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 a b s t r a c t

Motivated by closed string perturbation theory arguments by S. Shenker, we consider non-perturbative effects of 
characteristic strength (𝑒−1∕𝑔𝑠 ), with 𝑔𝑠 the closed string coupling constant, in supersymmetric critical heterotic 
string theories. We argue that in 10D such effects arise from heterotic “D-instantons," i.e. heterotic disk diagrams, 
whose existence relies on a non-trivial interplay between worldsheet and spacetime degrees of freedom. In com-
pactifications of the SemiSpin(32) heterotic string, we argue that similar effects can arise from wrapped Euclidean 
non-BPS “D-strings." Two general principles arise: The first is that the consistency of those heterotic branes on 
which the fundamental string can end relies on an inflow mechanism for spacetime degrees of freedom. The 
second is that Shenker’s argument, taken to its logical conclusion, implies that all closed string theories must 
exhibit open strings as well.

1.  Introduction

Extended objects are integral to our modern understanding of quan-
tum gravity. Fundamental strings define the perturbative corners of 
string theory, which are further populated by objects of varied spatial 
extent intimately related to non-perturbative aspects, such as D𝑝-branes. 
Moreover, extended objects play crucial roles in the tightly intercon-
nected web of string dualities and in M-theory.

The SemiSpin(32) and (E8 × E8
)

⋊ ℤ2 heterotic string theories1 [3,
4]—which we denote in what follows as the HO and HE theory, re-
spectively—stand out among the five 10D superstrings in this regard: 
They feature the F-string, the NS5-brane and some non-supersymmetric 
𝑝-branes [5,6], of which new types were recently found in [7]. Their 
left-right asymmetric worldsheet theory prevents, however, the defini-
tion of boundary states within the conformal field theory, meaning that 
the rich spectrum of D𝑝-branes present in Type II and Type I string the-
ory is absent.

The significance of D𝑝-branes can be underscored by examining 
string perturbation theory. A universal property of D𝑝-branes is that 
their tensions scale as 𝜏𝑝 ∝ 𝑔−1𝑠 , stemming from the fact that the DBI ac-
tion describing them is an open string tree-level action computed by disk 

∗ Corresponding author.
 E-mail addresses: rafael.alvarez.garcia@desy.de (R. Álvarez-García), ckneissl@mpp.mpg.de (C. Kneißl), jacob.michael.leedom@desy.de (J.M. Leedom), 
nicole.righi@kcl.ac.uk (N. Righi).
1 Following [1,2], we use SemiSpin(32) to denote the Spin(32)∕ℤ2 quotient that 

is not isomorphic to SO(32).

amplitudes. In a classic paper [8], Shenker argued that, to make sense of 
the asymptotic series for amplitudes produced in closed string perturba-
tion theory, there should be universal leading non-perturbative correc-
tions of order (𝑒−1∕𝑔𝑠). This inspired Polchinski to study D-instantons 
and disk amplitudes as a source of Shenker effects in the 26D bosonic 
string [9]; his arguments can be extended to the Type II and Type I the-
ories in 10D. Upon compactification, wrapped Euclidean D-branes give 
rise to additional Shenker effects.

This amplitudes argument applies to all closed string theories, and 
hence in particular to the heterotic ones. However, since these lack 
D-branes, the possible origin of their Shenker effects remains unclear. 
Early on, Silverstein argued for heterotic (𝑒−1∕𝑔𝑠) effects as the S-duals 
of Type I worldsheet instantons [10], but a fundamental understanding 
of the effects on the HO side is still absent. Moreover, Shenker effects 
should be present already in the 10D heterotic theories, in which they 
cannot be S-dual to Type I worldsheet instantons.

One may be tempted to dismiss Shenker’s argument as perhaps only 
relevant for a subset of theories, but the existence of the effects he 
predicted in the 10D HO theory has been demonstrated by Green and 
Rudra [11]. Via compactifications of 11D supergravity, they computed 
the non-perturbative corrections to the HO 𝑅4-term, concluding that its 
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dilaton-dependent coefficient is given by a real-analytic Eisenstein se-
ries, whose Fourier-Bessel expansion is

𝐸 3
2

(

𝑖𝑔−1𝑠
)

= 2𝜁 (3)𝑔
− 3

2
𝑠 + 2𝜁 (2)

√

𝑔𝑠 +
∑

𝑛∈ℤ+
8𝜋𝜎−1(|𝑛|)

× exp(−2𝜋|𝑛|∕𝑔𝑠)(1 + (𝑔𝑠)) . (1)

Interestingly, they also found the Shenker effects in 10D Type I, as re-
quired by S-duality, but concluded that they are absent from the 10D 
HE 𝑅4-term; only after compactifying on 𝑆1 with an appropriate Wil-
son line do they find the relevant terms in the HE theory. While the 
homotopy groups of the heterotic gauge groups hint at the existence of 
some objects that could explain the results of Green and Rudra, these 
remain mysterious, and it is not clear how the theory realizes them. Nev-
ertheless, the Shenker effects in the 𝑅4-term were recently found to be 
essential for the heterotic theories to align with our expectations on the 
behavior of the quantum gravity cut-off [12].

In this Letter, we seek to shed some light on the nature of heterotic 
Shenker effects by describing the existence of heterotic “D-instantons," 
i.e. heterotic open disk diagrams, by extending Polchinski’s idea for open 
heterotic strings [5]. These are possible thanks to an inflow mechanism 
arising from fermion zero modes in spacetime. In Section 2, we will 
argue that such objects are inherited from Type IIB by regarding the 
HO theory as its non-perturbative quotient, following [13,14]. We con-
tinue in Section 3 by expounding their topological properties and con-
necting them to the relevant cobordism group, as well as concepts in 
the Swampland Program. Section 4 starts by reviewing Shenker’s argu-
ment and how the predicted effects are realized in many string theo-
ries by virtue of the disk diagrams enabled by the open string sector; 
we argue that such diagrams are also possible in the heterotic theories 
thanks to the aforementioned inflow mechanism for spacetime fermion 
zero modes. While the preceding sections are mostly concerned with 
the HO theory, we apply these ideas to the HE theory in Section 5, and 
briefly comment on other heterotic string theories. Finally, we summa-
rize and conclude in Section 6.

2.  Branes in Type IIB quotients

The HO theory can be regarded as a non-perturbative orientifold of 
Type IIB string theory [13,14]. Extended objects of a quotient theory can 
be understood by studying how the ones of its cover theory are affected 
by the relevant group action; in this section, we analyze the HO theory 
from this perspective. Let us commence by recalling some well-known 
facts about the 10D quotients of Type IIB string theory.

The non-perturbative duality group of Type IIB is 𝐺non-pert =
Pin+(GL(2,ℤ)) [15–17]. It includes the commonly considered SL(2,ℤ)-
duality acting on the bosonic content of the theory and a sub-
group 𝐷4 = 𝐶4 ⋊ ℤ2 of perturbative symmetries, with Ω(−1)𝐹𝐿  the 
generator of 𝐶4 and (−1)𝐹𝐿  the one of ℤ2 [18]. Here Ω and 
(−1)𝐹𝐿  are the worldsheet parity and spacetime left-moving fermion 
number operators, respectively. Of particular importance for us 
will be the S-duality action, corresponding to the 𝑆 generator of 
SL(2,ℤ), using standard notation, which acts on the axio-dilaton 
𝜏 ∶= 𝐶0 + 𝑖𝑒−Φ as 𝑆 ∶ 𝜏 ↦ −1∕𝜏.

The BPS spectrum of Type IIB contains the D-branes of odd space 
dimensionality, the F-string and the NS5-brane. One can conclude 
that S-duality also implies the existence of a second spacetime-filling 
brane, namely the NS9-brane coupling to the non-dynamical 10-form
𝐵10 [13,19].

We can now consider quotients of Type IIB by elements of 𝐺non-pert. 
Those yielding a theory with a supergravity limit and preserving some 
supersymmetry must, by string universality in 10D [20], lead to one of 
the five superstring theories. There are two such perturbative quotients: 
the one by (−1)𝐹𝐿  and the one by Ω.

Taking the quotient of Type IIB string theory by (−1)𝐹𝐿  we obtain 
Type IIA string theory [18,21,22]. From the perspective of the Green-

Schwarz superstring, (−1)𝐹𝐿  acts only on the Grassmannian variables of 
the target space, meaning that this atypical construction of Type IIA can 
be regarded as a superspace orbifold of Type IIB.

Considering instead the quotient of Type IIB by Ω leads to Type I 
string theory. The F-string becomes unorientable, signalling the pres-
ence of a spacetime-filling O9-plane; an accompanying stack of 32 
D9-branes ensures tadpole cancellation in the consistent background. 
The Ω-even Type IIB D𝑝-branes, i.e. those with 𝑝 ∈ {1, 5, 9}, comprise 
the BPS spectrum of Type I. The D𝑝-branes with 𝑝 ∈ {−1, 0} are non-
BPS stable configurations, as can be seen from a K-theoretic [23] or a 
BCFT [24–26] analysis. The Type I D-instanton is of particular interest, 
corresponding to a D(−1) − D(−1) superposition in Type IIB, for which 
not only the (−1) − (−1) tachyons are projected out under Ω, but also 
those in the (−1)-9⊕ 9-(−1) sector, see [23,25,26]. The stability of the 
Type I D-instanton is associated with the K-theory charge KO(𝑆10) = ℤ2, 
meaning that even numbers of them can annihilate [23].

Having exhausted the perturbative quotient constructions descend-
ing from Type IIB, we turn our attention to the non-perturbative part 
of its duality group. In particular, following the works by Hull [13,14], 
we consider taking the quotient by the operator Ω̃ ∶= 𝑆Ω𝑆−1. Since Ω̃
is obtained by the conjugation action of S-duality on Ω, quotienting the 
perturbative limit of Type IIB by it leads, in view of heterotic/Type I 
duality [27,28], to the HO theory. The Type IIB D-string becomes unori-
entable, indicating the presence of the S-dual pair of the O9-plane along-
side 32 NS9-branes cancelling the tadpole. While the parallels with the 
Type I construction are clear, the role played by S-duality in this quotient 
construction means that we must abandon the perturbative worldsheet 
paradigm and regard it as an orientifold of the complete, spacetime the-
ory.

However, this picture can be connected to the perturbative HO frame 
as follows. Recall that in the Type I frame, the F-string can extend be-
tween D-branes, in particular between a D-string and the background 
stack of D9-branes. At finite values of the string coupling 𝑔I𝑠, said non-
BPS string becomes unstable, with a lifetime inversely proportional to 
√

𝑔I𝑠. Considering the HO theory at perturbative, but finite values of 
the coupling 𝑔HO𝑠 , an analogous picture arises through Hull’s orientifold 
[13,14]: An unstable non-BPS HO “D-string" can extend between the 
F-string and the background NS9-branes, the latter providing it with 
Chan-Paton factors. This D-string tethers the gauge charges to the fun-
damental string and, in the strict perturbative limit, completely retracts 
onto it; its massless spectrum provides 32 left-handed Majorana-Weyl 
worldsheet fermions transforming under the gauge group, i.e. the asym-
metry in degrees of freedom of the heterotic worldsheet construction 
[14]. From the perspective of Hull’s orientifold, this inflow of degrees 
of freedom of the D-string is what distinguishes the heterotic F-string.

In those compactifications of the HO theory for which the internal 
space has non-trivial 2-cycles, wrapped Euclidean HO D-strings will lead 
to instanton corrections that can be identified with Shenker effects. The 
argument for HO Shenker effects as the S-duals of Type I worldsheet 
instantons [10] finds a natural explanation within Hull’s orientifold pic-
ture, resolving one of the puzzles raised in Section 1. Note that the insta-
bility of these configurations does not prevent them from contributing to 
the path integral; indeed, all saddle points must be summed over in the 
quantum theory, and D-instantons with tachyonic modes can provide 
sensible contributions [29–31].

Earlier, we reviewed how a tower of D-instantons descends from 
Type IIB to Type I, as can be understood from the orientifold construc-
tion of the latter. Similarly, Hull’s orientifold picture leads us to believe 
that the HO theory inherits a tower of “D-instantons" from Type IIB as 
well. These were not discussed in [13,14], and are, in fact, more subtle to 
track in heterotic/Type I duality than the strings we just examined. Since 
heterotic/Type I duality stems from Type IIB S-duality, we can appreci-
ate why in the cover theory. To regard 10D Type IIB as an appropriate 
limit of M-theory on 𝑇 2 we need to make a choice of F- and D-string, 
i.e. a marking of the 1-cycles of 𝑇 2. This determines a concrete Type IIA 
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dual frame and allows us to understand the tower of D-instantons as 
wrapped D0-particles. S-duality then corresponds to a different marking 
of the 1-cycles, and hence a different pair of Type IIA/IIB frames with its 
own tower of wrapped D0-particles/D-instantons. The resummed tower 
of D-instantons of one Type IIB frame reorganizes collectively into the 
one of its S-dual, but the instantons cannot be individually tracked along 
the process. The appearance of the Eisenstein series in the 𝑅4-term of 
Type IIB showcases how this works: The resummed tower of instantons 
leads to the Eisenstein series, but individual instantons are only identi-
fied after we perform its Fourier-Bessel expansion, i.e. after we make a 
concrete choice of frame.

In spite of this, Hull’s orientifold allows us to gain a heuristic in-
tuition about the HO instantons. On the Type I side, we have a tower 
of ℤ2-charged D-instantons probed by the F-string. Slightly deviating 
from the strict perturbative limit, the F-string starts to retract into the 
instantons. At strong coupling, we can take the perturbative HO point 
of view. While the instantons cannot be individually tracked, the in-
stanton tower of the HO frame can be thought of as a collective reor-
ganization of the Type I instantons, onto which the HO “D-string" has 
completely retracted. Said D-string is also the object tethering the in-
stantons to the background NS9-branes, meaning that we should have 
ℤ2-charged HO instantons with a gauge profile. While heuristic in na-
ture, this argument points towards the properties of the HO instantons 
that we will independently motivate in the upcoming sections. These 
are the sources of Shenker effects that we propose are at play in the 
10D HO theory and that, in particular, explain the results of [11] for 
the 𝑅4-term.

3.  K-theory, cobordism and the Swampland

The K-theoretic discussion of [23] argued for the presence of a stable 
non-BPS Type I (−1)-brane associated with a non-trivial SO(32)-bundle 
over the compactified Euclidean spacetime 𝑆10, whose existence is sig-
nalled by the non-trivial class in
𝜋10(𝐵SO(32)) = 𝜋9(SO(32)) = ℤ2 , (2)

where 𝐵𝐺 denotes the classifying space of the topological group 𝐺. In 
the HO theory we have a perturbative SemiSpin(32)-bundle and the non-
trivial homotopy group
𝜋10(𝐵SemiSpin(32)) = 𝜋9(SemiSpin(32)) = ℤ2 . (3)

This gauge bundle is supported on NS9-branes, and hence lacks the con-
ventional K-theory interpretation of the Type II and Type I theories; 
we nonetheless examine its K-theoretic properties. It is tempting to as-
sociate a purely gauge instanton with the non-trivial class above, but 
this would be incorrect. An extension of Derrick’s theorem [32] implies 
that a purely gauge configuration for the instanton, which would be 
characterized by an action scaling like 𝑔−2YM ∼

(

𝑔HO𝑠
)−2, is untenable: the 

HO instanton must be stringy in nature.
We will return to the delicate interplay between the non-trivial gauge 

configuration and the heterotic strings below, but for the moment let us 
further expound the topological properties of the HO instanton. Such 
properties can be gleaned from the cobordism group
ΩSpin
10 (𝐵SemiSpin(32)) ≅ 10ℤ2 , (4)

which was calculated in [33]. Here Ω𝜉𝑛(𝑋) is the group of equivalence 
classes [(𝑀,𝑓 )] of manifolds 𝑀 endowed with 𝜉-structure and paired 
with maps 𝑓 ∶𝑀 → 𝑋 to the topological space 𝑋. The focus on (4) cor-
responds to our interest in background gauge configurations over the 
10D spin manifold representing Euclidean spacetime. We can extract 
various facts from the non-vanishing of ΩSpin

10 (𝐵SemiSpin(32)).
First, a 9D theory of fermions charged under the group 

𝐺 = SemiSpin(32) will have a global anomaly characterized by the 𝜂-
invariant [34]. When the theory is defined over a sphere, the anomaly 
is also characterized by 𝜋9(SemiSpin(32)) = ℤ2 and measured by the 
mod 2 Atiyah-Singer index theorem [35–37]. This is a variation of the 

quintessential example of such a global anomaly, namely Witten’s SU(2)
anomaly [38]. For us, it is important because such an anomaly heralds, 
as explained by Witten for the SU(2) case, the existence of fermion zero 
modes in one dimension higher, i.e. for the gauge instanton background 
in the HO theory. These will play a crucial role in Section 4.

Secondly, the K-theory charge of the instanton can be in-
ferred from (4). The Anderson-Brown-Peterson theorem [39] relates 
ΩSpin
10 (𝐵SemiSpin(32)) to a direct sum of K-theory groups, among which 

ko10(𝐵SemiSpin(32)) is found. This group is, due to a short exact se-
quence and the splitting lemma, isomorphic to the direct sum ko10(pt)⊕
k̃o10(𝐵SemiSpin(32)). We identify that the HO instanton has indeed non-
trivial ℤ2-valued K-theory charge: A purely gravitational piece corre-
sponding to ko10(pt) = k̃o(𝑆10) = ℤ2, that we study in Section 5, and a 
gauge piece associated with ℤ2 ⊆ k̃o10(𝐵SemiSpin(32)), to which we turn 
our attention in Section 4. Both groups actually signal a non-trivial mod 
2 index counting the aforementioned fermion zero modes.

Finally, the non-trivial cobordism group in (4) signals the existence 
of a (−1)-form global symmetry. In alignment with the No Global Sym-
metries Conjecture [40,41] and the Cobordism Conjecture [42] of the 
Swampland Program [43], such symmetries should be either gauged 
or broken by objects in the theory, along the lines of [42,44,45]. One 
could then speculate that said (−1)-form global symmetry is gauged by 
the HO instanton, but further work is required to firmly establish this 
point.

4.  Heterotic disks and D-instantons

We now argue that the instanton described above gives rise to 

(

𝑒−1∕𝑔𝑠
) effects in the HO theory. First, let us review Shenker’s gen-

eral prediction for such effects and how it is substantiated in the Type I 
and II theories.

In closed string perturbation theory, a general amplitude has a genus 
expansion

 ≃
∞
∑

𝑛=0
𝑎𝑛𝑔

2𝑛−2
𝑠 . (5)

At large 𝑛, the coefficients {𝑎𝑛}𝑛∈ℤ≥0
 diverge factorially due to the in-

tegral over the genus 𝑛 Riemann surface moduli space [46]. In fact, 
Shenker [8] determined the leading order behavior 𝑎𝑛 ≃ 𝐶−2𝑛(2𝑛!) at 
large 𝑛, where 𝐶 is a constant.

This divergence implies that (5) is an asymptotic series with van-
ishing radius of convergence. To define the full non-perturbative am-
plitude, (5) must be supplemented by additional contributions arising 
from non-trivial saddle points in the path integral. The strength of the 
first saddle is encoded in the divergence of the coefficients {𝑎𝑛}𝑛∈ℤ≥0

. 
Attempting a Borel resummation of (5) with Shenker’s estimate reveals 
a leading order non-perturbative ambiguity of (𝑒−𝐶∕𝑔𝑠).

The physical origin of such saddles in Type I and Type II string the-
ory is understood—D𝑝-branes have tensions 𝜏𝑝 ∝ 𝑔−1𝑠 , meaning that Eu-
clidean branes wrapping (𝑝 + 1)-cycles of a compactification manifold 
contribute the required terms. In 10D, only D(−1)-branes are relevant. 
To make the connection more concrete, we turn to the path integral 
discussion of [9].2

In a D-dimensional theory, the contribution of D(−1)-branes to an 
amplitude stems from a path integral piece with the general form
∞
∑

𝑁=0

𝑁
∏

𝑖=1
∫

[

𝑑𝐷𝑋𝑖
]

∞
∑

𝑛𝑖=0

(

⋯
)

. (6)

Here 𝑋𝑖 denotes the spacetime position of the 𝑖-th instanton, and the 
ellipsis corresponds to the rest of the path integral term, including vertex 
operators. The various parts of (6) prescribe that, for a fixed number of 
instantons, one should sum over an arbitrary number of worldsheets 
ending on them, integrate over their spacetime positions and, finally, 

2 See also [47–50].
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sum over an arbitrary number of instantons. Restricting ourselves to the 
single-instanton terms, (6) includes a sum over 𝑚 disk diagrams that are 
disconnected from the rest of the amplitude. Since the Euler number 
of the disk is 𝜒 = 1, each disk is weighted by 𝑔−1𝑠 . Accounting for an 
𝑚! symmetry factor, these disconnected disks sum to an exponential, 
yielding precisely a contribution to the amplitude proportional to 𝑒−𝐶∕𝑔𝑠 .

Synthesizing the above, Shenker’s prediction amounts to the state-
ment that the Type I and Type II closed string perturbation theories 
must be supplemented by an open string sector, which includes strings 
with endpoints on a D(−1)-brane responsible for the (𝑒−1∕𝑔𝑠) effects 
in 10D. This conclusion relies on arguments agnostic to the amount of 
supersymmetry, and therefore holds also for the 26D bosonic string.

We propose that this logic extends to the HO theory and its instan-
ton— the HO theory must contain a (−1)-brane with open HO strings 
ending on it. However, at first glance, an open string sector appears an-
tithetic to the very notion of heterotic CFTs. The variation of the world-
sheet action for an open heterotic string is

𝛿𝑆Σ = 1
2𝜋 ∫ 𝑑𝜏

(

𝜆𝑎𝛿𝜆𝑎 − 𝜓𝜇𝛿𝜓𝜇
)|

|

|

|

𝜎=𝓁

𝜎=0
. (7)

Here {𝜆𝑎}𝑎∈{1,…,32} constitute the left-moving current algebra and 
{𝜓𝜇}𝜇∈{0,…,9} are the right-moving superpartners of the worldsheet 
bosons. The cancellation of (7) requires that 𝜆𝑖 = ±𝜓 𝑖 for all 𝑖 at the 
endpoints of the string. However, this condition cannot be satisfied in 
heterotic theories due to the asymmetric CFT field content.

Despite this difficulty, open heterotic strings in the HO theory were 
shown to exist in Lorentzian spacetime [5]. The key to their consistency 
lies in the 0-branes present at the endpoints of the HO string. Critically, 
the 𝑆8 enclosing a 0-brane supports a vector bundle with SemiSpin(32)-
structure in the adjoint representation and associated with a non-trivial 
homotopy class of 𝜋7(SemiSpin(32)) ≅ ℤ. We can choose this vector bun-
dle such that its structure group reduces to a subgroup of SemiSpin(32)
with 𝔰𝔬(8) Lie algebra. In this background, the gauginos give rise to 
spacetime zero modes {Λ𝑏}𝑏∈{1,…,24} that transform under the 𝟐𝟒 dimen-
sional representation of the gauge subgroup with trivial bundle.3 These 
zero modes can also be enumerated via the Atiyah-Singer index theorem 
applied to the twisted Dirac operator defined on the enclosing sphere 𝑆8. 
The proposal of [5] is that these zero modes latch onto the endpoints 
of the HO string and satisfy Λ𝑏 = ±𝜆𝑏 for 𝑏 ∈ {1,… , 24}, with the re-
maining 8 current algebra fermions matched to the 8 (physical gauge) 
fermions {𝜓𝜇}𝜇∈{2,…,9}.

We now extend this logic to Euclidean spacetime and propose 
that a similar mechanism exists to ensure the consistency of HO end-
points on the (−1)-brane. As described above, the HO instanton is char-
acterized by a gauge profile associated with the non-trivial class of 
𝜋9(SemiSpin(32)) ≅ ℤ2. As in the case of the Type I instanton discussed 
in [23], and in analogy with the preceding discussion, we can choose the 
vector bundle such that its structure group reduces to a subgroup with 
𝔰𝔬(10) Lie algebra. The mod 2 Atiyah-Singer index theorem [35–37] en-
sures that the number of gaugino zero modes in such a background is 1
mod 2. Furthermore, each of these zero modes {Λ𝑏′}𝑏′∈{1,…,22} transform 
as a 𝟐𝟐 dimensional representation of the gauge subgroup with trivial 
bundle.4 We then patch up the inconsistency of the heterotic CFT by de-
manding that Λ𝑏′ = ±𝜆𝑏′ , for 𝑏′ ∈ {1,… , 22}, at the string endpoints. The 
remaining 10 current algebra fermions are handled by all {𝜓𝜇}𝜇∈{0,…,9}, 
since here we do not employ physical gauge.

The above suggests indeed that open HO strings can end on the in-
stanton due to a form of inflow for spacetime degrees of freedom onto 
the worldsheet. Furthermore, the path integral argument ensures that 

3 The 𝟒𝟗𝟐 faithful representation of PSO(32) lifts to SemiSpin(32). The em-
bedding 𝔰𝔬(32) ⊃ 𝔰𝔬(8)⊕ 𝔰𝔬(24) leads to the branching rule 𝟒𝟗𝟔 = (𝟐𝟖, 𝟏)⊕
(𝟏, 𝟐𝟕𝟔)⊕ (𝟖𝐯, 𝟐𝟒) [51], the r.h.s. corresponding to a representation of (Spin(8) ×
Spin(24))∕(ℤ2 × ℤ2), see [1,2] for details on the global structure of the subgroups 
of SemiSpin(32).
4 The same considerations as in Footnote 3 hold mutatis mutandis for this case.

disconnected disks appear. The key question remaining is: What should 
the action of this instanton be? If we consider an HO disk diagram with 
endpoints on the instanton, the Euler number of the disk suggests that 
the action is proportional to 𝑔−1𝑠 . Such a scaling, paired with the path 
integral argument, would provide a precise realization of Shenker’s pre-
diction in the HO theory. This inverse 𝑔𝑠 scaling is of course the universal 
feature of D-branes in the Type I and Type II theories. It is tempting to 
conclude the same holds in heterotic theories, but our situation is far 
more subtle— in matching the spacetime fermion zero modes with the 
worldsheet fields, we have gone beyond the usual paradigm of world-
sheet (B)CFTs.

Nonetheless, we argue that this naive answer appears correct. First, it 
seems that the 𝑔−1𝑠  scaling is universal in the HO theory as well. The het-
erotic “D-string" from Section 2 has a tension proportional to 𝑔−1𝑠 , which 
is necessary to match the S-duality arguments of [10]. Furthermore, the 
tentative (gauge) 0-brane in the 9D HE theory, discussed below, also fol-
lows this scaling relation. This suggests that HO disk diagrams, just like 
their Type I and Type II counterparts, should also be associated with a 
𝑔−1𝑠  scaling. Secondly, we can motivate the scaling by appealing to the 
known results of [11]— if the HO instanton does indeed give rise to the 
Eisenstein series in (1), then its action must necessarily scale as 𝑔−1𝑠 .

While these arguments are quite suggestive, they are not a proof. To 
settle the 𝑔𝑠 scaling, one must develop the tools necessary to calculate
the effect of heterotic disks. We leave this as a task for the future. For 
the present, we state that, provided one accepts the above arguments, 
heterotic disks account for Shenker effects in the HO theory.

Finally, it is instructive to contrast the role of spacetime zero modes 
and the (−1)-brane in the Type I and HO frames. In Type I, the F-string 
can end on the (−1)-brane without issue due to the symmetric world-
sheet CFT field content, but the spacetime fermion zero modes were 
argued to be necessary in order to remove the disconnected piece of 
the perturbative O(32) gauge group [23]. Instead, the HO frame knows 
the correct gauge group at the perturbative level, but the fermion zero 
modes are required for consistency of the F-string endpoints on the 
(−1)-brane.

5.  Other heterotic theories

We have explained the origin of Shenker effects in the HO theory, but 
one 10D superstring theory remains: the HE theory. Naively, the above 
discussion does not apply because 𝜋9(E8) = 0 and, hence, there is no 
gauge configuration giving the spacetime fermion zero modes required 
for the consistency of HE disk diagrams. This appears consistent with the 
absence of a tower of instanton corrections to the HE 𝑅4-term in 10D 
[11]: The non-trivial gauge profile was crucial for the instantons we just 
identified as contributing to this term in the HO theory, but these must 
disappear in the T-dual decompactification frame. A similar statement 
was made in [5] forbidding the existence of open HE cosmic strings in 
Minkowski spacetime due to 𝜋7(E8) = 0.

Nonetheless, Shenker’s argument applies to the HO and HE theories 
equally well; the lack of the effects it predicts for the latter appears 
problematic. A resolution can be found by drawing an analogy with 
the Type IIA theory, which has a non-BPS, uncharged, and unstable 
D(−1)-brane. This object does not contribute to the Type IIA 𝑅4-term 
in 10D, but should contribute as an unstable saddle to some set of pro-
cesses [31].

This motivates us to consider gravitational configurations, that are 
potentially unstable, to justify HE string endpoints. The inflow then oc-
curs due to the combined zero modes of the 10D gauginos, dilatino, and 
gravitino in the non-trivial spacetime.

In Lorentzian spacetime, we can consider an open HE cosmic string 
with endpoints on a 0-brane associated with a non-trivial gravitational 
charge. The 0-brane exists in a spacetime that supports fermionic zero 
modes for the gauginos, dilatino, and gravitino. Applying the index the-
orems for the differential operators acting on Weyl spinors and a Rarita-
Schwinger field [52] supported on an 8-dimensional manifold surround-
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ing one of the HE string endpoints, consistency requires

±24𝑛 = 1
2 ∫𝑀8

[

495
[

𝐴̂(𝑀8)
]

8

+
[

𝐴̂(𝑀8)
(

𝑡𝑟𝑒𝑖𝑅∕2𝜋 − 1
)]

8

]

,
(8)

where 𝑛 ∈ ℤ and 𝑅 is the Riemann tensor suitably contracted with SO(8)
generators in its fundamental representation.

We expect that a similar situation holds for gravitational instantons 
in the HE theory arising from (−1)-branes. Endpoints of the HE string on 
this object are made consistent by a Euclidean 10D analogue of (8), but 
with the zero modes adding up to a multiple of 22. A potential source for 
such effects are the 10D Hitchin spheres [53], the higher-dimensional 
cousins of Milnor’s exotic spheres [54]. Heterotic supergravity has an 
even number of fermionic zero modes on such manifolds [55], making 
them candidates that could realize purely gravitational Shenker effects 
in the 10D HE theory.

This completes our discussion of Shenker effects for the 10D super-
string theories, but does not exhaust the landscape of heterotic theories. 
First, upon compactification the situation appears significantly enriched 
thanks to the possibility of breaking the heterotic gauge group or hav-
ing Euclidean objects wrap the cycles of the compactification variety. 
Indeed, the results of [11] indicate that, in the HE theory on 𝑆1 with 
an appropriate Wilson line, a 0-brane (whose existence can now be sup-
ported by a non-trivial gauge profile) contributes Shenker effects to the 
9D 𝑅4-term via Euclidean worldlines wrapping the circle. We leave the 
study of open heterotic strings in compactifications to future work.

Secondly, Shenker’s argument should apply to other heterotic the-
ories beyond the HO and HE theories. For example, in 10D we have 
the non-supersymmetric SO(16) × SO(16) heterotic string [56,57], whose 
global gauge group is [(Spin(16) × Spin(16))∕ℤ2]⋊ ℤ2 [1,58]. Heterotic 
instantons similar to the ones discussed for the HO theory should be 
possible. Studying the lower-dimensional analogues of this theory [59] 
would also be of interest. Another sector worth discussing is that popu-
lated by the non-critical string theories. The analogue of Polchinski’s 
long string was considered in [60] for the 2D non-critical heterotic 
strings, finding that it plays a role in the cancellation of the gauge and 
gravitational anomalies of the twisted orbifold version of the HO theory. 
It would be appealing to also discuss open heterotic strings and Shenker 
effects in the context of the supercritical HO+ and HO+∕ theories [61]. 
These are closely related to the conventional HO theory, enabling, e.g., a 
K-theoretic description of its NS5-brane via tachyon condensation [62].

6.  Conclusions

Heterotic non-perturbative effects of order (𝑒−1∕𝑔𝑠) were predicted 
by Shenker [8] and confirmed to exist by Green and Rudra [11], but an 
explanation of the objects that give rise to them remained elusive. Here 
we have motivated that their origin is found in heterotic “D-instantons," 
i.e. heterotic disk diagrams. These are highly non-perturbative config-
urations, forcing us to go well beyond the usual worldsheet (B)CFT 
paradigm by mixing worldsheet and spacetime degrees of freedom, ex-
panding on the ideas of [5].

The above discussion reveals several key lessons. The first is that 
those heterotic branes on which the F-string can end must feature an 
inflow mechanism for consistency, as exemplified by the D-string in [13,
14], the 0-brane in [5] and the (−1)-brane discussed in this work.

Second, while heterotic disks lie outside the purview of typical 
worldsheet (B)CFTs, it appears one should nonetheless associate them 
with a scaling proportional to 𝑔−1𝑠 . This is required to match the con-
tributions calculated in [11] arising from the HO (−1)-brane and 9D 
HE (gauge) 0-brane. The same scaling for the heterotic disks is required 
for the HO D-string to match the duality arguments of [10]. This scaling 
agrees nicely with our intuition from the Euler number of a disk.

Finally, the reciprocal picture of an old string theory adage arises: It 
is common lore that a theory of open strings must contain closed strings 

due to the possibility of endpoint reconnection. Our discussion above 
indicates that Shenker’s argument, drawn to its natural conclusion, im-
plies that a theory of closed strings must also incorporate open strings.

The path to this conclusion involved a non-trivial confluence of sev-
eral distinct topics, including dualities between string theories and quo-
tients thereof, K-theory, fermion zero mode inflow arising from index 
theorems, and the theory of resurgence applied to string amplitudes.

It would be desirable to establish a consistent framework to calcu-
late the effects of open heterotic strings from first principles, a ques-
tion that merits future investigation. A more fundamental treatment of 
such effects may rely on non-perturbative approaches to quantum grav-
ity, among which dualities, string field theory and matrix models have 
proven to be very useful elsewhere. Indeed, there exist hints of a con-
nection between matrix models and heterotic Shenker effects [63].

Compactifications to lower dimensions and broken gauge groups 
may alter the way in which the heterotic Shenker effects are concretely 
realized. In 4D compactifications they may play a role in moduli sta-
bilization [64–69], cosmology [70] and string phenomenology more 
broadly, making their study a crucial target.
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