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1 Introduction

The production of diphotons (y7) at high-energy colliders, such as the Large Hadron Collider
(LHC), serves as an important process in probing the Standard Model (SM) and exploring
potential new physics [1, 2]. Diphoton final states provide a clean experimental signature due
to the excellent photon identification and reconstruction capabilities in modern detectors.
They also play a crucial role in precision studies, such as measuring Higgs boson properties,
testing perturbative Quantum Chromodynamics (QCD), and searching for exotic particles
or phenomena. The differential cross-section of this process has been precisely measured
at both the Tevatron [3, 4] and the LHC [5, 6]. This signature was pivotal as one of the
two “golden channels” that led to the discovery of the Higgs boson [7, 8]. The H — ~vy
decay remains one of the cleanest final states for exploring the properties of the Higgs boson
and its production mechanisms.

At hadron colliders, diphoton production at leading order (LO) originates from the
annihilation of a quark and an antiquark via the process qg — 7. Corrections at next-to-LO
(NLO) in the strong coupling constant («y) for this process were computed decades ago in
ref. [9]. Subsequent developments have extended this to next-to-NLO (NNLO) accuracy
(O(a?)) [10-13], with results implemented in public computational tools such as 2yNNLO [10],
MCFM [11], and MATRIX [14]. The relevant scattering amplitudes in massless QCD have
been extensively studied in refs. [15-18]. Currently, it is available up to three loops [19]. In
refs. [20-23], the two-loop amplitude associated with a jet has been computed. These form
a building block for next-to-NNLO (N3LO) corrections in massless QCD. The inclusion of
massive quark in the loop starts appearing only at NNLO (a?2) level. In ref. [11], the effect of
the top quark was discussed. Recently, the full phenomenological study has been conducted
in ref. [24] and the underlying two-loop helicity amplitudes have been presented in ref. [25],
where the master integrals were evaluated employing generalised power series method.



At NNLO, a new production channel emerges: the fusion of gluons into a diphoton pair,
mediated by a quark loop, as shown in figure 1 for a massive quark. The gluon-induced
contribution is not only finite and gauge-invariant on its own but also unusually significant
due to the large gluon-gluon luminosity at hadron colliders. Its contribution is of the size of
born subprocess qq — 7. Higher-order corrections to this gluon fusion channel, specifically
at O(a?), involve two-loop contributions to gg — v7y. The two-loop computation for the
massless QCD case was first carried out in ref. [26], while ref. [27] extended this work to
include configurations involving an associated jet. Their phenomenological analysis in massless
QCD was performed in [11, 28]. Currently, the amplitude is available at three-loop order [29].
Although the fully analytic two-loop amplitude for this process, including a top quark loop,
has not yet been presented in the literature, its impact on the cross-section has been explored.
Previous studies have relied on numerical [30] and semi-numerical [31] evaluations, with
the latter incorporating analytic expressions for the subset of master integrals that were
available at the time.

The goal of this article is to present, the computation of the two-loop amplitude for
gg — 77, retaining the full top-quark mass dependence within the loop and expressing the
result as analytic coefficients of a canonical basis for all the non-elliptic integrals. The part
of the amplitude containing elliptic integrals is kept as it is due to the lack of a convenient
functional representation of these integrals. These integrals contribute only to the finite part
of the amplitude. We also compute the two-loop amplitude for qg — v with a massive
top quark in the loop, with representative diagrams shown in figure 2. The quark-initiated
two-loop amplitude contributes at NNLO (O(a?)), while the gluon-initiated counterpart
appears at N3LO (O(a2)) in QCD at hadron colliders.

Representing helicity amplitudes in analytic form is not only essential for advancing our
understanding of quantum field theory, but also crucial for ensuring numerical stability in
cross-section computations and related observables. Such amplitudes provide a platform to
compare numerical behaviour, stability, and performance with existing results, and they also
serve as valuable input for evaluating cross-sections within various subtraction schemes, in
particular when studying results derived from local subtraction frameworks. The virtual
amplitude presented here is a key ingredient in this endeavour and will also pave the way
for computing helicity amplitudes for dijet production at the LHC with the inclusion of the
top-quark mass in the loop. From a technical perspective, by isolating the contributions
of elliptic integrals, this work critically examines their impact on the amplitudes, thereby
offering deeper insight into their analytic structure.

We adopt the method of projecting the amplitude onto the helicity basis using physical
projectors, as described in refs. [32, 33]. An alternative approach to constructing physical
projectors is discussed in ref. [34]. The bare integrand is generated and processed through
a series of in-house codes implemented in FORM [35]. The associated Feynman integrals
are subsequently processed through Kira [36, 37] to apply integration-by-parts identities
(IBP) [38, 39] to express the integrand in terms of a minimal set of master integrals. These
integrals have been extensively studied in the literature [24, 25, 40-43]. In ref. [44], the
final missing set of master integrals containing elliptic sectors was evaluated by some of us,
thereby enabling the complete analytic computation of these amplitudes. While many of these



integrals exist in various forms in the literature, we independently set up a comprehensive
system of differential equations containing all the occurring master integrals to ensure a
consistent representation. The bare helicity amplitudes are renormalised in a mixed scheme:
we adopt the on-shell scheme for mass renormalisation, while the remaining quantities are
renormalised in the MS. As an ancillary file [45], we provide the helicity amplitudes expressed
in terms of a set of canonical master integrals. The finite remainder is available upon request
from the authors for those interested. We present a few benchmark numerical values of all
helicity amplitudes, in particular, around the top quark threshold. We also present plots
of squared amplitudes.

The article is organised as follows. Section 2 describes the kinematic setup of the process
including its Lorentz covariant decomposition. In section 3, we describe the method of
constructing helicity amplitudes and the procedure to get the bare integrand. The ultraviolet
renormalisation and infrared factorisation are discussed in section 4. In section 5, we discuss
the results and their numerical implementation. We also describe the checks performed to
ensure the correctness of the results. We conclude with our outlook in section 6.

2 Setup

We consider the following scattering processes:

g(p1) + g(p2) +v(p3) +v(ps) = 0,

_ (2.1)
a(p1) + q(p2) +v(p3) + v(pa) > 0
We label the momenta of the particles by p1,--- ,ps and regard all of them as incoming
that satisfy
p1+p2+p3s+ps=0, p; =0. (2.2)

The physical di-photon production at the LHC can be obtained from (2.1) by crossing
P34 — —p3.4. In computing an observable, such as cross-section for the di-photon production,
one requires gy — g7y and ¢y — ¢y channels which can also be obtained by crossing from (2.1).
The kinematic Mandelstam invariants of the process,

s=(p1+p2)?, t=(p2+p3)?, u=(p1+p3)?, (2.3)

are related by momentum conservation s + ¢t + v = 0. Consequently, no Fuclidean region
exists kinematically for the scattering process, rendering it interesting to study. The 2 — 2
physical region corresponds to the scattering region

5>0,t<0,u<0. (2.4)
We construct two dimensionless parameters as
S

where m; denotes the mass of the top quark.
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Figure 1. Representative leading order Feynman diagrams for gluon-initiated channel involving
massive quark loop. The red lines represent top-quark, while the curly and wavy black lines correspond
to gluon and photon, respectively.

In this article, we consider the scattering with at least one massive quark in the loop.
So, both are loop-induced processes, as shown in figure 1 and 2. Our goal is to calculate the
two-loop amplitude of these processes in QCD. We denote the mass of the massive quark by
myz. The amplitude can be rewritten by factoring out the overall color factors as

Adla = ¢9la gola (2.6)
where
CY9 = §n®2, (1= §uw (2.7)

for g9 — vy and qq — 77, respectively. The notation g|qg denotes either gluon- or quark-
initiated channel. Here, i,(ay) represents an SU(N,) index in the fundamental (adjoint)
representation. The partial amplitude A depends on the number of active massless (ns) and
massive (ny,) quark flavors, as well as their respective electric charges, denoted by @ and
Qy,. Since we focus on Feynman diagrams that include at least one massive quark loop,
meaning the lowest power of ny, contributing to the amplitude is 1. After extracting all color
structures, the partial amplitude can further be decomposed into a basis of N%‘q independent

Lorentz covariant tensor structures Tig la as

gla
Np

Adla — Z ]_—igqulg\q’ (2.8)
i=1

where .7-“2-9 19 are called the form factors. These form factors can be expanded perturbatively
in powers of the strong coupling constant, .

We adopt the 't Hooft-Veltman (tHV) regularisation scheme [46], in which loop momenta
are treated in d = 4 — 2¢ dimensions, while external momenta and polarisations remain in
four dimensions. Within this framework, we follow the method proposed in [32, 33], which
eliminates the evanescent (—2¢)-dimensional helicity states and allows us to work with a set
of tensors T} 1 \whose number corresponds directly to the independent helicity configurations.
A similar approach can be found in refs. [34, 47].

In gg — vy channel, there are NY. = 8 independent tensor structures. By adopting the
cyclic gauge choice, €; - p;+1 = 0 (with ps = p1), and applying the transversality condition,



€; - pi = 0, we obtain the following results [32, 33, 48, 49:

T{ = p1-€2 p1-€3 p2-€4 p3-€1, T§ = e3-€4 p1-€2 p3-€1, TY = €x-€4 p1-€3 p3-€1,
T{ = e2-€3 pa-€4 p3-e1, T¢ = e1-€1 p1-€2 p1-e3, T§ = e1-€3 p1-€2 pa-ea,
T = €1-€9 p1-€3 pa-€a, T = €1-€2 €3-€4 + €1-€4 €2-€3 + €1 €3 €3-€4. (2.9)

The polarisation vector is denoted by €(p;) = ¢;. Unlike in tHV scheme, in conventional
dimensional regularisation, one requires 10 tensorial structures [50, 51]. In ¢g — 7y channel,
NI = 4 and with the gauge choice €3 - pa = €4 - p1 = 0, we get [49, 52]

T{ = u(p2)fqu(pr) €a-p2, Ty = u(pa)fqu(p1) ea-p1,
T3 = u(p2)pyu(pr) e3-p1 €a-pa, T{ = u(p2)pyu(pr) es-€s. (2.10)

The form factors .7-"2-9 19 can be extracted from A9l with appropriate projectors Pjg ‘q, defined

to satisfy the orthogonality condition Pjg ‘qTf e ;.-

3 Helicity amplitudes

To compute the helicity amplitudes Aijq, it suffices to evaluate the tensors T} 19 for specific

helicity configurations X = {1, A2, A3, Aq} of the external particles. Each helicity amplitude
corresponding to a given configuration A can then be expressed as a linear combination
of the form factors ]-"f'q as

Né{‘q

gla _ gla =9la _ c9la 4,49lq

A% = z;Ti’X}'Z- = SYIH. (3.1)
1=

The overall spinor factors S?q can be extracted from Aijq using the spinor-helicity formalism.
For a detailed introduction to this approach, we refer to ref. [53]. In this formalism, external
quarks with fixed helicities are defined as

D) =Tl =22 u), 1o)== (), (32)

with [p| = ﬁ(p)l_% and (p| = u(p)H% treating particles and anti-particles on an equal

footing, while polarisation vectors take the following form

o= il e (gih"Ips]
‘77

= , € = e (3.3)
V2l T T V2(gmy)

where ¢; is the massless reference vector corresponding to the i-th external gluon and is
chosen consistently with the gauge conditions used to determine the tensor bases of eqs. (2.9)
and (2.10). For the gg — 7 channel, there are 8 independent helicity amplitudes which

are related to the remaining ones through parity as

AL = A7 ((ig) > [ji]). (3.4)



Here the negative sign flips the helicity. We choose independent X = {++++,—+++,+—
++,++—+,+++—,— —++,— +—+,+ — —+}. By choosing the reference vector ¢; = p;y1,
where we identify ps = p;, we have the following spinor factors [26]

o - (12)(34) 59 [12][14](24) go  _ [2[24](14)
T [12][34] —tt T [34][23][24] Tt [34][13)[14]
§9 [32][34](24) S9 [42][43](23) g 1269
et T [14][21][24] - T [13][21][23] Tt (12)[34]
g _ [13](24) g _ [23](14)
St = (13)[24] St = (23)[14] - (3:5)

For the qq¢ — ~ channel, we have 4 independent helicity amplitudes which can be used to
obtain the remaining 4 through charge-conjugation as

AL o = Ai+>\§,\z(<ij> < [ji]) - (3.6)

The \* refers opposite helicity of \. We choose g3 = p2, g4 = p1 and define the spinor factors as

¢ 2[34)? s 2(24)13]
S T ) EACETTI
¢ 2(23)[41] o 2(34)°
ST T apfe T o 0

In our conventions, all external legs are treated as incoming. For outgoing particles, the
helicities of the respective legs must be reversed. The spinor inner products are defined as
(ij) = (i~|5%) and [ij] = (i7|57), where |i*) represent massless Weyl spinors associated with
the momentum p; and labeled by their helicity sign. These inner products are antisymmetric
and have magnitudes given by [(ij)| = [[ij]| = ,/5ij, where s;; = 2p; - p; are the usual
Mandelstam invariants: sjo = s, so3 = t, s13 = u. Consequently, the helicity-dependent
factors Si‘qu\z Ash,0 derived from these spinor products, are pure phases.

The spinor-free helicity amplitude H?q can be expanded in powers of bare strong
coupling ayy as

2 ¢
e (42) 0 oty o
=0

where we factor out an overall term proportional to the square of the electric charge, e? = 4ra.
The quantity H;lq’(g) represents the bare f-loop amplitude. It is important to note that, as
the gg — v channel is loop-induced, the leading-order term in its perturbative expansion
vanishes. In contrast, the qg — 77 channel contributes non-trivially to all three orders. For
the quark-initiated processes involving at least one massive quark loop, non-zero diagrams
begin to appear only at the two-loop level. However, through renormalization, the lower-order
diagrams also contribute indirectly to the overall result.

We generate the Feynman diagrams for each channel using Qgraf[54]. There are 8
diagrams at one-loop for gg channel. At two loops, the gg channel comprises 166 diagrams,
while the ¢g channel contains 55 diagrams. Samples of the two-loop diagrams are illustrated
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Figure 2. Representative two-loop Feynman diagrams for ¢ channel.
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Figure 3. Representative two-loop Feynman diagrams for gg channel.
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in figures 2 and 3. To process these diagrams, we use FORM [35], applying the tensor projectors
defined in egs. (2.9) and (2.10). We evaluate the Dirac traces and simplify the colour algebra
using in-house codes. The latter involves repeated application of standard colour identities,

1 1
()i (T = 5 <5ih5kj - N5ij5kh) L= =24 Te(TT, T7) . (3.9)
C
The form factors are expressed as linear combinations of scalar Feynman integrals, with
rational coefficients that depend on the Mandelstam invariants s, ¢, mass m;, and the
dimensional regulator e. The form factors for the gg — v process involve 26,577 scalar
Feynman integrals, while the qg — v process requires 2,289 integrals. We parametrize

the /-loop Feynman integrals as follows:

Itop _ 2Le_Levyg ILl ddki 1 3.10
ning,..ny — Ho € d D?IDSQ DXTN‘ ( : )
el -

12

The superscript “top” refers to any of the integral families mentioned below. Here, vg =
0.5772 ... is the Euler-Mascheroni constant, and pg is the dimensional regularization scale.
The factor eL72 is purely conventional and is chosen for later convenience, while the factor
,u(%Le ensures that the integrals maintain integer mass dimensions. For a general process with
E independent external momenta and L loops, one requires L(L + 1)/2 + LE independent
denominators to describe all possible scalar products of loop momenta with either loop or
external momenta. A specific complete set of denominators D; at a given loop order is
typically referred to as an integral family. We organize the amplitude into as few integral
families as possible, allowing for permutations of external momenta (crossings). At two loops,
this requires two planar and two non-planar families, which we present in tabular form in
table 1. There, we indicate the loop momenta with ki and k3. We name PL1 and PL2 the
families corresponding to the planar graphs and NPL1, NPL2 the ones corresponding to the
non-planar graphs. We present the top sector diagrams for each integral family in figure 4.

The integrals appearing in the form factors are not all linearly independent. To identify
symmetry relations among the integrals, we employ Reduze2 [55, 56]. Subsequently, we use
Kira [36, 37] and LiteRed [57], which are implementations of the Laporta algorithm [58], and



Family PL1 PL2 NPL1 NPL2
Dy ki —mg ki ki (k1 —p1)?
D, (k1 +p1)* — m? (k1 +p1)? (k1 +p1)? k2
Ds | (k1 +p1+p2)?—mi (k1 + p1 + p2)? (k1 + k2)? — m? (k1 + p2)?
Dy (k1 + k2)? (k1 + k2)? —mf k3 —m7 (k1 + k2 — p1)? — mf
Ds k% - m? k% — m% (k2 +p3)2 — m% k% - m?
Ds (k2 +p3)? —mj (k2 + p3)? — m} (ky — p1 — p2)* — m} (k2 +p3)? —mj
D7 | (ks —p1 —p2)?—m? | (ks —p1—p2)? —m? | (k1 + ko —p2)? —mi | (k1 + ko + p2 +p3)? —mi
Dy (ko — p1)* — m? (ko —p1)? —m? (ko —p1)? —m? (k1 + p3)?
Dy (k1 —p3)? —m} (k1 — p3)? (k1 + p3)? (ko — p1)? — m?

Table 1. Planar and non-planar integral families at two loops. The first seven entries denote the real
propagators appearing in Feynman diagrams. All diagrams are mapped to these and their crossed
families.

Figure 4. Topology diagrams respectively for PL1, PL2, NPL1, NPL2 in the top sector. Red lines
represent massive particles, while black lines denote massless ones.

FiniteFlow [59], to solve integration-by-parts (IBP) relations. This algorithm leverages finite
field arithmetic [59-62] to systematically reduce the integrals to a minimal, independent basis
set of master integrals (MIs). Specifically, we obtain 29 MIs in PL1, 32 in PL2, 54 in NPLI1,
and 36 in NPL2. The required master integrals for the amplitudes correspond to the families
{PL1, PL2, NPL1 and NPL2} and their crossings: {p1 +> p2}, {p1 — p2,p2 — p3,ps — p1},
{p1 = p2,p2 = pa,pa — p1}, {p1 — p2,p2 — P3,P3 = pa,pa — p1} and {p1 — p2,p2 —
pa,ps — P3,p3 — p1}. Taking into account all crossings, we find 65 master integrals for
the ¢q channel and 171 for the gg channel.

For this independent set of uncrossed master integrals, we employ the method of dif-
ferential equations to find a good basis. Using IBP identities, we establish a unified system
of differential equations for these MIs with respect to both Mandelstam variables s and ¢
(with my set to 1 for simplification). The system attains the form

dI*P = (dM)I*P, (3.11)

where M is an 88 x 88 matrix depending rationally on Mandelstam variables s, ¢, and
dimensional regulator e.

In our case study, the uncrossed integrals, belonging to the families {PL1, PL2, NPL1,
NPL2}, have been extensively studied in different contexts [24, 25, 40-43], and are well known
to satisfy an e-factorized differential equation system [63]. Consequently, our choice of the
pre-canonical basis for these integrals follows the work in refs. [41-43], with some modifications.
To transform the differential equation system into the e-form, we employ the Magnus series
expansion [64] to compute the rotation matrix for our pre-canonical basis. Furthermore, we
validate the canonical basis choice for the contributing crossings by independently deriving



their differential equations and obtaining the e-form of the system using the corresponding
mapping relations within the uncrossed setup.

The last 6 integrals in our chosen basis, which belong to the top and sub-top sectors of
the non-planar family NPL2, exhibit more intricate mathematical structures. These integrals
are known to involve geometries beyond multiple polylogarithms, such as elliptic curves,
making their analytic solutions significantly more challenging. Recently, analytic solutions for
these non-planar topologies involving elliptic sectors have become available [44] by some of
us. This was the final missing piece required to express the two-loop amplitudes for diphoton
production in terms of analytic functions.

With this, the choice of the canonical basis up to top and sub-top sectors of the NPL2
integrals enables a compact expression of the amplitudes across all crossings, following the
mappings outlined earlier. We provide the canonical basis choice as an auxiliary file with this
paper. In ref. [65], an alternative choice of canonical master integrals has been presented.

Another crucial aspect of master integral computation is their numerical evaluation
across the entire physical phase-space region. Polylogarithmic integrals can be evaluated
numerically in multiple ways. For instance, integrals expressible in terms of Goncharov
polylogarithms can be evaluated using GINAC [66], while numerically evaluating one-fold
integrals over polylogarithmic kernels, also known as dlog one-forms, as done in [42] provides
another option. Similarly, the numerical evaluation of elliptic kernels can be achieved by
series expanding the corresponding kernels along suitable paths in the physical phase-space
region, as demonstrated in [67, 68]. The formulation of these integrals in a function basis
suitable for numerical evaluation across all phase-space regions is left for future work.

4 Ultraviolet and infrared structures

The result of the computation described in the previous section are the divergent helicity
amplitudes for the processes described in eq. (2.1) in terms of bare o, and bare top mass
myp. In the following, we describe the ultraviolet (UV) renormalisation and infrared (IR)
subtraction of the divergent amplitudes.

4.1 UV renormalisation

For UV singularity, we renormalise the amplitude using the modified minimal subtraction
(MS) scheme, except for the top quark mass, which we choose to renormalise in the on-shell
(OS) scheme. The bare coupling «, is written in terms of the renormalised coupling o () as

Qs p N(%e Se = 05 /1/26204(055(,“/))7 (41)

where S, = (47)%€~7E¢, and pu is the renormalization scale, which we set equal to ug. Z, is
the renormalisation constant for the strong coupling. The latter is introduced in dimensional
regularisation to make the coupling constant dimensionless. The bare top-quark mass, mp,
is expressed in terms of the renormalized mass, m;, as:

My pSe = My Ly, (4.2)



where Z,,, is the mass renormalization constant. Similarly, the bare gluon field, G, p, is
related to the renormalized gluon field, G,, via:

GupSe = G2y, (4.3)

where Z, is the gluon field renormalization constant. This arises due to the presence of
massive quark. The bare quark field, (J, is connected to the renormalized one, @), as:

QbSG = Qan (4'4)

where Z, represents the quark field renormalization constant. We set ny = 0 as there are no
massless quark loops contributing to the processes described in eq. (2.1) at the perturbative
order considered.

Gluon channel. Since the leading-order gg — ~ amplitude is loop-induced, as shown in
figure 1, it is free from both ultraviolet (UV) and infrared (IR) divergences. At two-loop level,
however, the amplitude exhibits both UV and IR divergences. Notably, only a single massive
quark loop contributes to the amplitude — photons can only emit from massive quarks. In
other words, the two-loop amplitude does not depend on massless quarks. Therefore, we can
safely disregard the massless quark contributions from the leading order when constructing
the UV and IR subtraction terms. The UV renormalized helicity amplitude, ’Hii(l) with

ren

[ = {1,2}, is obtained from the bare helicity amplitude defined in eq. (3.8) using the following:
ngv(l) — ng:(l)
)\ bl

A,ren
A, ren

9:(2) _ 4,92 g g,(1) 9,CT,(1)
H = ’HX + (25Zg + 5Za> HX,ren + 072, HX ) (4.5)

Here the renormalisation constants are expanded according to Z; = 1+ (§2) 0Z; + O(a?)

Bo, (1) ( 4 )
02y =—— — —T
¢ € * my? 3¢ 1) e
2 €
I 4
(SZg = — (’I’n,t2> <3€TF> g,
2 €
w 3
[/ A—— <mt2> Cp (6 + 4> . (4.6)
The number of gluons in the external states is denoted by ny which is equal to 2 in our case.
The quadratic Casimir in the fundamental representation of SU(N) is Cr = (N? — 1)/(2N),
and in the adjoint representation, it is denoted by C4. The constant Tr is defined as Tr = 1/2,

and the leading-order 3 function is given by By = (11C4 — 2ny)/3. It is noteworthy that the
top-mass-dependent contributions to the o, expansions from 67, and §Z, cancel each other.

for i = {a,g,m;} with

The counter-term amplitude for the top mass renormalization is represented by H%’CT’(I). This

counter-term amplitude is derived by inserting the mass counter-term, P, defined through

, (4.7)

~10 -
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Figure 5. Sample diagram for calculating mass counter term.

into each top quark propagator in the leading-order amplitude, and collecting the coefficient of
a?. This can be visualised through figure 5. Alternatively, the counter-term can be computed
by differentiating the leading-order amplitude with respect to m;. This approach yields
results that are in perfect agreement with the previously derived counter-term.

Quark channel. In the quark-initiated channel, one-loop diagrams containing a single
massive quark loop exist but vanish due to Furry’s theorem. Non-zero contributions begin to
appear only at the two-loop level. These contributions can be categorized into two types of
diagrams, depending on whether the photons are emitted from massive or massless quarks,
as illustrated in figure 2. The first type, where photons are emitted from massive quarks,
is UV and IR finite. This behaviour is expected since no such diagrams exist at lower loop
levels. The second type, involving photons emitted from massless quarks, is UV divergent
but IR finite. Calculating the counterterms requires considering tree-level and one-loop
diagrams without massive quark involvement. Thus, while we focus on diagrams with at
least one massive quark loop, the two-loop UV and IR subtraction contributions also include
contributions from massless quarks which are not forming closed loops.

We split the helicity amplitude defined in eq. (3.8) with respect to the type of quarks
from which the di-photon are emitted:

/H‘] () _ Q2 Hf’(g) + Z Q2 Hft’ ) (48)
fi=1

The terms Hf\:’@) and ’H?’(Z) represent the contributions from diagrams where the diphoton is
emitted by massless and massive quarks, respectively. Notably, there are no non-zero mixed
diagrams up to two loops. As previously mentioned, the contribution Hi}’@) is both UV and
IR finite, because it first arises at the two-loop level. On the other hand, the contribution
Hf\i’(g) is UV divergent but remains IR finite. In QCD, ny, equals 1

Additionally, we require massless quark field renormalisation constants up to order o2
along with the constants of eq. (4.6):

2
= M4 (% (2) 3
Z,=1+ (M) 52, <47r> 579 + 0(a?), (4.9)

with

0,
e
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O

We need to consider only ’Hf\j for renormalisation and we obtain the UV finite amplitude

52
H)\ ,ren by
[2) _ 4,52) (1) f>(1) @) (2)44f-(0)
HX,ren = HX +97, HX + 5Za7-[/-\» +0Z, HX . (4.11)
Hf\i’(o) is tree level and H§’(1) is the one loop helicity amplitude setting ns to zero in qq — vy

channel, respectively.

4.2 IR factorisation

The IR singularity structure of QCD amplitudes has been studied up to three loops for the
massless cases in refs. [69-78]. It also has been extended to the cases involving massive
partons at two loops in refs. [79-83] and up to three loops [84] involving one massive parton
in the external states. The IR divergences can be subtracted from our UV renormalized

amplitudes, Hs multiplicatively through

A, ren’

Hg'qﬁ = lim | 2/ 14 (4.12)

n o e50 A, ren] PP Lean ’
resulting IR finite H! |qﬁ Here a;, denotes the strong coupling constant in the effective theory
with ny =5 in which the heavy quark is integrated out. While considering an amplitude
with heavy quark mass dependence, one must relate the aSQCD , the strong coupling constant
of full QCD with n; = 6 through the decoupling relation [85], a9“P = £a,. Where the
¢ to the order of ay is given by

o nfy 2\ €
=1+ <4;> Z% [e% I'(e) <“2> - j . (4.13)

i=1 m;

Here, Zir is a matrix in SU(N) color space acting on the space spanned by the C; basis
vectors (2.7) and ’Hg la ay Are finite remainders, also called hard scattering functions. The

matrix Zig can be ertten as

zn e [[” ‘Zf/r({p}, b)) (4.14)

where P denotes the path-ordering of color operators [74] in increasing values of y' from left
to right. The anomalous dimension matrix I' = Igjpole can be written as

2
Fdipole({p}aa&,u) = Z Ti . Tj ’VK(O‘s) log (_M_Z§> + Z '7 as ) (4'15)

1<i<j<2 =1

where 7% (ay) is the cusp anomalous dimension [86-91] and ~* is the quark (gluon) collinear
anomalous dimension [92-95] of the i-th external particle. Further, T¢ represents the color
generator of the i-th parton in the scattering amplitude,

(T?)ap = tagp for a final(initial)-state quark (anti-quark),
(T{)ap = —th, for a final(initial)-state anti-quark (quark),
(T%)pe = —if® for a gluon. (4.16)

- 12 —



As the processes, we considered in (2.1) do not have any massive parton in the external
states, we exclude the contributions from massive parton in the external states in (4.15).
We expand the finite remainders in powers of o, as

Hglq _ Z (O‘S)EHQIQ,(Z) (4.17)
Afin 0 47 Mfin )

As previously mentioned, the g§ — 7 does not exhibit any IR divergences. We need IR
subtraction only for the gg — 7 channel. The finite remainders for the quark-initiated channel
are denoted through 7—[§(fli)n and 7—[?;2 For the gluon-initiated channel, the corresponding
expressions are given by

A

)\ ﬁn
9(1) _ 4,9(1) _ ( )7/9,(0)
H)\ fin HX, ren HA ren’ (418)

where ZI(;{) are the coefficients of the expansion of Zig in ay [74, 96]:

Ty
_|_7

(0) _ (1)
Zw =1 Zm _462 2

The quantities I'fy and T’y are defined through

> n+1 O 4 n+1
Ldipole = »_ Ty (Z;) , T = dipdle K » Ci= Z r <O‘> . (4.19)
%

= 0log i

5 Results, checks and benchmarks

Upon including the UV counterterms, we confirm the complete cancellation of UV divergences.
While not all amplitudes under consideration exhibit IR divergences, for those that do, the
soft and collinear singularities align precisely with theoretical predictions, as described in
section 4. This consistency is reflected in the finiteness of H? “é in eq. (4.12). This agreement
serves as a crucial validation of our calculation. An 1ndepen(111ent calculation of the helicity
amplitudes is carried out in ref. [65], and we find perfect numerical agreements with their bare
results.! Furthermore, we find that, in our chosen integral representations, the amplitudes in
both channels contain no crossings of elliptic integrals, with the elliptic contributions isolated
to only six integrals across the whole amplitudes.

As previously mentioned, due to the lack of a suitable functional basis for elliptic integrals,
we use AMFlow [97, 98] to calculate finite remainders numerically at some kinematic points. In
an alternative approach, in ref. [99], it has been shown that the combination of the expansion
in high-energy and around the forward limit approximate the exact results to high precision.
To systematically represent these results, we parameterise the physical kinematic space as [25].

S>O,t:—§(1—cos 0),—s <t <0. (5.1)

Tn conventions of this article, we observed complete agreement at the phase-space points, (s,t,m;) =
(13/10,-3/5,1), (s,t,ms) = (11/3,-5/2,1) and (s,t,m:) = (51/10,—11/10, 1), after adjusting for an overall
factor of 1/I'(1 + €)2.

~13 -



Helicity Finite remainder

H? 0.0003077743812
#PP L | 0.3343545752627 + 0.0045759197604 1
HP®) | 0.3340355600039 + 0.0039728945978 1

£.2)
HOU -0.0003077743812

#/42 |-0.0032800203623 + 0.0018737139979 1
fi(2)

#/o®| 0.0149015345327 - 0.0980611917183 I

#0021 0.0145075046945 - 0.1001008144487 I

f6,(2)
7-l_t+++’ﬁn 0.0032890203623 - 0.0018737139979 1

Table 2. Benchmarks for the finite remainders for the quark channel for § = ¥, s = 3GeV and N = 3.

Helicity Finite remainder
9:(2)
H++++ fin -4.2353936830803 + 44.7462828017996 1

HOC) L o | -0.2195377488355 + 0.5883781474135 1
M), g | -0.2105377488355 + 0.5883781474135 1
HOP L an | -0.3559355504652 + 0.1940038446546 1
HOP)an | -0.3559355504652 + 0.1940038446546 1
HPP) L o | 0.9197367315469 - 69.8007699134945 1

HOP a0 | 67.2257429520241 - 69.2863625098377 1

H+(—)—+ fin 0.4096925658652 - 0.4161420588004 1

Table 3. Benchmarks for the finite remainders for the gluonic channel for § = £, s = 3 GeV and

6
N =3.

The scattering angle in the partonic centre of mass frame is denoted by 6 € (0, 7). Table 2
and 3 provide benchmark values for the two-loop finite remainders of all helicity amplitudes
at selected kinematic points in the physical phase space.

The existence of Bose symmetry due to the exchange of final state photons, p3 <> ps
is evident from the finite remainder for both quark and gluon-initiated processes. For the
qq channel, it gets translated to

/Hﬂf’—(—)ﬁn(& t) = Hf'itjr(Jr)ﬁn(S t),

HIED (s, t) = HIED (s, u). (5.2)
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The notation f|f; signifies that the relations hold for both types of finite remainders. These
validations serve as crucial consistency checks on our final results. For the gluon-initiated
amplitude, the Bose-symmetry under the exchange of p; <+ po and/or ps <> py implies

9,(2) _ 279,2)
)\1,)\2,)\3,/\47ﬁn(s7 t) - 7-[)\2,)\1,)\37)\471:‘111(87 ’LL)
2(2) _ ,(2)
I apdsnafin(5 1) = A Ny au g fin (55 1) - (5.3)

The finite remainders are checked to exhibit this symmetry. We provide the bare helicity
amplitudes expressed in terms of a set of canonical master as an ancillary file [45]. The finite
remainder is available upon request from the authors.

The finite remainder is a vector in colour and helicity space, which can be written as

¢
Aﬁ‘f _ Cg\qu\f — 4ra 9l 3 (Z‘;) Aﬁf’(f) _ (5.4)
1=0

The colour factors C919 correspond to the gluon and quark channels, respectively, as defined
in (2.7). The interference between the finite remainders at ¢- and ¢'-loops can be composed
out of helicity amplitudes through

(¢ (2 1 2 (0% (¢
AT - NS (o) o 3, 2 aO B, 55
A
In figure 6, we present these interferences of amplitudes for both channels.

6 Conclusions

We compute the two-loop QCD helicity amplitudes for gg — vy and gg — v, retaining the
full dependence on the top quark mass inside the loop. Using a combination of in-house
and publicly available codes, we express the integrand in terms of a set of canonical master
integrals except the elliptic integrals. A recent computation by some of us [44] involving a
non-planar integral family with elliptic sectors provides the final missing ingredient, allowing
us to complete this calculation. While the remaining required master integrals exist in the
literature, we perform an independent validation by constructing a comprehensive system of
differential equations encompassing all master integrals including crossings. This ensures a
consistent representation of the solutions in terms of a unified set of variables. This set of
uncrossed families and the corresponding function basis remain the same for dijet production.
Therefore, while we defer the publication of these results to future work, we provide the bare
amplitudes in terms of a chosen set of master integrals as an ancillary file [45] with this article.

We renormalise the heavy quark mass in the on-shell scheme, while other quantities are
renormalised in the MS scheme. In addition to verifying the expected UV and IR divergences,
we cross-check our bare amplitudes with an independent calculation by another group [65],
finding complete numerical agreement at multiple physical phase-space points. We present
a few benchmark values for the finite remainders for all helicity amplitudes.

These amplitudes provide a valuable input for computing cross-sections and other key
observables using various subtraction schemes. It will be interesting to investigate the
impact of these analytic results by comparing them with existing calculations of the diphoton
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Figure 6. Two-loop amplitudes interfered with the corresponding leading-order contributions as
a function of the centre of mass energy for the processes ¢q¢ — vy and gg — 77y respectively. The
interference term is normalized with respect to the leading-order contribution. For the photon emitted
from massive quark in quark channel, we use top and bottom for the massive and massless quarks,
respectively. The mass of top quark is assumed to be unity.
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production cross-section for gg — 7y, where the relevant integrals were previously evaluated
numerically [30] or semi-numerically [31]. The impact of the top quark mass at the high-
luminosity phase of the LHC will be particularly interesting to explore, as its effects are
expected to be significantly enhanced in this regime. Furthermore, this work lays the
groundwork for future studies, including dijet production with a massive quark loop.
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