) with and M0 = 3.999(3) without the penalty term,

both of which are compatible with M0 = 4.

5 Discussion

A few of our observations deserve further discussion. The

newly constructed Q̂2 operator, needed for the Gauss law

penalty term, seems to work well. The deviations from the

analytic prediction increase, but the convergence rate seems

to be unchanged. It is likely that this effect can be further

Table 1 Fit parameters according to Eq. (42) for the extrapolation to

the full gauge group at the eight different couplings

w/o Ĥpenalty w. Ĥpenalty

g2 M0
g2 N 0

g2 M0
g2 N 0

g2

0.0050 3.992(6) 3.0(4) × 102 4.00(5) 2.97(16) × 103

0.0069 3.992(6) 3.0(4) × 102 3.99(5) 2.96(16) × 103

0.0097 3.992(6) 3.0(4) × 102 4.00(5) 2.88(15) × 103

0.0134 3.991(6) 2.9(4) × 102 4.00(4) 2.81(15) × 103

0.0186 3.988(5) 2.7(4) × 102 4.01(4) 2.61(15) × 103

0.0259 3.981(5) 2.5(4) × 102 3.98(4) 2.67(15) × 103

0.0360 3.973(5) 2.2(4) × 102 4.00(4) 2.41(15) × 103

0.0500 3.959(4) 1.9(3) × 102 3.96(4) 2.55(15) × 103

reduced by tuning κ , the prefactor of the penalty term, more

carefully. Penalty terms constructed from the dual Gauss laws

found in Ref. [4] and Ref. [24] would also both contain this

operator. The fact, that it can be used in simulations without

major complications is thus quite reassuring.

Furthermore, considering partitionings with points only

distributed in the vicinity of 1 seems to be a valid strategy

to approach the weak coupling limit. When tuning the trun-

cation parameter εTr appropriately, the relative deviations of

the mass gap were shown to be largely independent of the

coupling at fixed operator dimension. Similar to the approach

presented in Ref. [4], we showed that the truncation param-

eter εTr scales linearly with g at small couplings.

Simulations using the penalty term typically were more

reliable when slightly increasing εTr compared to the sim-
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ulations with manual state selection. This is likely because

discretisation errors at the boundary of the truncation have

more of an impact when filtering for physical states. Increas-

ing the size of the sphere cap means that these effects are

more suppressed. One possibility to address this in the future

would be to test whether non-uniform partitionings can be

used. Here one would aim for a high density of points around

1 and a decreasing density in the rest of the group. This should

in principle reduce boundary effects and might lead to more

accurate simulations.

Another open question is the convergence rate of the

observables. Reliable extrapolations for N → ∞ were only

possible when including the exponent of convergence as a fit

parameter. In our previous tests [17] we found a convergence

rate of N−2/3 for the spectrum of
∑

c(L̂c)2 which would be

proportional to the lattice spacing squared in the partitioning.

Here we observe rates of N−0.88(6) and N−1.00(11) depending

on whether a penalty term to enforce Gauss law is used or

not. Currently, we do not have an analytic prediction of these

rates available.

Lastly, it should be mentioned that similar numerical tests

have been conducted in Ref. [4]. They propose a different

discretisation scheme and achieve good matching with the

analytic prediction at significantly smaller operator dimen-

sion.

6 Conclusion and outlook

In this paper we have shown, that the digitised canonical

momentum operators for the Hamiltonian formulation of an

SU(2) gauge theory, originally proposed in Ref. [17], rep-

resent an efficient choice for simulations at very weak cou-

plings.

In this approach the Hilbert space is digitised by choosing

a finite set of gauge group elements, called a partitioning.

The canonical momentum operators are then approximated

by finite element methods. While these operators break the

fundamental commutation relations of the theory, they are

local in the gauge group. We have shown here how to define

a penalty term based on the squared Gauss operator approxi-

mated again using finite element methods to project to phys-

ical states of the system. Given a suitable dual formulation of

the Kogut-Susskind Hamiltonian with a local magnetic term,

one can thus use partitionings with points distributed only

around the identity. We show numerically that this ansatz

allows us to approach the weak coupling limit at constant

operator dimensions for a single plaquette system.

For this we first study how to truncate these partitionings

at a given coupling g2. We showed, that the cut-off parameter

εTr as defined in Eq. (36) scales linearly with g, in agreement

with results from Ref. [4]. By choosing εTr optimally for each

coupling value, we then numerically show that the relative

deviations of the mass gap of the theory are independent of

the coupling value.

Lastly we have demonstrated that the correct mass gap of

the theory is recovered, when extrapolating first to infinitely

fine partitionings and then to g2 → 0. This leaves us hopeful

that, similarly to the magnetic basis in U(1), they enable sim-

ulations of larger systems, once a suitable dual Hamiltonian

is established. As the link operator is diagonal when using

partitionings the introduction of matter fields should also be

straight forward.

The breaking of the fundamental commutation relations is

likely to cause minor complications when calculating observ-

ables of more physical interest, such as the time evolution of

an initial state. Additional steps will need to be taken to stay

within the gauge invariant sector, and should be investigated

in the future.

Lastly it is worth noting, that other approaches like e.g.

the one from Ref. [4] achieve the same, but currently appear

to be more resource efficient for the system investigated here.

In general though, it is still unclear which approach of the

many available on the market will be most suitable for the

simulation of larger systems with three spatial dimensions

and SU(3) as the gauge group.
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