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ABSTRACT

Sedum plumbizincicola is a zinc-cadmium (Zn-Cd) hyperaccumulator native to China with high potential for use in the phytore-
mediation of contaminated soils in temperate climates. This study aimed to determine the Zn accumulation and distribution in S.
plumbizincicola tissues grown on soils co-contaminated with Cd, Pb, and Zn. The efficiency of Zn accumulation was assessed in
monoculture and intercropping systems with Noccaea caerulescens. The samples were analyzed by inductively coupled plasma-
atomic emission spectrometry and synchrotron micro-X-ray fluorescence elemental imaging. Sedum plumbizincicola grown in
monoculture had significantly higher foliar Zn concentrations than the plants grown with N. caerulescens, with the leaf tips,
petioles and nodes being the main sites of Zn localization in the aerial parts. The highest Zn concentrations were observed in
the epidermis and vascular system of both leaves and stems, with the distribution pattern differing between young and mature
leaves. This study highlights the Zn localization patterns in S. plumbizincicola to improve our understanding of the underlying
mechanisms of Zn hyperaccumulation. Growing in monoculture, S. plumbizincicola is an effective candidate for Zn agromining
or phytoremediation of Zn-Cd contaminated soils, with less promising results when intercropped with N. caerulescens.

1 | Introduction element-specific (van der Ent et al. 2013). To date, hyperaccu-

mulation of nickel (Ni) has been the most frequently recorded

High prevailing metal or metalloid concentrations in the soil
can induce various tolerance responses in plants, with exclu-
sion from uptake being the most frequently observed defense
mechanism (Bothe 2011). In some plants, however, the con-
centrations of elements taken up by the roots and translo-
cated to the aerial parts exceed the total concentrations in the
soil, and can be 2-3 orders of magnitude higher than those
in other plant species growing on the same soils. These ex-
traordinairy species are known as hyperaccumulator plants
(Brooks et al. 1977; van der Ent et al. 2021). The concentra-
tions recognized as thresholds for hyperaccumulation are

(523 taxa; Reeves et al. 2018) and intensively studied in rela-
tion to Ni uptake, translocation and sequestration in the aerial
parts of plants. In contrast, hyperaccumulation of zinc (Zn) is
thus far found in 20 taxa around the world (Reeves et al. 2018),
mainly in plants growing on calamine soils, which are soils
characterized by high concentrations of cadmium (Cd), lead
(Pb), and Zn (Wojcik et al. 2017). Interestingly, Zn hyperaccu-
mulation can also occur in plant species growing on ‘normal’
soils with background Zn concentrations, which typically
range between 10 and 100 ugg™". This Zn hyperaccumulation
as a constitutive trait is best known from Noccaea caerulescens
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and Arabidopsis halleri, both model species for hyperaccumu-
lation of not only Zn, but also Cd and Ni in the case of the
former (Meyer and Verbruggen 2012; Dinh et al. 2015; Stein
et al. 2017; Merlot et al. 2021).

Hyperaccumulation of Zn and Cd, as found in N. caerules-
cens and A. halleri, is also known in Sedum plumbizincicola,
one of only a few examples outside the Brassicaceae family
that hyperaccumulate Zn and/or Cd (Li et al. 2018). Sedum
plumbizincicola is a relatively recently discovered hyper-
accumulator species, known only from its type locality in
Zhejiang Province, China (Wu et al. 2013), with concentra-
tions of 14,600 ugg™! Zn and 1470 ugg~' Cd in shoots in its na-
tive habitat (Hu et al. 2015), and more than 18,000pgg™" Zn
and 7000pgg™! Cd in shoots of hydroponically grown plants
(Cao et al. 2014). The extremely high Cd and Zn concentra-
tions in the leaves of S. plumbizincicola indicate its potential
for use in agromining since, at a biomass of 4-12tha-!, the
removal efficiency in monoculture was estimated to be 215-
515gha~' Cd and 15-40kgha~! for Zn (Deng et al. 2016). The
multi-contamination tolerance of S. plumbizincicola, together
with its perennial nature, rapid growth, high biomass produc-
tion, and easy vegetative propagation from cuttings allowing
two-three potential harvests per year, add to the value of this
process (Li et al. 2009; Hu et al. 2015; Wu et al. 2021; Song
et al. 2022). In China, S. plumbizincicola has already been
tested in monoculture under different climatic and edaphic
conditions; however, trials outside this area are extremely lim-
ited. According to the available literature, only one field trial
has been carried out in Europe (Angelova 2020). In that study,
conducted in sub-alkaline soils (pH 7.7) in Bulgaria, a strong
translocation potential for Cd, Pb, and Zn (TF, and TF >2,
and TF,_ >4)was observed, exceeding the hyperaccumulation
thresholds for Cd.

The tolerance of S. plumbizincicola to water deficits and shade
also enables its cultivation in co-planting systems with crops,
such as wheat, maize, rice, sugar cane, and cucumber (Zhao
et al. 2011; Deng et al. 2016; Wu et al. 2021). Intercropping
is an agronomic strategy that is increasingly used in com-
bination with crop density management practices, plant
growth-promoting bacteria and fungi, fertilizers and varietal
selection to improve phytoremediation efficiency (Chaney
et al. 2007; Kidd et al. 2015; Hossain et al. 2017; Bani et al. 2021;
Benizri et al. 2021; Veerapagu et al. 2023; Wan et al. 2023).
Phytoextraction efficiency in intercropping can be enhanced
by mitigating adverse environmental effects on hyperaccumu-
lator species, by lowering pH and increasing elemental avail-
ability, or by overyielding when two hyperaccumulator species
with different and complementary ecological niches are grown
together (Koelbener et al. 2008). For example, intercropping S.
plumbizincicola with maize reduced the total concentration of
Zn and Cd in the soil by 18.8% and 85.5%, respectively (Deng
et al. 2016). In the remediation of multi-contaminated soils,
the use of two (hyper)accumulating plant species can be par-
ticularly beneficial as the species enable complementary ele-
mental accumulation when targeting different metals (Wang
et al. 2022). However, the use of hyperaccumulators of the same
elements may lead to accumulation with different efficiency,
which is not only species-specific but may also strongly depend
on the ecotype used (Jacquet et al. 2025).

Considering the potential of S. plumbizincicola for agromining,
this study aimed to investigate the accumulation and distribu-
tion patterns of Zn in the shoots of plants grown under real field
conditions (soils co-contaminated with metals) in temperate
climates, that is, outside the species’ native range, using syn-
chrotron micro-X-ray fluorescence analysis (uXRF), to better
understand the mechanisms of hyperaccumulation. The accu-
mulation capacity and patterns of Zn distribution were addition-
ally analyzed when S. plumbizincola was grown in co-culture
with N. caerulescens, another Zn hyperaccumulator species.

2 | Materials and Methods
2.1 | Plant Culture Conditions

Seeds of N. caerulescens (Ganges ecotype, characterized in
Gonneau et al. 2014) were collected at a former mining site in
southern France in June 2019 and sown under greenhouse con-
ditions in germination trays filled with horticultural compost.
Cuttings of S. plumbizincicola were propagated at the Ecoplantes
Nursery (located in Lunéville, Lorraine, France) from one indi-
vidual collected at a contaminated site in China. The experiment
was conducted under field conditions in a contaminated urban
garden in Forest-sur-Marque (near Lille, northern France).
Sedum plumbizincicola was grown in monoculture (Figure 1) at
a density of 36 plants/m? for a 10-month cultivation period. To
assess the effects of intercropping on Zn accumulation and dis-
tribution, S. plumbizincicola was intercropped with N. caerules-
cens for the same period. In co-cultivation, S. plumbizincicola
was planted at 8 plants/m? and N. caerulescens at 32 plants/
m?. The experiment started from late June to early July 2022,
with S. plumbizincicola directly planted as 8-cm-tall vegetative
cuttings and N. caerulescens transplanted as 12-week-old seed-
lings. Harvesting and sampling took place twice, in September
and April of the following year. Sedum plumbizincicola was har-
vested only in the vegetative stage, while N. caerulescens was
harvested either at the vegetative or flowering stage, depending
on the plant.

2.2 | Soil Analysis

Before planting, a composite soil sample was collected from the
surface layer (0-20cm) by mixing five subsamples taken in a
cross-shaped pattern. Soil samples underwent air-drying at 40°C
for 48 h, followed by sieving through a 2mm mesh. Pseudo-total
metallic trace element (MTE) concentrations were determined
following aqua regia digestion and subsequent analysis by in-
ductively coupled plasma-atomic emission spectrometry (ICP-
AES, iCAP 6000 series, Thermo Scientific, Cambridge, UK), in
accordance with the NFISO 11464 standard. Five hundred milli-
grams of soil ground to 250 um were digested in 6mL of HCl and
2mL of HNO, at room temperature for 16 h before heating in a
DigiPREP system at 105°C for 3h. The digested samples were fil-
tered through 0.45um membranes and diluted to a final volume
of 50mL with ultrapure water. The analysis revealed moderate
co-contamination with pseudo-total Zn (350 ugg™), Pb (120 ugg
-1, and Cd (1.5-2ugg™"). The potential availability of MTEs for
hyperaccumulators was assessed based on five additional com-
posite soil samples collected from the surface horizon, following
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FIGURE1 | Sedum plumbizincicola growing in monoculture at a density of 36 plants m~2 (a) with details on the inflorescences (b) and leaves (c).

the same protocol. This was evaluated by measuring soil water
pH (NF ISO 10390) and the concentrations of MTEs extractable
with a DTPA solution (diethylenetriaminepentaacetic acid, NF
ISO 14870) using ICP-AES. DTPA-extractable Zn levels ranged
from 13 to 40 ug g™, exceeding the possible toxicity threshold for
standard crops (>10pugg™'; Lindsay and Norvell 1978), and soil
water pH varied from 6.0 to 6.5, indicating a chemical potential
for Zn phytoextraction. DTPA-extractable Cd and Pb concentra-
tions were below the ICP-AES quantification limits.

2.3 | Bulk Elemental Analysis of Plant Samples

After 3 and 10 months of cultivation, whole plants of N. caerules-
cens and S. plumbizincicola were collected from each treatment
and bulked to make composite samples. Prior to analysis, the
aerial parts of the plants were carefully washed with tap water
and rinsed with deionized water to remove soil dust and parti-
cles. The plant material was dried in an oven at 60°C for at least
48h. Plant organs were ground to a fine powder (<200pm) in
an impact mill and weighed at 50 + 5mg in 15mL polypropylene
tubes. These samples were pre-digested with 1mL HNO, (70%)
and 2mL H,0, (30%) for 16 h and then digested in a block heater
(DigiPREP MS, SCP SCIENCE) for 3h (ramped up and held at
95°C). Samples were then diluted to 10 mL with ultrapure water
(Millipore 18.2MQcm™! at 25°C) and filtered through 0.45um
syringe filters before analysis by ICP-AES.

2.4 | Synchrotron pXRF Experiments

The synchrotron micro-X-ray fluorescence analysis was per-
formed at PETRA III (Deutsches Elektronen-Synchrotron
DESY), a 6 GeV synchrotron radiation source, specifically at the
hard X-ray microprobe undulator beamline P06 (Boesenberg
et al. 2016). Beamline P06 is equipped with a cryogenically
cooled double-crystal monochromator with Si (111) crystals and

the X-ray beam can be focussed down to the sub-micrometer
range using different focussing optics. An ion chamber up-
stream of the sample is used to monitor the incoming flux, while
a 500um thick Si PIPS diode with an active area of 19 mm di-
ameter (PD300-500CB, Mirion Technologies (Canberra) GmbH,
Germany) downstream of the sample can be used to record the
transmitted X-ray intensity in order to extract absorption data.
Multiple XRF detectors enable the measurement of X-ray fluo-
rescence data. The incident X-ray energy was 18 keV throughout
the experiment and the beam was focused to 3.57 um X 920nm
(hxv) using KB mirrors and prefocusing compound refractive
lenses (CRLs), resulting in a flux of approximately 1.25' ph/s
at the focus. For XRF detection, both a Vortex ME4 in 45° ge-
ometry and a prototype 16-element SDD Ardesia detector
800um thick chip with a 324mm? combined active area for
all 16 elements, Politecnico Milano, Italy (Utica et al. 2021) in
315° geometry with Xspress 3 pulse processors were used. The
fresh/live plant specimens were brought from the experimen-
tal field (Forest-sur-Marque, France) to the beamline at DESY
in Hamburg. At the beamline, the plant organs were sectioned
by hand using a steel razor blade (“dry knife method”), and
mounted between two layers of thin film of 4.0um thickness
(Cole-Parmer SamplePrep 3525) stretched over a plastic frame in
a tight sandwich. The uXRF elemental imaging then took place
within 15min. of mounting the sample.

2.5 | Data Processing

Data acquisition was managed by a custom workflow
(Garrevoet 2025), and the XRF spectra were processed using
non-linear least squares fitting as implemented in PyMCA (Solé
et al. 2007). After calibration using metal foils, this produced
32-bit .tiff files with pixel values corresponding to the pg cm—2
areal density of each element. Neither Pb nor Cd could be an-
alyzed, as Pb was below the detection limit for uXRF analysis
and Cd could not be excited at the interference-free K-line at the
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incident energy used in this experiment. The figures were pre-
pared in ImageJ (Schneider et al. 2012) by changing the LUT to
“Fire,” adjusting the maximum values and adding concentration
bars using the “calibration” tool, and including length scales.

3 | Results

Synchrotron uXRF analysis of the aerial part of S. plumbizinci-
cola from monoculture revealed overal distributional patterns
for Zn accumulation, with the highest Zn concentrations occur-
ing in the leaf tips, petioles and nodes (Figure 2). Zinc accumu-
lation in epidermal parts was observed in both leaf and stem
cross-sections, with higher concentrations in the upper leaf epi-
dermis, especially towards the tip. In the mesophyll, Zn concen-
trations were considerably lower and evenly distributed in the

palisade and spongy tissues (Figure 3A). Besides the epidermis,
most of the Zn was localized in the vascular bundles of the stem,
but only in alternating ones, while the others were lower in Zn.
Much lower concentrations of Zn were observed in the pith and
cortex (Figure 3B).

Large differences in foliar Zn accumulation in S. plumbizinci-
cola were observed between plants from monoculture and those
intercropped with N. caerulescens, but also between young and
mature leaves (Figure 4). Mature leaves, especially those from
the monoculture, had the highest concentrations of Zn. The
leaf tips, petioles (partially shown in Figure 4) and nodes were
the main areas of Zn enrichment in all of the groups analyzed,
with preferential sequestration in vascular tissues of leaves
exhibiting higher Zn concentrations. Unlike the vascular sys-
tem, which had accumulation of Zn at high concentrations, Zn

FIGURE 2 | Synchrotron micro-X-ray fluorescence analysis (WXRF) elemental maps showing the distribution of Zn in shoots of Sedum plumbiz-
incicola grown for 10 months in monoculture on a moderately contaminated soil (see Section 2 for details).

FIGURE3 | Synchrotron micro-X-ray fluorescence analysis (uXRF) elemental maps showing the distribution of Zn in cross-sections of (a) leaves

and (b) stems of Sedum plumbizincicola grown for 10 months in monoculture on a moderately contaminated soil.
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localization in the epidermis was found in all groups analyzed,
although with varying intensity. In co-culture with N. caerules-
cens, young leaves of S. plumbizincicola had significantly lower
Zn concentrations in the vascular tissue than in the epidermis,
whereas this effect was less pronounced in mature leaves.

The bulk ICP-AES analyses confirmed the differences observed
by synchrotron uXRF analysis between monoculture and co-
cultivated S. plumbizincicola plants. In contrast to the 626 ugg!
Zn found in plants grown in association with N. caerulescens
for 3 months, foliar Zn concentrations in S. plumbizincicola
monoculture reached 1660ugg™. In the N. caerulescens mono-
culture, Zn concentrations of 2980ugg™' were found in foliar
tissues, whereas up to 4430 ugg" were detected in the leaves of
the co-cultivated plants (Table 1). After 10 months, the mono-
cultured plants of S. plumbizincicola accumulated more Zn
than those in co-culture, with higher Zn concentrations re-
ported—3900ugg" in the monocultured plants, and 1730 ugg

in the plants co-cultivated with N. caerulescens. However, in
N. caerulescens, not only a decrease in foliar Zn concentration
was observed at the end of the experiment, but also a reversal of
the trend, as higher concentrations (2910 ugg™') were measured
in the monocultured plants compared with those grown in co-
culture (1900 ugg™"). More subtle differences were found in Cd
and Pb concentrations in both species (Table 1).

4 | Discussion

The pattern of Zn localization in S. plumbizincicola was found to
differ between young and mature leaves and was mainly related
to differences in elemental concentrations, which were much
higher in the latter group. In plants grown with N. caerules-
cens, which had significantly lower foliar Zn concentrations,
this element accumulated predominantly in the epidermal tis-
sues. In contrast, in plants grown in monoculture, where foliar

FIGURE 4 | Synchrotron micro-X-ray fluorescence analysis (WXRF) elemental maps showing the distribution of Zn in young leaves of Sedum
plumbizincicola from monoculture (a) and intercropping with Noccaea caerulescens (b), and mature leaves from monoculture (c) and intercropping
with N. caerulescens (d) after 10 months of cultivation on a moderately contaminated soil. For easier comparison (a) and (b) have the same calibration

bar, as do (c) and (d). Four repetitions were performed for each treatment.

TABLE1 | Concentrations of Zn, Cd, and Pb (in ug g™!) in foliar tissues of Sedum plumbizincicola and Noccaea caerulescens after 3 and 10 months

in monoculture and co-culture.

3months 10months
Species Type of cultivation Zn Cd Pb Zn Cd Pb
Sedum plumbizincicola Monoculture 1660 6.4 0.5 3900 24.3 1.5
S. plumbizincicola Co-culture 626 9.6 0.3 1730 17.9 4.3
Noccaea caerulescens Monoculture 2980 102.0 0.2 2910 46.5 <DL
N. caerulescens Co-culture 4430 189.0 0.3 1900 47.3 0.4
Ecological Research, 2026 50f8
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Zn concentrations exceeded 3000ugg™, Zn was evenly dis-
tributed between the epidermis and the vascular system (both
central and secondary veins). The predominant localization of
Zn in the epidermis is a common strategy in hyperaccumula-
tor species (Scheckel et al. 2007; van der Ent et al. 2019, 2022),
considering the lower metabolic activity in these tissues, es-
pecially compared to the mesophyll. The epidermal tissues of
the leaves and stems were also found to be important sites of
Zn localization in Sedum alfredii, another hyperaccumulator
of Cd-Zn (Tian et al. 2009), although the taxonomical status of
its hyperaccumulating genotype in relation to S. plumbizinci-
cola is uncertain. In hydroponically grown S. plumbizincicola,
however, the mesophyll was reported to be almost equally im-
portant for Zn accumulation, especially in younger leaves with
higher Zn concentrations, which is in contrast to the results of
this study (Cao et al. 2014). The significant contribution of the
mesophyll to Zn distribution was also confirmed by the work of
Hu et al. (2015), in which more than 50% of the Zn in mature
leaves was found in this tissue layer. A similar finding was made
for Zn in Arabidopsis halleri (Kiipper et al. 2000) and for Cd in
S. alfredii (Tian et al. 2011), when the supply of these elements
was high, but the epidermal cells and their vacuoles were not
large enough to store the excess metal (Kiipper et al. 1999). In
both hyperaccumulator Sedum species, the xylem also proved
to be rich in Zn, indicating an efficient transport of Zn into the
upper parts of the plant. In S. alfredii this enrichment was only
observed in the hyperaccumulator ecotypes, but not in the non-
accumulator ones (Tian et al. 2009), while the phenomenon of
high Zn concentrations in alternating vascular bundles, which
was also observed in S. plumbizincicola using the micro-PIXE
technique (Hu et al. 2015) has not yet been clarified. High Zn
concentrations in the nodes and petioles, preferentially in mono-
cultured plants, additionally suggest efficient Zn xylem loading
and intensive translocation to the epidermal tissue, where it
was predominantly sequestered. A similar pattern was also ob-
served for Zn in Viola allchariensis (Jakovljevi¢ et al. 2023) and
in Paulownia tomentosa (Azzarello et al. 2012), and for Cd in the
Zn-Cd hyperaccumulator Potentilla griffithii (Qiu et al. 2011).

Intercropping, one of the most promising methods for improv-
ing metal extraction in agromining, has shown differing results
depending on the species or ecotype involved, even when two
(hyper)accumulator species were used (Hu et al. 2019; Cao
et al. 2021). When grown with N. caerulescens, a striking de-
crease in foliar Zn concentrations was observed in S. plumbiz-
incicola compared to monocultured plants, with concentrations
falling below the hyperaccumulation threshold (3000 ugg'; van
der Ent et al. 2013), although concentrations increased with lon-
ger exposure time. A similar finding, a strong decrease in shoot
Zn concentration when co-cultivated with N. caerulescens, was
reported for Salix dasyclados (Fuksova et al. 2009), indicating
higher efficiency of monoculture in phytoremediation practice.
In N. caerulescens this trend largely depended on the expo-
sure time, as after the initial predominant foliar accumulation
of Zn, a reduction in concentration was observed in plants in
co-culture, and after 10months more Zn was accumulated in
monoculture. Beyond the stronger affinity of N. caerulescens for
Zn uptake, which must have depleted available Zn concentra-
tions in the soil, this could also be attributed to its morphological
characteristics, notably its well-developed root system and the
better yield of aboveground tissue, making it significantly more

competitive than S. plumbizincicola. Root exudates are another
factor that strongly influence the efficiency of element uptake
in co-cultures, primarily by altering pH and modifying element
availability, while significant effects were found in the rhizo-
spheric microbiome. Being species-specific and with abundance
depending on soil elemental characteristics, bacterial communi-
ties in the rhizosphere represent an important segment of phyto-
extraction strategies, that should be considered when designing
intercropping systems.
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