
EDM4hep - The common event data model for the Key4hep

project

Juan Miguel Carceller1, Mateusz Jakub Fila1, Brieuc Francois1, Frank Gaede2, Benedikt

Hegner1, Thomas Madlener2∗, Juraj Smiesko1, and André Sailer1

1CERN, Geneva, Switzerland
2Deutsches Elektronen-Synchrotron DESY, Germany

Abstract. The common and shared event data model EDM4hep is a core part

of the Key4hep project. It is the component that is used to not only exchange

data between the different software pieces, but it also serves as a common lan-

guage for all the components that belong to Key4hep. Since it is such a central

piece, EDM4hep has to offer an efficient implementation. On the other hand,

EDM4hep has to be flexible enough in order to allow for new developments

in detector technology and reconstruction. In order to meet these challenges

EDM4hep is using the podio EDM toolkit to generate its implementation from

a high level description.

In this talk we give an overview of EDM4hep emphasizing the most recent

developments that were tackled on the way to a first stable release. We use this

opportunity to also highlight the latest developments in the podio toolkit that

were required by the latest EDM4hep features. These include the introduction

of type erased interface types, and a new generic RDataSource to support the

full data model API in RDataFrame.

1 Introduction

The goal of the Key4hep project is the provision of a ready-to-use software stack for all

currently discussed future collider options [1] and has recently reached its five year anniver-

sary [2]. An essential component for Key4hep is a common and shared event data model

(EDM) in the form of EDM4hep. It sits at the core of the Key4hep stack defining not only the

data format that the different software components and packages use to exchange data but also

the language that physicists have at their disposal for expressing their ideas for reconstruction

and analysis.

Given its central role a performant implementation is imperative. Nevertheless EDM4hep

has to be flexible enough to accommodate novel developments in detector technology and

reconstruction. We address both of these challenges via the usage of the podio EDM

toolkit [3, 4]. The main feature of the podio toolkit is the generation of a cache-friendly

and thread safe implementation of an EDM from a high level description in YAML format. It

allows to stack EDMs, such that datatypes can be shared, allowing for a streamlined approach

to prototyping datatypes for new detector concepts or reconstruction techniques. Once these

∗e-mail: thomas.madlener@desy.de

 EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative

Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

prototypes have matured, they can then be easily integrated into EDM4hep, since they are

already defined in the proper format.

EDM4hep and its usage as well as the basic functionality provided by podio have previ-

ously also been discussed in [5]. In these proceedings we focus on the latest developments

of EDM4hep towards a first stable release with backwards compatibility guarantees. Most

importantly, we addressed some of the conceptual inconsistencies that were inherited from

the initial version that was largely based on the LCIO EDM [6] used by the linear collider

communities before Key4hep. These developments will be presented in Section 2.

Some usability improvements that were necessary for a coherent definition of EDM4hep

also required new features in the podio toolkit. These include the introduction of a new

category of types, so called interface types, as well as a generalization of the possibility to

link objects of EDMs generated by podio. They will be described in more detail in Section 3

and Section 4.

Finally, we have also put together a first version of an RDataSource to facilitate the usage

of event data in EDM4hep format via RDataFrames [7]. We report on some first experiences

and potential improvements in Section 5.

2 A consistent multi-threading concept

The LCIO EDM has initially been designed and developed two decades ago at a time when

thread safety and cache friendliness were not yet considered as inherently important as they

are today. Hence, some conceptual inconsistencies related to mutability in a multi-threaded

context are present. These have also partially permeated into the design of some parts of the

reconstruction and analysis algorithms developed by the linear collider communities. In the

majority of cases, they are related to the possibility of updating data in objects after they have

been handed to the event processing framework. Since EDM4hep allows mutating operations

only as long as the data objects are still in control of the user, such an update mechanism is

obviously not possible and would require cumbersome workarounds like creating and storing

an updated copy.

To mitigate these issues we have harmonized the definition of EDM4hep to have a con-

sistent mutability concept. In some cases, this amounted to reversing the direction of certain

relations, e.g. for adding ParticleID objects to ReconstructedParticles, as shown in

Figure 1(a). In other cases new datatypes had to be introduced and defined, lifting data mem-

bers that were not easily computable in the same algorithm that creates the object itself. As

an exemplary case, we show the computation and storage of the specific ionization loss in

a gaseous detector, dE/dx, which in the LCIO case was done by simply updating the cor-

responding data member in a separate processor (i.e. algorithm) after the initial tracking

processor has been previously run, see Figure 1(b). Here a new RecDqdx datatype with a

one-to-one relation to a Track object from which it was computed was introduced.

In almost all of the cases, the changes resulted in a more hierarchical picture of EDM4hep,

where the relationships between different datatypes are now much more structured in a “is-

produced-from” fashion. As another benefit, this also has a positive effect on the provenance

of objects, where it is now easily possible to assign a single algorithm as the producer of

each object, which was impossible before with several algorithms mutating the same object.

In some cases, it might still be advantageous to be able to easily access related objects in

the reverse direction, e.g. to get all ParticleID objects related to a ReconstructedParticle. To

facilitate and enable these use cases we also introduced some utilities that allow for an easy

reversal of the relations.

Almost all of these developments resulted in breaking changes for EDM4hep. Given the

small available person power and the foreseeable technical challenges of providing backwards

 EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

2

auto track = edm4hep::Track{};

track.addHit(edm4hep::TrackerHit3D{});

track.addHit(edm4hep::TrackerHitPlane{});

const auto hits = track.getHits();

hits[0].isA<edm4hep::TrackerHit3D>(); // <-- true

hits[0].as<edm4hep::TrackerHit3D>(); // <-- "cast back"

hits[1].isA<edm4hep::TrackerHit3D>(); // <-- false

hits[1].as<edm4hep::TrackerHit3D>(); // <-- exception!

Listing 1: Example usage of the edm4hep::TrackerHit interface to add hits of different

types to a track and how to query an interface object about the current type that is being

stored as well as how to down-cast to the actual type.

We have used this mechanism to introduce the TrackerHit interface in EDM4hep and

use that in the one-to-many relations of a track. Currently, the existing TrackerHit3D and

TrackerHitPlane are usable with this interface.

3.1 Alternative implementation strategies

EDMs generated by podio are implemented using a layered structure [3], where the bottom

layer only contains simple plain-old-data (POD) structs. On top of that layer is the so called

object layer that is responsible for resource management and relation handling. Finally, the

topmost layer, which is the only one with which users interact, is the user layer that consists

mainly of thin, cheap to copy, handles to the objects living in the object layer. This makes it

possible to explore several alternative implementation strategies for interface types that are

possible within the constraints of a podio generated EDM.

Before we settled on the implementation using type erasure we also investigated imple-

mentations based on std::variant1, a type-safe union available since C++17. The two

options that are possible with std::variant are either to use the handles of the user layer

or the objects of the object layer. In Figure 2 we show the results of a simplified but real-

world use case inspired micro-benchmark for the two variants based options as well as the

type erased implementation strategy. For the benchmark, we calculate the length of a track

by summing the distance between individual hits by looping over all of them. As can be

seen, the performance of the variant implementation using the object layer objects (ObjVari-

ant) and the type erasure based implementation is on a comparable level for this benchmark,

while the variant implantation based on handles (ValueVariant) is significantly slower.

In the end, the deciding factor for using the type erased implementation strategy was the

fact, that it trivially supports the use of functionality defined in ExtraCode, which would have

required significant amounts of work with the ObjVariant approach. However, we would also

like to point out that the exact implementation mechanism of interface types is indeed an

implementation detail that could be refined if necessary.

4 Templated links between podio objects

In EDM4hep external links are used to bridge the gap between the objects created during

event generation and detector simulation and the ones produced by the subsequent recon-

struction. This is in contrast to the internal relations that are used to build the hierarchy of

objects on either side and that allow easy navigation and access. On a technical level both of

1See https://en.cppreference.com/w/cpp/utility/variant for documentation and examples

 EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

4

Figure 2: Results for a real-world use case inspired micro-benchmark described in the text.

The different colors show different implementation strategies for interface types. The top

panel shows the run time of the benchmark function as a function of the number of hits in

the track. The baseline (red) values are obtained using a concrete datatype as tracker hit. The

bottom panel shows the ratio of the discussed implementation options w.r.t. the baseline.

these are implemented using exactly the same mechanism in podio. In the initial definition of

EDM4hep these links were called associations and were implemented as dedicated datatypes

with effectively identical structure, providing a weight member as well as two one-to-one

relations to either side of the link.

Again inspired by LCIO we would like to make it possible for users to link effectively

arbitrary datatypes if necessary. However, the solution should provide more type-safety as

was possible in LCIO, where only very limited guarantees could be given. Given the simple

structure of such links we implemented a template based solution directly in podio. Users

can then trivially create links between arbitrary datatypes in-memory and can opt-in to I/O

functionality via the use of a single macro, as shown in Listing 2. The macro only hides some

boilerplate code related to registering the datatype with the I/O system of podio.

// Link arbitrary podio generated datatypes

using RecoMCParticleLinkCollection = podio::LinkCollection<edm4hep::ReconstructedParticle,

edm4hep::MCParticle>;

// Enable I/O (only necessary for links not defined in YAML)

PODIO_DECLARE_LINK(edm4hep::ReconstructedParticle, edm4hep::MCParticle)

// Conventional access

auto mcP = link.getTo();

// Templated / tuple like access

mcP = link.get<edm4hep::MCParticle>();

mcP = link.get<2>();

auto& [rp, mp, w] = link; // <-- structured bindings!

Listing 2: Example declaration and use of a templated link collection that con-

nects ReconstrucedParticles and MCParticles in EDM4hep. The usage of the

PODIO_DECLARE_LINK enables I/O for this specific link type. The usage examples in the

bottom half show the possibilities for accessing the linked objects as well as the weight.

Compared to the manually defined links as dedicated datatypes, templated links offer

some additional functionality. The main goal was to further instill the point that even though

the template parameters indicate a direction of the link, they are in principle undirected, i.e.

 EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

5

there is no need to define two different datatypes to go from simulation to reconstruction and

vice versa. As a result links now also provide get and set functionality which is templated

on the datatypes that are linked. This makes it possible to completely omit the direction in

usage as shown in Listing 2.

In order to keep the possibility of having the full definition of a datamodel in the canonical

YAML file, we also introduced a new links category, which also takes care of generating

all the necessary code to enable I/O functionality. Thus, this is the recommended way of

defining links if they should be persist-able.

With the aim of trying to have backwards compatibility already for the v00-99 pre-release

series, we have renamed the initial associations before the pre-release. With the correct names

in place, introducing the templated links was possible in a completely transparent way for

users.

5 An RDataSource for podio generated EDMs

The default backend of podio is based on ROOT [8, 9] and we offer I/O functionality based on

TTrees and the newly developed RNTuple [10–12] format. As a result of the layered imple-

mentation approach of podio we are able to write the event data as effectively flat, contiguous

data buffers [4] via ROOT, which makes them easily accessible for columnar analysis, e.g.

using RDataFrame [7], or in completely independent implementations, e.g. via Julia [13].

On the other hand, the in-memory relations between objects is also persisted as one buffer of

effectively indices per relation and event data collection. As a consequence navigating these

relations in an RDataFrame based analysis becomes cumbersome and error prone, especially

if one-to-many relations are involved, or if retrieving the necessary information requires the

use of more than one relation. Additionally, implementing functions that can be used for the

analysis requires one to have knowledge about implementation details of podio, like the fact

that the POD structs are suffixed with Data and that some information necessary for handling

one to many relations is stored in these PODs.

In Listing 3 we show a rather simple example of how this looks for retrieving the mother

particles of MC particles both on the implementation side as well as on the user side. Here

another implementation detail of podio shines through, namely the names of the branches

where relation indices are stored are required to be known and used as inputs for calling this

function.

auto get_mothers(RVec<MCParticleData> mcps, RVec<int> idcs) {

RVec<RVec<MCParticleData>> result{};

for (const auto& mc : mcps) {

RVec<MCParticleData> mothers{}

for (auto i = mc.parents_begin; i != mc.parents_end; ++i) {

mothers.push_back(mcps[idcs[i]]);

}

result.push_back(mothers);

}

return result;

}

rdf = RDataFrame("events", "input-file.root")

rdf.Define("mc_mothers", "get_mothers(MCParticles, _MCParticles_parents.index)")

Listing 3: Definition of a function usable in RDataFrame for retrieving the mothers of MC

particles and its subsequent usage without the newly implemented RDataSource for podio.

 EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

6

To allow for the usage of the full podio generated user interface also in colum-

nar analysis we have implemented the podio::DataSource via inheriting from the

ROOT::RDF::RDataSource. Instead of giving access to the raw data buffers, it routes the

file access through a podio based reader, which also takes care of resolving all relations on

the fly. Thus, it becomes possible to define utility functions using the full expressivity of the

EDM interface, as visible in Listing 4. The implementation of the get_mothers function

is greatly simplified compared to the one shown in Listing 3. Additionally, the call site of

the function has become much simpler as well, where now only the name of the collection is

required. All the details of the podio based implementation are completely hidden.

auto get_mothers(MCParticleCollection mcps) {

RVec<RVec<MCParticle>> result;

for (const auto mc : mcps) {

RVec<MCParticle> mothers(mc.getParents().begin(), mc.getParents().end());

result.push_back(mothers);

}

}

rdf = podio.CreateDataFrame("input-file.root")

rdf.Define("mc_mothers", "get_mothers(MCParticles)")

Listing 4: Definition of a function usable in RDataFrame for retrieving mothers of MC parti-

cles and its subsequent usage using the newly available podio::DataSource.

The implementation of the podio::DataSource transparently provides reading support

for all available I/O backends of podio [4] and, more importantly, also has the full schema

evolution machinery at its disposal. We consider the interface of the podio::DataSource

stable enough for release at this point, but also acknowledge that we have not yet done any

optimizations. Hence, especially for simple analysis event loops, it performs significantly

worse, both in runtime and memory usage. We intend to spend some time to optimize both

aspects in the near future.

6 Conclusions & Outlook

The common and shared EDM of the Key4hep project, EDM4hep, is close to a first sta-

ble release with strong backwards compatibility guarantees for reading event data. After

some important developments that we have reported here, namely the harmonization of the

datatypes for use in multi-threaded contexts, the introduction of a tracker hit interface and

templated links, as well as a newly developed RDataSource for podio, we have made a v00-

99 pre-release series for extended user testing.

The final changes that still need to be applied to the definition of EDM4hep are mostly

related to a small overhaul of contents related to MC generators and the MC particle. The

changes are mostly related to removing some data members that are not reasonably usable

without additional context from a generator. Given that HepMC3 [14] is the common format

for data exchange between generators, we opted to remove these data members to avoid leak-

ing partial information from generator internals to the analysis stage. We plan to implement

these changes in a backwards compatible fashion to keep files that have been written with the

v00-99 pre-release readable with v01-00 as well.

 EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

7

Acknowledgments

This work benefited from support by the CERN Strategic R&D Programme on Technolo-

gies for Future Experiments (CERN-OPEN-2018-006). This project has received funding

from the European Union’s Horizon 2020 Research and Innovation programme under Grant

Agreement no. 101004761.

References

[1] P. Fernandez Declara et al., The Key4hep turnkey software stack for future colliders,

PoS EPS-HEP2021, 844 (2022). 10.22323/1.398.0844

[2] J.M. Carceller et al., Five years of Key4hep - Towards production readiness and beyond,

PoS ICHEP2024, 1029 (2025). 10.22323/1.476.1029

[3] J.M. Carceller, F. Gaede, G. Ganis, B. Hegner, C. Helsens, T. Madlener, A. Sailer, G.A.

Stewart, V. Volkl, Towards podio v1.0 - A first stable release of the EDM toolkit, EPJ

Web Conf. 295, 06018 (2024), 2312.08206. 10.1051/epjconf/202429506018

[4] F. Gaede, G. Ganis, B. Hegner, C. Helsens, T. Madlener, A. Sailer, G.A. Stewart,

V. Volkl, J. Wang, EDM4hep and podio - The event data model of the Key4hep

project and its implementation, EPJ Web Conf. 251, 03026 (2021). 10.1051/epj-

conf/202125103026

[5] F. Gaede, T. Madlener, P. Fernandez Declara, G. Ganis, B. Hegner, C. Helsens, A. Sailer,

G. A. Stewart, V. Voelkl, EDM4hep - a common event data model for HEP experiments,

PoS ICHEP2022, 1237 (2022). 10.22323/1.414.1237

[6] F. Gaede, T. Behnke, N. Graf, T. Johnson, LCIO: A Persistency framework for linear

collider simulation studies, eConf C0303241, TUKT001 (2003), physics/0306114.

10.48550/arXiv.physics/0306114

[7] D. Piparo, P. Canal, E. Guiraud, X. Valls Pla, G. Ganis, G. Amadio, A. Naumann,

E. Tejedor, RDataFrame: Easy Parallel ROOT Analysis at 100 Threads, EPJ Web Conf.

214, 06029 (2019). 10.1051/epjconf/201921406029

[8] R. Brun, F. Rademakers, P. Canal, A. Naumann, O. Couet, L. Moneta, V. Vassilev,

S. Linev, D. Piparo, G. GANIS et al., root-project/root: v6.18/02 (2019), https://

doi.org/10.5281/zenodo.3895860

[9] R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Inst.

& Meth. A389, 81 (1997). 10.1016/S0168-9002(97)00048-X

[10] J. Blomer, P. Canal, A. Naumann, D. Piparo, Evolution of the ROOT Tree I/O, EPJ Web

Conf. 245, 02030 (2020), 2003.07669. 10.1051/epjconf/202024502030

[11] J. Lopez-Gomez, J. Blomer, RNTuple performance: Status and Outlook, J. Phys. Conf.

Ser. 2438, 012118 (2023), 2204.09043. 10.1088/1742-6596/2438/1/012118

[12] J. Blomer, ROOT RNTuple: Next Generation Event Data I/O for HENP, in

CHEP 2024 (Krakow, Poland, 2024), https://indico.cern.ch/event/1338689/

contributions/6005282/

[13] P. Mato, EDM4hep.jl: Analysing EDM4hep files with Julia, in CHEP 2024 (Krakow,

Poland, 2024), https://indico.cern.ch/event/1338689/contributions/

6016139/

[14] A. Buckley, P. Ilten, D. Konstantinov, L. Lönnblad, J. Monk, W. Pokorski,

T. Przedzinski, A. Verbytskyi, The HepMC3 event record library for Monte Carlo

event generators, Comput. Phys. Commun. 260, 107310 (2021), 1912.08005.

10.1016/j.cpc.2020.107310

 EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

8

