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1 Introduction

The production of diphotons (γγ) at high-energy colliders, such as the Large Hadron Collider

(LHC), serves as an important process in probing the Standard Model (SM) and exploring

potential new physics [1, 2]. Diphoton final states provide a clean experimental signature due

to the excellent photon identification and reconstruction capabilities in modern detectors.

They also play a crucial role in precision studies, such as measuring Higgs boson properties,

testing perturbative Quantum Chromodynamics (QCD), and searching for exotic particles

or phenomena. The differential cross-section of this process has been precisely measured

at both the Tevatron [3, 4] and the LHC [5, 6]. This signature was pivotal as one of the

two “golden channels” that led to the discovery of the Higgs boson [7, 8]. The H → γγ

decay remains one of the cleanest final states for exploring the properties of the Higgs boson

and its production mechanisms.

At hadron colliders, diphoton production at leading order (LO) originates from the

annihilation of a quark and an antiquark via the process qq̄ → γγ. Corrections at next-to-LO

(NLO) in the strong coupling constant (αs) for this process were computed decades ago in

ref. [9]. Subsequent developments have extended this to next-to-NLO (NNLO) accuracy

(O(α2
s)) [10–13], with results implemented in public computational tools such as 2γNNLO [10],

MCFM [11], and Matrix [14]. The relevant scattering amplitudes in massless QCD have

been extensively studied in refs. [15–18]. Currently, it is available up to three loops [19]. In

refs. [20–23], the two-loop amplitude associated with a jet has been computed. These form

a building block for next-to-NNLO (N3LO) corrections in massless QCD. The inclusion of

massive quark in the loop starts appearing only at NNLO (α2
s) level. In ref. [11], the effect of

the top quark was discussed. Recently, the full phenomenological study has been conducted

in ref. [24] and the underlying two-loop helicity amplitudes have been presented in ref. [25],

where the master integrals were evaluated employing generalised power series method.
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At NNLO, a new production channel emerges: the fusion of gluons into a diphoton pair,

mediated by a quark loop, as shown in figure 1 for a massive quark. The gluon-induced

contribution is not only finite and gauge-invariant on its own but also unusually significant

due to the large gluon-gluon luminosity at hadron colliders. Its contribution is of the size of

born subprocess qq̄ → γγ. Higher-order corrections to this gluon fusion channel, specifically

at O(α3
s), involve two-loop contributions to gg → γγ. The two-loop computation for the

massless QCD case was first carried out in ref. [26], while ref. [27] extended this work to

include configurations involving an associated jet. Their phenomenological analysis in massless

QCD was performed in [11, 28]. Currently, the amplitude is available at three-loop order [29].

Although the fully analytic two-loop amplitude for this process, including a top quark loop,

has not yet been presented in the literature, its impact on the cross-section has been explored.

Previous studies have relied on numerical [30] and semi-numerical [31] evaluations, with

the latter incorporating analytic expressions for the subset of master integrals that were

available at the time.

The goal of this article is to present, the computation of the two-loop amplitude for

gg → γγ, retaining the full top-quark mass dependence within the loop and expressing the

result as analytic coefficients of a canonical basis for all the non-elliptic integrals. The part

of the amplitude containing elliptic integrals is kept as it is due to the lack of a convenient

functional representation of these integrals. These integrals contribute only to the finite part

of the amplitude. We also compute the two-loop amplitude for qq̄ → γγ with a massive

top quark in the loop, with representative diagrams shown in figure 2. The quark-initiated

two-loop amplitude contributes at NNLO (O(α2
s)), while the gluon-initiated counterpart

appears at N3LO (O(α3
s)) in QCD at hadron colliders.

Representing helicity amplitudes in analytic form is not only essential for advancing our

understanding of quantum field theory, but also crucial for ensuring numerical stability in

cross-section computations and related observables. Such amplitudes provide a platform to

compare numerical behaviour, stability, and performance with existing results, and they also

serve as valuable input for evaluating cross-sections within various subtraction schemes, in

particular when studying results derived from local subtraction frameworks. The virtual

amplitude presented here is a key ingredient in this endeavour and will also pave the way

for computing helicity amplitudes for dijet production at the LHC with the inclusion of the

top-quark mass in the loop. From a technical perspective, by isolating the contributions

of elliptic integrals, this work critically examines their impact on the amplitudes, thereby

offering deeper insight into their analytic structure.

We adopt the method of projecting the amplitude onto the helicity basis using physical

projectors, as described in refs. [32, 33]. An alternative approach to constructing physical

projectors is discussed in ref. [34]. The bare integrand is generated and processed through

a series of in-house codes implemented in FORM [35]. The associated Feynman integrals

are subsequently processed through Kira [36, 37] to apply integration-by-parts identities

(IBP) [38, 39] to express the integrand in terms of a minimal set of master integrals. These

integrals have been extensively studied in the literature [24, 25, 40–43]. In ref. [44], the

final missing set of master integrals containing elliptic sectors was evaluated by some of us,

thereby enabling the complete analytic computation of these amplitudes. While many of these
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integrals exist in various forms in the literature, we independently set up a comprehensive

system of differential equations containing all the occurring master integrals to ensure a

consistent representation. The bare helicity amplitudes are renormalised in a mixed scheme:

we adopt the on-shell scheme for mass renormalisation, while the remaining quantities are

renormalised in the MS. As an ancillary file [45], we provide the helicity amplitudes expressed

in terms of a set of canonical master integrals. The finite remainder is available upon request

from the authors for those interested. We present a few benchmark numerical values of all

helicity amplitudes, in particular, around the top quark threshold. We also present plots

of squared amplitudes.

The article is organised as follows. Section 2 describes the kinematic setup of the process

including its Lorentz covariant decomposition. In section 3, we describe the method of

constructing helicity amplitudes and the procedure to get the bare integrand. The ultraviolet

renormalisation and infrared factorisation are discussed in section 4. In section 5, we discuss

the results and their numerical implementation. We also describe the checks performed to

ensure the correctness of the results. We conclude with our outlook in section 6.

2 Setup

We consider the following scattering processes:

g(p1) + g(p2) + γ(p3) + γ(p4) → 0 ,

q(p1) + q̄(p2) + γ(p3) + γ(p4) → 0 .
(2.1)

We label the momenta of the particles by p1, · · · , p4 and regard all of them as incoming

that satisfy

p1 + p2 + p3 + p4 = 0 , p2
i = 0. (2.2)

The physical di-photon production at the LHC can be obtained from (2.1) by crossing

p3,4 → −p3,4. In computing an observable, such as cross-section for the di-photon production,

one requires gγ → gγ and qγ → qγ channels which can also be obtained by crossing from (2.1).

The kinematic Mandelstam invariants of the process,

s = (p1 + p2)2 , t = (p2 + p3)2 , u = (p1 + p3)2 , (2.3)

are related by momentum conservation s + t + u = 0. Consequently, no Euclidean region

exists kinematically for the scattering process, rendering it interesting to study. The 2 → 2

physical region corresponds to the scattering region

s > 0 , t < 0 , u < 0 . (2.4)

We construct two dimensionless parameters as

x =
s

m2
t

, y =
t

m2
t

, (2.5)

where mt denotes the mass of the top quark.
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Figure 1. Representative leading order Feynman diagrams for gluon-initiated channel involving

massive quark loop. The red lines represent top-quark, while the curly and wavy black lines correspond

to gluon and photon, respectively.

In this article, we consider the scattering with at least one massive quark in the loop.

So, both are loop-induced processes, as shown in figure 1 and 2. Our goal is to calculate the

two-loop amplitude of these processes in QCD. We denote the mass of the massive quark by

mt. The amplitude can be rewritten by factoring out the overall color factors as

Ag|q = Cg|q Ag|q , (2.6)

where

Cg = δa1a2 , Cq = δi1i2 (2.7)

for gg → γγ and qq̄ → γγ, respectively. The notation g|q denotes either gluon- or quark-

initiated channel. Here, in(an) represents an SU(Nc) index in the fundamental (adjoint)

representation. The partial amplitude A depends on the number of active massless (nf ) and

massive (nft
) quark flavors, as well as their respective electric charges, denoted by Qf and

Qft
. Since we focus on Feynman diagrams that include at least one massive quark loop,

meaning the lowest power of nft
contributing to the amplitude is 1. After extracting all color

structures, the partial amplitude can further be decomposed into a basis of N
g|q
T independent

Lorentz covariant tensor structures T
g|q
i as

Ag|q =

N
g|q
T
∑

i=1

Fg|q
i T

g|q
i , (2.8)

where Fg|q
i are called the form factors. These form factors can be expanded perturbatively

in powers of the strong coupling constant, αs.

We adopt the ’t Hooft-Veltman (tHV) regularisation scheme [46], in which loop momenta

are treated in d = 4 − 2ǫ dimensions, while external momenta and polarisations remain in

four dimensions. Within this framework, we follow the method proposed in [32, 33], which

eliminates the evanescent (−2ǫ)-dimensional helicity states and allows us to work with a set

of tensors T
g|q
i whose number corresponds directly to the independent helicity configurations.

A similar approach can be found in refs. [34, 47].

In gg → γγ channel, there are Ng
T = 8 independent tensor structures. By adopting the

cyclic gauge choice, ǫi · pi+1 = 0 (with p5 ≡ p1), and applying the transversality condition,
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ǫi · pi = 0, we obtain the following results [32, 33, 48, 49]:

T g
1 = p1 ·ǫ2 p1 ·ǫ3 p2 ·ǫ4 p3 ·ǫ1, T g

2 = ǫ3 ·ǫ4 p1 ·ǫ2 p3 ·ǫ1, T g
3 = ǫ2 ·ǫ4 p1 ·ǫ3 p3 ·ǫ1,

T g
4 = ǫ2 ·ǫ3 p2 ·ǫ4 p3 ·ǫ1, T g

5 = ǫ1 ·ǫ4 p1 ·ǫ2 p1 ·ǫ3, T g
6 = ǫ1 ·ǫ3 p1 ·ǫ2 p2 ·ǫ4,

T g
7 = ǫ1 ·ǫ2 p1 ·ǫ3 p2 ·ǫ4, T g

8 = ǫ1 ·ǫ2 ǫ3 ·ǫ4 + ǫ1 ·ǫ4 ǫ2 ·ǫ3 + ǫ1 ·ǫ3 ǫ2 ·ǫ4. (2.9)

The polarisation vector is denoted by ǫ(pi) ≡ ǫi. Unlike in tHV scheme, in conventional

dimensional regularisation, one requires 10 tensorial structures [50, 51]. In qq̄ → γγ channel,

N q
T = 4 and with the gauge choice ǫ3 · p2 = ǫ4 · p1 = 0, we get [49, 52]

T q
1 = ū(p2)/ǫ3u(p1) ǫ4 ·p2, T q

2 = ū(p2)/ǫ3u(p1) ǫ4 ·p1,

T q
3 = ū(p2)/p3

u(p1) ǫ3 ·p1 ǫ4 ·p2, T q
4 = ū(p2)/p3

u(p1) ǫ3 ·ǫ4 . (2.10)

The form factors Fg|q
i can be extracted from Ag|q with appropriate projectors P

g|q
j , defined

to satisfy the orthogonality condition
∑

pol P
g|q
j T

g|q
i = δji.

3 Helicity amplitudes

To compute the helicity amplitudes A
g|q
~λ

, it suffices to evaluate the tensors T
g|q
i for specific

helicity configurations ~λ = {λ1, λ2, λ3, λ4} of the external particles. Each helicity amplitude

corresponding to a given configuration ~λ can then be expressed as a linear combination

of the form factors Fg|q
i as

A
g|q
~λ

=

N
g|q
T
∑

i=1

T
g|q

i,~λ
Fg|q

i = Sg|q
~λ

Hg|q
~λ

. (3.1)

The overall spinor factors Sg|q
~λ

can be extracted from A
g|q
~λ

using the spinor-helicity formalism.

For a detailed introduction to this approach, we refer to ref. [53]. In this formalism, external

quarks with fixed helicities are defined as

|p〉 = [p| =
1 + γ5

2
u(p) , |p] = 〈p| =

1 − γ5

2
u(p) , (3.2)

with [p| = u(p)1−γ5

2 and 〈p| = u(p)1+γ5

2 treating particles and anti-particles on an equal

footing, while polarisation vectors take the following form

ǫµ
j,+ =

〈pj |γµ|qj ]√
2[pjqj ]

, ǫµ
j,− =

〈qj |γµ|pj ]√
2〈qjpj〉

, (3.3)

where qi is the massless reference vector corresponding to the i-th external gluon and is

chosen consistently with the gauge conditions used to determine the tensor bases of eqs. (2.9)

and (2.10). For the gg → γγ channel, there are 8 independent helicity amplitudes which

are related to the remaining ones through parity as

Ag
~λ

= Ag

−~λ
(〈ij〉 ↔ [ji]). (3.4)
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Here the negative sign flips the helicity. We choose independent ~λ = {+ + ++, − + ++, + −
++, + + −+, + + +−, − − ++, − + −+, + − −+}. By choosing the reference vector qi = pi+1,

where we identify p5 ≡ p1, we have the following spinor factors [26]

Sg
++++ =

〈12〉〈34〉
[12][34]

, Sg
−+++ =

[12][14]〈24〉
[34][23][24]

, Sg
+−++ =

[21][24]〈14〉
[34][13][14]

,

Sg
++−+ =

[32][34]〈24〉
[14][21][24]

, Sg
+++− =

[42][43]〈23〉
[13][21][23]

, Sg
−−++ =

[12]〈34〉
〈12〉[34]

,

Sg
−+−+ =

[13]〈24〉
〈13〉[24]

, Sg
+−−+ =

[23]〈14〉
〈23〉[14]

. (3.5)

For the qq̄ → γγ channel, we have 4 independent helicity amplitudes which can be used to

obtain the remaining 4 through charge-conjugation as

Aq
+−λ3λ4

= Aq
−+λ∗

3
λ∗

4

(〈ij〉 ↔ [ji]) . (3.6)

The λ∗ refers opposite helicity of λ. We choose q3 = p2, q4 = p1 and define the spinor factors as

Sq
−+−− =

2[34]2

〈13〉[23]
, Sq

−+−+ =
2〈24〉[13]

〈23〉[24]
,

Sq
−++− =

2〈23〉[41]

〈24〉[32]
, Sq

−+++ =
2〈34〉2

〈31〉[23]
. (3.7)

In our conventions, all external legs are treated as incoming. For outgoing particles, the

helicities of the respective legs must be reversed. The spinor inner products are defined as

〈ij〉 = 〈i−|j+〉 and [ij] = 〈i+|j−〉, where |i±〉 represent massless Weyl spinors associated with

the momentum pi and labeled by their helicity sign. These inner products are antisymmetric

and have magnitudes given by |〈ij〉| = |[ij]| =
√

sij , where sij = 2pi · pj are the usual

Mandelstam invariants: s12 = s, s23 = t, s13 = u. Consequently, the helicity-dependent

factors S
g|q
λ1λ2λ3λ4

, derived from these spinor products, are pure phases.

The spinor-free helicity amplitude Hg|q
~λ

can be expanded in powers of bare strong

coupling αs,b as

Hg|q
~λ

= 4πα
2
∑

ℓ=0

(

αs,b

4π

)ℓ

H
g|q ,(ℓ)
~λ

+ O(α3
s,b) , (3.8)

where we factor out an overall term proportional to the square of the electric charge, e2 = 4πα.

The quantity H
g|q ,(ℓ)
~λ

represents the bare ℓ-loop amplitude. It is important to note that, as

the gg → γγ channel is loop-induced, the leading-order term in its perturbative expansion

vanishes. In contrast, the qq̄ → γγ channel contributes non-trivially to all three orders. For

the quark-initiated processes involving at least one massive quark loop, non-zero diagrams

begin to appear only at the two-loop level. However, through renormalization, the lower-order

diagrams also contribute indirectly to the overall result.

We generate the Feynman diagrams for each channel using Qgraf[54]. There are 8

diagrams at one-loop for gg channel. At two loops, the gg channel comprises 166 diagrams,

while the qq̄ channel contains 55 diagrams. Samples of the two-loop diagrams are illustrated

– 6 –
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Figure 2. Representative two-loop Feynman diagrams for qq̄ channel.

Figure 3. Representative two-loop Feynman diagrams for gg channel.

in figures 2 and 3. To process these diagrams, we use FORM [35], applying the tensor projectors

defined in eqs. (2.9) and (2.10). We evaluate the Dirac traces and simplify the colour algebra

using in-house codes. The latter involves repeated application of standard colour identities,

(T a)ij(T a)kh =
1

2

(

δihδkj − 1

Nc
δijδkh

)

, fabc = −2 i Tr(T a[T b, T c]) . (3.9)

The form factors are expressed as linear combinations of scalar Feynman integrals, with

rational coefficients that depend on the Mandelstam invariants s, t, mass mt, and the

dimensional regulator ǫ. The form factors for the gg → γγ process involve 26,577 scalar

Feynman integrals, while the qq̄ → γγ process requires 2,289 integrals. We parametrize

the ℓ-loop Feynman integrals as follows:

Itop
n1,n2,...,nN

= µ2Lǫ
0 eLǫγE

∫ L
∏

i=1

(

ddki

iπ
d
2

)

1

Dn1

1 Dn2

2 . . . DnN

N

. (3.10)

The superscript “top” refers to any of the integral families mentioned below. Here, γE =

0.5772 . . . is the Euler-Mascheroni constant, and µ0 is the dimensional regularization scale.

The factor eLǫγE is purely conventional and is chosen for later convenience, while the factor

µ2Lǫ
0 ensures that the integrals maintain integer mass dimensions. For a general process with

E independent external momenta and L loops, one requires L(L + 1)/2 + LE independent

denominators to describe all possible scalar products of loop momenta with either loop or

external momenta. A specific complete set of denominators Di at a given loop order is

typically referred to as an integral family. We organize the amplitude into as few integral

families as possible, allowing for permutations of external momenta (crossings). At two loops,

this requires two planar and two non-planar families, which we present in tabular form in

table 1. There, we indicate the loop momenta with k1 and k2. We name PL1 and PL2 the

families corresponding to the planar graphs and NPL1, NPL2 the ones corresponding to the

non-planar graphs. We present the top sector diagrams for each integral family in figure 4.

The integrals appearing in the form factors are not all linearly independent. To identify

symmetry relations among the integrals, we employ Reduze2 [55, 56]. Subsequently, we use

Kira [36, 37] and LiteRed [57], which are implementations of the Laporta algorithm [58], and

– 7 –



J
H
E
P
1
2
(
2
0
2
5
)
1
0
6

Family PL1 PL2 NPL1 NPL2

D1 k2
1 − m2

t k2
1 k2

1 (k1 − p1)2

D2 (k1 + p1)2 − m2
t (k1 + p1)2 (k1 + p1)2 k2

1

D3 (k1 + p1 + p2)2 − m2
t (k1 + p1 + p2)2 (k1 + k2)2 − m2

t (k1 + p2)2

D4 (k1 + k2)2 (k1 + k2)2 − m2
t k2

2 − m2
t (k1 + k2 − p1)2 − m2

t

D5 k2
2 − m2

t k2
2 − m2

t (k2 + p3)2 − m2
t k2

2 − m2
t

D6 (k2 + p3)2 − m2
t (k2 + p3)2 − m2

t (k2 − p1 − p2)2 − m2
t (k2 + p3)2 − m2

t

D7 (k2 − p1 − p2)2 − m2
t (k2 − p1 − p2)2 − m2

t (k1 + k2 − p2)2 − m2
t (k1 + k2 + p2 + p3)2 − m2

t

D8 (k2 − p1)2 − m2
t (k2 − p1)2 − m2

t (k2 − p1)2 − m2
t (k1 + p3)2

D9 (k1 − p3)2 − m2
t (k1 − p3)2 (k1 + p3)2 (k2 − p1)2 − m2

t

Table 1. Planar and non-planar integral families at two loops. The first seven entries denote the real

propagators appearing in Feynman diagrams. All diagrams are mapped to these and their crossed

families.

Figure 4. Topology diagrams respectively for PL1, PL2, NPL1, NPL2 in the top sector. Red lines

represent massive particles, while black lines denote massless ones.

FiniteFlow [59], to solve integration-by-parts (IBP) relations. This algorithm leverages finite

field arithmetic [59–62] to systematically reduce the integrals to a minimal, independent basis

set of master integrals (MIs). Specifically, we obtain 29 MIs in PL1, 32 in PL2, 54 in NPL1,

and 36 in NPL2. The required master integrals for the amplitudes correspond to the families

{PL1, PL2, NPL1 and NPL2} and their crossings: {p1 ↔ p2}, {p1 → p2, p2 → p3, p3 → p1},

{p1 → p2, p2 → p4, p4 → p1}, {p1 → p2, p2 → p3, p3 → p4, p4 → p1} and {p1 → p2, p2 →
p4, p4 → p3, p3 → p1}. Taking into account all crossings, we find 65 master integrals for

the qq̄ channel and 171 for the gg channel.

For this independent set of uncrossed master integrals, we employ the method of dif-

ferential equations to find a good basis. Using IBP identities, we establish a unified system

of differential equations for these MIs with respect to both Mandelstam variables s and t

(with mt set to 1 for simplification). The system attains the form

d~Itop = (dM)~Itop, (3.11)

where M is an 88 × 88 matrix depending rationally on Mandelstam variables s, t, and

dimensional regulator ǫ.

In our case study, the uncrossed integrals, belonging to the families {PL1, PL2, NPL1,

NPL2}, have been extensively studied in different contexts [24, 25, 40–43], and are well known

to satisfy an ǫ-factorized differential equation system [63]. Consequently, our choice of the

pre-canonical basis for these integrals follows the work in refs. [41–43], with some modifications.

To transform the differential equation system into the ǫ-form, we employ the Magnus series

expansion [64] to compute the rotation matrix for our pre-canonical basis. Furthermore, we

validate the canonical basis choice for the contributing crossings by independently deriving

– 8 –
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their differential equations and obtaining the ǫ-form of the system using the corresponding

mapping relations within the uncrossed setup.

The last 6 integrals in our chosen basis, which belong to the top and sub-top sectors of

the non-planar family NPL2, exhibit more intricate mathematical structures. These integrals

are known to involve geometries beyond multiple polylogarithms, such as elliptic curves,

making their analytic solutions significantly more challenging. Recently, analytic solutions for

these non-planar topologies involving elliptic sectors have become available [44] by some of

us. This was the final missing piece required to express the two-loop amplitudes for diphoton

production in terms of analytic functions.

With this, the choice of the canonical basis up to top and sub-top sectors of the NPL2

integrals enables a compact expression of the amplitudes across all crossings, following the

mappings outlined earlier. We provide the canonical basis choice as an auxiliary file with this

paper. In ref. [65], an alternative choice of canonical master integrals has been presented.

Another crucial aspect of master integral computation is their numerical evaluation

across the entire physical phase-space region. Polylogarithmic integrals can be evaluated

numerically in multiple ways. For instance, integrals expressible in terms of Goncharov

polylogarithms can be evaluated using GINAC [66], while numerically evaluating one-fold

integrals over polylogarithmic kernels, also known as dlog one-forms, as done in [42] provides

another option. Similarly, the numerical evaluation of elliptic kernels can be achieved by

series expanding the corresponding kernels along suitable paths in the physical phase-space

region, as demonstrated in [67, 68]. The formulation of these integrals in a function basis

suitable for numerical evaluation across all phase-space regions is left for future work.

4 Ultraviolet and infrared structures

The result of the computation described in the previous section are the divergent helicity

amplitudes for the processes described in eq. (2.1) in terms of bare αs,b and bare top mass

mt,b. In the following, we describe the ultraviolet (UV) renormalisation and infrared (IR)

subtraction of the divergent amplitudes.

4.1 UV renormalisation

For UV singularity, we renormalise the amplitude using the modified minimal subtraction

(MS) scheme, except for the top quark mass, which we choose to renormalise in the on-shell

(OS) scheme. The bare coupling αs,b is written in terms of the renormalised coupling αs(µ) as

αs,b µ2ǫ
0 Sǫ = αs µ2ǫZα(αs(µ)), (4.1)

where Sǫ = (4π)ǫe−γEǫ, and µ is the renormalization scale, which we set equal to µ0. Zα is

the renormalisation constant for the strong coupling. The latter is introduced in dimensional

regularisation to make the coupling constant dimensionless. The bare top-quark mass, mt,b,

is expressed in terms of the renormalized mass, mt, as:

mt,bSǫ = mtZmt , (4.2)
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where Zmt is the mass renormalization constant. Similarly, the bare gluon field, Gν,b, is

related to the renormalized gluon field, Gν , via:

Gν,bSǫ = GνZg, (4.3)

where Zg is the gluon field renormalization constant. This arises due to the presence of

massive quark. The bare quark field, Qb, is connected to the renormalized one, Q, as:

QbSǫ = QZq, (4.4)

where Zq represents the quark field renormalization constant. We set nf = 0 as there are no

massless quark loops contributing to the processes described in eq. (2.1) at the perturbative

order considered.

Gluon channel. Since the leading-order gg → γγ amplitude is loop-induced, as shown in

figure 1, it is free from both ultraviolet (UV) and infrared (IR) divergences. At two-loop level,

however, the amplitude exhibits both UV and IR divergences. Notably, only a single massive

quark loop contributes to the amplitude — photons can only emit from massive quarks. In

other words, the two-loop amplitude does not depend on massless quarks. Therefore, we can

safely disregard the massless quark contributions from the leading order when constructing

the UV and IR subtraction terms. The UV renormalized helicity amplitude, Hg,(l)
~λ,ren

with

l = {1, 2}, is obtained from the bare helicity amplitude defined in eq. (3.8) using the following:

Hg,(1)
~λ,ren

= Hg,(1)
~λ

,

Hg,(2)
~λ, ren

= Hg,(2)
~λ

+

(

ng

2
δZg + δZα

)

Hg,(1)
~λ,ren

+ δZmt Hg,CT,(1)
~λ

. (4.5)

Here the renormalisation constants are expanded according to Zi = 1 +
(

αs

4π

)

δZi + O(α2
s)

for i = {α, g, mt} with

δZα = −β0

ǫ
+

(

µ2

mt
2

)ǫ (
4

3ǫ
TF

)

nft
,

δZg = −
(

µ2

mt
2

)ǫ (
4

3ǫ
TF

)

nft
,

δZmt = −
(

µ2

mt
2

)ǫ

CF

(

3

ǫ
+ 4

)

. (4.6)

The number of gluons in the external states is denoted by ng which is equal to 2 in our case.

The quadratic Casimir in the fundamental representation of SU(N) is CF = (N2 − 1)/(2N),

and in the adjoint representation, it is denoted by CA. The constant TF is defined as TF = 1/2,

and the leading-order β function is given by β0 = (11CA − 2nf )/3. It is noteworthy that the

top-mass-dependent contributions to the αs expansions from δZα and δZg cancel each other.

The counter-term amplitude for the top mass renormalization is represented by Hg,CT,(1)
~λ

. This

counter-term amplitude is derived by inserting the mass counter-term, Pmt
ac , defined through

Pmt
ac =

i δab

✁p − mt
(−i δZmt)

i δbc

✁p − mt
, (4.7)
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Figure 5. Sample diagram for calculating mass counter term.

into each top quark propagator in the leading-order amplitude, and collecting the coefficient of

α2
s. This can be visualised through figure 5. Alternatively, the counter-term can be computed

by differentiating the leading-order amplitude with respect to mt. This approach yields

results that are in perfect agreement with the previously derived counter-term.

Quark channel. In the quark-initiated channel, one-loop diagrams containing a single

massive quark loop exist but vanish due to Furry’s theorem. Non-zero contributions begin to

appear only at the two-loop level. These contributions can be categorized into two types of

diagrams, depending on whether the photons are emitted from massive or massless quarks,

as illustrated in figure 2. The first type, where photons are emitted from massive quarks,

is UV and IR finite. This behaviour is expected since no such diagrams exist at lower loop

levels. The second type, involving photons emitted from massless quarks, is UV divergent

but IR finite. Calculating the counterterms requires considering tree-level and one-loop

diagrams without massive quark involvement. Thus, while we focus on diagrams with at

least one massive quark loop, the two-loop UV and IR subtraction contributions also include

contributions from massless quarks which are not forming closed loops.

We split the helicity amplitude defined in eq. (3.8) with respect to the type of quarks

from which the di-photon are emitted:

Hq,(ℓ)
~λ

= Q2
f Hf,(ℓ)

~λ
+

nft
∑

ft=1

Q2
ft

Hft,(ℓ)
~λ

. (4.8)

The terms Hf,(ℓ)
~λ

and Hft,(ℓ)
~λ

represent the contributions from diagrams where the diphoton is

emitted by massless and massive quarks, respectively. Notably, there are no non-zero mixed

diagrams up to two loops. As previously mentioned, the contribution Hft,(2)
~λ

is both UV and

IR finite, because it first arises at the two-loop level. On the other hand, the contribution

Hf,(2)
~λ

is UV divergent but remains IR finite. In QCD, nft
equals 1.

Additionally, we require massless quark field renormalisation constants up to order α2
s

along with the constants of eq. (4.6):

Zq = 1 +

(

αs

4π

)

δZq
(1) +

(

αs

4π

)2

δZ(2)
q + O(α3

s), (4.9)

with

δZ(1)
q = 0,

δZ(2)
q =

(

µ2

mt
2

)ǫ

CF nft

(

1

4ǫ
− 5

4

)

. (4.10)
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We need to consider only Hf,(ℓ)
~λ

for renormalisation and we obtain the UV finite amplitude

Hf,(2)
~λ,ren

by

Hf,(2)
~λ,ren

= Hf,(2)
~λ

+ δZq
(1)Hf,(1)

~λ
+ δZαHf,(1)

~λ
+ δZ(2)

q Hf,(0)
~λ

. (4.11)

Hf,(0)
~λ

is tree level and Hf,(1)
~λ

is the one loop helicity amplitude setting nf to zero in qq̄ → γγ

channel, respectively.

4.2 IR factorisation

The IR singularity structure of QCD amplitudes has been studied up to three loops for the

massless cases in refs. [69–78]. It also has been extended to the cases involving massive

partons at two loops in refs. [79–83] and up to three loops [84] involving one massive parton

in the external states. The IR divergences can be subtracted from our UV renormalized

amplitudes, H~λ, ren
, multiplicatively through

Hg|q
~λ, fin

= lim
ǫ→0

[

Z−1
IR Hg|q

~λ, ren

]

α
QCD
s →ξαs

, (4.12)

resulting IR finite Hg|q
~λ, fin

. Here αs denotes the strong coupling constant in the effective theory

with nf = 5 in which the heavy quark is integrated out. While considering an amplitude

with heavy quark mass dependence, one must relate the αQCD
s , the strong coupling constant

of full QCD with nf = 6 through the decoupling relation [85], αQCD
s = ξαs. Where the

ξ to the order of αs is given by

ξ = 1 +

(

αs

4π

)
nft
∑

i=1

2

3

[

eǫγE Γ(ǫ)

(

µ2

m2
i

)ǫ

− 1

ǫ

]

. (4.13)

Here, ZIR is a matrix in SU(N) color space acting on the space spanned by the Ci basis

vectors (2.7) and Hg|q
~λ, fin

are finite remainders, also called hard scattering functions. The

matrix ZIR can be written as

ZIR = P exp

[
∫ ∞

µ

dµ′

µ′
Γ({p}, αs, µ′)

]

, (4.14)

where P denotes the path-ordering of color operators [74] in increasing values of µ′ from left

to right. The anomalous dimension matrix Γ = Γdipole can be written as

Γdipole({p}, αs, µ) =
∑

1≤i<j≤2

Ti · Tj γK(αs) log

(

µ2

−sij − iδ

)

+
2
∑

i=1

γi(αs) , (4.15)

where γK(αs) is the cusp anomalous dimension [86–91] and γi is the quark (gluon) collinear

anomalous dimension [92–95] of the i-th external particle. Further, T
a
i represents the color

generator of the i-th parton in the scattering amplitude,

(Ta
i )αβ = ta

αβ for a final(initial)-state quark (anti-quark),

(Ta
i )αβ = −ta

βα for a final(initial)-state anti-quark (quark),

(Ta
i )bc = −ifabc for a gluon. (4.16)
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As the processes, we considered in (2.1) do not have any massive parton in the external

states, we exclude the contributions from massive parton in the external states in (4.15).

We expand the finite remainders in powers of αs as

Hg|q
~λ,fin

=
∑

ℓ≥0

(

αs

4π

)ℓ

Hg|q,(ℓ)
~λ,fin

. (4.17)

As previously mentioned, the qq̄ → γγ does not exhibit any IR divergences. We need IR

subtraction only for the gg → γγ channel. The finite remainders for the quark-initiated channel

are denoted through Hf,(l)
~λ, fin

and Hft,(l)
~λ, fin

. For the gluon-initiated channel, the corresponding

expressions are given by

Hg,(0)
~λ, fin

= Hg,(0)
~λ

,

Hg,(1)
~λ, fin

= Hg,(1)
~λ, ren

− Z(1)
IR Hg,(0)

~λ, ren
, (4.18)

where Z(n)
IR are the coefficients of the expansion of ZIR in αs [74, 96]:

Z(0)
IR = 1 , Z(1)

IR =
Γ′

0

4ǫ2
+

Γ0

2ǫ
.

The quantities Γ′
0 and Γ0 are defined through

Γdipole =
∞
∑

n=0

Γn

(

αs

4π

)n+1

, Γ′ =
∂Γdipole

∂ log µ
= −γK

∑

i

Ci =
∞
∑

n=0

Γ′
n

(

αs

4π

)n+1

. (4.19)

5 Results, checks and benchmarks

Upon including the UV counterterms, we confirm the complete cancellation of UV divergences.

While not all amplitudes under consideration exhibit IR divergences, for those that do, the

soft and collinear singularities align precisely with theoretical predictions, as described in

section 4. This consistency is reflected in the finiteness of Hg|q
~λ,fin

in eq. (4.12). This agreement

serves as a crucial validation of our calculation. An independent calculation of the helicity

amplitudes is carried out in ref. [65], and we find perfect numerical agreements with their bare

results.1 Furthermore, we find that, in our chosen integral representations, the amplitudes in

both channels contain no crossings of elliptic integrals, with the elliptic contributions isolated

to only six integrals across the whole amplitudes.

As previously mentioned, due to the lack of a suitable functional basis for elliptic integrals,

we use AMFlow [97, 98] to calculate finite remainders numerically at some kinematic points. In

an alternative approach, in ref. [99], it has been shown that the combination of the expansion

in high-energy and around the forward limit approximate the exact results to high precision.

To systematically represent these results, we parameterise the physical kinematic space as [25].

s > 0, t = −s

2
(1 − cos θ), −s < t < 0. (5.1)

1In conventions of this article, we observed complete agreement at the phase-space points, (s, t, mt) =

(13/10, −3/5, 1), (s, t, mt) = (11/3, −5/2, 1) and (s, t, mt) = (51/10, −11/10, 1), after adjusting for an overall

factor of 1/Γ(1 + ǫ)2.

– 13 –



J
H
E
P
1
2
(
2
0
2
5
)
1
0
6

Helicity Finite remainder

Hf,(2)
−+−−,fin 0.0003077743812

Hf,(2)
−+−+,fin 0.3343545752627 + 0.0045759197604 I

Hf,(2)
−++−,fin 0.3340355600039 + 0.0039728945978 I

Hf,(2)
−+++,fin -0.0003077743812

Hft,(2)
−+−−,fin -0.0032890203623 + 0.0018737139979 I

Hft,(2)
−+−+,fin 0.0149015345327 - 0.0980611917183 I

Hft,(2)
−++−,fin 0.0145075046945 - 0.1001008144487 I

Hft,(2)
−+++,fin 0.0032890203623 - 0.0018737139979 I

Table 2. Benchmarks for the finite remainders for the quark channel for θ = π
6

, s = 3 GeV and N = 3.

Helicity Finite remainder

Hg,(2)
++++,fin -4.2353936830803 + 44.7462828017996 I

Hg,(2)
−+++,fin -0.2195377488355 + 0.5883781474135 I

Hg,(2)
+−++,fin -0.2195377488355 + 0.5883781474135 I

Hg,(2)
++−+,fin -0.3559355594652 + 0.1940038446546 I

Hg,(2)
+++−,fin -0.3559355594652 + 0.1940038446546 I

Hg,(2)
−−++,fin 0.9197367315469 - 69.8007699134945 I

Hg,(2)
−+−+,fin 67.2257429520241 - 69.2863625098377 I

Hg,(2)
+−−+,fin 0.4096925658652 - 0.4161420588004 I

Table 3. Benchmarks for the finite remainders for the gluonic channel for θ = π
6
, s = 3 GeV and

N = 3.

The scattering angle in the partonic centre of mass frame is denoted by θ ∈ (0, π). Table 2

and 3 provide benchmark values for the two-loop finite remainders of all helicity amplitudes

at selected kinematic points in the physical phase space.

The existence of Bose symmetry due to the exchange of final state photons, p3 ↔ p4

is evident from the finite remainder for both quark and gluon-initiated processes. For the

qq̄ channel, it gets translated to

Hf |ft,(2)
−+−−,fin(s, t) = −Hf |ft,(2)

−+++,fin(s, t),

Hf |ft,(2)
−+−+,fin(s, t) = Hf |ft,(2)

−++−,fin(s, u). (5.2)
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The notation f |ft signifies that the relations hold for both types of finite remainders. These

validations serve as crucial consistency checks on our final results. For the gluon-initiated

amplitude, the Bose-symmetry under the exchange of p1 ↔ p2 and/or p3 ↔ p4 implies

Hg,(2)
λ1,λ2,λ3,λ4,fin(s, t) = Hg,(2)

λ2,λ1,λ3,λ4,fin(s, u)

Hg,(2)
λ1,λ2,λ3,λ4,fin(s, t) = Hg,(2)

λ1,λ2,λ4,λ3,fin(s, u) . (5.3)

The finite remainders are checked to exhibit this symmetry. We provide the bare helicity

amplitudes expressed in terms of a set of canonical master as an ancillary file [45]. The finite

remainder is available upon request from the authors.

The finite remainder is a vector in colour and helicity space, which can be written as

Ag|q
fin = Cg|qA

g|q
fin = 4πα Cg|q

∑

l=0

(

αs

4π

)ℓ

A
g|q,(ℓ)
fin . (5.4)

The colour factors Cg|q correspond to the gluon and quark channels, respectively, as defined

in (2.7). The interference between the finite remainders at ℓ- and ℓ′-loops can be composed

out of helicity amplitudes through

A
g|q,(ℓ)
fin A

g|q,(ℓ′)
fin = N

∑

λ

(

Cg|q
)†

Cg|q |Sλ|2 Hg|q,(ℓ)∗
λ, fin Hg|q,(ℓ′)

λ, fin , (5.5)

In figure 6, we present these interferences of amplitudes for both channels.

6 Conclusions

We compute the two-loop QCD helicity amplitudes for gg → γγ and qq̄ → γγ, retaining the

full dependence on the top quark mass inside the loop. Using a combination of in-house

and publicly available codes, we express the integrand in terms of a set of canonical master

integrals except the elliptic integrals. A recent computation by some of us [44] involving a

non-planar integral family with elliptic sectors provides the final missing ingredient, allowing

us to complete this calculation. While the remaining required master integrals exist in the

literature, we perform an independent validation by constructing a comprehensive system of

differential equations encompassing all master integrals including crossings. This ensures a

consistent representation of the solutions in terms of a unified set of variables. This set of

uncrossed families and the corresponding function basis remain the same for dijet production.

Therefore, while we defer the publication of these results to future work, we provide the bare

amplitudes in terms of a chosen set of master integrals as an ancillary file [45] with this article.

We renormalise the heavy quark mass in the on-shell scheme, while other quantities are

renormalised in the MS scheme. In addition to verifying the expected UV and IR divergences,

we cross-check our bare amplitudes with an independent calculation by another group [65],

finding complete numerical agreement at multiple physical phase-space points. We present

a few benchmark values for the finite remainders for all helicity amplitudes.

These amplitudes provide a valuable input for computing cross-sections and other key

observables using various subtraction schemes. It will be interesting to investigate the

impact of these analytic results by comparing them with existing calculations of the diphoton
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production cross-section for gg → γγ, where the relevant integrals were previously evaluated

numerically [30] or semi-numerically [31]. The impact of the top quark mass at the high-

luminosity phase of the LHC will be particularly interesting to explore, as its effects are

expected to be significantly enhanced in this regime. Furthermore, this work lays the

groundwork for future studies, including dijet production with a massive quark loop.
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