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We present a measurement of the mean number of muons with energies larger than 500 GeV in near-
vertical extensive air showers initiated by cosmic rays with primary energies between 2.5 and 100 PeV. The
measurement is based on events detected in coincidence between the surface and in-ice detectors of the
IceCube Neutrino Observatory. Air showers are recorded on the surface by IceTop, while a bundle of high-
energy muons (TeV muons) from the shower can subsequently produce a tracklike event in the IceCube
in-ice array. Results are obtained assuming the hadronic interaction models Sibyll 2.1, QGSJet-II.04, and
EPOS-LHC. The measured number of TeV muons is found to be in agreement with predictions from air-
shower simulations. The results have also been compared to a measurement of low-energy muons by
IceTop, indicating an inconsistency between the predictions for low- and high-energy muons in simulations
based on the EPOS-LHC model.

DOI: 10.1103/lrjy-3hht

I. INTRODUCTION

Cosmic rays are ionized nuclei coming from outer space
with energies extending up to 1020 eV and beyond. A
detailed knowledge of the properties of the cosmic-ray flux
is important for understanding their origin. In addition to
directly carrying information about the sources and propa-
gation of cosmic rays, it is a major uncertainty in the calcu-
lation of the atmospheric neutrino flux, the main background
for neutrino astronomy [1,2]. The high energies of cosmic
rays furthermore provide the opportunity to explore particle
physics beyond the reach of human-made accelerators [3].
While the energy spectrum of cosmic rays has

been measured with high precision over many orders of
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magnitude, the mass composition remains uncertain. This
results from the fact that cosmic rays with energies above
several 100 TeV are observed indirectly through the
extensive air showers they produce when entering the
Earth’s atmosphere. The properties of the primary cosmic
rays can be inferred from several observables accessible
through ground-based experiments. One such observable is
the number of muons in the air shower, which can be
probed with arrays of particle detectors. Muons originate
predominantly from the decay of charged pions and kaons
produced as part of the hadronic cascade, and, together with
an independent estimate of the primary energy, their
number can be used to infer the mass of the cosmic-ray
nucleus [4]. The interpretation of the air-shower observa-
tions in terms of properties of the primary particle relies,
however, on the accurate simulation of the development of
the air shower in the atmosphere. These Monte Carlo simu-
lations make use of phenomenological models describing
the high-energy hadronic interactions in the shower, which
cannot be calculated in the context of perturbative quantum
chromodynamics. The models are tuned to accelerator data,
but have to extrapolate to a phase space not accessible to
these experiments, leading to significant uncertainties [3,5].
Several observatories have performed measurements of

the muon content of air showers. A 2019 meta-analysis
including data from eight observatories found a discrep-
ancy between data and expectations from simulations with
a significant dependence on the shower energy [6], with the
Pierre Auger Observatory reporting evidence for a deficit of
muons in simulations based on post-LHC hadronic inter-
action models at the highest energies [7,8]. This observa-
tion is commonly referred to as the Muon Puzzle, its most
plausible origin being the description of hadronic inter-
actions in the air showers [9]. The current experimental
picture, however, is ambiguous; while some observatories
report a discrepancy between measurements and simula-
tions based on various hadronic interaction models, others
do not observe any such disagreements [10]. The observa-
tories all operate in different regions of the parameter space,
such as observation altitude and muon energy threshold,
and a consistent picture has yet to emerge. As a result,
interpreting the muon measurements of different observa-
tories in terms of the cosmic-ray mass composition leads to
inconsistent results. Resolving this situation, i.e., the Muon
Puzzle and the possibly related inconsistencies between
observatories, is considered one of the most pressing
problems in high-energy cosmic-ray physics and motivates
performing a variety of muon measurements to probe
air-shower development and hadronic interactions under
different conditions [11]. Complementary information
toward understanding the issues in the description of
high-energy hadronic interactions will also be obtained
by collider experiments, with those measuring in the
forward region being particularly important for air-shower
physics [9,12].

The IceCube Neutrino Observatory [13] is a particle
detector located at the geographic South Pole in Antarctica.
Its combination of a surface detector array, IceTop, and the
large-volume in-ice detector that is located between 1.5 and
2.5 km below, allows it to perform unique air-shower
measurements. A measurement of the density of mainly
low-energy muons detected at the surface with IceTop,
often referred to as GeV muons, has been previously
published [14]. The thick ice sheet covering the IceCube
in-ice detector absorbs all muons with energies below
several hundred GeV, allowing for a measurement of purely
the high-energy muon content in air showers. These muons,
which we refer to as TeV muons, are the subject of this
article. The TeV muons are of special interest as they are
predominantly produced in the early stages of the shower
development. Their number depends on the energy and
mass of the primary. The mass dependence is stronger than
that of low-energy muons observed with surface arrays,
making them also a particularly interesting observable for
mass composition studies [15](see also Appendix A). In
this work, we present a measurement of the mean number
of muons with energies above 500 GeV in near-vertical air
showers observed with both IceTop and the IceCube in-ice
array in the primary energy range of 2.5 to 100 PeV.
The article is structured as follows. In Sec. II, we

introduce the IceCube Neutrino Observatory and its oper-
ation as an extensive-air-shower detector. Following this,
the experimental data and simulations used in the analysis
are described in Sec. III. Section IV describes in detail the
analysis method, including neural network reconstructions
of the primary cosmic-ray energy and TeV muon multi-
plicity, as well as the application of correction factors
derived from simulations. The final results are presented
in Sec. V. Two Appendixes are included: Appendix A
discusses the predictions for high-energy muons from
simulations in detail; Appendix B includes various dem-
onstrations of the robustness of the analysis results.

II. ICETOP AND ICECUBE IN-ICE

The IceCube Neutrino Observatory, illustrated in Fig. 1,
is a kilometer-scale detector located at the geographic
South Pole, constructed mainly for the detection of high-
energy neutrinos and cosmic rays [13]. The IceCube in-ice
array consists of 5160 digital optical modules (DOMs)
deployed on 86 vertical strings at a depth between 1450 and
2450 m with a horizontal spacing of 125 m, instrumenting a
volume of one cubic kilometer of ice. Each DOM contains
a photomultiplier tube sensitive to the Cherenkov photons
produced by relativistic charged particles propagating
through the ice. The surface component of the observatory,
IceTop [16], is an array consisting of 81 stations of two ice-
Cherenkov tanks approximately following the in-ice string
locations, covering an area of about one square kilometer.
Each tank contains two DOMs to record the Cherenkov
light produced by air-shower particles penetrating the ice in
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the tank. The lids of the tanks were deployed flush with the
snow surface at the site. Since then, however, several
meters of snow have accumulated on top of the array.
The IceTop array is situated at an altitude of 2835 m

above sea level, corresponding to an atmospheric depth of
about 690 g=cm2. IceTop signals are calibrated in terms of
the typical signal produced by vertical muons penetrating
the tanks, known as the vertical equivalent muon or
VEM. The signals recorded in the tanks for an air shower,
whose impact point is located inside the array, are domi-
nated by the electromagnetic shower component, except at
large lateral distances, where a muonic signal component
can be discerned. This feature has been used previously to
measure the density of mainly low-energy [OðGeVÞ]
muons at the surface [14]. For air showers whose shower
axis also passes through the volume of the in-ice detector, a
narrow bundle of high-energy muons can be observed in
coincidence with the surface signals. Muons need an
energy of at least several hundred GeV to travel from
the surface to the top of the in-ice array. When requiring
that the shower core is contained within the IceTop foot-
print, events with a coincident surface trigger and in-ice
muon bundle are limited to zenith angles of θ ≲ 38°. This
class of events has been used before to perform a meas-
urement of the cosmic-ray mass composition [17].
The IceTop signals are typically used to reconstruct

various parameters, such as the shower core position and

direction, with a maximum likelihood method which fits
the time and charge distributions [16]. This procedure also
reconstructs the shower size S125, the signal at a distance of
125 m from the shower axis, which is a proxy for the
primary cosmic-ray energy. A simple exponential attenu-
ation function is used during the reconstruction to take the
impact of the snow coverage on top of a tank on the
observed signal into account [18]. Additional information
about the primary particle and the air shower can be
obtained from the in-ice detector, typically by studying
the charge deposit of the high-energy muon bundle as it
propagates through the ice. One method, which has been
used in previous analyses, consists of determining the
energy loss in equidistant segments along the line of
propagation of the bundle. As the photons detected by a
DOM can originate from different positions along the track,
an unfolding is required to obtain the contributions from
energy losses in all track segments to the observed light
distribution [19]. These established reconstruction methods
are applied to all air-shower events included in the analysis
presented in this paper.

III. DATASETS

A. Experimental dataset

The analysis uses data collected between May 15, 2012
and May 2, 2013 with an effective live time of about
323 days. A total of 1 216 154 events with a reconstructed
energy between 2.5 and 100 PeV pass the selection criteria
described below.
The event selection is aimed at air showers which trigger

IceTop and have a coincident bundle of high-energy muons
in the in-ice detector. To obtain an event sample with a high
quality of air-shower reconstructions, cuts established in
previous IceCube cosmic-ray analyses are applied [17,18].
Events must trigger at least five IceTop stations and at least
one of the stations must have a signal greater than 6 VEM.
The shower reconstruction is required to succeed, and the
reconstructed shower core is required to be within a geo-
metric boundary slightly smaller than the array. Further-
more, the station with the largest signal must not be on the
edge of the array. For the in-ice part of the events, quality
cuts are applied to the unfolded muon-bundle energy loss,
requiring a successful reconstruction which has at least
three reconstructed energy losses inside the detector vol-
ume that are nonzero (see also Sec. IVA). While this
selection can include events up to about 38° in zenith, the
analysis is further restricted to events with cos θ > 0.95
(θ ≲ 18°). This simplifies the possible muon bundle geo-
metries included in the analysis and ensures that all muon
bundles have propagated through a similar amount of
matter before reaching the detector, while still resulting
in a systematics-dominated measurement.
As will be discussed in Sec. IVA, the resolution of the

cosmic-ray energy reconstruction method that is used in

FIG. 1. Schematic drawing of a cosmic-ray air shower observed
in coincidence between IceTop, the surface component of the
IceCube Neutrino Observatory, and the IceCube in-ice array.
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this analysis, defined as the standard deviation of
log10ðEreco=EtrueÞ, is better than 0.1 above 1 PeVand about
0.05 above 10 PeV. The analysis only includes events
above the threshold energy where the event selection
reaches nearly full efficiency for all masses of cosmic-
ray nuclei, i.e., 2.5 PeV for the level of snow coverage on
the IceTop array in the included time interval [17], and
includes events of energies up to 100 PeV. Around the
threshold energy, a core resolution better than 12 m and an
angular resolution better than 0.8° are obtained after quality
cuts, improving to about 5 m and 0.4° at 30 PeV [20].

B. Simulated datasets

Air shower simulations are produced with CORSIKA

v7.3700 [21], using an atmospheric model describing a
typical South Pole atmosphere for the month of April.1 This
model closely approximates the yearly average South Pole
atmosphere [22]. Primary energies are sampled according
to an E−1 differential energy spectrum. Hadrons and
(anti)muons are simulated down to energies of 0.05 GeV,
while electrons/positrons and photons are included down to
0.01 and 0.002 GeV, respectively.
The model used for hadronic interactions below a

laboratory energy of 80 GeV is FLUKA 2011.2c [23,24].
Datasets with different high-energy hadronic interaction
models are included in the analysis. The main dataset is
based on Sibyll 2.1 [25] and includes four types of primary
cosmic ray: p, He, O, and Fe. Two other datasets are
based on QGSJet-II.04 [26] and EPOS-LHC [27] and
include only proton and iron showers. Sibyll 2.1 is a
pre-LHC model, while QGSJet-II.04 and EPOS-LHC are
post-LHC models, taking into account high-energy data
from the LHC.
The detector response to the shower particles is simu-

lated using IceCube software including the entire hardware
and data-acquisition chain, as in previous analyses [17,18].
Each CORSIKA shower is resampled 100 times uniformly
over an energy-dependent area larger than the IceTop
detector area. The observation level in CORSIKA is set to
2837 m, which is several meters above the top of the IceTop
tanks to allow for the inclusion of snow accumulated on
top of the tanks in the simulation. The shower particles
obtained from CORSIKA are propagated from the observa-
tion level through layers of air and snow before their
interactions in the tanks are simulated, all using the GEANT4

[28] package. The simulated snow levels are those mea-
sured in situ in October 2012. Only muons with energies
higher than 273 GeV are considered for simulation of the
in-ice detector response, including their interactions with
the ice and the resulting detection of Cherenkov photons.
The same reconstructions and event selection applied to the
experimental data are applied to the simulated events.

Additional CORSIKA-only datasets are produced to
obtain predictions of the multiplicity of muons with Eμ >
500 GeV with reduced statistical uncertainty, for compari-
son to the final analysis results. Predictions are derived for
p and Fe primaries using the models Sibyll 2.1, QGSJet-
II.04, and EPOS-LHC. They are described in more detail in
Appendix A.

IV. ANALYSIS

The analysis presented in this paper determines the mean
number of muons Nμ with an energy Eμ > 500 GeV in air
showers with cos θ > 0.95 for primary cosmic-ray energies
E between 2.5 and 100 PeV, where Nμ is defined at the
surface.2 The analysis starts from the initial air-shower and
muon-bundle energy-loss reconstructions and the event
selection discussed in Secs. II and III. The reconstructed
observables from IceTop and in-ice are used as inputs for a
neural network reconstruction of the primary cosmic-ray
energy and the high-energy muon number. Correction
factors are subsequently derived from simulations and used
to correct for mass-dependent biases in the determination of
the mean muon number hNμi in bins of primary energy.

A. Neural network reconstruction

A neural network model is used to relate the signals
generated by the bundle of high-energy muons in the in-ice
IceCube detector to the number of muons in the air shower
with an energy greater than 500 GeV at the surface. In
addition, the shower size S125 reconstructed with IceTop
provides the main sensitivity to the primary cosmic-ray
energy. Various ways of combining the inputs in different
neural networks were explored. For example, one could use
only surface information for the reconstruction of the energy
E and only in-ice information for the reconstruction of the
muon numberNμ, or one could utilize them in a single model
for combined reconstruction. Some of these approaches are
discussed in more detail in Appendix B, demonstrating that
the final results are invariant to such choices. We present in
this section the approach that was used to obtain the nominal
analysis results which are presented in Sec. V.
The muon bundle energy loss is reconstructed in seg-

ments of 20 m along the shower axis, which is obtained
from the IceTop reconstruction and extended to the in-ice
detector. Any segment not contained in the detector volume
is removed. Events which end up with less than three
segments that have a nonzero reconstructed energy loss in
the detector are discarded. The first segment in the detector
will correspond to a different slant depth traveled by the
bundle for events with different zenith angles. To include

1This atmospheric model was included as a standard model in
CORSIKA v7.4700 with identifier 33.

2Simulations of vertically down-going muons performed with
PROPOSAL [29] show that muons with an energy of 500 GeV have
a chance of about 75% to propagate down to at least 1450 m in the
ice. This increases to 95% for muons with an energy of 1 TeV.
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this information, we create a fixed-length vector of recon-
structed energy losses in such a way that each entry in the
vector corresponds approximately to the same in-ice slant
depth for all events, padding with zeros at the start or end of
the vector based on the zenith angle. More specifically, a
vertical event will have zeros at the end of the vector, while
a more inclined event will have zeros at the start, in such a
way that the first entry corresponds to a traveled distance of
about 1450 m in the ice. This vector of energy losses is used
as input to a recurrent neural network, more specifically a
bidirectional gated recurrent unit layer [30], a common
choice for sequential data. The output from the recurrent
layer is fed into a fully connected (dense) layer combined
with the shower size S125 and zenith angle θ reconstructed
using IceTop. The neural network subsequently outputs
predictions for both log10ðNμÞ and log10ðEÞ. The network
is trained using a mean-squared error (MSE) loss function
for each of the training targets, minimizing the combined
loss function consisting of the sum of the two MSE losses.
The implementation of the neural network is based on the
KERAS [31] and TENSORFLOW [32] software libraries.
The neural network is trained on Sibyll 2.1 simu-

lations with roughly equal amounts of the four primaries
(p, He, O, and Fe), with true energies in the range
5.4 ≤ log10ðE=GeVÞ ≤ 8.4, corresponding to a range for
Nμ of one muon up to about 2500. The quality of the
reconstructions is examined by applying them to an
independent test set. Figure 2 shows the relations between
the reconstructed and true values for E and Nμ, combined
for all primaries. As the high-energy muon multiplicity
approximately grows as Eβ with β ≈ 0.8, as discussed
in Appendix A, the ratio Nμ=E0.8 has been plotted to
prevent the correlation from simply reflecting the under-
lying energy dependence rather than the performance
of the neural network. The bias and resolution of the
reconstructions, defined as respectively the mean and

the standard deviation of the logarithmic difference
between reconstructed and true values, is shown in Fig. 3
for the different primary types separately. For most of the
energy range included in the analysis, i.e., 6.4 to 8.0 in
log10ðE=GeVÞ, the energy reconstruction has a resolution
smaller than half the bin width of 0.1 in log10ðEÞ, with
some mass dependence in both the bias and the resolution.
The muon number reconstruction, on the other hand,
has a nearly mass-independent resolution, but has a clear
mass-dependent bias.3 The number of muons with Eμ >
500 GeV in simulations inside the primary energy range
used in the analysis is between 5 and about 670 for proton
showers and between 30 and about 1330 for iron showers.

B. Monte Carlo correction

The analysis determines the average high-energy muon
number hNμi in bins of primary cosmic-ray energy E based
on the event-by-event reconstructions described above. The
accuracy with which it can be obtained is tested based on
simulations. In Fig. 4, the average of the reconstructed
muon number values is shown in bins of reconstructed
energy for different primaries, compared to the true average
muon number in bins of true simulated energy. These
values were determined from the subset of the Sibyll 2.1
dataset which was not used in the training of the neural
network. While the energy dependence is captured rather
well for all masses, systematic offsets can be seen between

FIG. 2. Correlation plots showing the relation between the true and neural-network reconstructed values for primary cosmic-ray
energy (left) and high-energy muon multiplicity (right). The muon multiplicity has been divided by Eβ to reduce the effect of its
underlying energy dependence. The histograms include Sibyll 2.1 simulations of all four mass groups (p, He, O, and Fe).

3Training two separate neural networks, one for E recon-
struction using only IceTop information, and one for Nμ recon-
struction using only in-ice information, changes this behavior. In
that case, a larger mass dependence in the E reconstruction bias
is obtained, while the Nμ network produces a reduced mass-
dependent bias. The combined neural network presented in the
main body of this work allows, however, for the more precise
correction method for the resulting biases discussed in Sec. IV B.
See Appendix B for a more detailed discussion.
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the reconstructed and true values. The bottom panel of the
figure shows the ratio between the reconstructed and true
values, indicating biases up to about �15% with a clear
mass dependence. The systematic overestimation for pro-
ton and underestimation for iron arises from the tendency
of neural networks trained with MSE loss to predict values
closer to the average behavior of the training data. The
ratios are fit with quadratic functions for each mass
separately, defining the correction factors that will be
applied to the results. We note that the offsets shown in
these plots result from both the imperfections of the muon
multiplicity reconstruction, which has the largest impact, as
well as from the energy reconstruction as a result of bin
migration, which is a smaller effect.
The correction factors derived from simulations can be

used to unbias the results that will be obtained from
experimental data. A complication is that the correction
factors are clearly mass dependent, while the cosmic-ray
composition at high energies is not precisely known. Rather
than assuming a specific composition model to derive
corrections, a model-independent approach is applied. It
exploits the fact that the muon number itself is a measure of
composition, and that the values of the correction factors at
a specific energy depend, to a good approximation, linearly
on lnðAÞ, with A being the nuclear mass number. This
works as follows. The Heitler-Matthews model [33] pre-
dicts that the number of muons in an air shower depends on
A and the cosmic-ray energy E as

NμðE;AÞ ¼ A1−β
�
E
ξ

�
β

; ð1Þ

FIG. 3. Bias and resolution of the neural network reconstructions, defined as the mean and standard deviation of the difference
between the logarithms of the reconstructed and true values, shown separately for different primary cosmic-ray masses. Primary energy
reconstruction is shown on the left, muon multiplicity (Eμ > 500 GeV) reconstruction on the right. The analysis includes events
between 6.4 and 8.0 in log10ðE=GeVÞ, corresponding to 0.7≲ log10ðNμÞ≲ 2.8 for proton showers and 1.5≲ log10ðNμÞ≲ 3.1 for iron
showers.

FIG. 4. Top: comparison between the average reconstructed
TeV muon number in bins of reconstructed primary energy and
the true muon number in bins of true energy in Sibyll 2.1
simulation for four different primaries. Bottom: ratio of the recon-
structed and true values from the top plot, fitted with quadratic
functions defining correction factors based on Sibyll 2.1.
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with an exponent β < 1 and ξ a constant.4 This relation
inspires the definition of the z value, a common way of
representing muon data by scaling it according to expect-
ations from simulations [6],

z ¼ lnhNμi − lnhNμip
lnhNμiFe − lnhNμip

; ð2Þ

where hNμip and hNμiFe are the predictions from proton
and iron simulations, respectively. The relation of Eq. (1)
can thus be used to estimate lnðAÞ based on the hNμi
derived from the data as z ≈ lnðAÞ= lnð56Þ. With the
estimate of lnðAÞ obtained from the initial hNμi estimate,
a correction factor can be obtained by linearly interpolating
the correction factors derived for proton and iron, Cp and
CFe, in lnðAÞ,

ClnðAÞðEÞ ¼ CpðEÞ þ
CFeðEÞ − CpðEÞ

lnð56Þ lnðAÞ: ð3Þ

The interpolated correction factor, ClnA, can then be applied
to the initial estimate of hNμi to obtain a corrected estimate.
This process is iterated, using the newly corrected hNμi
values to estimate the mass composition and in turn derive a
new correction factor. After several iterations, the process
converges to what is then the final result for the average
muon number. The approximate dependence of the correc-
tion factors on lnðAÞ has been tested by deriving correction
factors for He and O by interpolation [i.e., Eq. (3) for A ¼ 4

and 16] and comparing them to the ones derived directly
from simulation (which are shown in Fig. 4).
The method has been verified using simulations. An

example is shown in Fig. 5, where results were derived
from simulations of a single primarymass which have under-
gone thewhole analysis process. The corrected results can be
seen to closely align with the Monte Carlo truth. This was
repeated for a variety of possible mass compositions, and the
method was found to reproduce the true hNμi well, inde-
pendently of the injected composition. The typical difference
remaining between the corrected and true values after the
correction are taken into account in the final result: the muon
number is corrected for an average offset of 0.2%, and a

FIG. 5. Comparison between the initial reconstruction of the average muon number (in bins of reconstructed energy), the corrected
results, and the true muon number (in bins of true energy) obtained from air showers simulated with Sibyll 2.1. The values have been
scaled according to Eq. (2), so that the true value for proton is at zero and the true value for iron is at 1. The brackets show the uncertainty
assigned to the final result to account for the typical offsets remaining after the correction. This comparison is shown for four pure
composition scenarios.

4In Appendix A, we discuss the validity of this relation for the
high-energy (Eμ > 500 GeV) muons in the shower.
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spread of 4% is included as a systematic uncertainty, shown
as the brackets in Fig. 5.
The correction factors depend on the hadronic inter-

action model used in the simulations they are derived
from. Correction factors are obtained for QGSJet-II.04 and
EPOS-LHC simulations in addition to those for Sibyll 2.1;
they are shown in Fig. 6. The correction factors effectively
remove the dependence of the result on the hadronic model
that the initial neural network reconstructions were trained
on, and replaces it by a dependence on the model that the
correction factors are derived from. They therefore allow us
to interpret the experimental data under the assumption
of different hadronic interaction models. This is shown in
more detail in Appendix B, where results are obtained
using a neural network trained on EPOS-LHC, leading to
results consistent with the nominal results presented in the
following section.

V. RESULTS AND DISCUSSION

Figure 7 shows the mean number of muons hNμi
with energies greater than 500 GeV in air showers with
energies between 2.5 and 100 PeV. These results were
obtained in a model-dependent way by using the correction
factors derived from simulations based on Sibyll 2.1,

QGSJet-II.04, and EPOS-LHC (shown in Figs. 4 and 6).
Also shown are the predictions of the muon number in
proton and iron showers derived from CORSIKA simulations
using the respective hadronic interaction models, as
described in Appendix A. The shaded area around the
points represents the total systematic uncertainties, while
statistical uncertainties are too small to be visible in the

FIG. 6. Correction factors derived from simulations based on
QGSJet-II.04 and EPOS-LHC, equivalent to the Sibyll 2.1
correction factors shown in Fig. 4.

FIG. 7. Average number of muons with energy greater than
500 GeV in near-vertical air showers as a function of the primary
cosmic-ray energy obtained using the hadronic interaction
models Sibyll 2.1, QGSJet-II.04, and EPOS-LHC. The shaded
region indicates the systematic uncertainty; statistical uncertain-
ties are not visible. The muon number expected from proton and
iron simulations performed with the corresponding hadronic
models are shown for comparison. These data are made available
in a public data release [34].

R. ABBASI et al. PHYS. REV. D 112, 082004 (2025)

082004-10



figures. The central values are bracketed by the proton and
iron predictions for all models, and qualitatively indicate
that the mass composition becomes heavier with increasing
primary energy.
As shown in Fig. 8, the muon numbers obtained using

QGSJet-II.04 and EPOS-LHC are approximately 5%
higher than the result obtained with Sibyll 2.1. As this
spread is significantly smaller than the total systematic
uncertainty (see below), we derive in addition a model-
averaged muon multiplicity, shown in Fig. 9. This result
includes an additional contribution to the total systematic
uncertainty, representing the spread of the model-specific
hNμi results around the average. The average result is
plotted together with the proton and iron predictions based
on the different hadronic models. The hNμi predictions for
QGSJet-II.04 and EPOS-LHC are, respectively, about 5%
higher and lower than for Sibyll 2.1; a more detailed

comparison between the predictions is shown in Fig. 13.
The numerical values for the individual and model-
averaged hNμi results are made publicly available in
electronic format in Ref. [34].
The total systematic uncertainty on the muon number

measurement originates from different sources, shown in
Fig. 10. Detector uncertainties originate from both IceTop
and the in-ice array, and are essentially the same as those
described in previous works [17]. The largest uncertainty is
related to the modeling of the properties of the deep ice
used in simulations (scattering and absorption of both the
bulk ice and the refrozen ice in the drill holes around the
DOMs). In Ref. [17], the uncertainties related to the ice
model were combined with a 3% uncertainty on the DOM
efficiency to determine the total in-ice light-yield uncer-
tainty for down-going muon bundles. We opt here for a
more conservative DOM efficiency uncertainty of 10%,
leading to a total light-yield uncertainty of (þ13.4%,
−15.7%). The impact on the result has been determined
by repeating the energy-loss reconstruction with a modified
light-collection efficiency parameter. For IceTop, an uncer-
tainty of �0.2 m is assumed for the effective attenuation
length (λ ¼ 2.25 m) of air shower particles in the snow
[16,18]. This impacts both the shower size reconstruction,
as well as the core and direction reconstruction, which in
turn impact the track used in the muon-bundle energy-loss
reconstruction. The impact of this uncertainty is evaluated
by redoing the whole analysis chain after running an air-
shower reconstruction with a different value of λ. Further-
more, a �3% uncertainty on the calibration of the VEM
charge unit for IceTop was included, based on simulations
of the calibration process with different atmospheres,
hadronic interaction models, and other systematic varia-
tions [35]. The impact of energy-bin migration on the result

FIG. 8. Ratio of the muon multiplicity (Eμ > 500 GeV) results
obtained with QGSJet-II.04 and EPOS-LHC to those obtained
with Sibyll 2.1, as shown in Fig. 7.

FIG. 9. Average number of muons with energy greater than
500 GeV in near-vertical air showers as a function of primary
cosmic-ray energy, averaged over the individual results obtained
with Sibyll 2.1, QGSJet-II.04, and EPOS-LHC. The systematic
uncertainty band includes the deviation of the individual results
from the average added in quadrature with the other systematic
uncertainties (see text for details). The corresponding simulated
muon numbers for proton and iron are shown for comparison.
These data are made available in a public data release [34].

FIG. 10. Relative size of the systematic uncertainties of the
high-energy muon multiplicity measurement. For the model-
average result of Fig. 9, all shown uncertainties are included and
added in quadrature to obtain the total systematic uncertainty. For
the individual model results shown in Fig. 7, all but the hadronic
model uncertainty (Had. mod.) are included.
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is included in the definition of the correction factors
discussed in Sec. IV B. An uncertainty of 4% is assigned
to cover any offsets that may remain after the correction
procedure. Finally, the difference between the simulated
atmosphere (Sec. III) and the actual atmosphere mea-
sured by the AIRS satellite [36], averaged over the data-
taking period, is evaluated. Using the muon-production
parametrization from Ref. [37] and the uncertainty on the
atmospheric temperature measurements, we conservatively
estimate that hNμimight deviate by up to 2.5% between the
simulated and real atmosphere. All uncertainties are added
in quadrature and shown as bands in the main results of
Fig. 7. For the model-average result shown in Fig. 9, the
maximal deviation of the individual results was included as
an additional systematic uncertainty, shown as the green
lines in Fig. 10. Note that this hadronic interaction model
uncertainty only reflects the spread between the models
included in this analysis and that other models may produce
larger differences.
Figure 11 shows the z-value representation of the results

as defined in Eq. (2), i.e., the logarithms of the measured
high-energy muon number derived using different hadronic
interaction models scaled against the expectations from
proton and iron simulations using the corresponding model.
The result based on EPOS-LHC indicates a slightly heavier
mass composition than the results based on Sibyll 2.1 and
QGSJet-II.04, which are very similar in the z values. Note
that, in this representation, the difference between the
values obtained for the various hadronic interaction models
results from the model dependence of both the determi-
nation of the hNμi results and of the predictions, which are
of similar size (see Figs. 8 and 13). The experimental
results are compared to predictions based on three compo-
sition models, commonly known as H3a [38], GST [39],
and GSF [40].5 The observed muon number and its
evolution with energy generally agrees with the expect-
ations from these models within uncertainties.6

It is of interest to compare these results to a muon
analysis performed with IceTop alone, mentioned earlier in
Sec. I, and described in detail in Ref. [14]. In that analysis,
the density of muons at the surface ρμ was determined at
lateral distances of 600 and 800 m from the shower axis.
These are mainly low-energy muons, with a threshold of
several 100 MeV, commonly referred to as GeV muons.
The GeV muon density analysis covers the primary energy
range used in the TeV muon analysis presented in this

work, and uses the same zenith range (cos θ > 0.95) and
hadronic interaction models. The results of the GeV muon
density analysis and the TeV muon multiplicity analysis are
shown together in terms of z values in Fig. 12. If the
simulations consistently describe the experimental data,
the two results should be consistent, as they are measures of
the same primary cosmic-ray flux arriving at Earth. This
is the case for the Sibyll 2.1 results, where we observe
excellent agreement over the entire energy range. The
increased production of low-energy muons in the post-LHC
models QGSJet-II.04 and EPOS-LHC results in the GeV

FIG. 11. Measured muon multiplicities of Fig. 7 scaled with
respect to the expectations from proton and iron simulations
(z values) using different hadronic interaction models, as in
Eq. (2). Systematic uncertainties are indicated by the brackets.
The dashed lines display the expected muon multiplicities
according to the cosmic-ray flux models H3a, GST, and GSF.

5The predictions are calculated as ΣifihNμii, where the sum
runs over the different mass groups i included in the model and fi
is the corresponding fraction of the total flux. The expected muon
multiplicities hNμii are the values derived from simulations for
i ¼ ðp;FeÞ, and are linearly interpolated in lnðAÞ for intermediate
mass groups.

6Note that, while H3a is independent of IceCube results, the
GST and GSF models include IceCube composition results
derived from high-energy muons in their fit.
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muon measurement being closer to expectations for lighter
primaries. The tension with the TeV muon result is
strongest for EPOS-LHC, where the z values obtained
from the GeV and TeV muon measurements are outside
each other’s uncertainty bands over nearly the entire energy
range. We note that there are also preliminary indications
for inconsistencies related to the slope of the lateral charge
distribution observed in IceTop, most prominently for
Sibyll 2.1 simulations, as reported in Ref. [41].
Several tests have been performed to ensure the robust-

ness of the TeV muon result. First, it was checked that the
nominal result is consistent with results obtained when the

energy and muon multiplicity reconstructions are per-
formed separately based on only IceTop and in-ice infor-
mation, respectively. Second, it was confirmed that a neural
network trained on simulations based on a different
hadronic model produces consistent results after deriving
and applying the correction factors. Third, the analysis was
performed replacing the neural-network estimated primary
energy by a simple energy estimate based on the shower
size S125, derived for an analysis of the energy spectrum,
reported in Ref. [18]. This relation was also used in the
GeV muon density analysis. The results obtained with this
approach are consistent with the nominal result of Fig. 7.
More details about these consistency tests are given in
Appendix B.

VI. CONCLUSION

We have presented a measurement of the average
number of muons with energies greater than 500 GeV in
near-vertical air showers observed in both IceTop and the
IceCube in-ice array for cosmic-ray energies between
2.5 and 100 PeV. The results were derived using the had-
ronic interaction models Sibyll 2.1, QGSJet-II.04, and
EPOS-LHC. They were compared with predictions from
simulations, based on the respective hadronic models, and
were found to agree within uncertainties with expectations
from realistic primary cosmic-ray flux models.
The high-energy muon measurement was in addition

compared to an earlier measurement of the density of low-
energy muons at the surface performed with IceTop alone,
by scaling both to expectations of proton and iron simu-
lations. Represented in this fashion, both results should be
in agreement and should point toward the same underlying
mass composition. This is the case for the Sibyll 2.1 results.
Interpreting the low-energy muon density data with the
post-LHC models QGSJet-II.04 and EPOS-LHC yields,
however, lighter mass compositions than the TeV muon
measurement. While both measurements are still consistent
within systematic uncertainties for QGSJet-II.04, this is not
the case for EPOS-LHC. This tension indicates that the data
are not described consistently by the simulations using this
model, and confirms again the challenges in correctly
describing the development of extensive air showers, as
discussed in Sec. I. In addition, we note that preliminary
work also indicates a possible inconsistency between the
muon measurements and the slope of the lateral charge
distribution in IceTop, in particular for Sibyll 2.1 [41].
The measurement of high-energy muons has consider-

able potential for future studies of air-shower development
and tests of hadronic interaction models, including newer
iterations of the models included in this work. The mea-
surement of the average muon multiplicity can be extended
toward higher primary energies, closing the gap to mea-
surements at ultrahigh energy observatories, and a larger
zenith range, probing different muon energies and atmos-
pheric depths. It is of interest to study the distribution of

FIG. 12. Comparison between the TeV muon data obtained in
this work (Nμ, black), and the density of GeV muons measured
with IceTop at different lateral distances (ρμ, shades of orange),
represented as z values [Eq. (2)]. See the text for details.
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high-energy muons in more detail, e.g., by considering in
addition to the average number also its fluctuations [8,42].
More precise combined measurements of the low- and
high-energy muon content of air showers will be important
toward resolving the Muon Puzzle, as they probe the muon
energy spectrum, which differs between hadronic interac-
tion models [43]. Of particular interest are measurements of
the correlation between the low- and high-energy muons on
an event-by-event basis; while this work already presented
an event-by-event reconstruction of the high-energy muon
number, a technique to get an improved low-energy muon
estimator based on separately fitting the electromagnetic
and muonic lateral distribution functions at the surface is
under development [44].
The plans for IceCube-Gen2 and its surface array will

increase the opening angle for possible coincident mea-
surements between the surface and deep detector [45]. The
planned surface radio antennas would offer sensitivity to
the depth of shower maximum Xmax in addition to the muon
measurements, enabling more stringent tests of the con-
sistency of hadronic models, an important condition for
the unambiguous interpretation of indirect cosmic-ray
measurements [11].
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APPENDIX A: MONTE CARLO PREDICTIONS
OF TEV MUON MULTIPLICITY

To obtain predictions of the number of high-energymuons
with negligible statistical uncertainty from simulations for
comparison with the final analysis results, dedicated high-
statistics CORSIKA-only simulations were produced, tracking
particles down to 500 GeV only. Figure 13 shows the
predictions for hNμi (Eμ > 500 GeV) at an observation
level of 2837 m obtained from simulations of near-vertical

FIG. 13. Average multiplicity of muons with an energy above
500 GeV in near-vertical air showers (cos θ > 0.95) as a function
of cosmic-ray energy. The lines are quadratic fits to predictions
obtained from CORSIKA simulations for proton and iron primaries
based on different hadronic interaction models.

R. ABBASI et al. PHYS. REV. D 112, 082004 (2025)

082004-14



proton and iron showers using different hadronic interaction
models. QGSJet-II.04 predicts the highest number of muons,
EPOS-LHC the lowest.
The Heitler-Matthews model of air-shower development,

combined with the superposition assumption for showers
initiated by nuclei of mass number A, predicts that the total
number of muons in the shower depends on the cosmic-ray
energy E and mass A as

NμðE; AÞ ¼ A1−β
�
E
ξ

�
β

; ðA1Þ

where β ≈ 0.9 is related to the multiplicity of the had-
ronic interactions and ξ is a constant called the critical
energy [33]. From Fig. 13, it can be seen that the high-
energy muon number has a similar dependence on energy.
Fitting the slope, the value of β is found to be about 0.82
for proton and 0.76 for iron. According to Eq. (A1), the
exponent also determines the difference between Nμ for
proton and heavier nuclei. From the difference between the
proton and iron predictions at fixed E, β is derived to be
about 0.77 at the lower primary energies increasing to about
0.82 at the higher end.7 The fact that the β values derived
from the energy dependence and the mass dependence are
numerically close implies that the superposition model also
holds well for the description of the high-energy muons. It
is interesting to note that this different behavior compared
to the total muon number makes the interpretation of a
high-energy muon measurement less sensitive to possible
offsets in the energy scale of an experiment [6]. Whereas a
10% shift in energy scale would result in a difference of
about 0.2 in z [Eq. (2)] for a surface muon measurement,

this would cause a shift of only about 0.08 in z for the high-
energy muons.
While the relation between hNμi and E is close to a

straight line on the logarithmic plot, Fig. 13, the residuals
after a linear fit show small deviations with a quadratic
behavior on the level of 2%. For the accuracy of the
calculations of, e.g., the final z values of Fig. 11, a
quadratic term was added to the fit describing hNμiðEÞ.

APPENDIX B: NEURAL NETWORK
CONSISTENCY CHECKS

In this section of the Appendix, various checks are
presented showing the robustness of the analysis.

1. Separate E and Nμ networks

The neural network model in this analysis uses three
inputs to reconstruct the primary cosmic-ray energy E and
the high-energy muon number Nμ (Eμ > 500 GeV): the
shower size S125 and zenith angle θ from IceTop, and a
vector of energy losses from the IceCube in-ice array. To
ensure that consistent results are obtained when the primary
energy and the muon number reconstructions are per-
formed completely independently, two different neural
networks were trained. One uses S125 and θ to reconstruct
E, the other uses the energy losses to reconstruct Nμ. The
reconstruction quality for these networks is shown in
Fig. 14. Compared to the performance of the combined
neural network, shown in Fig. 3, the E reconstruction has
an increased mass-dependent bias, indicating that the
combined neural network uses the composition information
present in the muon-bundle signal to improve the E
reconstruction. The Nμ neural network, which does not
use any surface information, shows, on the other hand, a
reduced mass dependence in the bias.
As before, correction factors can be determined for each

primary type by comparing the reconstructed and true
average muon number hNμi. The resulting biases are shown

FIG. 14. Bias and resolution of the energy reconstruction based only on IceTop information (left) and the TeV muon number
reconstruction based only on in-ice information (right).

7This smaller value of β compared to the ∼0.9 corresponds to
the proton-iron difference for high-energy muons being larger
than for the total number of muons at the surface. The high-
energy muons are thus more sensitive to the mass composition.
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in Fig. 15. They are found to be smaller than those in Fig. 4;
however, they do not have a monotone relation with the
mass of the primary. Therefore, an iterative correction
where one interpolates between the proton and iron
correction factors as in Sec. IV B cannot be applied; this
is the main reason for using the combined neural network in
the main body of this work. To derive results based on the
separate reconstruction, a single correction factor is derived
as the average between the proton and iron correction
factors, and the spread between the two is added as an extra
systematic uncertainty on the result obtained with this
correction factor.
The result obtained with the separate neural networks

and the average p-Fe correction factor is shown in Fig. 16
compared to the nominal result presented in Fig. 7. The two
are in agreement for the entire energy range.
We note that, while no iterative correction as presented in

Sec. IV B can be applied here, the smaller biases observed

in Fig. 15 as compared to Fig. 4 would lead to uncertainties
of a similar size on the final result.

2. Training on different hadronic models

The nominal results presented in the main body of this
paper are obtained using a neural network trained on Sibyll
2.1 after which correction factors derived from Sibyll 2.1,
QGSJet-II.04, and EPOS-LHC are applied. We show here
that the results depend only on the model that the correction
factors are derived from and are robust against changes in
the model that the neural network is trained on. To this end,
a neural network was trained on EPOS-LHC simulations. A
correction factor was then derived by applying this network
to Sibyll 2.1 simulations. The result obtained from exper-
imental data with this combination of neural network and
correction factors is shown in Fig. 17. The result is
consistent with the nominal result obtained from training
a network on Sibyll 2.1 and then deriving a correction

FIG. 15. Ratio of reconstructed and true average muon number
obtained from the reconstructions with separate neural networks
for E and Nμ. The black line defines the average of fits to proton
and iron; the shaded area shows the uncertainty assigned to cover
the unknown mass composition.

FIG. 16. Comparison between the nominal result of the analysis
and the result obtained using separate neural networks with only
IceTop input for the energy reconstruction and only IceCube
in-ice array input for the muon multiplicity reconstruction.

FIG. 17. Comparison between the nominal result of the analysis
and the result obtained using a neural network that was trained on
simulations based on EPOS-LHC. In both cases, correction
factors were derived from Sibyll 2.1 simulations.

FIG. 18. Comparison between the nominal result of the analysis
and the result obtained when the energy is reconstructed with a
simple conversion from S125 derived for the IceTop-73 energy-
spectrum analysis (see text for details).
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factor from Sibyll 2.1. Similarly, training the network on
EPOS-LHC and deriving correction factors based on
EPOS-LHC gives consistent results as using the Sibyll
2.1-trained network and the EPOS-LHC-derived correction
factors from Sec. IV.

3. Simple shower-size energy estimator

Previous IceTop analyses typically estimate the primary
cosmic-ray energy through a conversion function based on
the shower size S125 defined for a specific range of zenith
angles. The IceTop analysis of the surface muon density, of
which some results were shown in Sec. V, uses for its energy
estimate a conversion function derived for the energy-

spectrum analysis performed with IceTop-73, before the
completion of the full IceTop detector, as described in
Ref. [18]. The energy estimate in the high-energy muon
analysis of this work comes from a neural network which
also gets input from the in-ice detector. Earlier in this
Appendix it was already confirmed that obtaining an energy
estimate from a separate neural network based only on S125
and θ from IceTop does not produce a significantly different
result. Here, we test the effect of using the simple S125
conversion function used in the GeV muon density analysis,
while leaving theNμ reconstruction unchanged. In Fig. 18, it
is observed that the resulting muon measurement is again
consistent with the nominal result.
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