
J
H
E
P
0
1
(
2
0
2
5
)
1
9
7

Published for SISSA by Springer

Received: September 19, 2024
Accepted: January 4, 2025

Published: January 31, 2025

An exceptional cluster algebra for Higgs plus jet
production

Rigers Aliaj a,b and Georgios Papathanasiou b,c

aII. Institut für Theoretische Physik, Universität Hamburg,
Luruper Chaussee 149, 22607 Hamburg, Germany

bDeutsches Elektronen-Synchrotron DESY,
Notkestr. 85, 22607 Hamburg, Germany

cDepartment of Mathematics, University of London,
Northampton Square, EC1V 0HB, London, U.K.

E-mail: rigers.aliaj@desy.de, georgios.papathanasiou@desy.de

Abstract: A recent evaluation of three-loop nonplanar Feynman integrals contributing to
Higgs plus jet production has established their dependence on two novel symbol letters. We
show that the resulting alphabet is described by a G2 cluster algebra, enlarging the C2 cluster
algebra found to cover all previously known integrals relevant for this process. The cluster
algebra connection we find reveals new adjacency relations, which significantly reduce the
function space dimension of the non-planar triple ladder integral. These adjacencies may be
understood in part by embedding G2 inside higher-rank cluster algebras.

Keywords: Higher-Order Perturbative Calculations, Scattering Amplitudes, Extended
Supersymmetry, Higgs Production

ArXiv ePrint: 2408.14544

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2025)197

https://orcid.org/0009-0007-1199-8637
https://orcid.org/0000-0002-2627-9906
mailto:rigers.aliaj@desy.de
mailto:georgios.papathanasiou@desy.de
https://doi.org/10.48550/arXiv.2408.14544
https://doi.org/10.1007/JHEP01(2025)197


J
H
E
P
0
1
(
2
0
2
5
)
1
9
7

Contents

1 Introduction 1

2 Basics of cluster algebras 4
2.1 Definitions and finite type classification 4
2.2 The rank-two cluster algebras A2, C2, G2 5
2.3 Folded cluster algebras and embedded neighbour sets 7

3 Nonplanar 3-loop 1-mass Ladder: alphabet 11
3.1 General procedure for equivalence of alphabets 12
3.2 Application: ladder alphabet = G2 cluster algebra 13

4 Nonplanar 3-loop 1-mass Ladder: adjacencies 14
4.1 Observed adjacency restrictions 14
4.2 Intepretation by embedding G2 inside D4/B3 cluster algebras 15
4.3 Adjacent G2 polylogarithmic function counts 18

5 Conclusions and outlook 20

1 Introduction

Following the discovery of the Higgs boson, a new era of precision measurements has begun
at the Large Hadron Collider and its planned High-Luminosity upgrade. Interpreting these
measured observables, determining the parameters of the Standard Model as well as telling
apart the subtle signature of new physics from them, requires their theoretical description
to reach a commensurate level of accuracy. One of the key challenges to this end, remains
the computation of scattering amplitudes and their building blocks, Feynman integrals, at
higher orders in perturbative quantum field theory [1].

On the analytic front, that often provides a faster and stabler evaluation than the
numeric one, the method of choice for computing the master integrals (namely the solutions
of the linear integration-by-parts identities [2] among all Feynman integrals contributing to a
given process) are differential equations [3–5] in canonical form [6]. Working in dimensional
regularisation, where the dimension of loop momenta is D = 4 − 2ϵ, and focusing on bases
of integrals f which evaluate to the often sufficient class of multiple polylogarithms [7–9],
these canonical differential equations take the form

df(z⃗; ϵ) = ϵ

[∑
i

Ai dlogαi(z⃗)
]

f(z⃗; ϵ). (1.1)

Here, z⃗ collectively denotes the kinematic variables the integrals depend on, such as external
momenta and internal masses, and d =

∑
j dzj∂j is the total differential. Finally, each αi is

an algebraic function of the z⃗ components known as a letter (of the symbol [10]), with the
entire set A ≡ {αi} similarly denoted as the (symbol) alphabet, and Ai are constant matrices.
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Despite the great success of the method, for a state-of-the-art application see e.g. [11],
this too becomes increasingly unwieldy as the perturbative order and number of kinematic
variables grow to meet experimental demands. Serious bottlenecks include analytically solving
the integration-by-parts identities in terms of an initial basis, as well as determining the basis
transformation that brings it to the form (1.1). However prior knowledge of the alphabet
can be extremely helpful with these calculations, as it converts them from symbolic to much
simpler, numeric ones [12]. This fact renders the prediction of the alphabet by independent
means an attractive endeavour.

In this respect, mathematical objects known as cluster algebras [13] appear quite promising.
Cluster algebras have been first observed to describe the alphabet of six- and seven-particle
amplitudes in planar N = 4 super Yang-Mills theory (SYM) [14], providing crucial information
for computing these amplitudes to unprecedented loop orders by bootstrap methods [15–29];1

and closely related generalisations are also seen to describe higher-point amplitudes of the
same theory [35–40]. Most importantly, in [41] it was discovered that cluster-algebraic
structures are not confined to idealised models: in particular, it was demonstrated that cluster
algebras also underlie the analytic structure of a host of dimensionally regulated Feynman
integrals as well as processes in quantum chromodynamics (QCD). Since then, their presence
has been confirmed in more examples of integrals [42–50] and imprints of their relevance
have also been observed in finite remainders of five-particle QCD amplitudes [51–54]. A
review of these developments may be found in Chapter 5 [55] of the SAGEX review on
scattering amplitudes [56].

While we will define cluster algebras in more detail in the next section, we can convey
their essence with examples of finite rank-two cluster algebras, which will play a central role
in what follows: these consist of cluster variables am for m integer, grouped into unordered
sets or clusters {am, am+1}, which may be obtained as rational functions of the variables of
the initial cluster, {a1, a2}, by virtue of the mutation operation,

am+1 =


1+am
am−1

if m is odd ,

1+aL
m

am−1
if m is even ,

(1.2)

where L is a positive integer with L ≤ 3. The three inequivalent cases L = 1, 2, 3 correspond
to the A2, C2 and G2 cluster algebras respectively, echoing the Cartan classification of semi-
simple Lie groups of the same rank. For these cases, it’s easy to show that ai+4+2L−1 = ai,
in other words there exist a finite number of nontrivial clusters and cluster variables. For
example, in the C2 case the latter are,

ΦC2 = {a1, . . . , a6} =
{

a1, a2,
1 + a2

2
a1

,
1 + a1 + a2

2
a1a2

,
1 + 2a1 + a2

1 + a2
2

a1a2
2

,
1 + a1

a2

}
. (1.3)

1Before that, cluster algebras also appeared at the level of the amplitude integrand in this theory [30], as
well as enjoyed remarkable connections to other theoretical physics topics, for example thermodynamic Bethe
ansätze [31], moduli spaces [32] and electric/magnetic duality [33] of supersymmetric gauge theories, or mirror
symmetry [34].
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(a) (b)

p2 p4

p3p1

(c)

Figure 1. Examples of known integrals with one off-shell leg, p2
4 ̸= 0, at (a) one (b) two and (c) three

loops. They are described by the A2, C2 and G2 cluster algebras, respectively, with the latter case
proven in this work.

The above C2 cluster algebra was found to describe one of the most prominent classes
of Feynman integrals studied in [41], which enter the calculation of amplitudes for Higgs
boson plus jet production from proton-proton collisions [57–59] in the heavy-top limit of
QCD [60–62]: these were all the known four-point integrals with one off-shell (or equivalently
massive) leg, including the complete set of two-loop master integrals [63, 64] as well as
L-loop ladders [65, 66]; see figure 1(b) for a representative example. More precisely, all these
integrals where shown to obey differential equations of the form (1.1), where the letters αi

coincide (in certain kinematic parametrisation) with the C2 cluster variables ai of eq. (1.3)!
More three-loop planar integral families confirming the same cluster algebraic structure were
also later computed in [67, 68].

Despite this encouraging evidence, a more recent calculation [69], see also [70], has
established that the C2 alphabet (1.3) is in fact too small to describe all integrals with the
same kinematics at three loops: in particular, it was found that the three-loop nonplanar
ladder integral family depicted in figure 1(c) additionally depends on two novel letters. Does
this result cast doubt on the applicability of cluster algebras for Feynman integrals? The main
contribution of this work is to demonstrate that the resulting alphabet in fact corresponds to
a G2 cluster algebra. We find it remarkable that the alphabets of type A2, C2, G2 become
relevant at one, two and three loops, respectively.2 In other words, the parameter L in
eq. (1.2) really seems to be the loop order!

In addition, we study adjacency restrictions of the form,

Ai · Aj = 0, (1.4)

for some i, j, of the constant matrices appearing in the differential equations (1.1), for the
G2-alphabet integral family of figure 1(c). In the realm of planar N = 4 SYM theory,
adjacency relations appear to encode how the cluster variables arrange themselves into the
clusters [71, 72]. They can be in essence physically interpreted as a generalisation [26]
of the Steinmann relations [73–75] governing the discontinuities of Feynman integrals and
scattering amplitudes, and most importantly, they greatly facilitate bootstrapping the latter
by drastically reducing the size of the function space containing them.

2Note that the space of polylogarithmic functions with an A2 alphabet is contained in the space of functions
with a C2 alphabet, and the latter is in turn contained in the space of functions with a G2 alphabet.
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For the nonplanar triple ladder integral of figure 1(c), we find 20 inequivalent adjacency
relations of the form (1.4) after transforming the original alphabet of ref. [69] to the G2
cluster variables obtained from eq. (1.2), whereas before the transformation a subset of 16 of
these relations were visible. In other words, the cluster algebra connection we find exposes
new adjacency relations, and we showcase how these restrict the allowed function space.
While these relations are not in one-to-one correspondence with how the G2 cluster variables
are distributed among clusters, we will also show that many of them can be understood by
embedding G2 inside the larger B3 or D4 cluster algebras.

The rest of this paper is organised as follows. In section 2 we briefly introduce cluster
algebras and their finite type classification, before turning our attention to the rank-two
cases, which will be at the heart of this work. We also review how these can be embedded
into larger cluster algebras with the process of folding, and define the notion of an embedded
neighbour set, which will play an important role when analysing adjacency restrictions.

Then, in section 3 we move on to discuss the alphabet containing all currently computed
four-point one-mass integrals through three loops, and, after reviewing certain general
procedures for proving the equivalence of alphabets, we apply them to demonstrate that the
alphabet in question is described by a G2 cluster algebra. Section 4 is dedicated to the study of
adjacency relations for the single topology with novel letters, the nonplanar triple ladder. We
present the adjacency restrictions we observe for the integral in question, we explain them to a
great extent with the help of embeddings to larger cluster algebras, and we demonstrate that
they indeed lead to a significant reduction in the size of the relevant polylogarithmic function
space. Finally, section 5 we present our conclusions and discuss open questions for the future.

2 Basics of cluster algebras

2.1 Definitions and finite type classification

Here we give a brief introduction on the basics of cluster algebras. This relatively new branch
of contemporary mathematics, was originally motivated by the study of representation theory
and the study of quantum groups [13, 76–78]. However, it appeared to be very useful in many
other directions both in terms of mathematics and physics [33, 79–81]. For more details on
its mathematical foundations one can follow [82, 83].

For any positive n, a cluster algebra A of rank n is a commutative ring with unit and no zero
divisors. The structure includes a distinguished set of generators a := {a1, a2, . . . , an}, called
cluster variables, which group into overlapping subsets called clusters. The cardinality of
each cluster is equal to the rank of the cluster algebra. The clusters and the cluster variables
are built constructively. One starts from an initial cluster and builds the rest through an
operation called mutation. The mutation rule is provided by a skew-symmetrisable integer
valued n × n matrix B called the exchange matrix with components bij . Any pair of data
(a, B) is called a seed. Mutation leads to new cluster variables and new exchange matrices.
Mutation can be performed on any cluster variable and transforms the whole seed. More
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precisely, mutating (a, B) on the k-th variable (1 ≤ k ≤ n) we obtain a new seed (a′
, B

′) with

b′ij =

−bij for i = k or j = k,

bij + [−bik]+bkj + bik[bkj ]+ otherwise,
(2.1)

where we denoted [bij ]+ = max(0, bij). Moreover, the cluster variables mutate according to

a′
i =

a−1
k

(∏n
i=1 a

[bik]+
i +

∏n
i=1 a

[−bik]+
i

)
if i = k

ai if i ̸= k
(2.2)

Consecutive mutations, in principle, produce new variables on each iteration. Note that
in any case the number of cluster variables remains the same. When this procedure ends,
namely when the cluster variables constitute a finite set, the cluster algebra is said to be
of finite type. On the contrary, cluster algebras with infinite distinct cluster variables are
said to be of infinite type.

In this work we will be interested in finite cluster algebras, whose classification is identical
to that of semisimple Lie algebras. To this end, one associates a symmetrisable generalised
Cartan matrix A(B) to the skew-symmetrisable exchange matrix B of the cluster algebra
in the following way

aij =

2, if i = j

−|bij |, if i ̸= j.
(2.3)

It has been proven in [13, 76], that cluster algebras are finite if and only if they contain
an exchange matrix B such that A(B) is a Cartan matrix of finite type. Therefore, the
classification of finite cluster algebras amounts to the classification of finite Cartan matrices
into types An, Bn, Cn, Dn, E6, E7, F4, G2.

Before moving on to our main example of rank-two finite cluster algebras, let us define
two more concepts we will make use of in what follows. The content of a cluster algebra
can be visualised in its exchange graph, where each cluster is represented as a vertex, and
each mutation from a cluster to another as an edge between them. As an explicit example,
the exchange graph of the G2 cluster algebra may be found in figure 2 below. Finally,
the neighbour set of a cluster variable is the set of all cluster variables appearing with the
latter in some cluster.

2.2 The rank-two cluster algebras A2, C2, G2

As stated in the introduction, our main focus will be on the rank two cluster algebras of
types A2, C2, G2. These can be obtained by an initial seed with cluster variables {a1, a2}
and exchange matrices given by

B =
(

0 1
−L 0

)
, (2.4)

where L = 1, 2, 3 corresponds to the A2, C2, G2 case, respectively. Indeed, by computing
the generalised Cartan matrix of eq. (2.3),

A(B) =
(

2 −1
−L 2

)
, (2.5)
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we can recognise that it corresponds to the Cartan matrix of the aforementioned rank-two
Lie algebras.

Applying the mutation rule of eq. (2.1) to the exchange matrix (2.4), it is easy to check
that it only switches sign. Since the corresponding mutation rule for the cluster variables,
eq. (2.2), is invariant under this sign change, the latter equation then simplifies to the
form (1.2) we stated in the introduction.

As the cluster algebras in question are finite, starting with the initial cluster {a1, a2}
and performing mutations generates a finite number of distinct clusters and variables, after
which we land back to the initial cluster. In the L = 2 or C2 case the collection of distinct
cluster variables from all clusters yields the set quoted in eq. (1.3), and similarly in the
L = 3 or G2 case we obtain,

ΦG2 =
{

a1, a2,
1+a3

2
a1

,
1+a1 +a3

2
a1a2

,
1+a3

1 +3a2
1 +3a1a3

2 +3a1 +a6
2 +2a3

2
a2

1a3
2

,
1+a2

1 +2a1 +a3
2

a1a2
2

,

1+a3
1 +3a2

1 +3a1 +a3
2

a1a3
2

,
1+a1

a2

}
. (2.6)

The colour-coding is explained as follows: the subset of cyan variables is multiplicatively
equivalent to the A2 cluster variables after the replacement

a2 → a
1/3
2 , (2.7)

or in other words the logarithms of the variables span the same linear space.3 Similarly, by
adding the blue variable to them one obtains a subset that is multiplicatively equivalent
to the C2 cluster algebra after the replacement

a2 → a
2/3
2 . (2.8)

More explicitly, by dropping the purely G2 violet variables and using (2.8) in eq. (2.6), it is
easy to check that the numerators of the remaining variables match (up to overall rational
exponents) those of eq. (1.3).

Apart from the cluster variables per se, we will also be interested in how these arrange
themselves into clusters. This information is visualised in the exchange graph, as defined
in the previous subsection, and which for the case of G2 is depicted in figure 2. The fact
that the C2 and A2 cluster variables are contained, up to multiplicative equivalence, in G2,
induces a relation between the two cluster algebras also at the level of their exchange graphs:
the C2 exchange graph can be obtained from the G2 one by dropping any purely G2 variable
as well as contracting the edges of the two clusters containing it, and similarly for A2.

From the exchange graph we may also easily infer that the G2 cluster variable ai may
be found together with ai−1 and ai+1 in some cluster. This is precisely the information
encoded in the notion of the neighbour set also defined at the end of the previous section,
which in this case reads,

nsG2(ai) = {ai−1, ai, ai+1} i = 1, . . . , 8. (2.9)
3As will be elaborated on below, polylogarithmic function spaces with cluster variables as letters are defined

up to this equivalence, hence our interest in it.
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a1, a2 a2, a3

a3, a4

a4, a5

a5, a6a6, a7

a7, a8

a8, a1

Figure 2. Exchange graph of the G2 cluster algebra, with the expressions for the letters ai given in
eq. (2.6) in the order they appear. Removing a5, a7 (and a6) and fusing the clusters containing them
essentially yields the C2 (A2) cluster algebra, as discussed in the text.

2.3 Folded cluster algebras and embedded neighbour sets

Every non-simply laced Lie algebra, or its corresponding Dynkin diagram, may be obtained
from a simply laced one from a procedure known as folding. In particular, we have

A2n−1 → Cn , D4 → G2 ,

Dn+1 → Bn , E6 → F4 ,
(2.10)

and the same procedure also carries over to the associated cluster algebras [31].4 Conversely,
this provides an embedding of a skew-symmetrisable cluster algebra inside a larger cluster
algebra. We will make use of this type of embedding for G2 in subsection 4.2, where we will
see that it has implications for the adjancency relations of the form (1.4) for the differential
equations of the three-loop nonplanar ladder integral.

In the rest of this subsection, we review how to fold cluster algebras, also using the
A3 → C2 example to illustrate the general process. We will also show how folding naturally
extends the notion of neighbour sets to embedded neighbour sets, see in particular Definition 1
below. The reader interested primarily in the cluster-algebraic structure of alphabets, rather
than of adjacency relations, may thus choose to directly skip to the next section.

At the level of Dynkin diagrams, folding may be thought of as an identification between
different nodes that are mapped into each other by an (outer automorphism) symmetry
leaving the entire diagram invariant. At the level of a cluster algebra, this symmetry is
in turn with respect to permutations of the rows of the exchange matrix;5 Folding of the
cluster algebra essentially amounts to equating the cluster variables associated to the rows
in question, and only considering simultaneous mutations of these variables (and usual
mutations of the rest) [83].

4From the relation (2.3) between Cartan and exchange matrices, it also follows that (non-)simply laced Lie
algebras are associated to skew-symmetric (skew-symmetrisable) cluster algebras.

5As the exchange matrix we begin with is skew-symmetric, also its columns will respect the same symmetry.
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In this manner, one produces the subset of the seeds of the skew-symmetric cluster
algebra, whose exchange matrix will respect an analogous permutation symmetry. As a
consequence, these clusters will also have the same number of cluster variables equal after the
aforementioned replacement, and we may use the count of distinct variables as a criterion to
select the subset in question when starting from the entire skew-symmetric cluster algebra.
Furthermore, from the cluster variable mutation rule (2.2), it is evident that

a
[±bik]+
i a

[±bjk]+
j

aj=ai−−−−→ a
[±bik]++[±bjk]+
i . (2.11)

In other words, the identification of two cluster variables implies that their corresponding
rows in the exchange matrix need to be replaced by the sum of the two, also appropriately
eliminating rows so as to end up with a rectangular matrix. All in all, from these considerations
we obtain the following general folding procedure.

Folding cluster algebras:

1. Start with a skew-symmetric ADE cluster algebra appearing on the left of any arrow
in eq. (2.10), and pick a seed whose exchange matrix is symmetric under a certain
permutation of its rows.

2. Equate the cluster variables related by this permutation, and select the subset of all
clusters containing the same numbers of equal cluster variables.

3. In each of the selected clusters, for each collection of equal cluster variables, replace
the corresponding rows of the exchange matrix with a single row summing them up.
Eliminate the columns of the matrix as well as the duplicate cluster variables having
the same position as the eliminated rows.

4. The seeds thus obtained are seeds of the skew-symmetrisable cluster algebra at the
other end of the arrow in eq. (2.10).

Let us see this procedure at work in the example of A3 → C2 folding. We start with the
A3 seed with cluster variables and exchange matrix, respectively,

{a0, a1, a2} , B̄ =

0 −1 0
1 0 1
0 −1 0

 , (2.12)

and for our purposes it will be sufficient to consider two more seeds of the cluster algebra,

{1 + a1
a0

, a1, a2

}
, B̄′ =

 0 1 0
−1 0 1
0 −1 0

 , (2.13)

{1 + a1
a0

, a1,
1 + a1

a2

}
, B̄′′ =

 0 1 0
−1 0 −1
0 1 0

 , (2.14)
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obtained by mutating first a0 and then a2 in (2.12). The matrix B̄ in the latter formula is
symmetric under the exchange of the first and third row and column, so according to step 2
above we may set a0 = a2. This renders equal two cluster variables not only in this seed but
also in the seed of eq. (2.14), and so we select these seeds. On the contrary the three cluster
variables of the seed (2.13) remain distinct and so we discard it (also notice that, unlike the two
seeds we selected, the exchange matrix of this seed does not have a permutation symmetry).

We now proceed to produce the C2 seeds corresponding to eqs. (2.12) and (2.14) by
identifying the equal cluster variables as described in step 3 above. In both selected clusters
the permutation symmetry is with respect to the first and third row, and we may choose to
replace the latter with the sum of the two. This eliminates the first row, and consequently
also the first column of the matrix, as well as the first cluster variable. Therefore folding
eqs. (2.12) and (2.14) yields

{a1, a2} , B =
[

0 1
−2 0

]
, (2.15)

{
a1,

1 + a1
a2

}
, B′′ =

[
0 −1
2 0

]
, (2.16)

respectively, and it’s easy to show that both are indeed seeds of the C2 cluster algebra:
the first of the above equations is nothing but the C2 initial seed with an exchange matrix
equal to eq. (2.4) with L = 2, whereas the second equation the seed obtained by mutating
a2 in the former.

Similarly, carrying out this procedure for all 14 of the A3 seeds selects 6 of them, which
are found to be equal to the C2 seeds as expected by the coarsening of the G2 exchange
graph shown in figure 2. It also follows that the set of cluster variables of the folded cluster
algebra is directly obtained from that of the unfolded cluster algebra we begin with, after
the variable identification discussed in step 2 above. For the A3 example at hand, it is in
particular simple to check that its set of cluster variables,{

a0, a1, a2,
1 + a1

a0
,
1 + a0a2

a1
,
1 + a1

a2
,
1 + a1 + a0a2

a0a1
,
1 + a1 + a0a2

a1a2
,
1 + 2a1 + a2

1 + a0a2
a0a1a2

}
,

indeed reduces to that of C2, eq. (1.3), after the A3 → C2 folding replacement a0 = a2 and
the elimination of duplicate elements.

Before concluding this section, let us present a final related concept that will be very
useful when analysing adjacency relations in section 4. As the folding procedure we have
described may be thought of as an embedding of a skew-symmetrisable cluster algebra inside
a larger cluster algebra, it also allows us to generalise the notion of the neighbour set defined
at the end of subsection 2.1, and also illustrated in the example of the G2 cluster algebra in
eq. (2.9). Namely, cluster variables that do not appear together in clusters of the folded cluster
algebra, may appear together in clusters of the larger cluster algebra containing it. This gives
rise to the notion of an embedded neighbour set, which may be formally defined as follows.

Definition 1 (Embedded neighbour set) Let ai ∈ A and fi ∈ F be cluster variables of
two cluster algebras related by folding A → F , which in particular equates aj = fi for some

– 9 –
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indices j and all indices i. Then the embedded neighbour set of F ⊂ A is given by

nsF⊂A(fi) =
⋃
j

nsA(aj)
∣∣∣
aj=fi

. (2.17)

In other words, we first compute the neighbour sets for the variables of the cluster algebra
A, and then set some of them equal, as dictated by folding. For the subset of variables that
become equal to the cluster variables of F after this replacement, we take the union of their
neighbour sets, where the same replacement is also applied.

To make the embedded neighbour set definition more transparent, we apply it to our
A3 → C2 example. The A3 neighbour sets are,

nsA3(a0)=
{

a0,a1,a2,
1+a1

a2
,
1+a0a2

a1
,
1+a1+a0a2

a1a2

}
,

nsA3(a1)=
{

a0,a1,a2,
1+a1

a0
,
1+a1

a2

}
,

nsA3(a2)=
{

a0,a1,
1+a1

a0
,a2,

1+a0a2

a1
,
1+a1+a0a2

a0a1

}
,

nsA3

(
1+a1

a0

)
=
{

a1,
1+a1

a0
,
1+a1

a2
,a2,

1+a1+a0a2

a0a1
,
1+2a1+a2

1+a0a2

a0a1a2

}
,

nsA3

(
1+a0a2

a1

)
=
{

a0,a2,
1+a0a2

a1
,
1+a1+a0a2

a0a1
,
1+a1+a0a2

a1a2

}
, (2.18)

nsA3

(
1+a1

a2

)
=
{

a0,a1,
1+a1

a0
,
1+a1

a2
,
1+a1+a0a2

a1a2
,
1+2a1+a2

1+a0a2

a0a1a2

}
,

nsA3

(
1+a1+a0a2

a0a1

)
=
{

1+a1

a0
,a2,

1+a0a2

a1
,
1+a1+a0a2

a0a1
,
1+a1+a0a2

a1a2
,
1+2a1+a2

1+a0a2

a0a1a2

}
,

nsA3

(
1+2a1+a2

1+a0a2

a0a1a2

)
=
{

1+a1

a0
,
1+a1

a2
,
1+a1+a0a2

a0a1
,
1+a1+a0a2

a1a2
,
1+2a1+a2

1+a0a2

a0a1a2

}
,

nsA3

(
1+a1+a0a2

a2a1

)
=
{

a0,
1+a1

a2
,
1+a0a2

a1
,
1+a1+a0a2

a0a1
,
1+a1+a0a2

a1a2
,
1+2a1+a2

1+a0a2

a0a1a2

}
.

Upon the identification a0 = a2 that performs the A3 → C2 folding, two more pairs of cluster
variables become equal to each other (those appearing on the left-hand side of lines 4-7 and
5-9 above). We observe that the neighbour sets of the cluster variables that are identified with
each other also coincide, and altogether the C2 ⊂ A3 embedded neighbour sets thus become,

nsC2⊂A3(a1) =
{

a1, a2,
1 + a1

a2

}
nsC2⊂A3(a2) =

{
a1, a2,

1 + a1

a2
,

1 + a2
2

a1
,

1 + a1 + a2
2

a1a2

}
,

nsC2⊂A3

(
1 + a2

2
a1

)
=
{

a2,
1 + a2

2
a1

,
1 + a1 + a2

2
a1a2

}
, (2.19)

nsC2⊂A3

(
1 + a1

a2

)
=
{

a1, a2,
1 + a1

a2
,

1 + a1 + a2
2

a1a2
,

1 + 2a1 + a2
1 + a2

2
a1a2

2

}
,

nsC2⊂A3

(
1 + 2a1 + a2

1 + a2
2

a1a2
2

)
=
{

1 + a1

a2
,

1 + a1 + a2
2

a1a2
,

1 + 2a1 + a2
1 + a2

2
a1a2

2

}
,

nsC2⊂A3

(
1 + a1 + a2

2
a1a2

)
=
{

a2,
1 + a1

a2
,

1 + a2
2

a1
,

1 + a1 + a2
2

a1a2
,

1 + 2a1 + a2
1 + a2

2
a1a2

2

}
.
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p2 p4

p3p1

Figure 3. The B1 topology producing new letters.

Notice in particular that some of these neighbour sets are larger than the usual C2 neighbour
sets of the same cluster variables. Indeed the latter always contain three elements, as every
C2 cluster variable appears in two clusters related by a mutation.

3 Nonplanar 3-loop 1-mass Ladder: alphabet

Our goal will be to understand the cluster-algebraic structure of three-loop four-point integrals
with one external leg offshell/massive, and everything else massless. Many integral families
with these kinematics have been recently calculated in [67–70], and all of them continue to be
described by a C2 cluster algebra relevant at two loops [41], except the nonplanar topology
shown in figure 3. As its alphabet contains that of all the other integrals, from now on we
will thus restrict our attention to this nonplanar triple ladder.

We choose to label the external momenta as shown in the figure, with p2
1 = p2

2 = p2
3 = 0

and p2
4 ̸= 0. The kinematic variables of the process are thus

s = (p1 + p2)2, t = (p1 + p3)2, p2
4, (3.1)

and, following the conventions of [69], the symbol alphabet for the canonical differential
equations (1.1) of all currently known integrals with these kinematics is contained in

Φ0 = {α0, α1, . . . , α8} = {p2
4, s, t,−p2

4 + s + t,−p2
4 + s, s + t,−(p2

4 − s)2 + p2
4t, s2 − p2

4(s− t)}.

(3.2)
Without loss of generality, we can always render the alphabet dimensionless by dividing
out with one of the dimensionful letters, which is taken as the overall scale of the Feynman
integral. In our case we will take this overall scale to be α0 = p2

4, and in particular define
the dimensionless version of the kinematic variables (3.1) as

z1 = −s

−p2
4
, z2 = −t

−p2
4
. (3.3)

The dimensionless alphabet in terms of these variables finally becomes,

Φ = {z1, z2, 1 − z1 − z2, 1 − z1, 1 − z2, z1 + z2, 1 − 2z1 + z2
1 − z2, z1 − z2

1 − z2}, (3.4)

where we again use colour-coding to denote the letters that first appear at one, two and
three loops.

We would like to explore whether the alphabet (3.4) has a cluster-algebraic interpretation.
To this end, we will first need to review and refine the general framework for proving the
equivalence of different sets of alphabets.
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3.1 General procedure for equivalence of alphabets

Our starting point is the well-known fact that under linear transformations of the form

dlogαi =
∑

j

Mij dlogα′
j , (3.5)

where Mij are the elements of a square invertible rational matrix, the canonical differential
equations (1.1) preserve their general form. Specifically, they transform to

df(z⃗; ϵ) = ϵ

∑
j

A′
j dlogα′

j(z⃗)

 f(z⃗; ϵ), (3.6)

where
A′

j =
∑

i

AiMij . (3.7)

Therefore, any two symbol alphabets {αi} and {α′
i} are considered equivalent if they are

related by a transformation of the form (3.5), or in other words alphabets are only defined
up to the equivalence relation {αi} ∼ {α′

i}, rather than uniquely.
Provided the alphabets {αi} and {α′

i} depend on the same variables z⃗, one may easily
check if they are equivalent in a numerical fashion, see e.g. [84]: one forms the list

L(z⃗) = {log |α1(z⃗)|, . . . , log |αN (z⃗)|, log |α′
1(z⃗)|, . . . , log |α′

N (z⃗)|} , (3.8)

where the absolute value is placed so as to throw away any sign information which is not
relevant for symbol letters, and for definitiveness we have specified the size of the two
alphabets to be N . Next, one evaluates this list for (at least) 2N random values of the
variables, z⃗(1), . . . , z⃗(2N), and from them constructs the matrix,

R =


L(z⃗(1))

...
L(z⃗(2N))

 . (3.9)

Then, checking whether the two alphabets are equivalent or not boils down to the computation
of the rank of this matrix,

rank(R) = N ⇔ {αi} ∼ {α′
i} . (3.10)

More often, however, we are interested in comparing alphabets that depend on different
variables, {αi(z⃗)}, {α′

i(z⃗ ′}. In other words, we also need to find the transformation

z⃗ ′ = g⃗(z⃗) , (3.11)

so as to be able to carry out the equivalence test (3.8)–(3.10). The key idea here is that if the
variables z⃗ are themselves letters, then their general form is also constrained by eq. (3.5).6 If

6The requirement that the variables are themselves letters is not a limitation in practice, as we can always
pick a subset of algebraically independent letters as variables.
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this requirement holds, and {αi} ∼ {α′
i}, then taking the exponential of the latter relation

for the variables z⃗ yields,

z′m ∈ {α′
i} ⇒ z′m = cm

N∏
j=1

αj(z⃗)nmj , m = 1, . . . , d , (3.12)

where for concreteness we have assumed that the number of independent variables of both
alphabets is d, z⃗ = (z1, . . . , zd) and similarly for the primed case.

The above formula equips us with a systematic way to establish the equivalence of two
alphabets {αi(z⃗)}, {α′

i(z⃗ ′)}, both having size N and d independent variables: we perform
the transformation (3.12) on the alphabet {α′

i(z⃗ ′)} for a range of different values cm, nmj ,
construct the matrix R as in eqs. (3.8)–(3.9) and compute its rank. Per eq. (3.10), if for
certain values of cm, nmj this rank equals N , then these determine the transformation (3.11),
and prove the equivalence of the two alphabets.

We may also drastically reduce the number of matrix rank evaluations of the method,
and thereby achieve a corresponding improvement in its efficiency, as follows: assuming that
we scan a range of r values for each nmj , if we were to transform all zm similtaneously the
number of evaluations would be proportinal to rd·N . Instead, we split the above computation
into d smaller computations, one for each individual value of m in eq. (3.12), where we also
keep only the subset of single-variable letters {α′

i1(z′m), . . . , α′
iK

(z′m)} in the second half of
the list (3.8). Each smaller computation will involve matrices R of size N + K instead of
2N , whose rank is thus also faster to evaluate, and the number of matrix rank evaluations
of all of them together will now be proportional to d · rN instead of rd·N . Finally, we form
the complete list of the two alphabets L in eq. (3.8), and carry out the test (3.10), but now
we scan only over the subset of cm, nmj values that have already passed the test in each of
the smaller computations. Usually there’s just a handful of such values, so this final step
has negligible computational overhead.

Of course, if a variable transformation and alphabet equivalence is discovered numerically
as described above, in the end it may also be checked analytically to further confirm its
correctness. Input parameters of the method we have described include the ordering of the
two alphabets, the range of values we scan for cm, nmj , the range and type of numbers
(integer/rational/real) for the random kinematic points, as well as the numerical precision of
the rank evaluation. Finally, it is worth noting that this method can also be straightforwardly
generalised so as to also look for the inclusion of one alphabet inside the other.

3.2 Application: ladder alphabet = G2 cluster algebra

We now move on to apply the general procedure we have described in the previous section,
in order to investigate whether the alphabet (3.4) of the nonplanar triple ladder integral is
equivalent to the G2 cluster algebra alphabet (2.6): both have 8 letters and depend on two
variables, which are necessary conditions for their equivalence. Furthermore, the variables
z1, z2 are also letters of the former alphabet, such that our method can be applied directly.

For simplicity, instead of the G2 alphabet (2.6) we choose the alphabet of its irreducible
factors (the two are equivalent by virtue of eq. (3.5)) as our {α′

i(a1, a3
2)}. Notice, in particular,

that we pick a3
2 instead of a2 as a variable, since only the former appears in the irreducible
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factors. As the range of values for our scan we pick cm = ±1 and nmj = {−1, 0, 1}. Finally,
we choose integer random kinematic points, and compute the rank with 100 digits of precision.

In this manner, we find the transformation

z1 =(1 + a1)(1 + a1 + a3
2)

a1a3
2

,

z2 = − 1 + a1
a3

2
,

(3.13)

and we also check analytically that it indeed proves the equivalence of the alphabets (3.4)
and (2.6). Concretely, the letters of the former, nonplanar triple ladder alphabet in terms
of the G2 alphabet read,

Φ =
{

a4a8
a2

,−a8
a2

2
,−a4

a2
2
,−a6

a2
,
a1a4
a2

2
,
a3a8
a2

2
,
a7a4
a2

2
,−a5a8

a2
2

}
. (3.14)

4 Nonplanar 3-loop 1-mass Ladder: adjacencies

4.1 Observed adjacency restrictions

In the previous section, we showed that the alphabet (3.4), controlling the three-loop one-mass
nonplanar ladder integral, is equivalent to the one of eq. (2.6), dictated by the G2 cluster
algebra. That is, the former alphabet is related to the latter by a transformation of the
form (3.5), and it is also interesting to investigate adjacency restrictions of the transformed
coefficient matrices A′

i of this integral, eq. (3.7), in the G2 alphabet.
We find that

A′
i · A′

j = A′
j · A′

i = 0 for

i, j ∈ {1, 3, 5, 7} with i > j ,

j = i + 3 , i = 3, . . . , 6 with j ∼ j − 8 ,
, (4.1)

namely we obtain 12+8=20 adjacency restrictions. These contain the 6 restrictions observed
previously for the C2 subalphabet of G2 [41], see also [85], plus another 14 relations involving
either or both of the new, purely G2 letters a5, a7 in eq. (2.6).

We note that 16 of these restrictions were visible in the original alphabet (3.4). Namely
our cluster-algebraic analysis already has the benefit of revealing new adjacency restrictions,
and in subsection 4.3 we will explore how such adjacency restrictions reduce the size of the
relevant function space. To see how the new adjacency restrictions look like in the original
alphabet (3.4) of the nonplanar 3-loop 1-mass ladder, we first reexpress the relation (3.14)
between these letters and those of the G2 alphabet in the form (3.5), and read off the
corresponding transformation matrix M . Plugging this in eq. (3.7), we find that the primed
coefficient matrices in the G2 alphabet are related to those of the original reference [69] by,

A′
1 = A5 , A′

3 = A6 , A′
5 = A8, , A′

6 = A4 , A′
7 = A7 (4.2)

A2 = −A1 − 2A2 − 2A3 − A4 − 2A5 − 2A6 − 2A7 − 2A8 , (4.3)
A′

4 = A1 + A3 + A5 + A7 , A′
8 = A1 + A2 + A6 + A8 . (4.4)

Clearly, the subset of adjacency restrictions (4.1) where only matrices of eq. (4.2) participate,
have precisely the same simple form in the original alphabet up to index relabellings, and
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correspond to the 16 visible relations we mentioned at the beginning of this paragraph.
However the restrictions involving the matrices of eq. (4.4) become more complicated,

(A1 + A3 + A5 + A7) · A7 = A7 · (A1 + A3 + A5 + A7) = 0 ,

A8 · (A1 + A2 + A6 + A8) = (A1 + A2 + A6 + A8) · A8 = 0 ,
(4.5)

and may thus only be found by simple inspection after our variable transformation, illustrating
its advantage.

In N = 4 SYM theory, adjacency restrictions have been observed to be in 1-1 correspon-
dence with the distribution of variables within clusters, encoded in their neighbour sets. In
the language of canonical differential equations, this ‘cluster adjacency’ [71] correspondence
could be stated as,

Ai · Aj = Aj · Ai = 0 ⇔
∄ cluster containing αi, αj ,

or equivalently αi ̸∈ ns(αj) .
(4.6)

Note that for such cluster adjacency restrictions the order of the matrix product doesn’t
matter, since all statements on the right-hand side of the double arrow are independent of
the order. Another way to say this, is that αi ̸∈ ns(αj) ⇔ αj ̸∈ ns(αi).

This independence from the order of the matrix product is certainly something that our
observed adjacencies (4.1) respect. But do they precisely match the N = 4 cluster adjacency
predictions (4.6)? To answer this, we need to apply it to the G2 neighbour sets, which we
have presented in eq. (2.9). Since these contain three consecutive G2 cluster variables, it
follows that if N = 4 cluster adjacency were to hold, it would imply

A′
i · A′

j
?= 0 for j ̸= i, i ± 1 , (4.7)

namely 16+16+8=40 relations for j = i ± 2, j = i ± 3 and j = i + 4, respectively.
Hence the N = 4 cluster adjacency predictions (4.7) don’t match our observed adjacen-

cies (4.1), though the latter are certainly contained in the former. A similar situation was
also observed for the two-loop integrals for the same kinematics [41]. We can nevertheless
aim to explain these by embedding the G2 cluster algebras inside larger cluster algebras with
the method of folding, reviewed together with the newly introduced concept of embedded
neighbour pairs in section 2.3. The main idea is that since the larger cluster algebra contains
more clusters, the neighbour sets of the G2 variables inside of it will also become bigger,
such that their complements, the N = 4 cluster adjacency restrictions (4.7), will reduce in
number, and may approach or coincide with the observed adjacencies (4.1).

4.2 Intepretation by embedding G2 inside D4/B3 cluster algebras

In section 2.3, we have recalled that both the G2 and the B3 cluster algebras can be embedded
in the larger D4 cluster algebra with the method of folding. As we will explain below, due to
their common ancestry, G2 may also be considered as part of the B3 cluster algebra, and this
relation is visualised in figure 4. Per Definition 1, we find that in both B3 and D4 embeddings
of G2 the corresponding neighbour sets become,

ns(a1)G2⊂D4 = ns(a1)G2⊂B3 ={a8, a1, a2} ,

ns(a2)G2⊂D4 = ns(a2)G2⊂B3 ={a1, a2, a3, a4, a6, a8} ,
+ ai → ai+2 , (4.8)
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Figure 4. The three-dimensional cyclohedron with four square, four pentagonal and four hexagonal
faces is the exchange graph of the B3 cluster algebra. The G2 exhange graph of figure 2 may be
realised as a two-dimensional subspace thereof.

where cyclic identification of the cluster variable indices is implied. Compared to the G2
neighbour sets (4.1) we notice that for the variables with odd indices a2j−1 they remain the
same, but for the variables with even indices a2j they double in size!

As a consequence, the embedding reduces the complement of the G2 neighbour sets, the
naive N = 4 cluster adjacency predictions (4.7) from 40 to 20+8=28 relations. Specifically,
it eliminates the following 12 of the restrictions of eq. (4.7),

✘✘✘✘✘✘A′
2i · A′

2j=0 , i ̸= j = 1, . . . , 4 , (4.9)

which the nonplanar triple ladder integral indeed does not obey. On the other hand, the
embedding of G2 inside the B3 or D4 cluster algebras still predicts that the restrictions of the
second case in eq. (4.1) should hold for the entire range of i = 1, . . . 8, whereas the integral
obeys only half of these mixed odd/even index restrictions, for i = 3, . . . 6. In any case,
we find it encouraging that the embedding procedure we have described modifies the naive
N = 4 cluster adjacency predictions (4.7) such that they approach the observed adjacency
restrictions of the integral, and it would be interesting to explore if more general embeddings
that go beyond what can be achieved by folding could also lead to a precise match.

In the rest of this subsection, we provide more details on how the result (4.8) was obtained.
This closely mirrors the A3 → C2 folding example provided in subsection (2.3). A choice
for the cluster variables and exchange matrix of the D4 initial seed is

{d1, d2, d3, d4} , BD4 =


0 −1 0 0
1 0 1 1
0 −1 0 0
0 −1 0 0

 , (4.10)

which clearly is symmetric in the permutation of any of the rows 1,3,4. Following the folding
procedure we described with respect to the first and fourth row, specifically eliminating the
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latter and the corresponding variable d4 → d1, yields the B3 seed

{d1, d2, d3} , BB3 =

0 −2 0
1 0 1
0 −1 0

 . (4.11)

Similarly, applying the same procedure for all rows 1,3,4, and in particular eliminating the
latter two and their corresponding variables d4, d3 → d1, leads to the G2 seed

{d1, d2} , BG2 =
[
0 −3
1 0

]
. (4.12)

Indeed, the above exchange matrix is equivalent to the G2 exchange matrix of eq. (2.4)
with L = 3 up to a simultaneous reordering of rows and columns, which in turn amounts
to an immaterial reordering of the variables of the cluster. In other words, one simply
needs to relabel

d1 → a2 , d2 → a1 . (4.13)

in order to match our previous conventions for the G2 cluster algebra, as e.g. in eq. (2.6)
and figure 2.

Notice that the G2 seed (4.12) may alternatively be obtained by folding the B3 seed (4.11),
adding the third to the first column and eliminating d3 → d1. It is in this sense that G2 is
also contained in B3 as depicted in figure 4. Because the B3 case is simpler, we will thus
present the calculation of the embedded neighbour sets of G2 with respect to the latter,
only commenting on where the D4 case differs.

The B3 cluster algebra has 12 variables distributed to 20 clusters. Starting from the initial
seed (4.11), and mutating according to the rules (2.1)–(2.2), in our ordering conventions
the cluster variables read,

ΦB3 =
{

d1, d2, d3,
d2 + 1

d1
,
d3d2

1 + 1
d2

,
d2 + 1

d3
,
d3d2

1 + d2
2 + 2d2 + 1

d2
1d2

,
d3d2

1 + d2 + 1
d2d3

,

d3d2
1 + d2 + 1
d1d2

,
d3

2 + 3d2
2 + 3d2 + d2

1d3 + 1
d2

1d2d3
, (4.14)

d2
3d4

1 + 3d2d3d2
1 + 2d3d2

1 + d3
2 + 3d2

2 + 3d2 + 1
d2

1d2
2d3

,
d3d2

1 + d2
2 + 2d2 + 1

d1d2d3

}
≡ {di}12

i=1 ,
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whereas their neighbour sets are given by,

nsB3(d1) = {d1, d2, d3, d5, d6, d8} ,

nsB3(d2) = {d1, d2, d3, d4, d6} ,

nsB3(d3) = {d1, d2, d3, d4, d5, d7, d9} ,

nsB3(d4) = {d4, d2, d3, d6, d7, d10} ,

nsB3(d5) = {d1, d5, d3, d8, d9}
nsB3(d6) = {d1, d2, d6, d4, d8, d10, d12} ,

nsB3(d7) = {d4, d7, d3, d9, d10, d11, d12} ,

nsB3(d8) = {d1, d5, d8, d6, d9, d12, d11} ,

nsB3(d9) = {d5, d9, d3, d7, d8, d11} ,

nsB3(d10) = {d4, d10, d6, d7, d12} ,

nsB3(d11) = {d9, d11, d7, d8, d12} ,

nsB3(d12) = {d8, d12, d6, d10, d11, d7} .

(4.15)

As mentioned already, the G2 cluster algebra in our conventions is obtained from B3 by
the replacement d3 → d1, together with the relabeling (4.13). For the entire set of B3
variables, this implies

d1, d3 → a2 , d2 → a1 , d4, d6 → a8 , d5 → a3 ,

d7, d12 → a6 , d8, d9 → a4 , d10 → a7 , d11 → a5.
(4.16)

According to definition 1, in order to obtain the embedded neighbour set of a given G2
variable, we need to take the union of the neighbour sets of all B3 variables that reduce
to it under the folding (4.16). For example, only d2 reduces to a1, and thus applying the
replacement (4.16) to its neighbour set in (4.15) gives,

ns(a1)G2⊂B3 = {a1, a2, a8} . (4.17)

On the other hand both d1 and d3 reduce to a2, so in order to compute its embedded
neighbour set one needs to perform the replacement (4.16) on the union of the neighbour
sets of the two B3 variables, thus obtaining

ns(a2)G2⊂B3 = {a1, a2, a3, a4, a6, a8} . (4.18)

Both of the last two formulas agree with what we already presented in (4.8), and the
calculation proceeds also for the other neighbour sets in a similar fashion. Embedding G2
inside D4 also yields the same final result; the only difference in intermediate stages, is that
the neighbour sets of D4 variables that reduce to the same G2 variables, also coincide.

4.3 Adjacent G2 polylogarithmic function counts

Let us close this section by analysing the extent to which the adjacency restrictions (4.1), that
we have discovered for the three-loop nonplanar ladder integral, reduce the size of the relevant
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Weight 1 2 3 4 5 6 7
No condition 8 46 232 1093 4944 21790 -
First entry 3 14 61 262 1113 4700 19755
Adjacency 3 14 54 196 684 2326 7796

Table 1. Dimension of the G2 cluster function spaces (modulo transcendental constants) before and
after constraints.

function space. In other words, we will construct the space of polylogarithmic functions of
(transcendental) weight w, satisfying the defining property,

df (w) =
∑

i

f
(w−1)
i d log ai, (4.19)

where f
(w−1)
i are weight-(w − 1) functions of the same type (with the recursion terminating

with rational constants of weight 0 on the right-hand side) and ai are the symbol letters,
which in our case coincide the G2 cluster variables (2.6).

At weight w, this function space will contain the O(ϵw) term in the expansion of all
currently computed four-point one-mass integrals, when normalised such that this expansion
starts at O(ϵ0). First constructing this space and then seeking to identify the integrals or
even directly the physical quantities they contribute to, is at the heart of the perturbative
analytic bootstrap programme for scattering amplitudes and beyond, see [55] for a recent
review. The success of this programme hinges on controlling the dimension of the function
space at each weight, such that its construction is computationally feasible, and that the
integral or physical quantity can be identified uniquely inside of it.

First of all, the dimension of the G2 polylogarithmic function space at weight w will not
be 8w, because well-defined functions obey the property that double derivatives should yield
the same result irrespective of the order of differentiation. This requirement is equivalent
to the integrability condition,

d2f (w) = 0 →
∑

i

df
(w−1)
i ∧ d log ai = 0 , (4.20)

which only allows particular weight-(w − 1) functions to appear on the right-hand side of
eq. (4.19). The construction of integrable polylogarithmic functions modulo transcenden-
tal constants, also known as symbols, has been automated in the Mathematica package
SymBuild [86], and applying it to our case yields the function counts shown on the first
line of table 1.

Then, a necessary condition such that the produced functions have physical branch cuts,
as dictated by locality and unitarity, is the first entry condition: the weight-one space must
only contain letters that are Mandelstam variables. In the dimensionless alphabet of eq. (3.4),
these correspond to the first three entries, and because of eq. (3.14) this is also equivalent to,

First entry condition: f⃗ (1) = {log z1, log z2, log(1−z1−z2)} ∼ {log a2, log a4, log a8}. (4.21)
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The function counts when the first entry condition is additionally imposed are shown in
the second line of table 1.7

Finally, on top of integrability and the first entry condition, we may also impose the
additional adjacency restrictions (4.1), with the corresponding function space dimensions
shown in the third line of table 1. We notice that they start having an effect already at
weight 3, and that by weight 6 they have reduced the size of the integrable G2 functions
obeying just the first entry condition by more than a half. These results provide strong
indications that such adjacency restrictions may play an important role in future extensions
of the bootstrap programme to four-point one mass integrals or Higgs plus jet amplitudes
in the heavy-top limit.

5 Conclusions and outlook

We have demonstrated that all four-point one-mass master integrals through three loops
computed to date are governed by a G2 cluster algebra, enlarging the C2 cluster algebra
previously seen to be relevant at two loops. In particular, the alphabet (3.1) entering their
canonical differential equations (1.1) was shown to be equivalent to the set of G2 cluster
variables (2.6) thanks to the variable transformation (3.13). We find it remarkable that the
A2, C2 and G2 cluster algebras start becoming relevant at L = 1, 2 and 3 loops, respectively!

Focusing on the single integral with letters beyond those contained in the C2 cluster
algebra, shown in figure 3, we also looked for adjacency restrictions of the form Ai · Aj = 0
for the constant matrices entering the canonical differential equations. We discovered that
using the G2 cluster variable form of the alphabet reveals new adjacency restrictions, yielding
a total of 20 instead of the 16 that were visible in the original alphabet. While the observed
adjacency restrictions do not coincide with the naive G2 cluster adjacency expectations seen
to hold in N = 4 SYM theory, we showed that the two can be further aligned by embedding
G2 inside the larger B3 or D4 cluster algebras. We also illustrated the power of the adjacency
restrictions we have observed by constructing the G2 polylogarithmic function space, and
noting that additionally imposing them leads to a significant reduction of its size.

Our work opens many exciting avenues for future inquiry. It would be very interesting
to understand how the pattern of relevant cluster algebras continues for the complete set of
master integrals at three as well as at higher loops, possibly entering the realm of infinite
cluster algebras and the need to tame their infinite in a physically sensible manner, as was done
in the case of cluster alphabets of N = 4 SYM amplitudes [35–39]. With respect to adjacency
restrictions, in [69] it was pointed out that one of the tennis-court four-point one-mass master
integrals, while still described by the C2 alphabet, does not respect the subset of the observed
adjacencies (4.1) when restricted to this subalphabet. The authors of [87] comment that
Schubert analysis can be used to determine certain letters appearing in four-point one-mass
master integrals, so it would be worthwhile to investigate if it could also provide any insight on

7Note that the first entry condition is necessary but not sufficient condition for ensuring physical branch
cuts. For the subspace of functions relevant for stress-tensor multiplet form factors in N = 4 SYM theory,
sufficient conditions were given in [85], and were shown to further reduce the number of functions modulo
transcendental constants. As our focus is to gauge the power of the adjacency restrictions (4.1), we will not
consider such additional constraints here.
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adjacency restrictions. More importantly, could the cluster-algebraic structure of alphabets
and adjacency restrictions be deduced from first principles, and employed to make new
predictions? Recent progress on efficient methods for computing the Landau singularities
of Feynman integrals [88–91], and for also extracting symbol letters from them [92] or by
related means [93–96], makes us optimistic that this ambitious endeavour is within reach.
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