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ABSTRACT
Sedum plumbizincicola is a zinc–cadmium (Zn–Cd) hyperaccumulator native to China with high potential for use in the phytore-
mediation of contaminated soils in temperate climates. This study aimed to determine the Zn accumulation and distribution in S. 
plumbizincicola tissues grown on soils co-contaminated with Cd, Pb, and Zn. The efficiency of Zn accumulation was assessed in 
monoculture and intercropping systems with Noccaea caerulescens. The samples were analyzed by inductively coupled plasma–
atomic emission spectrometry and synchrotron micro-X-ray fluorescence elemental imaging. Sedum plumbizincicola grown in 
monoculture had significantly higher foliar Zn concentrations than the plants grown with N. caerulescens, with the leaf tips, 
petioles and nodes being the main sites of Zn localization in the aerial parts. The highest Zn concentrations were observed in 
the epidermis and vascular system of both leaves and stems, with the distribution pattern differing between young and mature 
leaves. This study highlights the Zn localization patterns in S. plumbizincicola to improve our understanding of the underlying 
mechanisms of Zn hyperaccumulation. Growing in monoculture, S. plumbizincicola is an effective candidate for Zn agromining 
or phytoremediation of Zn-Cd contaminated soils, with less promising results when intercropped with N. caerulescens.

1   |   Introduction

High prevailing metal or metalloid concentrations in the soil 
can induce various tolerance responses in plants, with exclu-
sion from uptake being the most frequently observed defense 
mechanism (Bothe  2011). In some plants, however, the con-
centrations of elements taken up by the roots and translo-
cated to the aerial parts exceed the total concentrations in the 
soil, and can be 2–3 orders of magnitude higher than those 
in other plant species growing on the same soils. These ex-
traordinairy species are known as hyperaccumulator plants 
(Brooks et  al.  1977; van der Ent et  al.  2021). The concentra-
tions recognized as thresholds for hyperaccumulation are 

element-specific (van der Ent et al. 2013). To date, hyperaccu-
mulation of nickel (Ni) has been the most frequently recorded 
(523 taxa; Reeves et al. 2018) and intensively studied in rela-
tion to Ni uptake, translocation and sequestration in the aerial 
parts of plants. In contrast, hyperaccumulation of zinc (Zn) is 
thus far found in 20 taxa around the world (Reeves et al. 2018), 
mainly in plants growing on calamine soils, which are soils 
characterized by high concentrations of cadmium (Cd), lead 
(Pb), and Zn (Wójcik et al. 2017). Interestingly, Zn hyperaccu-
mulation can also occur in plant species growing on ‘normal’ 
soils with background Zn concentrations, which typically 
range between 10 and 100 μg g−1. This Zn hyperaccumulation 
as a constitutive trait is best known from Noccaea caerulescens 
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and Arabidopsis halleri, both model species for hyperaccumu-
lation of not only Zn, but also Cd and Ni in the case of the 
former (Meyer and Verbruggen 2012; Dinh et al. 2015; Stein 
et al. 2017; Merlot et al. 2021).

Hyperaccumulation of Zn and Cd, as found in N. caerules-
cens and A. halleri, is also known in Sedum plumbizincicola, 
one of only a few examples outside the Brassicaceae family 
that hyperaccumulate Zn and/or Cd (Li et  al.  2018). Sedum 
plumbizincicola is a relatively recently discovered hyper-
accumulator species, known only from its type locality in 
Zhejiang Province, China (Wu et  al.  2013), with concentra-
tions of 14,600 μg g−1 Zn and 1470 μg g−1 Cd in shoots in its na-
tive habitat (Hu et al. 2015), and more than 18,000 μg g−1 Zn 
and 7000 μg g−1 Cd in shoots of hydroponically grown plants 
(Cao et  al.  2014). The extremely high Cd and Zn concentra-
tions in the leaves of S. plumbizincicola indicate its potential 
for use in agromining since, at a biomass of 4–12 t ha−1, the 
removal efficiency in monoculture was estimated to be 215–
515 g ha−1 Cd and 15–40 kg ha−1 for Zn (Deng et al. 2016). The 
multi-contamination tolerance of S. plumbizincicola, together 
with its perennial nature, rapid growth, high biomass produc-
tion, and easy vegetative propagation from cuttings allowing 
two–three potential harvests per year, add to the value of this 
process (Li et  al.  2009; Hu et  al.  2015; Wu et  al.  2021; Song 
et  al.  2022). In China, S. plumbizincicola has already been 
tested in monoculture under different climatic and edaphic 
conditions; however, trials outside this area are extremely lim-
ited. According to the available literature, only one field trial 
has been carried out in Europe (Angelova 2020). In that study, 
conducted in sub-alkaline soils (pH 7.7) in Bulgaria, a strong 
translocation potential for Cd, Pb, and Zn (TFCd and TFPb > 2, 
and TFZn > 4) was observed, exceeding the hyperaccumulation 
thresholds for Cd.

The tolerance of S. plumbizincicola to water deficits and shade 
also enables its cultivation in co-planting systems with crops, 
such as wheat, maize, rice, sugar cane, and cucumber (Zhao 
et  al.  2011; Deng et  al.  2016; Wu et  al.  2021). Intercropping 
is an agronomic strategy that is increasingly used in com-
bination with crop density management practices, plant 
growth-promoting bacteria and fungi, fertilizers and varietal 
selection to improve phytoremediation efficiency (Chaney 
et al. 2007; Kidd et al. 2015; Hossain et al. 2017; Bani et al. 2021; 
Benizri et  al.  2021; Veerapagu et  al.  2023; Wan et  al.  2023). 
Phytoextraction efficiency in intercropping can be enhanced 
by mitigating adverse environmental effects on hyperaccumu-
lator species, by lowering pH and increasing elemental avail-
ability, or by overyielding when two hyperaccumulator species 
with different and complementary ecological niches are grown 
together (Koelbener et al. 2008). For example, intercropping S. 
plumbizincicola with maize reduced the total concentration of 
Zn and Cd in the soil by 18.8% and 85.5%, respectively (Deng 
et  al.  2016). In the remediation of multi-contaminated soils, 
the use of two (hyper)accumulating plant species can be par-
ticularly beneficial as the species enable complementary ele-
mental accumulation when targeting different metals (Wang 
et al. 2022). However, the use of hyperaccumulators of the same 
elements may lead to accumulation with different efficiency, 
which is not only species-specific but may also strongly depend 
on the ecotype used (Jacquet et al. 2025).

Considering the potential of S. plumbizincicola for agromining, 
this study aimed to investigate the accumulation and distribu-
tion patterns of Zn in the shoots of plants grown under real field 
conditions (soils co-contaminated with metals) in temperate 
climates, that is, outside the species' native range, using syn-
chrotron micro-X-ray fluorescence analysis (μXRF), to better 
understand the mechanisms of hyperaccumulation. The accu-
mulation capacity and patterns of Zn distribution were addition-
ally analyzed when S. plumbizincola was grown in co-culture 
with N. caerulescens, another Zn hyperaccumulator species.

2   |   Materials and Methods

2.1   |   Plant Culture Conditions

Seeds of N. caerulescens (Ganges ecotype, characterized in 
Gonneau et al. 2014) were collected at a former mining site in 
southern France in June 2019 and sown under greenhouse con-
ditions in germination trays filled with horticultural compost. 
Cuttings of S. plumbizincicola were propagated at the Ecoplantes 
Nursery (located in Lunéville, Lorraine, France) from one indi-
vidual collected at a contaminated site in China. The experiment 
was conducted under field conditions in a contaminated urban 
garden in Forest-sur-Marque (near Lille, northern France). 
Sedum plumbizincicola was grown in monoculture (Figure 1) at 
a density of 36 plants/m2 for a 10-month cultivation period. To 
assess the effects of intercropping on Zn accumulation and dis-
tribution, S. plumbizincicola was intercropped with N. caerules-
cens for the same period. In co-cultivation, S. plumbizincicola 
was planted at 8 plants/m2 and N. caerulescens at 32 plants/
m2. The experiment started from late June to early July 2022, 
with S. plumbizincicola directly planted as 8-cm-tall vegetative 
cuttings and N. caerulescens transplanted as 12-week-old seed-
lings. Harvesting and sampling took place twice, in September 
and April of the following year. Sedum plumbizincicola was har-
vested only in the vegetative stage, while N. caerulescens was 
harvested either at the vegetative or flowering stage, depending 
on the plant.

2.2   |   Soil Analysis

Before planting, a composite soil sample was collected from the 
surface layer (0–20 cm) by mixing five subsamples taken in a 
cross-shaped pattern. Soil samples underwent air-drying at 40°C 
for 48 h, followed by sieving through a 2 mm mesh. Pseudo-total 
metallic trace element (MTE) concentrations were determined 
following aqua regia digestion and subsequent analysis by in-
ductively coupled plasma-atomic emission spectrometry (ICP-
AES, iCAP 6000 series, Thermo Scientific, Cambridge, UK), in 
accordance with the NF ISO 11464 standard. Five hundred milli-
grams of soil ground to 250 μm were digested in 6 mL of HCl and 
2 mL of HNO3 at room temperature for 16 h before heating in a 
DigiPREP system at 105°C for 3 h. The digested samples were fil-
tered through 0.45 μm membranes and diluted to a final volume 
of 50 mL with ultrapure water. The analysis revealed moderate 
co-contamination with pseudo-total Zn (350 μg g−1), Pb (120 μg g 
−1), and Cd (1.5–2 μg g−1). The potential availability of MTEs for 
hyperaccumulators was assessed based on five additional com-
posite soil samples collected from the surface horizon, following 
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the same protocol. This was evaluated by measuring soil water 
pH (NF ISO 10390) and the concentrations of MTEs extractable 
with a DTPA solution (diethylenetriaminepentaacetic acid, NF 
ISO 14870) using ICP-AES. DTPA-extractable Zn levels ranged 
from 13 to 40 μg g−1, exceeding the possible toxicity threshold for 
standard crops (> 10 μg g−1; Lindsay and Norvell 1978), and soil 
water pH varied from 6.0 to 6.5, indicating a chemical potential 
for Zn phytoextraction. DTPA-extractable Cd and Pb concentra-
tions were below the ICP-AES quantification limits.

2.3   |   Bulk Elemental Analysis of Plant Samples

After 3 and 10 months of cultivation, whole plants of N. caerules-
cens and S. plumbizincicola were collected from each treatment 
and bulked to make composite samples. Prior to analysis, the 
aerial parts of the plants were carefully washed with tap water 
and rinsed with deionized water to remove soil dust and parti-
cles. The plant material was dried in an oven at 60°C for at least 
48 h. Plant organs were ground to a fine powder (< 200 μm) in 
an impact mill and weighed at 50 ± 5 mg in 15 mL polypropylene 
tubes. These samples were pre-digested with 1 mL HNO3 (70%) 
and 2 mL H2O2 (30%) for 16 h and then digested in a block heater 
(DigiPREP MS, SCP SCIENCE) for 3 h (ramped up and held at 
95°C). Samples were then diluted to 10 mL with ultrapure water 
(Millipore 18.2 MΩ cm−1 at 25°C) and filtered through 0.45 μm 
syringe filters before analysis by ICP-AES.

2.4   |   Synchrotron μXRF Experiments

The synchrotron micro-X-ray fluorescence analysis was per-
formed at PETRA III (Deutsches Elektronen-Synchrotron 
DESY), a 6 GeV synchrotron radiation source, specifically at the 
hard X-ray microprobe undulator beamline P06 (Boesenberg 
et  al.  2016). Beamline P06 is equipped with a cryogenically 
cooled double-crystal monochromator with Si (111) crystals and 

the X-ray beam can be focussed down to the sub-micrometer 
range using different focussing optics. An ion chamber up-
stream of the sample is used to monitor the incoming flux, while 
a 500 μm thick Si PIPS diode with an active area of 19 mm di-
ameter (PD300-500CB, Mirion Technologies (Canberra) GmbH, 
Germany) downstream of the sample can be used to record the 
transmitted X-ray intensity in order to extract absorption data. 
Multiple XRF detectors enable the measurement of X-ray fluo-
rescence data. The incident X-ray energy was 18 keV throughout 
the experiment and the beam was focused to 3.57 μm × 920 nm 
(h × v) using KB mirrors and prefocusing compound refractive 
lenses (CRLs), resulting in a flux of approximately 1.2511 ph/s 
at the focus. For XRF detection, both a Vortex ME4 in 45° ge-
ometry and a prototype 16-element SDD Ardesia detector 
800 μm thick chip with a 324 mm2 combined active area for 
all 16 elements, Politecnico Milano, Italy (Utica et al. 2021) in 
315° geometry with Xspress 3 pulse processors were used. The 
fresh/live plant specimens were brought from the experimen-
tal field (Forest-sur-Marque, France) to the beamline at DESY 
in Hamburg. At the beamline, the plant organs were sectioned 
by hand using a steel razor blade (“dry knife method”), and 
mounted between two layers of thin film of 4.0 μm thickness 
(Cole-Parmer SamplePrep 3525) stretched over a plastic frame in 
a tight sandwich. The μXRF elemental imaging then took place 
within 15 min. of mounting the sample.

2.5   |   Data Processing

Data acquisition was managed by a custom workflow 
(Garrevoet  2025), and the XRF spectra were processed using 
non-linear least squares fitting as implemented in PyMCA (Solé 
et  al.  2007). After calibration using metal foils, this produced 
32-bit .tiff files with pixel values corresponding to the μg cm−2 
areal density of each element. Neither Pb nor Cd could be an-
alyzed, as Pb was below the detection limit for μXRF analysis 
and Cd could not be excited at the interference-free K-line at the 

FIGURE 1    |    Sedum plumbizincicola growing in monoculture at a density of 36 plants m−2 (a) with details on the inflorescences (b) and leaves (c).
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incident energy used in this experiment. The figures were pre-
pared in ImageJ (Schneider et al. 2012) by changing the LUT to 
“Fire,” adjusting the maximum values and adding concentration 
bars using the “calibration” tool, and including length scales.

3   |   Results

Synchrotron μXRF analysis of the aerial part of S. plumbizinci-
cola from monoculture revealed overal distributional patterns 
for Zn accumulation, with the highest Zn concentrations occur-
ing in the leaf tips, petioles and nodes (Figure 2). Zinc accumu-
lation in epidermal parts was observed in both leaf and stem 
cross-sections, with higher concentrations in the upper leaf epi-
dermis, especially towards the tip. In the mesophyll, Zn concen-
trations were considerably lower and evenly distributed in the 

palisade and spongy tissues (Figure 3A). Besides the epidermis, 
most of the Zn was localized in the vascular bundles of the stem, 
but only in alternating ones, while the others were lower in Zn. 
Much lower concentrations of Zn were observed in the pith and 
cortex (Figure 3B).

Large differences in foliar Zn accumulation in S. plumbizinci-
cola were observed between plants from monoculture and those 
intercropped with N. caerulescens, but also between young and 
mature leaves (Figure 4). Mature leaves, especially those from 
the monoculture, had the highest concentrations of Zn. The 
leaf tips, petioles (partially shown in Figure 4) and nodes were 
the main areas of Zn enrichment in all of the groups analyzed, 
with preferential sequestration in vascular tissues of leaves 
exhibiting higher Zn concentrations. Unlike the vascular sys-
tem, which had accumulation of Zn at high concentrations, Zn 

FIGURE 2    |    Synchrotron micro-X-ray fluorescence analysis (μXRF) elemental maps showing the distribution of Zn in shoots of Sedum plumbiz-
incicola grown for 10 months in monoculture on a moderately contaminated soil (see Section 2 for details).

FIGURE 3    |    Synchrotron micro-X-ray fluorescence analysis (μXRF) elemental maps showing the distribution of Zn in cross-sections of (a) leaves 
and (b) stems of Sedum plumbizincicola grown for 10 months in monoculture on a moderately contaminated soil.
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localization in the epidermis was found in all groups analyzed, 
although with varying intensity. In co-culture with N. caerules-
cens, young leaves of S. plumbizincicola had significantly lower 
Zn concentrations in the vascular tissue than in the epidermis, 
whereas this effect was less pronounced in mature leaves.

The bulk ICP-AES analyses confirmed the differences observed 
by synchrotron μXRF analysis between monoculture and co-
cultivated S. plumbizincicola plants. In contrast to the 626 μg g−1 
Zn found in plants grown in association with N. caerulescens 
for 3 months, foliar Zn concentrations in S. plumbizincicola 
monoculture reached 1660 μg g−1. In the N. caerulescens mono-
culture, Zn concentrations of 2980 μg g−1 were found in foliar 
tissues, whereas up to 4430 μg g−1 were detected in the leaves of 
the co-cultivated plants (Table  1). After 10 months, the mono-
cultured plants of S. plumbizincicola accumulated more Zn 
than those in co-culture, with higher Zn concentrations re-
ported—3900 μg g−1 in the monocultured plants, and 1730 μg g−1 

in the plants co-cultivated with N. caerulescens. However, in 
N. caerulescens, not only a decrease in foliar Zn concentration 
was observed at the end of the experiment, but also a reversal of 
the trend, as higher concentrations (2910 μg g−1) were measured 
in the monocultured plants compared with those grown in co-
culture (1900 μg g−1). More subtle differences were found in Cd 
and Pb concentrations in both species (Table 1).

4   |   Discussion

The pattern of Zn localization in S. plumbizincicola was found to 
differ between young and mature leaves and was mainly related 
to differences in elemental concentrations, which were much 
higher in the latter group.  In plants grown with N. caerules-
cens, which had significantly lower foliar Zn concentrations, 
this element accumulated predominantly in the epidermal tis-
sues. In contrast, in plants grown in monoculture, where foliar 

FIGURE 4    |    Synchrotron micro-X-ray fluorescence analysis (μXRF) elemental maps showing the distribution of Zn in young leaves of Sedum 
plumbizincicola from monoculture (a) and intercropping with Noccaea caerulescens (b), and mature leaves from monoculture (c) and intercropping 
with N. caerulescens (d) after 10 months of cultivation on a moderately contaminated soil. For easier comparison (a) and (b) have the same calibration 
bar, as do (c) and (d). Four repetitions were performed for each treatment.

TABLE 1    |    Concentrations of Zn, Cd, and Pb (in μg g−1) in foliar tissues of Sedum plumbizincicola and Noccaea caerulescens after 3 and 10 months 
in monoculture and co-culture.

Species Type of cultivation

3 months 10 months

Zn Cd Pb Zn Cd Pb

Sedum plumbizincicola Monoculture 1660 6.4 0.5 3900 24.3 1.5

S. plumbizincicola Co-culture 626 9.6 0.3 1730 17.9 4.3

Noccaea caerulescens Monoculture 2980 102.0 0.2 2910 46.5 < DL

N. caerulescens Co-culture 4430 189.0 0.3 1900 47.3 0.4
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Zn concentrations exceeded 3000 μg g−1, Zn was evenly dis-
tributed between the epidermis and the vascular system (both 
central and secondary veins). The predominant localization of 
Zn in the epidermis is a common strategy in hyperaccumula-
tor species (Scheckel et al. 2007; van der Ent et al. 2019, 2022), 
considering the lower metabolic activity in these tissues, es-
pecially compared to the mesophyll. The epidermal tissues of 
the leaves and stems were also found to be important sites of 
Zn localization in Sedum alfredii, another hyperaccumulator 
of Cd–Zn (Tian et al. 2009), although the taxonomical status of 
its hyperaccumulating genotype in relation to S. plumbizinci-
cola is uncertain. In hydroponically grown S. plumbizincicola, 
however, the mesophyll was reported to be almost equally im-
portant for Zn accumulation, especially in younger leaves with 
higher Zn concentrations, which is in contrast to the results of 
this study (Cao et al. 2014). The significant contribution of the 
mesophyll to Zn distribution was also confirmed by the work of 
Hu et al.  (2015), in which more than 50% of the Zn in mature 
leaves was found in this tissue layer. A similar finding was made 
for Zn in Arabidopsis halleri (Küpper et al. 2000) and for Cd in 
S. alfredii (Tian et al. 2011), when the supply of these elements 
was high, but the epidermal cells and their vacuoles were not 
large enough to store the excess metal (Küpper et al. 1999). In 
both hyperaccumulator Sedum species, the xylem also proved 
to be rich in Zn, indicating an efficient transport of Zn into the 
upper parts of the plant. In S. alfredii this enrichment was only 
observed in the hyperaccumulator ecotypes, but not in the non-
accumulator ones (Tian et al. 2009), while the phenomenon of 
high Zn concentrations in alternating vascular bundles, which 
was also observed in S. plumbizincicola using the micro-PIXE 
technique (Hu et al. 2015) has not yet been clarified. High Zn 
concentrations in the nodes and petioles, preferentially in mono-
cultured plants, additionally suggest efficient Zn xylem loading 
and intensive translocation to the epidermal tissue, where it 
was predominantly sequestered. A similar pattern was also ob-
served for Zn in Viola allchariensis (Jakovljević et al. 2023) and 
in Paulownia tomentosa (Azzarello et al. 2012), and for Cd in the 
Zn–Cd hyperaccumulator Potentilla griffithii (Qiu et al. 2011).

Intercropping, one of the most promising methods for improv-
ing metal extraction in agromining, has shown differing results 
depending on the species or ecotype involved, even when two 
(hyper)accumulator species were used (Hu et  al.  2019; Cao 
et  al.  2021). When grown with N. caerulescens, a striking de-
crease in foliar Zn concentrations was observed in S. plumbiz-
incicola compared to monocultured plants, with concentrations 
falling below the hyperaccumulation threshold (3000 μg g−1; van 
der Ent et al. 2013), although concentrations increased with lon-
ger exposure time. A similar finding, a strong decrease in shoot 
Zn concentration when co-cultivated with N. caerulescens, was 
reported for Salix dasyclados (Fuksová et al. 2009), indicating 
higher efficiency of monoculture in phytoremediation practice. 
In N. caerulescens this trend largely depended on the expo-
sure time, as after the initial predominant foliar accumulation 
of Zn, a reduction in concentration was observed in plants in 
co-culture, and after 10 months more Zn was accumulated in 
monoculture. Beyond the stronger affinity of N. caerulescens for 
Zn uptake, which must have depleted available Zn concentra-
tions in the soil, this could also be attributed to its morphological 
characteristics, notably its well-developed root system and the 
better yield of aboveground tissue, making it significantly more 

competitive than S. plumbizincicola. Root exudates are another 
factor that strongly influence the efficiency of element uptake 
in co-cultures, primarily by altering pH and modifying element 
availability, while significant effects were found in the rhizo-
spheric microbiome. Being species-specific and with abundance 
depending on soil elemental characteristics, bacterial communi-
ties in the rhizosphere represent an important segment of phyto-
extraction strategies, that should be considered when designing 
intercropping systems.
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