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ABSTRACT: Besides solving the spectral problem of N/ = 4 Super-Yang-Mills (SYM) theory,
integrability also provides us with tools to compute the structure constants of the theory,
most prominently through the hexagon formalism. We show that, with minor modifications,
this formalism can also be applied to orbifolds of N'= 4 SYM theory, which are integrable
theories in their own right. To substantiate this claim, we test our results against a direct
gauge-theory calculation at tree-level. We focus here on a family of A/ = 2 supersymmetric
Z \r-orbifold theories. BPS correlators in these theories have recently been investigated with
independent localisation techniques and a structural matching with wrapping corrections
in the hexagon formalism was observed. Together with our weak-coupling evidence, this
suggests that a full determination of the structure constants of orbifold theories at finite
coupling may be within reach.
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1 Introduction

The AdS/CFT correspondence is best understood for type IIB superstrings on AdSs x S°
and N = 4 supersymmetric Yang-Mills (SYM) theory [1-3]. It was noticed by Minahan and
Zarembo [4] that in the planar limit [5] the one-loop spectrum of anomalous dimensions of
certain operators can be mapped to an integrable spin-chain Hamiltonian. This allows to
solve the spectrum exactly by using Bethe Ansatz techniques [6]. The map to integrable spin
chains was then extended to the full superconformal algebra of N' =4 SYM theory [7-9].
Considering operators of finite length, wrapping corrections have to be taken into account [10].
These finite-size corrections can be described on the string worldsheet by introducing a
mirror model [11-14]. Thus, in principle the spectral problem of anomalous dimensions in
N =4 SYM is solved and large amounts of data can be produced by virtue of the quantum
spectral curve formalism [15-18].

Following the success of integrability in the spectral problem, the study of three-point
functions of non-protected operators was initiated in [19], where correlators of three closed
spin-chain states were calculated at tree level. Subsequently, the hexagon formalism [20] was
developed to apply integrability techniques to three-point functions of generic operators in
N =4 SYM. Starting from the string theory picture, the worldsheet is cut into two hexagonal
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Figure 1. Structure constants can be evaluated through the hexagon formalism. After cutting
the worldsheet, all possible distributions of excitations on the two hexagons have to be summed.
Finite-size correction can be captured by inserting full sets of states on the cut edges.

patches, cf. figure 1. Each patch has three edges corresponding to the cut operators (physical
edges) and three edges that correspond to the cut worldsheet (virtual edges). The physical
excitations carried by the operators can end up on either of the hexagons after cutting
the operators and hence it is necessary to sum over all possible partitions of excitations.
The hexagonal patches can be evaluated as form factors. Using the symmetries of three-
point functions, the one- and two-particle hexagon form factor were bootstrapped and the
multi-particle form factor was conjectured [20]. Asymptotically, the bootstrap yields the
psu(2|2) S-matrix elements [21]. More specifically, the worldsheet is considered asymptotically
large after cutting and hence finite-size corrections are suppressed. In analogy to Liischer-
corrections in field theory [22], finite-size effects can be captured order by order through
the insertion of full sets of mirror particles on the virtual edges [20]. Since this is relevant
when gluing the two hexagonal patches back together into a three-point function, it is also
referred to as gluing corrections. However, the explicit evaluation of these processes is rather
involved, see for instance refs. [23-28]. Moreover, it is possible to extend the formalism to
planar higher-point correlation functions [26, 29], and even to non-planar correlators [30-32].

It seems natural to ask whether this very promising program can be extended to theories
with less supersymmetry. One possibility is to consider other instances of AAS/CFT and in
fact a first affirmative example was given for AdS3 x S? x T# [33, 34]. Another possibility is to
consider deformations of A" = 4 SYM. For certain operators in the - and y-deformed theory
a similar formalism seems applicable [35] and it would be desirable to have a first-principles
derivation. For orbifold theories [36, 37], recent progress was made in [38], where a three-point
function of BPS operators was considered and agreement with results from localisation [39-41]
was found. The main goal of this article is to explore the hexagon formalism for orbifold
theories for non-BPS operators.

Our main focus will be on N' = 2 Zs-orbifolds of AdSs x S® which arise as the near-
horizon limit of a stack of D3-branes probing a C2/Z,, singularity (Aj;_1 in the usual
ADE-classification [42]). The dual N' = 2 gauge theory consists of M gauge multiplets
and bifundamental hypermultiplets summarised by the quiver diagram figure 2. These
orbifold theories are integrable [43-45] and have also been investigated with localisation
techniques, which allow us to calculate correlators of BPS-operators at all values of the gauge
coupling g [39-41, 46-50]. However, the analysis of unprotected quantities will require the
application of less specialised tools such as integrability.



Figure 2. The “necklace” quiver diagrams associated to N' = 2 Z-orbifold theories feature M gauge
nodes and bifundamental hypermultiplets. All gauge nodes have the same gauge coupling constant g.
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Figure 3. The twist operators inserted in the traces correspond to modified boundary conditions of
the dual closed string states, which may be represented by twist-lines on the worldsheet [51]. The
overall twist within a consistent three-point function has to cancel, resulting in an effective vertex for
the twist lines that ensures this cancellation. Alternatively, one may split e.g. 7™ = v~%4~! on the
boundary and directly connect the twist lines from boundary to boundary.

Along with changing the gauge structure of the fundamental fields, the orbifold projection
also modifies the spectrum of single-trace operators by allowing for twisted-sector states
that introduce an element ~* of the Zj;-representation into the trace. These states are
dual to string states that only close up to an orbifold action. When considering three-point
functions of single-trace operators we therefore have to specify which twisted sectors we are
contracting. Denoting scalar operators twisted by v* as OF overall orbifold invariance results
in a superselection rule and conformal invariance fixes the space-time dependence
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where we denote by A; the conformal dimension of the operator inserted at x;. The
superselection rule may be understood pictorially by allowing the three twist lines to merge
on the dual string worldsheet, see figure 3.

Our goal will be to determine the value of the structure constants Corpipm by making
use of the hexagon formalism outlined above. These structure constants depend on operator
normalisations, which we may mitigate by considering ratios of the three-point functions
of interest with a reference three-point function. As reference we choose the protected
three-point function involving only untwisted BPS-operators V¥ of the same lengths, resulting



in the “normalised” three-point function'

k l 5
(O*(@1)0!w2) O™ (23)) Coro10m(ii+m) mod M 12)
<V0(x1)VO(:B2)VO(x3)> |x1 _ x2")/1+’}’2—’y3‘$1 _ 333|71+73—v2|x2 — x3’72+73—'y1 ’ ’
which now only depends on the anomalous dimensions v; = A; — L;. In an abuse of

notation we will sometimes denote the structure constants by their associated correlators
(?Okozomé <(’)k(’)l(’)m>, suggesting that the spacetime-dependence and normalisation can be
restored by reference to (1.2). It is these normalised structure constants that the hexagon
formalism will determine. In order to check our results, we compare them with a direct
gauge-theory calculation at tree level.

The set-up of this calculation is complicated by the reduced amount of symmetry in the
orbifold theory. In N'=4 SYM one usually prepares the operators in question at one point
in spacetime and translates them to a finite distance using a PSU(2|2)-preserving translation
operator 7. This operator mixes the original state with other operators from the same
superconformal multiplet. The three-point function then picks out the component that is
appropriately rotated to preserve overall R-symmetry and we may determine the associated
structure constant via the hexagon formalism. In the N' = 2 orbifold the translation operator
T generally does not commute with the orbifold twist and the overall symmetry is broken
to at best PSU(1|1). This results in the mixing of several superconformal multiplets with
distinct anomalous dimensions and structure constants. Nevertheless, we find evidence
that a minor modification of the usual N' = 4 hexagon formula still determines individual
structure constants accurately and matches the gauge-theory prediction after the latter has
been projected onto the contributions of individual superconformal multiplets. We therefore
conjecture the following statement:

The hexagon formalism accurately determines the structure constants of physical states
in N = 2 Zs-orbifold theories, if:

e we consider solutions to the twisted Bethe equations and

e keep track of the corresponding twist factors for particles being moved past the
twist operators during the cutting and gluing procedure.

In this paper we will provide tree-level evidence for this statement at low numbers of
magnon excitations in various SU(2) sectors of the simplest Zy orbifold as well as some
preliminary checks for the Z3 orbifold, which directly generalise to Z,; orbifolds. A recent
discussion of wrapping corrections [38] provided additional evidence that a correct treatment
of mirror excitations follows the same logic by matching to localisation results. In light of
these promising results, a full determination of the structure constants of non-BPS operators
at finite coupling seems possible and would be an interesting challenge for future research.

We start our discussion by reviewing the spectral problem of orbifold theories in section 2.
We first introduce the N = 2 Z-orbifolds and their gauge theory incarnation (cf. figure 2),
comment on the gauge choice necessary to set up a spin-chain picture and finally present

'This choice assumes a uniform normalisation scheme across twist sectors, as e.g. used in [50].



some simple SU(2) sectors of single-trace operators. An explicit calculation of their spectrum
is performed for the Zs-orbifold theory and we listed states with up to two excitations in
appendix A. In section 3 we briefly review the available technology to compute three-point
functions, directly from gauge theory, via a spin-chain overlap and through the hexagon
formalism. In section 4 we apply these techniques to the orbifold theories. We first compute
three-point functions for the simplest gauge choice in the Zo orbifold where an additional
SU(2)-symmetry appears. This symmetry mitigates the need to project onto the relevant
superconformal multiplets as their structure constants are now related by this symmetry.
When choosing a different gauge or moving on to higher-order Z,; orbifolds this quality
is lost and we need to decompose the three-point functions that arise from the translated
operators into individual components. In general, this would be a very tedious endeavour
but for some simple operators we can indeed show agreement with the hexagon. It stands
to reason that we may therefore take the hexagon as a direct access route to structure
constants. We comment on possible additional checks, extensions to finite coupling and other
deformations of A/ = 4 SYM in section 5.

2 Review: the spectral problem of orbifold theories

In this section we will gather the necessary background on orbifold theories, their symmetries
and the associated spin-chain. A simple subset of operators is given by SU(2) sectors which
consist of single-trace operators involving only two scalar fields. In orbifold theories we can
construct multiple SU(2) sectors which are distinguished by their transformation properties
under the orbifold action. We will list the various SU(2) sectors of N' = 2 supersymmetric
orbifold theories.

2.1 Orbifolds theories

The simplest integrable deformation of type IIB string theory on AdSs x S® is an orbifold
by some discrete subgroup I' of the overall PSU(2,2|4) symmetry [36, 37]. The closed-string
spectrum of such orbifold theories is constructed by projecting the undeformed spectrum
onto I'-invariant states (untwisted sector) and furthermore adding additional string states
which close only up to a I'-action and were absent in the undeformed theory (twisted sectors).
We thus have to combine |I'| different sectors to achieve a modular invariant string theory. In
this paper, we will restrict our attention to cyclic groups I' = Z; acting on the S° subspace,
or in terms of the dual gauge theory on the R-symmetry subgroup SU(4).
The dual gauge theory descends from N/ =4 SYM theory with gauge group SU(MN)
on which the orbifold group I' = Zj; acts as [43, 44]
: 2 M-1 2mi
v =diag(ly,w- Iy,w” - In,... ,w < 1n), W= exp -, (2.1)
and thus breaks the gauge group down to U(N)™ . We furthermore need to act with the
appropriate R-symmetry transformation R, on the various fields in the theory. Imposing
invariance under the combined action of v and R, will generally break supersymmetry
completely. If we want to retain supersymmetry, we have to ask for R, to leave an appropriate
amount of R-symmetry unbroken, as is best illustrated by the action on the N = 4 scalar



fields. If A/ = 1 supersymmetry shall be preserved, we may parametrise the most general
orbifold action as

RINX)Y, Z) =41(XY, Z)y = (" X,w"Y,w'?Z),  tx,ty,tz €Zmod M, (22)

preserving the U(1) R-symmetry under which the complexified scalars X, Y and Z are charged.
If we want to retain A/ = 2 supersymmetry the orbifold action may be restricted to

—1 _ _ —1
RINX,Y,Z) =X, Y, Z)y = (wX,w™'Y, 2), (2:3)

which furthermore preserves an SU(2)r C SO(4) R-symmetry. The simplest case of this

orbifold action is the Zs orbifold for which the twist factor w = w™!

= —1 degenerates and
allows for yet another SU(2)-symmetry between X and Y. In section 4.1 we will study
three-point functions in this theory and see that this additional SU(2)-symmetry greatly
simplifies the calculations.

Let us take a closer look at the N = 2 orbifold, following in part the discussion in [43].
Invariance under the combined gauge and R-symmetry transformations according to (2.3)
dictates that the SU(M N)-adjoint fields X,Y and Z decompose into bifundamental and

adjoint fields of U(N)M as follows

0 X12 0 YlM ZH
0 X23 Y21 0 ZQQ

X 0 o0 ZyvM
(2.4)
where the indices label the respective gauge groups. This break-down of the SU(M N) gauge
group now naturally encodes the projection to Zjs-invariant states in the dual string picture.
The holographic dictionary maps closed string states to single-trace operators

truyNnZXXYZZ ... . (2.5)

The trace becomes a sum over traces try of the individual U(N)-factors, but only if the
first and last gauge indices match. This projects out all states that do not satisfy the
orbifold condition

#(X) —#Y) = #X) +#Y) =wM, welZ, (2.6)

and precisely the untwisted sector states remain. Here we defined a “winding number” w
which counts the number of times the state wraps around the quiver diagram figure 2. We

may similarly construct the twisted sector states by adding powers of v to the trace
trynY ZXXY ZZ ..., (2.7)

which translates the twisted boundary conditions of the string to the gauge theory and
introduces relative phases into the sum of U(N)-traces.



In [52] it was pointed out that although the orbifold action breaks the SU(4) R-symmetry,
one may restore the broken elements of the Lie algebra in the language of algebroids. This
captures the fact that acting with broken generators R on fields would change their gauge
indices from one gauge group to another, e.g.

Rb : X12 — le . (28)
To reinstate such algebroid elements to the theory, one may introduce an algebroid co-product
ARpy) =10 Ry + Ry @9, (2.9)

where {2 acts as a Zg-rotation on the gauge indices. Essentially, the prescription is to rotate
the gauge indices to the right of a transformed operator in such a way as to allow contractions
with the new gauge index. Within traces, the notion of “to the right” is not well-defined
so the authors of [52] proposed an opening procedure that temporarily allows for open spin
chains as intermediate states. Repeated action of broken generators may eventually lead back
to a non-vanishing trace. We will make use of this language when discussing the interplay
of translations with the orbifold action.

2.2 Gauge choice and symmetries

For sufficiently long single-trace operators, the spectral problem of A/ = 4 SYM has been
solved by the asymptotic Bethe Ansatz. Its starting point is a BPS-vacuum built from a
scalar operator ®y (a canonical choice is @y = Z, but any SO(6)-rotation thereof is possible)

tr &L | (2.10)

which is interpreted as an integrable spin chain of length L into which further operators, such
as other scalars or derivatives, are inserted as quasi-particle excitations. The choice of the
vacuum corresponds to choosing a light-cone gauge in the dual string theory and breaks the
overall supersymmetry from PSU(2,2|4) down to PSU(2|2)2. To make this breaking explicit,
consider the fundamental representation of psu(2,2]4) in terms of complex 8-by-8 matrices.
A generic generator may be block-decomposed as

L+D K% | Q% Q%
Pdﬁ Ld/J" - D Qab Qo‘zb
5% S |R%—J RY
St St | R%W RYy+J

(2.11)

where we introduced fundamental SU(2) indices «, &, a,a € {1,2} which determine the
transformation behaviour under the SU(2) subgroups generated by L%g, L% i B% and Rab,
respectively. While the decomposition of the conformal symmetry group SU(2,2) (in the
upper-left quadrant) according to the maximal compact subgroup SU(2) x SU(2) is natural,
the decomposition of the SU(4) R-symmetry group (in the lower-right quadrant) may seem ad-
hoc and in fact one may choose any SU(4) conjugated version as an equivalent decomposition.
We shall choose the orientation such that the vacuum (2.10) has charge L under the action



of the generator J. Since this operator (2.10) is BPS, its eigenvalue under the dilatation
operator D is fixed to A = J. Thus, we may interpret the vacuum (2.10) as the ground-state
w.r.t. to the light-cone Hamiltonian

H=D-J, (2.12)

which we interpret as the Hamiltonian of the associated spin-chain. A basis of excitations that
diagonalises this Hamiltonian will furnish a representation of the commutant Cpgy(2,2/4)(H),
which is spanned by the generators with purely dotted or undotted indices. These form two
PSU(2|2) subgroups that can be centrally-extended to generate the full off-shell algebra of
quasi-particles. The large amount of symmetry allows for a complete determination of the
S-matrix of such excitations scattering off each other and we may employ a Bethe Ansatz
to also determine the energies of multi-particle states [4, 6].

When applying this technology to orbifold theories, the various choices of the vacuum
field @y are no longer related by SO(6)-symmetry. Instead they are now distinguished by
their charge under the orbifold action (2.3). We may identify two main gauge choices:

¢ Adjoint vacuum: ¢, =7

This vacuum choice is natural when comparing to N/ = 4 SYM. The vacuum field Z
sits in the adjoint representation of the N' = 2 gauge theory and all (untwisted and
twisted sector) single-trace operators built from it are BPS-operators. The winding
number (2.6) of this vacuum is w = 0. The orbifold action on the scalar fields was
given in (2.3) but after the gauge choice, we may now capture it in the language of the
fundamental SU(4) representation (lower-right quadrant of (2.11))

w 0 00
0wl00

R, = . (2.13)
00 10
0001

It is thus an element of the SU(2) C PSU(2|2) spanned by the undotted elements R%,.
The other PSU(2|2) group remains unbroken by the orbifold projection.

¢« Bifundamental vacuum: &y = X

In this case, the vacuum field is charged under the orbifold action. When it comes to
constructing single-trace operators according to (2.10), only untwisted vacua of the
form tr(7°XM") with positive winding number w are part of the spectrum.? In the
twisted sector and for length L # 0 mod M, we require at least one excitation to build
a physical state. In this gauge the orbifold action is given by

w0 0 0
01 0 O
R, = , (2.14)
00w™to
00 0 1

which breaks the supersymmetry down to PSU(1|1)2.

2We could have equally chosen Y or a conjugate fields X, Y as vacuum field. The Y- and X-vacuum states
have negative winding numbers w.



We could investigate further more complicated gauge choices, but since we have covered all
winding numbers w, these would not offer a qualitatively different or more convenient scenario.

2.3 SU(2) sectors

An analysis of the full spectrum of operators and their structure constants is the declared
goal of the integrability program. In this paper, however, we will restrict our attention to
certain subsectors of states in which the difference of N = 2 orbifold theories and N’ = 4
SYM become apparent, leaving a more extensive survey of structure constants to future work.
The sectors in question consist of single-trace operators

try*®L K ®E + permutations (2.15)

involving only two scalar fields, the vacuum field ®y and the excitation field 5. We can
go to the spin-chain picture by formally identifying ®y as down- (||)) and ®f as up-state
|1). Hence single-trace operators can be identified with spin chain states as

try Dy By By Py... < [T )E (2.16)

where the boundary twist has to be taken into account whenever the spin chain is shifted
by one site. The eigenstates of the light-cone Hamiltonian (2.12) can be obtained through
diagonalising the one-loop dilatation operator Dy = Zle 1 — P41, where Pyjqq is the
permutation operator acting on neighbouring fields. The corresponding eigenvalues are
non-trivial corrections to the conformal scaling dimensions of the operators (2.15), which
can be calculated via a Bethe Ansatz. Assuming a generic behaviour under the orbifold
action (2.3) as (Py, Pg) ~ (WPPy, wiPg), the Bethe equations are given by [43]

K K
el H Sii = wk(p_Q), et = H ePi = WP (2.17)
j=Li#i '
where we introduced the S matrix Sj;; scattering the excitations with momenta p; and p;
as well as the shift factors e””. In terms of rapidities and at leading order in the gauge
coupling ¢ these are given by
N - i
S T S I TR o15)
Uj — up +1 uj —1i/2
We will solve these equations for up to two excitations in the various scenarios below, but
the generalisation to higher excited states is a matter of stamina. After determining the Bethe
roots u;, we can simply add the energies of the excitations to find the overall energy of the state

B Yt 220

The Bethe eigenstate can be constructed as in the undeformed case

. K
’\II>IC = Z Z e’ Zl:l Po(k)Tk H Sg(j),cr(l) |n1, - ,nK>k , (220)
1<ni1<-<ng<L c€SK j>l
a(j)<e(l)



Vacuum Sector (Py,Pr) | (p,q)
bifundamental SU2)r (X,Y) (1,1)
bifundamental SU(2)L ( )
bifundamental | mixed SU(2) | (X, Z2)

adjoint mixed SU(2) | ( )

Table 1. A list of the different SU(2) sectors considered in the main text. All other SU(2) sectors
can be related to these four cases by R-symmetry rotations and conjugations. The excitations ® g are
inserted on a vacuum consisting of ®y . Using the values (p, ¢) in (2.17) leads to the respective Bethe
equations for the sector. Note that the SU(2) symmetry is broken for the mixed sector.

where the sums run over all spin-chain sites as well as all permutations o of the K excitations,

which are inserted at the sites n; as indicated in the ket state. In particular, the twisted

boundary conditions enter only implicitly through the Bethe roots u;. The normalised state

is then given by [53, 54]

_ )

- 9
\/Q H](U§ + i) Hi<j Sij

where the Gaudin norm G is defined as the logarithmic derivative of the Bethe equations,

Bk

(2.21)

which is again independent of the twist factors. For the reader’s convenience, we spell out
the Gaudin norm in the SU(2) sectors, which explicitly reads

dlog(e®iL 1.4 S(us,
G =Det ¢, b= —i og(e 1;;;&1 (g, w)) )
uj

(2.22)

We see that the only effect of the twist v* is the introduction of phases w*®~? and w*?
to the Bethe equations (2.17). It will therefore be useful to distinguish a few archetypical
SU(2) sectors in the orbifold theory generated by (2.3), which we also list in table 1. We
chose the bifundamental vacuum ®y = X here but one may always exchange vacuum and
excitation fields at the cost of exchanging highly and slightly excited states.

SU(2)g sector. The orbifold action preserves an SU(2)r symmetry between X and Y, and
similarly for their complex conjugate fields. One may therefore study the scenario &y = X,
®p =Y (or any SU(2)g-rotation thereof) and consider states of the form

try*Y 172l X1 4 permutations (J1 >0,J2<0). (2.23)

These operators have the SO(6) charges (Ji, J2,0). The spectrum can be found from the
Bethe Ansatz equations (2.17) with p = ¢ = 1. The boundary condition is periodic and
hence the Bethe equations are given by

Y Rl
ewl I Sj=1, P =][em =ut, (2.24)
j=1,j#i j=1

where the twist only appears in the constraint for the total momentum P.

,10,



SU(2)r sector. We may also consider operators consisting of fields X and Y. The SU(2)-
symmetry relating these fields is explicitly broken by the orbifold action (2.3). When
considering operators of the form

try*Y 2 X7t 4 permutations , (J1 >0,J2 >0), (2.25)

we therefore find a phase in the Bethe equation for excitations

Jo
zij H S] ;= w e’LP — H ei — wk . (226)
J=1,j#i j=

Note that, in the special case of the Zy orbifold, the Bethe equations of the SU(2)r and
the SU(2)r sector coincide.

Mixed SU(2) sector. Finally, we could also consider operators consisting of fields X and
Z (or similarly Z). In the original N’ = 4 SYM theory these fields also form an SU(2)
sector. However, in the orbifold theory this symmetry is broken and now mixes adjoint and
bifundamental representations. Like in the sectors considered above, single-trace operators
take the form

try* 23 X7t + permutations (J1 >0,J3>0). (2.27)

Building the state on top of the bifundamental vacuum the corresponding Bethe equations read
bifundamental vacuum: il H Sji=uwk, et = H ePi = k| (2.28)
j=Lji '

For later convenience, let us also give the Bethe equations for excitations on top of the
adjoint vacuum. In this case the Bethe equations read

J1 Jl
adjoint vacuum: Pk H Sii=w™", et = H ei =1. (2.29)
j=Li#i ‘

This list exhausts the physically distinguished SU(2) sectors up to duality transformations.
As instructive example, let us analyse the spectrum of the N/ = 2 Zs-orbifold.

2.4 Spectrum of the SU(2) sectors for the Z5 orbifold

We will now construct some explicit states with two excitations for the Zs orbifold. Since the
untwisted sector descends directly from N = 4 SYM, we will instead focus on twisted-sector
operators. For the Z5 orbifold the twist factor is simply w = —1, and therefore the SU(2)g
and the SU(2), sector are characterised by the same Bethe equation, cf. egs. (2.24) and (2.26).
Let us define a basis of doubly excited operators of length L as

O = tr(y* @ p @], dpdy 7 7?). (2.30)

— 11 —
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Table 2. Single-trace operators in the SU(2)g and SU(2), sectors of the Zy-orbifold theory with
lengths L = 8,10 and two excitations. The Bethe eigenstates are given by linear combinations of
the basis elements Of’L defined in (2.30). The first operator BY' corresponds to a bound state. The
spectrum of the other operators is highly degenerate with energy F = 4 as the rapidities are related

through us = ﬁ.

For each length of the operator we have a set of 2| L/4| distinct operators. Considering the
mixing problem reveals a highly degenerate spectrum. The operator O(l)’L has energy® E = 2,
while all the other operators (9]1-’1‘, with 1 < j < 2|L/4] have the energy E = 4.

Even though the high degeneracy prevents us from finding good eigenstates from a
naive diagonalisation of the one-loop Hamiltonian, the Bethe equations know about higher
conserved charges present in an integrable theory. Choosing a basis of states according to the
Bethe roots additionally diagonalises the state with respect to those.* Solving the momentum
constraint from (2.24) for two excitations yields

12u1<wk+1)—i(wk—l> 1
C 2 2uy (WF—1) —i(wk+1) vz =

Uy = , (2.31)

T
with w = —1 and k = 1 for the twisted sector. We again observe a high degeneracy in this
subsector, as the energy (2.19) is E = 4 for doubly excited states, irrespective of their length
L. Solving the Bethe equation, it turns out that primary operators with two excitations
only exist for length L > 8. In table 2 the shortest possible primary operators are listed,
as well as their eigenstates and rapidities.

We can proceed similarly for the mixed SU(2) sector. The spectrum of operators carrying
two excitations is again highly degenerate with energy F = 4. Primary operators with two
excitations exist for length L > 6. In table 3 the shortest possible primary operators are
listed, as well as their eigenstates and rapidities.

We delegate a complete list of twisted-sector Za-orbifold states with two (equal) excitations
and length L < 10 to the appendix A.

3 Three approaches to three-point functions

The aim of this article is the calculation of three-point functions involving non-BPS operators
in orbifold theories at weak coupling, where we can compare integrability based approaches
directly to gauge theory.

3This operator corresponds to a bound-state and is solved by the Bethe string u; = —up = % These
operators exist in the SU(2)z,r as well as the mixed SU(2) sector over the bifundamental vacuum. Although
interesting in their own right, we disregard these operators when considering three-point functions, as the
nature of these Bethe solutions complicates the evaluation.

“We thank Paul Ryan for clarifying this point to us.

— 12 —



L Eigenstate FE Uy U

I €2N o =0y 2| i ¥i
1,6 _ 1,6 4 -~1L6 1 1 1 1
8 | veclt =010 +io)0 | 4 | 214 | 41— L

Table 3. Single-trace operators in the broken SU(2) sector of the Zs-orbifold theory with lengths
L = 6,8 and two excitations. The Bethe eigenstates are given by linear combinations of the basis
elements (’);-C’L defined in (2.30). Also in this case there exists a bound state operator ¢yt while the
spectrum of the other operators is highly degenerate.

To this end, it will be necessary to consider operators at different points in 4d spacetime.
Superconformal symmetry allows us to transform any configuration of three points to a
collinear configuration, the only necessary transformation now being a translation along the
line. Take for example the translation operator

T = —iega P . (3.1)

Its non-trivial action on Qg‘ and S% suggests that this translation breaks the supersymmetry
remaining after light-cone gauge completely (2.11). However, one may salvage half the
supersymmetry by acting simultaneously with an R-symmetry transformation, resulting in
the “twisted translation” [20]

T = —ieaa P + eqa R (32)

Since the adjective “twisted” has already been used to describe sectors of orbifold theories,
we will henceforth refer to this operation simply as translation, keeping the additional R-
symmetry rotation implicit. We note that a diagonal combination of the two PSU(2|2)- factors
remains unbroken under translation by 7. This subgroup is spanned by generators of the form

Rab —_ ab + R('lb7 ‘Caﬁ — Ocﬁ + LdBv

Qaa _ Qaa + ieaﬁ,eabséﬁ 7 Saa _ Saa + ieal}eaﬂQBba (3.3)
and is called the hexagon subalgebra in reference to the hexagon formalism [24] which uses
this remaining symmetry algebra to bootstrap three-point functions. We will review the
hexagon formalism in section 3.3.

As we are restricting our attention to scalar operators, it will be useful to illustrate
the effect of the translation 7 on the scalar fields explicitly. The adjoint scalar fields of
N =4 furnish an antisymmetric representation of the SU(4) R-symmetry, which sits in the
lower-right quadrant of (2.11). We choose a representation

0 oy D P
o6 — —dy 0 P Pr (3.4)
—i)T —<i>L 0 oy

—&r, —Pr -0y 0
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We then observe that the translation 7 acts non-trivially only on the following fields
T: @L%‘fv, ‘iL%—‘iv, ‘bv%‘I)L—i)L. (35)

This action justifies our nomenclature in terms of the vacuum field @y, the longitudinal
field ®;, and the transversal field ®7 w.r.t. the translation at hand. In N = 4 SYM we
could of course make an arbitrary identification of these fields as (combinations of) the
usual complex fields X, Y and Z and their conjugates. However, as we already observed
in section 2.2, the choices of vacua in the orbifold theories are distinct, so we will for now
stick to this generic naming scheme.

Having outlined the necessary translation operation, we may exponentiate it to move
operators to finite separations

O(t) = eTO(0)e 7. (3.6)

Again the action on scalar fields will be of key interest. Due to the nilpotency of €qq R
the series expansion terminates at second order

~17 aa 1 cé 1 . / t2 : . 3
(I)bb(t) _ eteaaR (I)bbe—tec,zR — CI)bb + teaa[Raa, (I)bb] + geadecé[RCC, [Raa, CI)be _ (3.7>

In particular, we can work out the translated bosonic fields ci>bi’(1§), which read

@T(t) = q>T7 i)T(t) = (I)T,
Dp(t) =P+t Dy, OL(t) =By —t Dy, (3.8)
By (t) = By +t(By — ) + 2 Dy, Dy (t) = Dy .

This allows us to set up a useful basis of three-point functions preserving a PSU(2|2)-symmetry.
Note that the translation mixes single-trace operators with certain “descendant” states in the
same superconformal multiplet, related by R-symmetry. This approach is tailored towards a
description of states in terms of their Bethe-roots where the actual field content of the operators
is secondary. Essentially one may always change the field content by adding excitations
with vanishing energy and momentum to the spin-chain picture. Moving on to three-point
functions, the translation 7 then ensures that an appropriately R-rotated descendant is
present at each point to make the overall configuration an R-symmetry singlet [20]. We can
then identify the structure constants for all R-symmetry conserving combinations.

We will now use three approaches to evaluate them at tree level: field theory, spin-chain
overlaps and the hexagon formalism. We will review these methods and their application to
N =4 SYM in the following, commenting on their applicability to orbifold theories.

3.1 Wick contractions

In the field-theory calculation we simply perform planar tree-level Wick contractions. As
observed above, the translation (3.2) rotates some of the fields into each other. We may
determine the effective propagators of the translated fields (3.8) by performing standard
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Wick contractions:
~ d 1 = 1
<<I>T(ti)q>T(tj)> = ma ' j Vram——
~ ~ 1 =~ ~ 1 ~ ~
(@rt)Bv (1)) = — o (@L(t)®y (1)) = ———, (Dy(t)By(t)) =1.
(3.9)
A tree-level evaluation of correlation functions can now be performed by doing Wick con-

tractions and using the SU(N) trace rules

tr (T A) tr (T, B) = <tr (AB) — %tr (A)tr (B)) ,
) (3.10)
tr (T°AT,B) = (tr (A)ir (B) — tr (AB)) ,

where T are the generators of SU(N). This method is tailored towards N'=4 SYM and
moving on to orbifold theories, we will have to take into account the more intricate gauge
structure. One may decompose the SU(M N) representations as in (2.4) and contract strictly
fields which transform under the same gauge groups. This yields the same results as a more
implicit prescription due to [43] where we work at the level of SU(M N)-representations and
keep track of commutations with the twist operator .

3.2 Spin-chain overlap

The spin-chain overlap method makes use of the coordinate Bethe Ansatz for the evaluation
of correlation functions. In [19] an elegant integrability-based framework was developed for
three-point functions. The evaluation can even be used to read off the tree-level hexagon
form factor, cf. the construction in [20] for one-magnon states. In principle it can also
be lifted to loop corrections by inserting Hamiltonian densities at the splitting points of
the spin chains [55, 56].

For the purposes of this paper, if suffices to use blunt tools. To set the scene let us consider
correlators featuring two non-BPS operators and one BPS operator in N' = 4 SYM. The
BPS operator we refer to as reservoir and it consists of the field ®y only. Hence, it can have
contractions with vacuum fields and longitudinal excitations from the non-BPS operators.

The non-BPS operators are described by their wave function (2.20). For example the
two-particle state may be abbreviated as

wﬁlgn = ei(anrmq) + ei(anrmp)SP’q ) (311)

The overlap can be calculated by summing the product of the two operator wave functions
over all possible contractions. Furthermore, we will dress the phase factors with their
propagators (3.9), e.g. when we contract an excitation o sitting at point ¢; on a vacuum

field @y from an operator at ts, the corresponding factor is tli = Since the translation (3.2)

mixes vacuum and longitudinal fields, we need to distinguish different cases in the evaluation.

Transversal excitations. We consider two operators carrying transversal excitations. The
first operator is at t1, has length L1 and two excitations ®7, while the second is at t5 with
length Ly and two excitations Dy Further, we consider a vacuum of length L3 at t3. In
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9] ——————— 0, ——————+——+—
2 2 1,3, @ I 1

Figure 4. Three-point functions can be calculated from spin-chain overlaps summing over all possible
contractions. Left: for the transversal excitations only conjugate fields can be contracted. Right:
the longitudinal excitations can either be contracted on the translated vacuum or on their conjugate
counterpart (contact terms). We also marked the position of the twist operator in a twisted-twisted-
untwisted three-point function in the orbifold theory.

the spin-chain picture, the excitations can propagate freely over the chain. Since the fields
are transversal, ®p can only be contracted on an excitation ®7. Hence, in the overlap, we
only have contact terms, as depicted on the left side of figure 4. In the notation of [20],
the overlap is then given by

D1,P2 4 ¢£3’P4 +1.L +1
000 ni,n2 2—N2 ,L2—N1
Cos, =NiNy Y ’ S : (3.12)
1<n1<n2<li2 12

where ¢19 = (L1 + Lo — L3)/2 is the number of tree-level propagators between the operators
at t1 and to and t19 = t1 — to their physical distance. The factors N1 and Ny are the
normalisation factors of the respective operators as given in eq. (2.21).

Longitudinal excitations. As the longitudinal excitations ®, and o 1, can also be contracted
on the vacuum, we have to consider two cases; either both operators carry different excitations,
i.e. 7 and @7, or they carry only one kind. In the first case, the fields can be contracted
on the translated vacuum ®y as well as producing contact terms, as depicted on the right
side of figure 4. Hence the excitations move independently over the spin chain and the
overlap is given by

i o o
1,12 1,12 1,12
Cora, =NNa| 30 =4 > mm4 Y 2
1<ni<ng<fip 12 1<n <0, 12713 L1a<ni<nz<Ly 13
l1o<na<Li
DP3,P4 P3,P4 D3,P4
mi,msa mi,mo mai,ma
P D Dl vk D o
1<m1<ma<la3 23 1<m <ty 23721 lag<mi<ma<La 21
lag<mo<Lso

(3.13)

Finally, we consider the case with excitations @7, on both operators C§ e, - Since there

is no propagator between two fields @y, there cannot be any contact terms. Therefore,

we have to subtract these terms. For the reader’s convenience we give this rather bulky
expression explicitly in appendix B.
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If we want to apply this technology to orbifold theories, we are faced with the same
subtleties about gauge representations we had to consider in the approach using Wick
contractions. Furthermore, when we consider three-point functions involving twisted operators,
we have to take into account the commutation of fields with the twist operator. Take for
example the three-point function of two non-BPS twisted operators (with twist numbers k
and M — k, respectively) and one BPS untwisted operator. In each twisted operator, the
twisted boundary condition is placed between the sites L and 1, i.e. depending on the sector
a factor w is picked up, when an excitation moves from site L to L + 1 (cf. figure 4). It seems
worth noting that with this placement no explicit twist appears in the following evaluation.
The twist only enters through the Bethe roots as solutions of the twisted Bethe equations.
We will see this pattern reemerge in discussing the hexagon formalism in the next section.

3.3 The hexagon formalism

Although the hexagon formalism was already outlined in the introduction, let us provide some
formulae for the evaluation of a sample three-point function in N' =4 SYM. For simplicity,
we consider the correlator of one non-BPS operator B with two BPS operators O. The
operators are described in the integrability picture, so cutting an operator corresponds to
cutting a Bethe state. Considering for instance two excitations, there are four partitions
a,a with a U @ = {u1,us} over which the hexagon has to be summed. The sum is weighted
by the splitting factor [19, 20]

pela, @) = H et H Sp;.pr - (3.14)
kEa
The parameter ¢ measures the length of the sub-chains after cutting. Moreover, for the

three-point function we have

LiLoL3 (— 1)l _ _
== - h h 1
(B101,01L;) GS1s > P Py (o, @) (hla) (hla) , (3.15)

aUa={u1,u2}
where the hexagon form factor is (h|a). Its explicit evaluation reveals a combination of the
matrix elements of the su(2]|2) S matrix [21] and the scalar hexagon dressing factor [20].
For instance, at tree-level the zero-, one- and two-particle form factors for longitudinal
excitations are given by

U1 — U2

(hi{}) =1, ({®er(w}) =1, (h{®r(u1), L(uz)}) = (3.16)

Ul — U2 — 7 '
For the evaluation of more general form factors we refer to the original literature [20].> The
edge width /15 is given by the number of tree-level propagators between the operators B and
Or,. As before it is given by ¢19 = (L1 + Lo — L3)/2. The expression in (3.15) is valid for
asymptotically large operators. To compute finite-size corrections, full sets of virtual particles
need to be inserted on the edges of the cut worldsheet [20]. This Liischer-like approach allows
to evaluate the finite-size contributions order by order in the coupling.

A further review is given in [57], of which we use, in particular, the conventions fixed in appendix A.
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The generalisation to more operators carrying excitations is straightforward, though
one has to deal with a growing number of partitions. To evaluate the form factor, all
the excitations need to be brought to the same edge. This is achieved through crossing
transformations. Working out the hexagon formalism for orbifold theories will be the focus of
the next section. The emerging formalism is very similar to the one of N' = 4, with only two
differences: first of all, the rapidities entering know about the orbifolding as they are solutions
to the twisted Bethe equations. Secondly, when cutting the Bethe state one has to keep track
of the twist. Depending on the considered sector and its Bethe equations, excitations may
pick up twist factors when they move from one hexagon to another.

Let us illustrate this effect with a simple two-magnon state and then generalise to
arbitrary states. In our conventions (see figure 4 and (2.30)) the twist v* is located between
the L-th and the first site of the chain. Cutting such a state into chain segments of length ¢
and ¢ = L — ¢, the excitations move from one chain to the other without picking up extra
twist factors w. Explicitly and similarly to (3.14) for a two-particle state we have

B~ [p1,p2), ® [0)7 + €72 |p1), ® |pa);

ip14 i(p14p2)l (317)
+ PS5 po |P2>z ® |p1>g7+ e b2 |O>g b2y |p1,P2>z .

Here, the excitations are moved “to the right” along the chain by ¢ sites from the first to
the second segment. We can now multiply this equation by e~ P1P2)L,fPL — 1 and use the
Bethe equations (2.17) as well as the orbifold invariance condition w*(L=2P+2k@ — 1 to obtain

B~ |p1,p2), ® |0) + wFPDS, be P 1), ® [po);

)i @ P2tz (3.18)
+ WDl ) @ |pr); 4+ w2 PTD e PRI 0) @ [py, o)

This can be interpreted as the excitations being moved to the left by ¢ sites. When moving over
the twist v¥ between the L-th and the first site, each magnon picks up their respective twist
factor w*(P=9)_ We thus observe that internal consistency of the Bethe equations immediately
dictates the appropriate twist factors when moving magnons across the hexagons. In general,
shifting magnons either to the left or to the right results in splitting factors which are related as

H eipit H Sp,px = wklel(p—a) H e~ st H Spyeps » (3.19)
jea j<k jea >k
kea kea
where the additional twist factor is apparent. In an explicit calculation we may decide
on a direction to shift the magnons and then evaluate whether twist factors are needed
according to these consistency conditions. In the following sections, we will always assume
movement of magnons to the right.

Although the overall accounting of the twist factors is fixed by consistency, the basis
choice (2.30) and position of the twist operator is conventional (at least at tree-level). Different
conventions for the placement of twist operators within the traces are related to ours by
overall phase factors which cancel out in appropriately normalised three-point functions.
One may even consider more exotic conventions, such as splitting the overall twist operator
as v* = ~*0yke and keeping the twist 7% between sites L and one, while we move ~*¢ by
{ sites, i.e. to the right of the first segment. This results in a phase w kPt (a—p)(lal+lal)

,18,



Additionally, the magnons now pick up a twist factor w*%/(¢=P) when moving over the edge
with twist v*¢. This allows us to formulate a splitting factor for general configurations of
twist lines 7% and 7* between the two segments®

plze (ar, @) = wRePtt(a=p)lal) kelal(a—p) H etpit H S,

§,Pk
jea gk
kEa
3.20)
_ ., —ke(pt+|al(g—p)) ip;l (
=w 1_16J HSpj,pk'
jea gk
kea

Moving the magnons to the left instead, respective factors for crossing the twist v*0 are
picked up. Again, the Bethe equations together with the orbifold invariance ensure the
equivalence when moving the magnons.

The above self-consistent prescription for orbifolded hexagons at tree-level is directly
motivated and supported by the twisted Bethe equations known from the spectral problem [43,
44] . Tt is therefore straight-forward to extend our prescription to higher-rank sectors and
other twisted scenarios like the 8- and v-deformations of N' =4 SYM [35]. The same strategy
for computing the three-point functions may be applied: we choose a basis of operators
solving the twisted Bethe equations, determine where the twist lines are positioned and
whether twist factors analogous to (3.20) have to be included in the splitting factor, then
apply the usual hexagon construction. In the following we will consider a few simple SU(2)
sectors for simplicity but would like to emphasise that our prescription can be generalised
directly. We will comment on this possibility again in the conclusion.

4 The hexagon for orbifolds

In this section, we will set up and evaluate three-point functions in orbifold theories via
the hexagon formalism [20]. We will use the simplest N' = 2 Zs-orbifold theory as an
instructive example but comment on the generalisation to Z,; orbifolds. In order to check our
computation, we compare the results explicitly to tree-level gauge theory. This comparison
is slightly complicated by the fact that the translation 7 (3.2) which preserves a PSU(2|2)
symmetry in NV =4 SYM and is used to set up three-point function calculations does not
commute with the orbifold twist. In fact we can see by comparing with (2.13) and (2.14)
that all supersymmetry is broken when choosing the adjoint gauge (®y = Z, &, =Y) and
only a diagonal PSU(1|1) group remains when choosing the bifundamental gauge (®y = X,
o, =Y)"

When applying a naive translation (3.6) to a generic state, we therefore generate a bunch
of states that do not close into traces of the same gauge group and have to be discarded
as unphysical.® Alongside these we also generate physical states that do not belong to
the same superconformal multiplet anymore. This results in a superposition of three-point

5Note that this equation also holds if no twist operator is moved to the right, i.e. k; = 0.

"We have been careful to separate the notion of vacuum, transversal and longitudinal fields (v, D7, Pr)
from explicit fields (X,Y, Z), which transform differently under the orbifold action (2.3). The “gauge choices”
performed here determine the relative orientation of translation and orbifold action and lead to physically
distinct scenarios.

8In the language of [52], the finite translation is uplifted to a finite groupoid transformation.
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functions involving various multiplets. The hexagon formalism now seems to yield the
structure constants of individual components of this superposition, which are R-symmetry
singlets under the reduced R-symmetry. However, a comparison to the gauge theory is now
complicated by the plethora of multiplets involved.

If we want to test the hexagon proposal against gauge theory and spin-chain overlaps,
we may now follow two possible strategies. We can keep setting up three-point functions by
employing the translation 7 and consider operators for which the descendant structure is
reasonably simple. This approach shows great benefit in the bifundamental gauge where a
PSU(1]1) is preserved. The other possibility is to abandon the translation operator 7 and
to ensure R-symmetry conservation “by hand”. To this end we pick particular operators
inserted at 0, 1 and oo along a line in spacetime and make sure they can be contracted
completely. This comes at the benefit of probing individual structure constants directly
without the need to disentangle a superposition of three-point functions, but requires a large
amount of bookkeeping when tabulating three-point functions. This approach is natural to
the discussion of the adjoint vacuum where all supersymmetry is broken anyway, so both
strategies would require the same amount of effort.

We will first consider the structure constants of SU(2) sectors in the N = 2 Zs-orbifold
theory in bifundamental gauge. In this special case, we may exploit the additional SU(2)-
symmetry between the X and Y fields. This makes a discussion following the first strategy
feasible. If we instead choose the adjoint gauge, we face a less symmetric situation in which
the second strategy seems more straightforward. We then comment on Z,; orbifolds and
show how particularly easy three-point functions can be evaluated and matched. In all
explicit examples, we find complete agreement of Wick contractions, spin-chain overlap and
the hexagon formalism.

4.1 7o orbifolds in bifundamental gauge

The operator spectrum of the Zs orbifold consists of an untwisted and a single twisted
sector. This implies that the superselection rule (1.1) only allows for two possible sector
combinations in the three-point function

(0°0°0°%)  and  (0'0'0"). (4.1)

We will be particularly interested in the second case involving two twisted and one untwisted
operator.

Choosing the bifundamental gauge, we have the following sets of unbroken and broken
R-symmetry generators (cf. (2.14))

unbroken: {R'1,R%, R'{, %y, R'{,R'|, R%, R%,}
broken: {R'5, R*,R';, R?| R* R'5, R, R},

(4.2)

where the underlined generators are only unbroken in the Zs orbifold due to the symmetry
enhancement w = w™! = —1 in (2.14). As the R-symmetry component of the translation
T (3.2) is build from precisely these underlined generators, it preserves the multiplet structure
of scalar operators without any mixing, see figure 6. It is easy to see that any other gauge
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Figure 5. For three-point functions in orbifold theories involving twisted operators, we have to
introduce twist operators into the external traces. Here we consider a twisted-twisted-untwisted
correlator and extend the twist along the orange line. Moving the twist over the spin chain, it can
be moved to either hexagon. Magnons may pick up a twist factor w”* when they travel over an edge
carrying twist. In scenarios with three twisted operators, the twist lines meet as in figure 3 and
generate the superselection rule (1.1). One may then resolve the vertex into two separate twist lines
connecting e.g. oy with ag and «ay with ag, respectively.
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Y, <:—u. X12 — Z11
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Y21 ‘:—u. X1 h— Z3

Figure 6. The algebroid structure of the bosonic part of the hexagon subalgebra (3.3) (orange) for
the Z, orbifold. Broken and unbroken R-symmetry generators Ry and R, are taken from (4.2).

choice would lead to a mixing of representations under translation. By fixing the translation
operator 7 (3.2) and the vacuum field & = X we have implicitly also fixed the longitudinal
field ®;, = Y. In terms of the SU(2N) matrices (analogously to the notation introduced
in (2.4)), we may decompose the translated scalar fields as

N Zi 0 - 0 Yio +tX
2t = 11 ’ (1) = R 2]
0 Za Yo1 + t X0 0
B ~ (4.3)
(1) = 0 X1z +t(Yi2 — Yi2) + t* X1z
Xo1 +t(Yar — Ya1) + 2 X0 0

We indeed observe that there is no mixing between bifundamental and adjoint fields. Fur-
thermore, the translated fields satisfy the same twist relations as the untranslated fields.
Explicitly, we have
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Therefore, translating an operator from the twisted sector results in another twisted sector

operator
Ot) = T O 0)e T = tr(y 14 Pazaz  parar) (4.5)

with the fields ® satisfying the same twisted boundary conditions. In this sense the bifunda-
mental gauge is well-behaved because translated operators transform homogeneously under
the orbifold projection, meaning that no unphysical configurations need to be projected out.
We may compute some simple three-point-functions by inserting SU(2)-sector operators at the
origin and translating them to the points of interest. As they will remain in their multiplet
under the action of the translation, performing gauge-theory calculations for correlators
involving such operators is straightforward.

The hexagon form factor can be bootstrapped from symmetry [20]. The symmetry
preserved by 7 is a diagonal psu(2|2)p subalgebra — the hexagon subalgebra introduced
in (3.3). The R-symmetry part of the hexagon subalgebra is given by

{R"1 + RY{,R% + R%,R's + R'5, R*| + R%}, (4.6)

and we see that this diagonal su(2)p is broken — and hence the term hezagon subalgebroid
might be more suitable [52].

We shall now assume that the hexagon form factor is blind to the colour structure of
the excitations involved. Observations indicating this were made in [30], where the hexagon
result had to be dressed by SU(NNV) colour factors to reproduce field-theory results. Imposing
that the hexagon form factor preserves the (otherwise broken) PSU(2|2) symmetry leads
to the same bootstrap equations as in [20]

(hlg|¥) =0, Vg € psu(22)p, (4.7)

for any (off-shell) state |¥). Omitting the colour indices, the algebroid coproduct (2.9)
becomes the standard coproduct. This fixes the one- and two-particle form factors and can
be generalised to arbitrary many particles. It takes the same form as in [20] and can be
written relatively simple in terms of the S-matrix elements [21] and the hexagon dressing
phase. In order to construct three-point functions, we need to glue together two hexagon
form factors as in (3.15), which is demonstrated in figure 5. As mentioned above, when the
state is cut, we need to keep track of magnons moving through the twist operator, resulting
in additional twist factors in (3.20). By moving the twist over the spin chain, we can make
sure that it is for instance always on the front hexagon (see also figure 1 in [38]). This and
the modified Bethe roots are the only changes we impose on the hexagon formalism.

Under this premise, we can exactly reproduce tree-level gauge theory as well as spin-
chain overlap predictions, as we will show momentarily. We take this as first evidence in
favour of the proposal made in section 1. This result is not surprising taking into account
the observations from spin-chain overlaps in section 3.2, where the twist also only enters
implicitly through the Bethe roots.

4.1.1 Three-point functions with two twisted operators carrying magnons

Having set up the formalism in the preceding sections, let us present here some explicit results
for three-point functions between two excited states By, B2 and one groundstate Oy, of length
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Correlators L=2 4 6 8 10
(BLBYPor) | —av2 | 0 | VB | B2 | 0
(BB OL) 0 0 | V6| 22 | o0

1,10 11,8
<Bj: Bl OL> _5+\3%/6 246 % 6\/§3+x/§ g
< 11031,80L> 5—\2@\/6 26 % 6\/55\/5 g
< 11081 100 > —6v2 4 % —3v2 |3 g
<Bl 1081,100 > 0 4 3 % ) %

Table 4. Set of three-point correlation functions with operators of different lengths. The length-L’

operators Bi"L are in the twisted sector and each carry two excitations Y, whereas Oy, is an untwisted
vacuum of length L.

Correlators L=21|4 6 8 10

18 1 V5
< "By OL> 0 10] % | V2| 35
<B§E1°B Oy | 0 o o |0 |-/3
(BLBYoL) | 0 o] o | o0 5
<Bi106i100 Yoo ol =& vz o

Table 5. Another set of correlators. The twisted operators Bli’Ll carry two excitations Y, while the

twisted operators BAli’L/ carry two excitations Y. Again, O, is an untwisted vacuum of length L.

L. Here, we will consider SU(2)-sector states introduced in section 2.4 and appendix A. We
choose to bring the excitations over the same edge £15. The explicit hexagon formula reads

(B1B201) ~ 60,K mod M X

(—1)loalHlaz| - B ) B (4.8)
> P (01,81) pro(02,32) (hlen, G, ) (b, {3, 00)

arUar={u1,u2}

asUao={us,u4}
where the physical hexagon edges «;,q; are indicated as in figure 5 and the factor of
proportionality is given by the standard normalisation ,/ % for the hexagon. Due
to the Bethe equations (2.24) we can use the splitting factor pg,,(c, &) from (3.14). Further,
as mentioned in (1.1), the correlator has to have vanishing total twist K mod M = 0 where
K = k1 + ko + k3 is the sum of the twists k; of the individual operators.

Longitudinal excitations. Let us begin by considering operators with longitudinal excita-
tions. For this we use two twisted operators as given in table 2 carrying two excitations each
as well as an untwisted vacuum Oy, of length L = 2,...,10. We evaluate these three-point
functions using Wick contractions, the spin-chain overlap and the hexagon formalism, finding
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Correlators L=2 4 6 8 10
42 4 -3 0

0 0 NE] 0

< )
{ )
(ci*eifoL) [ 3+2v2 | F3-2vB | VB£VE| Fv2
< )
)

o ol o O

3F2V2 | 23 -2V3 | V3F V6 | —FV2

—6v/2 8 —5,/3 32 | —y/3
(ck*ctfoL) || o 0 Vi -2 | B

Table 6. Set of correlators with operators carrying transversal excitations. The twisted operators
Ci’L carry two excitations Z, while the twisted operators Ci’L carry two excitations Z.

agreement in all cases considered. Table 4 lists the results for both operators carrying the
same type of excitation Y, while in table 5 the first operator features Y and the second
carries excitations Y. The time-consuming step in these calculations is the evaluation using
Wick contractions, of which our examples involve up to fifteen.

Transversal excitations. The set up here is similar to the case before, though here we use
the operators from table 3 carrying transversal excitations. The splitting factor plj is again
given by (3.20) with k; = 0. In table 6 we collected results with the first operator carrying Z
and the second operator carrying Z excitations. Again we find agreement between tree-level
Wick contractions, spin-chain overlaps and the hexagon formalism for all examples considered.

4.1.2 More general three-point functions

The generalisation to more complicated correlation functions is straightforward. As an
additional example let us consider three non-BPS operators. As before two operators carry
orbifold twist and one operator is untwisted. Here we consider the twisted operators with
one longitudinal excitation each, i.e. 0¥ = tryY X~ which will have momentum p = 7
and rapidity u = 0. The untwisted operator will be a non-BPS operator of length L = 4
with two excitations and is given by

1
B = —(0p* — O, 4.9
(05" - ot (1.9
Its energy is F = 6 and the rapidities are u; = —ug = —%=. The results of the correlators

2V/3
consisting of these operators are listed in table 7. Again we find agreement between the

results from gauge theory and the hexagon formalism. Note that the correlation functions

1,L

vanish if the lengths of the operators o' " are not identical.

4.2 The hexagon for general orbifolds

Trying to use the adjoint vacuum for the Zs orbifold turns out to be more challenging. In
this section we discuss the obstacles we face in the construction of translated gauge-theory
states. In response to these, we may consider abandoning the translation 7 and setting
up three-point functions by hand. It is important to discuss these issues extensively here,
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Correlators L=2 4 8

6
(39012} | 6 |12 | 52 | 26

Table 7. A simple example for correlation functions of twisted and untwisted operators all carrying

1,L

excitations. While the twisted operators o!** carry one excitation each, the non-BPS operator B%4

carries two excitations.

because for higher-order Z; orbifolds, the additional SU(2)-symmetry over the bifundamental
vacuum is lost and we are faced with the same issues independent of gauge choice.

The first thing to notice is that for the adjoint vacuum the translation 7 (3.2) is a broken
generator. Therefore, its action changes the gauge indices of the fields and the algebroid
coproduct (2.9) should be used when acting on a multi-particle state. Following the procedure
in [52], the trace needs to be cut open and we have to sum over all cut locations. Acting
once with the broken generators leads to unphysical intermediate states that cannot close.
However, acting multiple times may lead to physical states which are however not necessarily
in the same superconformal multiplet as the original state.

Let us illustrate this for the adjoint vacuum of the Zs orbifold. Recall that we have
(Y, Z) ~ (w™'Y, Z). Acting with the translation on a single field component, we obtain

Zn = Z(t) = Ziu +t(Vig — Yi2) + 2711,

- . (4.10)
Y12 — Y(t) = Y12 + tZH ,

and we see that fields in the adjoint and bifundamental representation mix. Acting with this
translation and following the rules given in [52], we project down to the allowed colour index
structure only at the end when closing the trace again. Since not all field configurations are
allowed, there are no effective propagators (3.9) in this case and Wick contractions have to
be carried out for individual component fields. Some of the resulting expressions are not
even invariant under translation, due to the explicit appearance of ¢ in (4.10). We attribute
these difficulties to the modified multiplet structure of the orbifold theory. Considering
for example a translated twisted vacuum state, we find among many terms some physical
configurations carrying two fields Y as

tr’yZ(t)L =...+ t2t1‘(' L1 Y19290 - L9 Y1411 - - ) + ... (4.11)

Index structure aside, such a state would be allowed as a vacuum descendant in N = 4 SYM.
Accordingly, the excitations would have vanishing momenta. However, for this choice of
vacuum in the orbifold theory, there are no descendants that carry two fields Y. Solving

the Bethe equation e?1(L—1) —

—1 as pa = —p1, the solution is p; = /(L — 1) and hence
non-vanishing, in contrast with N’ = 4 SYM. In the orbifold theory, this state belongs to
a different superconformal multiplet than the vacuum state.

Even though the trace closes under the gauge index structure it seems that the broken
translation generates a plethora of states from other multiplets. Let us make this more
explicit by considering an example of a twisted vacuum operator of length L = 3, i.e. tryZ3.

Under the action of the translation, this operator becomes

try Z(t)? = try 23 + (6trnyYZ —6tryYY Z — 6tryYY Z + thZZ) +0(th.  (4.12)
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We see that already the term tryYY Z is a non-BPS state (cf. operator B%3 in the list of
states in table 12 of appendix A). Similarly the other terms are in general non-BPS, and their
integrable description would be governed by more general Bethe equations [44]. When we
calculate a three-point function involving this operator we would obtain a linear combination
of more elementary three-point functions. To match field theory calculations to the hexagon
predictions, we therefore need to project out states that are not descendants of the original
operator after acting with the translation. We will consider examples for such three-point
functions in the following section 4.2.1.

One may now raise the question whether an R-rotated translation along the lines of (3.2)
is a sensible operation in this context. If we have to project out essentially all operators, we
may as well insert operators by hand and check R-charge conservation by inspection. This
allows us to compute the individual structure constants and match them to the hexagon
predictions. Unsurprisingly, both methods lead to the same results.

If one wants to salvage the strategy using translations, it is worth noting that the
projection to the correct multiplets is to some extent already implemented in the gauge theory
calculation. If we strictly move the operators of interest to t = 0, 1 and oo, the first one will
remain unchanged, the last one will consist purely of ®y-fields and there will only be certain
components of the operator at t = 1 that can contract nontrivially. Similarly, a restriction to
a subset of operators can further reduce the number of possible contractions.

For higher-order orbifolds, a good example of this phenomenon is the SU(2) g-sector which
we may align with transversal excitations over a bifundamental vacuum. The hexagon results
agree straightaway with Wick contractions in this case. To illustrate this observation, we
collect some exemplary three-point functions for the Z3 orbifold in section 4.2.2. This is similar
to the observations made in [35] for the - and y-deformation of N'=4 SYM and might be
due to a similar projection onto the fields X and Y for the three-point function in those cases.

4.2.1 Three-point functions in the adjoint gauge

Longitudinal excitations. As discussed above, the obstacle to performing field theory
checks is that the translation (3.2) mixes different multiplets. We will now consider a specific
setup that allows to project down to the three-point function we want to calculate. For this
we consider correlators with one twisted non-BPS operator B, one untwisted BPS operator
Oy, and one twisted vacuum O = try*ZL. Placing these operators at specific points, we
can make sure, that we do not generate mixtures of different multiplets.’ For instance, placing
the operator B at the origin, it is not translated at all. We move the twisted vacuum O® to
t = oo, which effectively turns all the fields Z(t) into Z. The untwisted BPS operator O,
can be inserted at a generic point on the line. The translation mixes the vacuum with its
descendents and the only selection rule is that the trace closes. We can now use the three
approaches from section 3 to evaluate three-point functions.

Let us give some explicit examples for the Zo orbifold in adjoint gauge. The shortest
primary operators of length L = 4,5 with two excitations are listed in table 8.

90f course, the structure constants will ultimately be independent of the positions of the operators.
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L Eigenstate E Uy
1,4
1,5 1,5 1,5
51 4/-202E£V2)By" = (1£v2)0,° + 01° | 4F2V/2 %i%

Table 8. Some examples for twisted Z;-orbifold states of length L = 4,5 with two excitations on top
of the adjoint vacuum. The momentum constraint yields us = —uq.

2 3 4

( ) 2 42 43

( ) 3 2V/15 2v21

( ) 4 4v/6 8v2
(50,047 - V310 £7v2) | /5(10 4 7v2)
{ ) VE@EVR) | 310+ 7v2) | 3\/(10£7V2)
<Bi50LOL4> \/3(2 +/2) \/5(10 +7V/2) \/14(10 +7V/2)

Table 9. Set of correlators involving two twisted operators and one untwisted operator. Here the
adjoint vacuum for the Z, orbifold is used. Only the twisted operator B* X1 carries excitations. The
length of the untwisted operator Oy, is for each correlator given as L = 2015 — L1 + L3.

Using the set-up described above, we can straightforwardly carry out Wick contractions
to evaluate three-point functions. The spin-chain overlap is in this case given by

P1,P2
ni,n2
CY° = N10o, K mod M E 2 (4.13)
1<ni1<ng <ty 12

where we already took into account, that the third operator is placed at t3 = co. Again, the
total twist K = ki + ko + k3 of the three-point function has to vanish, which is ensured by
the d-function. Finally, we can evaluate the hexagon form factor finding perfect agreement
for all the structure constants considered in table 9.

We can generalise the construction of this particularly simple set of observables from
Zo to any Zp;. The only difference being that the gauge indices run over a bigger set of
numbers. Let us give an explicit example for the Z3 orbifold. Using the adjoint vacuum,
the shortes operator we can build is of length L = 4 carrying three excitations. In fact,
the operator takes the simple form

BM = try*YYY Z. (4.14)

In the same manner as in section 4.2.1 we can perform the field theory and compare with the
hexagon result. We checked this for correlators with vacuum operators of length L =2,...,6
and found agreement in all cases, e.g. for L = 6 we find

(BH1007F1) = 2. (4.15)
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k Eigenstate Energy FE
B~ (1-iv3) ( ) (viT-1) (7-v17)
By ~i(VB+i) (54 V17) 05° + (1+iv3) (14 VIT) O} +403° | L (7+V17)

2 | B2 ~ (1 n 2\/3) ( ) (ﬁ - 1) 028 44025 | 1 (7 + V17
515 -1) (3 )0~ (1-8) (vt s0ft |4 (v

N DO~

Table 10. Shortest single-trace operators (not normalised) in the SU(2) g sector of the Zz-orbifold
theory with length L = 6 and two excitations. The Bethe eigenstates are given by linear combinations
of the basis elements (’)f’L. The operators of the twisted sectors k = 1,2 are related to each other by
complex conjugation of the coefficients.

Transversal excitations. Considering transversal excitations, the eigenstates coincide with
the eigenstates given in table 8. The calculation of three-point functions is straightforward
since we do not need to worry about the mixing of transversal excitations with the vacuum
descendants. In particular, we can consider cases in which only Z and Z fields in a translated
vacuum state are being contracted. For example, we can calculate the Z,-orbifold correlator

(BY'BY'04) =2. (4.16)

This can easily be extend to other correlators in this sector and even Zj; orbifolds. Using
the adjoint vacuum there are however at least M excitations involved, which makes solving
the Bethe equations and evaluating the hexagon quite cumbersome.

4.2.2 SU(2)pg sector in higher-order orbifolds

In order to present a simple application of the hexagon formalism to higher-order orbifolds, we
will now consider a gauge choice that aligns the unbroken SU(2)z-symmetry with transversal
excitations, i.e. ®y = X and &7 = Y. This corresponds to a different choice for the
orientation of 7 in (3.2). For concreteness, let us consider the scalar sector of the Z3 orbifold.
The construction of the spectrum is very similar to the considerations presented in section 2.3
and in section 2.4 for the Z5 orbifold, with the difference that we set w = ¢ in this case.
We restrict to transversal excitations over the bifundamental vacuum in the SU(2)pg sector.
Recall that the orbifold action on the relevant fields acts as (X, Y) ~ (wX, wY). In order to
write the one-loop eigenstates, we will use a short-hand notation as in eq. (2.30). Due to the
index structure of the fields the operators need to be of length L mod 3 = 0. For the twisted
sectors k = 1,2 we collect the shortest primary states in table 10. Again, the spectrum can
be found from integrability. Using the respective Bethe and momentum equation (2.24),
the corresponding Bethe roots can be worked out. The normalised eigenstate can then be
obtained using egs. (2.20) and (2.21).

As before, we are interested in three-point functions involving two twisted and one
untwisted operator. Let us begin with an overlap calculation and assume the following set-up:
the operator at position ¢ = 0 has excitations Y on top of the vacuum X. At position t — oo
we have a conjugate operator, namely Y on top of X. It is clear that the latter state is
described by the same Bethe equations with w — 1/w, as the fields carry opposite charge.
Finally, we have the untwisted vacuum (reservoir) at ¢ = 1 consisting of fields X.
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L 0 6 12
(BY°B*0L) | 1| 0609612 | 0
(BYBy°Or) | 1| 164039 | 0
(BY°By°0L) || 0 0 0

Table 11. Example of correlators in the Z3 orbifold. The operators Bf’g and Blf”g are in the twisted
sector with £ = 1,2 and carry two excitations Y and Y, respectively. The third operator Oy, is a
vacuum of length L.

We can evaluate correlators of this form by using Wick contractions (using the effective
propagators (3.9) irrespective of the gauge index structure involved) or the spin-chain overlap
formula from eq. (3.12). Some simple examples of correlators are given in table 11. As
discussed above, the excitations Y,Y are considered as transversal and therefore only contact-
terms contribute in the overlap. Evaluating the geometric sums of the overlap formula, yields
the corresponding hexagon formula for transversal excitations. Hence, the SU(2)g-sector is
governed by the hexagon form factor directly without further admixtures.

It is interesting to note, that we used the conjugate operator at the point ¢t = oo in
this construction. In the original hexagon construction [20], the excitations X would have
been placed on the vacuum Z at the origin and then moved by using the translation, cf. the
discussion around (3.2). However, such an operator cannot exist (not with this length nor
in the SU(2) g sector). Nonetheless, the hexagon reproduces the correct tree-level result. A
similar observation was made in section 4.2 of [35] for the [S-deformation of N' =4 SYM
and even checked at one-loop order.

5 Conclusions and outlook

In this paper we proposed a hexagon formalism for N' = 2 orbifold theories. It can be
seen as a modification of the N/ = 4 SYM hexagon formalism which takes into account
twisted Bethe equations and additional twist factors when taking particles from one hexagon
to the other. Although this proposal appears natural from a integrability point of view
(e.g. in view of [44, 45]), its validity should nevertheless be checked against gauge theory.
These tests turn out to be non-trivial already at tree level, due to the breakdown of the
PSU(2|2)-symmetry underlying the N/ = 4 case. The lesser issue is posed by the various
sectors into which the spectrum of the orbifold theories splits and which have to be taken
into account individually. The bigger issue is the breakdown of the R-symmetry rotated
translation (3.2) which was introduced in N'=4 SYM to preserve PSU(2|2)-symmetry. In
the N = 2 theories this translation does not commute with the twist and therefore becomes a
groupoid object in the language of [52], i.e. it mixes different superconformal multiplets. The
hexagon on the other hand only gives individual structure constants, making the matching
with gauge theory a daunting task. We nevertheless succeeded in this task for a variety of
examples, providing evidence for our proposal.

The operators we considered belong to different SU(2) sectors built on the bifundamental
as well as on the adjoint vacuum introduced in section 2.2. Although presented as a gauge
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choice, we should add that the operators built on the respective vacua are not related by
symmetries. The orbifold action distinguishes them via quiver winding number, twist sector
and energy spectrum, so we have to account for them individually. This increases the number
of relevant structure constants, making a full catalogue a more challenging endeavour. Our aim
was to isolate a few qualitatively distinct examples and to present evidence for the applicability
of the hexagon-formalism in these cases. A more complete survey, involving for example
twisted-twisted-twisted structure constants or higher-rank sectors is left for future work.

We considered as instructive example the simplest N' = 2 Zy-orbifold theory and analysed
structure constants of operators built on the bifundamental vacuum. Here an additional
SU(2)-symmetry allowed us to perform direct field theory checks at tree-level. Extending
to general Zj; orbifolds the naive application of the R-rotated translation (3.2) spoils a
direct field theory check. While the hexagon seems to be inert and reproduces the correct
result, translating operators in field theory produces unphysical states and multiplet mixing.
After a careful projection on the correct multiplets we find perfect agreement. Alongside
these consistency checks, we explicitly computed various structure constants in the Z,- and
Z3-orbifold theories, which are new results in their own right.

The results presented in this article were evaluated at tree-level only. Obtaining the
asymptotic (in large operator lengths L) result is quite straightforward. At a certain order in
the coupling g, we can solve the Bethe equations perturbatively and expand eq. (4.8) to that
order. Finite-size effects are suppressed by the edge width ¢ as they will start to contribute

2(6+1) | T order to account for these, a full set of states has to be inserted on the

at order g
virtual edges [20]. In [38] the evaluation of gluing and wrapping contributions in orbifold
theories were discussed. Considering three-point functions of twisted BPS operators, the
known result from localisation [39-41] was recovered. Following along these lines it would be
interesting to combine the investigation of non-BPS operators initiated here with the gluing
prescription from [38] and check their consistency with more advanced gauge-theory results.
However, due to the presence of the excitations, the evaluation of even the first correction
at gluing order is quite involved for the correlators presented here. We leave this problem
for future work but are optimistic that a full determination of the structure constants of
orbifold theories at finite coupling may be within reach.

One intriguing qualitative question'® in this endeavour concerns the placement of the
twist operator in figure 5. Our formalism naturally allows for the twist operators to be
moved around the twisted-sector states, as explained in section 3.3. Pictorially, one could also
imagine moving twist lines around the hexagons while keeping their ends fixed. Additionally

1 and merge twist lines. One may then ask whether all such

we may insert operators 1 = vy~
twist line configurations should be considered as equivalent. A salient example is depicted
in figure 7. In [38], two individual twist lines were introduced which connect two twisted
sector states to the same untwisted sector state, their respective twists cancelling in the
latter (right-hand side in figure 7). From a tree-level perspective this set-up is equivalent
to our single line in figure 5 (left-hand side in figure 7), but this equivalence is not obvious
once virtual particles are involved. Suffice to say that a final verdict on the mobility of twist

lines on the hexagon is still to be rendered.

10We thank the referee for raising this point.
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Figure 7. Naive equivalence of twist line distributions on the Zs-orbifolded hexagon. At tree level this
equivalence holds, since only the overall twist on each edge is significant. However, when introducing
virtual particles for glueing and wrapping effects, this equivalence may come into question.

The hexagon formalism in N' = 4 SYM also paved a way towards the computation of
higher-point functions [26, 29] and non-planar corrections [30-32]. In orbifold theories a
similar extension may be possible if we meticulously keep track of the twist operators involved.
A major obstacle to such considerations is the R-rotated translation 7 (3.2), which plays a
central role in the setup of higher-point functions, since we now require an explicit space-time
dependence. It is therefore important to gain sufficient control over the algebroid structure
generated by T (cf. [52]) or to develop an alternative approach without R-rotation.

Apart from N = 2-supersymmetry preserving orbifold theories, one could also attempt
to extend the hexagon formalism to NV = 1 and N' = 0 orbifolds. Although the required
technology should be analogous to the one discussed in this paper, the physical interpretations
may become more challenging, especially in the latter case where tachyons may appear in
the spectrum [58-62]. Insight from orbifold structure constants may also provide inspiration
for the further development of structure constant in the - and 7-deformed theories [35].
Finally, one could consider marginal deformations of N' = 2 orbifold theories [63-66], which
break conventional integrability but might still allow for a treatment of structure constants
in the language of [52].

Let us close our conclusion by calling attention to an interesting discussion of colour-twist
operators considered in [51], which we would like to make contact to in the future.
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A Collection of twisted-sector SU(2) states

As discussed in section 2.3, we can either choose an adjoint (uncharged) or a bifundamental
(charged) vacuum to build our excited states on. Choosing the bifundamental vacuum, only
excited states can exist in the twisted sector. The twisted vacuum state vanishes as can easily
be seen by writing the fields with their gauge group indices tr(212Z21)L/2 —tr(Za Z12)L/2 =0.
For the reader’s convenience we now collect the twisted-sector Zs-orbifold states up to length
L = 10 with one and two magnons in all the different SU(2) sectors. For the reader’s
convenience we now collect the twisted-sector Zs-orbifold states up to length L = 10 with
one and two magnons in all the different SU(2) sectors.

Operators with one excitation can only exist over the bifundamental vacuum. The
momentum of the magnon is p = 7 (with rapidity v = 0) and the single-trace operator
is given as try®p XL~ ! with the energy F = 4. A single-excitation state over the adjoint
vacuum cannot exist, as the gauge indices do not close under the trace. The list of operators
with two excitations is given in table 12. It is necessary to distinguish whether the vacuum
is charged or uncharged. For a charged vacuum (bifundamental vacuum) carrying charged
excitations we have the SU(2);, and SU(2)p sectors, which are degenerate in the Z, case. If
the excitations are uncharged we are in a mixed SU(2) sector.

For the uncharged vacuum (adjoint vacuum) the SU(2) symmetry is always mixed as
all bosonic excitations are charged.
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B Contact terms

Let us spell out the overlap formula for two operators carrying two longitudinal excitations

®y, each. The overlap for Cg%°g, can be expressed by removing the contact terms from
C<;>.LO<T’L in (3.13). Explicitly, it is given by

1 1
ee0 __vee0 D1,P2 ,/,P3:P4 . .
CfIDL,(I)L _C®L7¢’L N1N2< Z ni,ng *mi,La—ni+1 (t —t )2 (t —t )2
1<n1<na<l12 1 2 2 !
loz<mi<La—ny
+ Z D1,D2 psmz . —1 . 1 . 1
ni,n2 mi, 2*7114’1 _ 2 _ —
< (t1—t2)* (ti—t3) (t2—t1)
L12<na<L
loz<mi<La—mni
+ Z D1,2 p3vpé L —1 . 1 . i
ni,n2 ¥my,Lo—ni+ _ 2 _ —
1<ni<n2<ti2 (tl tz) (tl t2) (t2 tB)
1<my<la3
+ Z D1,P2 PSJ’E . —1 . 1 . 1
ni,n2 “my,La—ni+1 _ _ —
\my<brna<ls (t1 —t2) (t1—t3) (t2—t3)
1<m<l23
+ Z D1,D2 ,/,P3,P4 . 1 . 1
ni,n2 ¥ Lo—ni+1,meo (tl _ t2)2 (t2 _ t1)2
1<n;<ng<fia
Lo—ni+1<ma<Lo (Bl)
+ Z PLD2 P3P . —1 . 1 . 1
ni,n2 o—n1+1,ma2 _ 2 _ _
| <my <o <L (t1 —t2)? (ta—t1) (t1 —t3)
L2—7’L1+1<m2§L2
1 1
+ Z P1,P2 ,/,P3:P4

ni,n JLo—ngo+1 " 12 Y
1<ni<ng<li2—-1 v (th—12)* (2 —t1)

loz<mi1<La—n2

-1 1 1
+ D1,D2 Pmpg B ) . )
1§n1<z:mg12 mne Fmylemnotl ) 40)2 (4 —tg)  (ty — t3)
1<m<£23
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ni,n2 -n ,m o 2 _ 2
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