
EDM4hep - The common event data model for the Key4hep
project

Juan Miguel Carceller1, Mateusz Jakub Fila1, Brieuc Francois1, Frank Gaede2, Benedikt
Hegner1, Thomas Madlener2∗, Juraj Smiesko1, and André Sailer1

1CERN, Geneva, Switzerland
2Deutsches Elektronen-Synchrotron DESY, Germany

Abstract. The common and shared event data model EDM4hep is a core part
of the Key4hep project. It is the component that is used to not only exchange
data between the different software pieces, but it also serves as a common lan-
guage for all the components that belong to Key4hep. Since it is such a central
piece, EDM4hep has to offer an efficient implementation. On the other hand,
EDM4hep has to be flexible enough in order to allow for new developments
in detector technology and reconstruction. In order to meet these challenges
EDM4hep is using the podio EDM toolkit to generate its implementation from
a high level description.
In this talk we give an overview of EDM4hep emphasizing the most recent
developments that were tackled on the way to a first stable release. We use this
opportunity to also highlight the latest developments in the podio toolkit that
were required by the latest EDM4hep features. These include the introduction
of type erased interface types, and a new generic RDataSource to support the
full data model API in RDataFrame.

1 Introduction

The goal of the Key4hep project is the provision of a ready-to-use software stack for all
currently discussed future collider options [1] and has recently reached its five year anniver-
sary [2]. An essential component for Key4hep is a common and shared event data model
(EDM) in the form of EDM4hep. It sits at the core of the Key4hep stack defining not only the
data format that the different software components and packages use to exchange data but also
the language that physicists have at their disposal for expressing their ideas for reconstruction
and analysis.

Given its central role a performant implementation is imperative. Nevertheless EDM4hep
has to be flexible enough to accommodate novel developments in detector technology and
reconstruction. We address both of these challenges via the usage of the podio EDM
toolkit [3, 4]. The main feature of the podio toolkit is the generation of a cache-friendly
and thread safe implementation of an EDM from a high level description in YAML format. It
allows to stack EDMs, such that datatypes can be shared, allowing for a streamlined approach
to prototyping datatypes for new detector concepts or reconstruction techniques. Once these

∗e-mail: thomas.madlener@desy.de

EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

prototypes have matured, they can then be easily integrated into EDM4hep, since they are
already defined in the proper format.

EDM4hep and its usage as well as the basic functionality provided by podio have previ-
ously also been discussed in [5]. In these proceedings we focus on the latest developments
of EDM4hep towards a first stable release with backwards compatibility guarantees. Most
importantly, we addressed some of the conceptual inconsistencies that were inherited from
the initial version that was largely based on the LCIO EDM [6] used by the linear collider
communities before Key4hep. These developments will be presented in Section 2.

Some usability improvements that were necessary for a coherent definition of EDM4hep
also required new features in the podio toolkit. These include the introduction of a new
category of types, so called interface types, as well as a generalization of the possibility to
link objects of EDMs generated by podio. They will be described in more detail in Section 3
and Section 4.

Finally, we have also put together a first version of an RDataSource to facilitate the usage
of event data in EDM4hep format via RDataFrames [7]. We report on some first experiences
and potential improvements in Section 5.

2 A consistent multi-threading concept

The LCIO EDM has initially been designed and developed two decades ago at a time when
thread safety and cache friendliness were not yet considered as inherently important as they
are today. Hence, some conceptual inconsistencies related to mutability in a multi-threaded
context are present. These have also partially permeated into the design of some parts of the
reconstruction and analysis algorithms developed by the linear collider communities. In the
majority of cases, they are related to the possibility of updating data in objects after they have
been handed to the event processing framework. Since EDM4hep allows mutating operations
only as long as the data objects are still in control of the user, such an update mechanism is
obviously not possible and would require cumbersome workarounds like creating and storing
an updated copy.

To mitigate these issues we have harmonized the definition of EDM4hep to have a con-
sistent mutability concept. In some cases, this amounted to reversing the direction of certain
relations, e.g. for adding ParticleID objects to ReconstructedParticles, as shown in
Figure 1(a). In other cases new datatypes had to be introduced and defined, lifting data mem-
bers that were not easily computable in the same algorithm that creates the object itself. As
an exemplary case, we show the computation and storage of the specific ionization loss in
a gaseous detector, dE/dx, which in the LCIO case was done by simply updating the cor-
responding data member in a separate processor (i.e. algorithm) after the initial tracking
processor has been previously run, see Figure 1(b). Here a new RecDqdx datatype with a
one-to-one relation to a Track object from which it was computed was introduced.

In almost all of the cases, the changes resulted in a more hierarchical picture of EDM4hep,
where the relationships between different datatypes are now much more structured in a “is-
produced-from” fashion. As another benefit, this also has a positive effect on the provenance
of objects, where it is now easily possible to assign a single algorithm as the producer of
each object, which was impossible before with several algorithms mutating the same object.
In some cases, it might still be advantageous to be able to easily access related objects in
the reverse direction, e.g. to get all ParticleID objects related to a ReconstructedParticle. To
facilitate and enable these use cases we also introduced some utilities that allow for an easy
reversal of the relations.

Almost all of these developments resulted in breaking changes for EDM4hep. Given the
small available person power and the foreseeable technical challenges of providing backwards

EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

2

(a)

Event

Tracks

TrackerHits

TrackingProcessor

dEdXProcessor

creates and puts

add dEdX info

(b)

Figure 1: (a) Changes to the relation structure between ParticleID objects and Cluster
and ReconstructedParticle objects between the previous version of EDM4hep and the
current pre-release version. (b) Example of an inconsistent mutability concept from tracking
that worked with the LCIO EDM but would no longer be possible with EDM4hep.

compatible schema evolution functionality for these changes, we decided to adopt a “before
and after” approach to reduce the time to a pre-release version of EDM4hep. Hence, data
that have been written with the v00-10 series of EDM4hep will only be readable with the
EDM4hep v00-99 pre-release version in very limited cases.

3 Interface types and their use in EDM4hep

In some cases, the possibility to identify related datatypes by common functionality or data
contents while ignoring some specific differences can be extremely useful. One such case
in EDM4hep is related to tracker hits, where we currently have a TrackerHit3D and a
TrackerHitPlane. The former represents a 3D measurement, as can for example be pro-
vided by a gaseous tracking detector, while the latter is a typical representation of a local 2D
measurement obtained from a silicon tracking device, where the global position is defined by
the placement of the sensor. Since detector concepts can use subdetectors of different tech-
nologies, a Track object needs to be able to hold references to both. One approach would
be to introduce several, type-specific, one-to-many relations. However, that would require
additional data members to keep track of the order of the hits. Ideally, we would be able to
use an interface to simply refer to both of them simultaneously.

In a classic EDM like LCIO this was solved with a virtual inheritance structure and point-
ers of the base class to the different objects, but this approach is impossible in podio generated
EDMs like EDM4hep. First, introducing pointers into the user interface would break consis-
tency with the value semantics approach of podio. Secondly, and more importantly, there is
no base class to inherit from in the first place. Hence, we use the type erasure technique to
implement interface functionality using value semantics.

We have implemented the necessary code generation in podio and interface types can now
be easily declared in a new interface category in the YAML files. The minimal definition
of an interface type in YAML requires a list of participating types and optionally a list of the
functionality that should be provided directly via the interface. The types that are used in an
interface can then either provide this functionality directly via one of their member variables
or, alternatively via the declaration of ExtraCode. The resulting interface objects are usable
in algorithms effectively like any other datatype generated by podio. The main difference is
that interface types do not provide a collection, as the actual data is stored via collections of
the dedicated datatypes. As shown in Listing 1 the interface types blend in very well in their
typical usage and also provide the possibility to query about and down-cast to the underlying
type if necessary.

EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

3

auto track = edm4hep::Track{};
track.addHit(edm4hep::TrackerHit3D{});
track.addHit(edm4hep::TrackerHitPlane{});

const auto hits = track.getHits();
hits[0].isA<edm4hep::TrackerHit3D>(); // <-- true
hits[0].as<edm4hep::TrackerHit3D>(); // <-- "cast back"
hits[1].isA<edm4hep::TrackerHit3D>(); // <-- false
hits[1].as<edm4hep::TrackerHit3D>(); // <-- exception!

Listing 1: Example usage of the edm4hep::TrackerHit interface to add hits of different
types to a track and how to query an interface object about the current type that is being
stored as well as how to down-cast to the actual type.

We have used this mechanism to introduce the TrackerHit interface in EDM4hep and
use that in the one-to-many relations of a track. Currently, the existing TrackerHit3D and
TrackerHitPlane are usable with this interface.

3.1 Alternative implementation strategies

EDMs generated by podio are implemented using a layered structure [3], where the bottom
layer only contains simple plain-old-data (POD) structs. On top of that layer is the so called
object layer that is responsible for resource management and relation handling. Finally, the
topmost layer, which is the only one with which users interact, is the user layer that consists
mainly of thin, cheap to copy, handles to the objects living in the object layer. This makes it
possible to explore several alternative implementation strategies for interface types that are
possible within the constraints of a podio generated EDM.

Before we settled on the implementation using type erasure we also investigated imple-
mentations based on std::variant1, a type-safe union available since C++17. The two
options that are possible with std::variant are either to use the handles of the user layer
or the objects of the object layer. In Figure 2 we show the results of a simplified but real-
world use case inspired micro-benchmark for the two variants based options as well as the
type erased implementation strategy. For the benchmark, we calculate the length of a track
by summing the distance between individual hits by looping over all of them. As can be
seen, the performance of the variant implementation using the object layer objects (ObjVari-
ant) and the type erasure based implementation is on a comparable level for this benchmark,
while the variant implantation based on handles (ValueVariant) is significantly slower.

In the end, the deciding factor for using the type erased implementation strategy was the
fact, that it trivially supports the use of functionality defined in ExtraCode, which would have
required significant amounts of work with the ObjVariant approach. However, we would also
like to point out that the exact implementation mechanism of interface types is indeed an
implementation detail that could be refined if necessary.

4 Templated links between podio objects

In EDM4hep external links are used to bridge the gap between the objects created during
event generation and detector simulation and the ones produced by the subsequent recon-
struction. This is in contrast to the internal relations that are used to build the hierarchy of
objects on either side and that allow easy navigation and access. On a technical level both of

1See https://en.cppreference.com/w/cpp/utility/variant for documentation and examples

EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

4

https://en.cppreference.com/w/cpp/utility/variant

Figure 2: Results for a real-world use case inspired micro-benchmark described in the text.
The different colors show different implementation strategies for interface types. The top
panel shows the run time of the benchmark function as a function of the number of hits in
the track. The baseline (red) values are obtained using a concrete datatype as tracker hit. The
bottom panel shows the ratio of the discussed implementation options w.r.t. the baseline.

these are implemented using exactly the same mechanism in podio. In the initial definition of
EDM4hep these links were called associations and were implemented as dedicated datatypes
with effectively identical structure, providing a weight member as well as two one-to-one
relations to either side of the link.

Again inspired by LCIO we would like to make it possible for users to link effectively
arbitrary datatypes if necessary. However, the solution should provide more type-safety as
was possible in LCIO, where only very limited guarantees could be given. Given the simple
structure of such links we implemented a template based solution directly in podio. Users
can then trivially create links between arbitrary datatypes in-memory and can opt-in to I/O
functionality via the use of a single macro, as shown in Listing 2. The macro only hides some
boilerplate code related to registering the datatype with the I/O system of podio.

// Link arbitrary podio generated datatypes
using RecoMCParticleLinkCollection = podio::LinkCollection<edm4hep::ReconstructedParticle,

edm4hep::MCParticle>;
// Enable I/O (only necessary for links not defined in YAML)
PODIO_DECLARE_LINK(edm4hep::ReconstructedParticle, edm4hep::MCParticle)
// Conventional access
auto mcP = link.getTo();
// Templated / tuple like access
mcP = link.get<edm4hep::MCParticle>();
mcP = link.get<2>();
auto& [rp, mp, w] = link; // <-- structured bindings!

Listing 2: Example declaration and use of a templated link collection that con-
nects ReconstrucedParticles and MCParticles in EDM4hep. The usage of the
PODIO_DECLARE_LINK enables I/O for this specific link type. The usage examples in the
bottom half show the possibilities for accessing the linked objects as well as the weight.

Compared to the manually defined links as dedicated datatypes, templated links offer
some additional functionality. The main goal was to further instill the point that even though
the template parameters indicate a direction of the link, they are in principle undirected, i.e.

EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

5

there is no need to define two different datatypes to go from simulation to reconstruction and
vice versa. As a result links now also provide get and set functionality which is templated
on the datatypes that are linked. This makes it possible to completely omit the direction in
usage as shown in Listing 2.

In order to keep the possibility of having the full definition of a datamodel in the canonical
YAML file, we also introduced a new links category, which also takes care of generating
all the necessary code to enable I/O functionality. Thus, this is the recommended way of
defining links if they should be persist-able.

With the aim of trying to have backwards compatibility already for the v00-99 pre-release
series, we have renamed the initial associations before the pre-release. With the correct names
in place, introducing the templated links was possible in a completely transparent way for
users.

5 An RDataSource for podio generated EDMs

The default backend of podio is based on ROOT [8, 9] and we offer I/O functionality based on
TTrees and the newly developed RNTuple [10–12] format. As a result of the layered imple-
mentation approach of podio we are able to write the event data as effectively flat, contiguous
data buffers [4] via ROOT, which makes them easily accessible for columnar analysis, e.g.
using RDataFrame [7], or in completely independent implementations, e.g. via Julia [13].
On the other hand, the in-memory relations between objects is also persisted as one buffer of
effectively indices per relation and event data collection. As a consequence navigating these
relations in an RDataFrame based analysis becomes cumbersome and error prone, especially
if one-to-many relations are involved, or if retrieving the necessary information requires the
use of more than one relation. Additionally, implementing functions that can be used for the
analysis requires one to have knowledge about implementation details of podio, like the fact
that the POD structs are suffixed with Data and that some information necessary for handling
one to many relations is stored in these PODs.

In Listing 3 we show a rather simple example of how this looks for retrieving the mother
particles of MC particles both on the implementation side as well as on the user side. Here
another implementation detail of podio shines through, namely the names of the branches
where relation indices are stored are required to be known and used as inputs for calling this
function.

auto get_mothers(RVec<MCParticleData> mcps, RVec<int> idcs) {
RVec<RVec<MCParticleData>> result{};
for (const auto& mc : mcps) {
RVec<MCParticleData> mothers{}
for (auto i = mc.parents_begin; i != mc.parents_end; ++i) {
mothers.push_back(mcps[idcs[i]]);

}
result.push_back(mothers);

}
return result;

}

rdf = RDataFrame("events", "input-file.root")
rdf.Define("mc_mothers", "get_mothers(MCParticles, _MCParticles_parents.index)")

Listing 3: Definition of a function usable in RDataFrame for retrieving the mothers of MC
particles and its subsequent usage without the newly implemented RDataSource for podio.

EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

6

To allow for the usage of the full podio generated user interface also in colum-
nar analysis we have implemented the podio::DataSource via inheriting from the
ROOT::RDF::RDataSource. Instead of giving access to the raw data buffers, it routes the
file access through a podio based reader, which also takes care of resolving all relations on
the fly. Thus, it becomes possible to define utility functions using the full expressivity of the
EDM interface, as visible in Listing 4. The implementation of the get_mothers function
is greatly simplified compared to the one shown in Listing 3. Additionally, the call site of
the function has become much simpler as well, where now only the name of the collection is
required. All the details of the podio based implementation are completely hidden.

auto get_mothers(MCParticleCollection mcps) {
RVec<RVec<MCParticle>> result;
for (const auto mc : mcps) {
RVec<MCParticle> mothers(mc.getParents().begin(), mc.getParents().end());
result.push_back(mothers);

}
}

rdf = podio.CreateDataFrame("input-file.root")
rdf.Define("mc_mothers", "get_mothers(MCParticles)")

Listing 4: Definition of a function usable in RDataFrame for retrieving mothers of MC parti-
cles and its subsequent usage using the newly available podio::DataSource.

The implementation of the podio::DataSource transparently provides reading support
for all available I/O backends of podio [4] and, more importantly, also has the full schema
evolution machinery at its disposal. We consider the interface of the podio::DataSource
stable enough for release at this point, but also acknowledge that we have not yet done any
optimizations. Hence, especially for simple analysis event loops, it performs significantly
worse, both in runtime and memory usage. We intend to spend some time to optimize both
aspects in the near future.

6 Conclusions & Outlook

The common and shared EDM of the Key4hep project, EDM4hep, is close to a first sta-
ble release with strong backwards compatibility guarantees for reading event data. After
some important developments that we have reported here, namely the harmonization of the
datatypes for use in multi-threaded contexts, the introduction of a tracker hit interface and
templated links, as well as a newly developed RDataSource for podio, we have made a v00-
99 pre-release series for extended user testing.

The final changes that still need to be applied to the definition of EDM4hep are mostly
related to a small overhaul of contents related to MC generators and the MC particle. The
changes are mostly related to removing some data members that are not reasonably usable
without additional context from a generator. Given that HepMC3 [14] is the common format
for data exchange between generators, we opted to remove these data members to avoid leak-
ing partial information from generator internals to the analysis stage. We plan to implement
these changes in a backwards compatible fashion to keep files that have been written with the
v00-99 pre-release readable with v01-00 as well.

EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

7

Acknowledgments

This work benefited from support by the CERN Strategic R&D Programme on Technolo-
gies for Future Experiments (CERN-OPEN-2018-006). This project has received funding
from the European Union’s Horizon 2020 Research and Innovation programme under Grant
Agreement no. 101004761.

References

[1] P. Fernandez Declara et al., The Key4hep turnkey software stack for future colliders,
PoS EPS-HEP2021, 844 (2022). 10.22323/1.398.0844

[2] J.M. Carceller et al., Five years of Key4hep - Towards production readiness and beyond,
PoS ICHEP2024, 1029 (2025). 10.22323/1.476.1029

[3] J.M. Carceller, F. Gaede, G. Ganis, B. Hegner, C. Helsens, T. Madlener, A. Sailer, G.A.
Stewart, V. Volkl, Towards podio v1.0 - A first stable release of the EDM toolkit, EPJ
Web Conf. 295, 06018 (2024), 2312.08206. 10.1051/epjconf/202429506018

[4] F. Gaede, G. Ganis, B. Hegner, C. Helsens, T. Madlener, A. Sailer, G.A. Stewart,
V. Volkl, J. Wang, EDM4hep and podio - The event data model of the Key4hep
project and its implementation, EPJ Web Conf. 251, 03026 (2021). 10.1051/epj-
conf/202125103026

[5] F. Gaede, T. Madlener, P. Fernandez Declara, G. Ganis, B. Hegner, C. Helsens, A. Sailer,
G. A. Stewart, V. Voelkl, EDM4hep - a common event data model for HEP experiments,
PoS ICHEP2022, 1237 (2022). 10.22323/1.414.1237

[6] F. Gaede, T. Behnke, N. Graf, T. Johnson, LCIO: A Persistency framework for linear
collider simulation studies, eConf C0303241, TUKT001 (2003), physics/0306114.
10.48550/arXiv.physics/0306114

[7] D. Piparo, P. Canal, E. Guiraud, X. Valls Pla, G. Ganis, G. Amadio, A. Naumann,
E. Tejedor, RDataFrame: Easy Parallel ROOT Analysis at 100 Threads, EPJ Web Conf.
214, 06029 (2019). 10.1051/epjconf/201921406029

[8] R. Brun, F. Rademakers, P. Canal, A. Naumann, O. Couet, L. Moneta, V. Vassilev,
S. Linev, D. Piparo, G. GANIS et al., root-project/root: v6.18/02 (2019), https://
doi.org/10.5281/zenodo.3895860

[9] R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Inst.
& Meth. A389, 81 (1997). 10.1016/S0168-9002(97)00048-X

[10] J. Blomer, P. Canal, A. Naumann, D. Piparo, Evolution of the ROOT Tree I/O, EPJ Web
Conf. 245, 02030 (2020), 2003.07669. 10.1051/epjconf/202024502030

[11] J. Lopez-Gomez, J. Blomer, RNTuple performance: Status and Outlook, J. Phys. Conf.
Ser. 2438, 012118 (2023), 2204.09043. 10.1088/1742-6596/2438/1/012118

[12] J. Blomer, ROOT RNTuple: Next Generation Event Data I/O for HENP, in
CHEP 2024 (Krakow, Poland, 2024), https://indico.cern.ch/event/1338689/
contributions/6005282/

[13] P. Mato, EDM4hep.jl: Analysing EDM4hep files with Julia, in CHEP 2024 (Krakow,
Poland, 2024), https://indico.cern.ch/event/1338689/contributions/
6016139/

[14] A. Buckley, P. Ilten, D. Konstantinov, L. Lönnblad, J. Monk, W. Pokorski,
T. Przedzinski, A. Verbytskyi, The HepMC3 event record library for Monte Carlo
event generators, Comput. Phys. Commun. 260, 107310 (2021), 1912.08005.
10.1016/j.cpc.2020.107310

EPJ Web of Conferences 337, 01131 (2025) https://doi.org/10.1051/epjconf/202533701131

CHEP 2024

8

https://cds.cern.ch/record/2649646/
https://doi.org/10.22323/1.398.0844
https://doi.org/10.22323/1.476.1029
https://doi.org/10.1051/epjconf/202429506018
https://doi.org/10.1051/epjconf/202125103026
https://doi.org/10.1051/epjconf/202125103026
https://doi.org/10.22323/1.414.1237
https://doi.org/10.48550/arXiv.physics/0306114
https://doi.org/10.1051/epjconf/201921406029
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1051/epjconf/202024502030
https://doi.org/10.1088/1742-6596/2438/1/012118
https://indico.cern.ch/event/1338689/contributions/6005282/
https://indico.cern.ch/event/1338689/contributions/6005282/
https://indico.cern.ch/event/1338689/contributions/6016139/
https://indico.cern.ch/event/1338689/contributions/6016139/
https://doi.org/10.1016/j.cpc.2020.107310

	Introduction
	A consistent multi-threading concept
	Interface types and their use in EDM4hep
	Alternative implementation strategies

	Templated links between podio objects
	An RDataSource for podio generated EDMs
	Conclusions & Outlook

