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Abstract: We consider type IIB string theory on AdS5 × S5/ZL orbifold spaces with
generic L. Recent localisation results in the dual 4d N = 2 circular quiver gauge theories
provide us with strong coupling expansions of certain correlators involving twisted half-
BPS operators. To leading order, these results have been matched to an effective theory
for massless twisted string states, which can be constructed by resolving the orbifold sin-
gularity and considering localised supergravity modes on the resolution cycles. Applying
this reasoning to subleading order in strong coupling, we observe that for L ̸= 2, 3, 4, 6,
a naive reduction of the 10d (α′)3-correction does not result in the correct coefficients to
match the localisation result. We explain this mismatch by the appearance of twisted sector
resonances in string amplitudes involving external twisted sector states. We perform the
low-energy expansion of a “twisted” Virasoro-Shapiro amplitude and recover the expected
coefficients, suggesting that the orbifold resolution and the low-energy expansion can not
be interchanged directly. Finally, we comment on the long-quiver limit, L → ∞, in the
context of the low-energy effective action.
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1 Introduction

In its canonical incarnation, the AdS/CFT duality [1, 2] relates type IIB string theory on
AdS5 × S5 background to 4d N = 4 Super-Yang-Mills (SYM) theory with gauge group
SU(N). Recently, N = 2 orbifolds of these models have received much attention [3–15]
as they provide simple testing grounds for the AdS/CFT duality that retain much of the
structure of the N = 4 parent theory (e.g. integrability) but are less constrained by
supersymmetry. A salient feature of such theories is that observables which are protected
in the N = 4 SYM theory (e.g. the three-point functions of certain half-BPS operators)
may now pick up a non-trivial dependence on the ’t Hooft coupling, λ := g2YMN , already in
the planar limit. In many cases, the remaining amount of supersymmetry still allows for an
explicit computation of these quantities, thus probing non-trivial aspects of the AdS/CFT
duality and providing us with valuable insights into the behaviour of type IIB string theory
on orbifold backgrounds. In this regard, N = 2 orbifolds sit in the sweet spot between
calculational control and physical interest.

On the field theory side, the ZL orbifold projection can be applied to 4d N = 4 SYM
with gauge group SU(LN), resulting in an N = 2 superconformal quiver gauge theory
with gauge group SU(N)L, whose matter content is conveniently described by the quiver
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diagram in Figure 1. The coupling constants gi of the various gauge nodes are taken to be
equal gYM,i = gYM [16–22].1

1

2

3

L

Figure 1: Diagrammatic representation of the circular quiver theory. Each node represents
an N = 2 vector multiplet in the adjoint representation of SU(N). Each line connecting
adjacent nodes gives rise to an N = 2 hypermultiplet in the bifundamental representation
of SU(Ni)⊗ SU(Ni+1). In the case of L = 2, an additional SU(2) symmetry arises among
the two hypermultiplets connecting the only two gauge nodes.

On the string theory side, the dual orbifold backgrounds are constructed by identifying
points on the S5 subspace under the ZL action

ΓL : (X,Y, Z) → (e
2πi
L X, e−

2πi
L Y, Z) , (1.1)

presented in terms of the flat embedding space C3 ⊃ S5. The set of fixed points under this
ZL action is the six-dimensional submanifold AdS5 × S1, and the local geometry around it
takes the form AdS5 ×S1 ×C2/ZL. One may think of the full AdS5 ×S5/ZL geometry as
the near-horizon limit of a stack of D3 branes located at the singularity of the locally flat
orbifold space R1,5 × C2/ZL. The spectrum of string theory on such orbifold backgrounds
(which we review in Appendix A) comprises an untwisted sector of states, which consists
of ΓL-invariant states of the parent theory, and (L−1) twisted sectors generated by strings
which close only up to an action of Γn

L, where n ∈ {1, . . . , L − 1}. While the dynamics
of untwisted states are inherited from the parent theory, the twisted states may behave
rather differently. An immediate consequence of their construction is that they can only
freely propagate within the fixed AdS5×S1 subspace. The effective theory that governs the
massless twisted sector states at low energies is thus necessarily a six-dimensional theory, in
stark contrast to the untwisted sector. This local EFT on the singularity of R1,5 × C2/ZL

was identified in [30] as an N = (2, 0) supergravity theory, to which the untwisted sector
contributes a supergravity and two tensor multiplets and each twisted sector contributes

1From a gauge theory point of view, this is only a one-dimensional subspace of the L-dimensional
conformal manifold available to these quiver gauge theories. The study of marginal deformations of orbifold
theories has been a fruitful tangent [23–29] which goes beyond the scope of this paper.
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another tensor for a total of (L+ 1) tensor multiplets. In full AdS5 × S5/ZL background,
we expect corrections to this theory.

A geometric interpretation of the massless twisted spectrum of string theory on R1,5 ×
C2/ZL is attainable via resolving of the orbifold singularity, i.e. by glueing in a geometry
that approaches C2/ZL at large distances from the origin but is completely smooth in the
interior. Such resolutions are known as gravitational multi-instanton or Gibbons-Hawking
(GHL) backgrounds [31]. These backgrounds feature non-trivial two-cycles. It turns out
that wrapping 10d supergravity fields on these cycles and collecting the moduli of the
resolution itself, one can precisely match the massless twisted spectrum of string theory
[30]. Collapsing the resolution while keeping these fields present provides a rationale for
the presence of localised degrees of freedom which can only propagate in six dimensions.
This interpretation suggests that the diagram in Figure 2 commutes. We will review and
elaborate on this supergravity construction in Section 2.

Type IIB string theory
on resolution R1,5 × GHL

Type IIB string theory
on orbifold R1,5 × C2/ZL

6d N = (2, 0) SUGRA
EFT for light modes

Type IIB SUGRA
on resolution R1,5 × GHL

a→ 0

α′ → 0

a→ 0

α′ → 0

Figure 2: The resolution of the orbifold singularity provides an interpretation for the
massless twisted states. We denote the characteristic scale of the resolution by a and
sending it to 0 we recover the orbifold theory. Similarly, α′ controls the mass of excited
string states, which become infinitely heavy at α′ → 0, allowing us to integrate them out
of the low-energy effective supergravity theory.

A similar resolution approach was used in [20] to investigate the effective theory of
twisted modes in AdS5 × S5/ZL, by treating the twisted sector fields as specific modes of
10d supergravity on the resolved background which couple to background fields such as F5,
as dictated by the 10d supergravity action. Upon dimensional reduction to 6d, one then
ends up with appropriate corrections to flat N = (2, 0) supergravity which capture the
non-trivial background geometry. Holographic checks against gauge theory data seem to
support this construction [8, 12, 20].

In [12], it was then investigated whether α′-corrections to the supergravity theory
could be explained via a similar 10d construction and subsequent dimensional reduction to
6d. The α′-expansion of the string theoretic Virasoro-Shapiro amplitude generates higher-
derivative corrections to 10d supergravity at order (α′)3, which feature at least eight deriva-
tives and four fields. The primary example of such a correction is derived by considering a
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four-graviton amplitude and isolating an effective contribution to the action [32]

SSUGRA + α′3ζ(3)

∫
d10x

√
−g

(
R4 + . . .

)
. (1.2)

This term has to be completed to a supersymmetric invariant. We take particular note of
the factor ζ(3), which arises in the low-energy expansion of the Virasoro-Shapiro amplitude
and is therefore universal to corrections at this order. Inspired by the previous line of
reasoning, one may now be tempted to evaluate these corrections for the localised modes
of the resolved orbifold background to generate appropriate (α′)3-corrections to the 6d
supergravity theory for the twisted sector.

In the simplest case of AdS5×S5/Z2, some suggestive localisation results seem to point
towards this possibility. Take for example the (un)twisted half-BPS operators

Uk(y) =
1√
2k

(
2

N

) k
2 (

trϕk0 + trϕk1

)
, Tk(y) =

1√
2k

(
2

N

) k
2 (

trϕk0 − trϕk1

)
, (1.3)

built out of adjoint scalars ϕ0,1 from the two vector multiplets in the dual theory. As their
conformal dimension ∆ = k is protected, the corresponding 2-point correlators are

⟨Uk(y1)Ūk(y2)⟩ =
Gk(λ,N)

|y1 − y2|2k
, ⟨Tk(y1)T̄k(y2)⟩ =

Rk(λ,N)

|y1 − y2|2k
. (1.4)

At leading order in large N , one finds Gk(λ,N) = 1, which is expected since the untwisted
operator descends from N = 4 SYM and is canonically normalised. For the twisted sector,
on the other hand, Rk turns out to be a non-trivial function of λ and a strong-coupling
expansion yields (see [3–6] and [8–11])

Rk(λ) =
4π2

λ
k(k − 1)

(
λ′

λ

)k−1 [
1 +

(2k − 1)(2k − 2)(2k − 3)

2(λ′)3/2
ζ(3) +O

(
1/(λ′)5/2

)]
,

(1.5)

where one defines a renormalised coupling
√
λ′ ≡

√
λ− 4 log 2 [9, 11]. Of course, one could

absorb Rk in the normalisation of the twisted sector states, but similar localisation results
for three-point functions are governed by normalisation-independent structure functions,
which also depend on λ in a similar fashion. In [6, 8], the leading strong coupling behaviour
was matched to the predictions from the low-energy effective action [20] for the twisted
sector. The subleading correction term scales as ζ(3)

(λ′)3/2
∼ ζ(3)(α′)3, and should thus be

matched to higher-derivative corrections such as (1.2). This was investigated in [12].
In this paper, we want to extend the discussion of the Z2 orbifold theory analysed

in [12] to the generic ZL orbifold case. The resolution procedure outlined above may be
applied to generate an effective action for the massless twisted states in R1,5 × C2/ZL. An
embedding into AdS5×S5/ZL is technically challenging, but can be approximated close to
the orbifold singularity. We elaborate on these constructions in Section 2. Turning towards
α′-corrections, we could again employ a reduction of the 10d (α′)3-terms to 6d. Intriguingly,
localisation results for ZL orbifolds suggest that this is not the correct way of constructing
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α′-corrections to the twisted sector EFT. The twisted two-point function (1.4) now depends
on the twist n of the sector in question. At leading order in large N , the normalisation
constant takes the form

Rn,k(λ) =
4π2

λ

k(k − 1)

sin2
(
πn
L

) (λ′
λ

)k−1

×
[
1− (2k − 1)(2k − 2)(2k − 3)

48(λ′)3/2

[
4ζ(3) + ψ(2)

(n
L

)
+ ψ(2)

(
1− n

L

)]
+O

(
1/(λ′)5/2

)]
,

(1.6)

where the renormalised coupling λ′ is now defined as
√
λ′ ≡

√
λ+ 2γ + ψ

(n
L

)
+ ψ

(
1− n

L

)
, (1.7)

which is also twist dependent. In the above, the polygamma function ψ(m)(x) denotes the
mth derivative of the Γ-function ψ(x) ≡ d

da log Γ(x), and γ denotes the Euler-Mascheroni
constant. Crucially, (1.6) is not displaying the universal ζ(3) factor of the 10d (α′)3-term
(1.2). Only for the special values of L = 2, 3, 4, 6, the digamma functions may be expressed
in terms of ζ(3), but this is a numerological artifact and not representative of the generic
case.

This departure from the ζ(3)-scaling suggests that it is too naive to rely on the flat space
Virasoro-Shapiro amplitude to generate the α′-corrections. In fact, the appropriate string
amplitudes generating corrections for twisted sector fields should themselves involve twisted
sector vertex operators on the worldsheet. It is furthermore very plausible that a string
amplitude involving twisted sector external states would similarly receive contributions
from twisted sector states running in the virtual channels. Since the spectrum of twisted
sectors has fractional mass-levels (see Appendix A for details), the pole structure of such a
twisted amplitude differs significantly from that of the usual Virasoro-Shapiro amplitude.
In Section 3, we explicitly construct a sample NS-sector four-point amplitude involving two
twisted and two untwisted massless states and evaluate its low-energy expansion. While
the leading term gives the expected supergravity contribution, the first correction at order
(α′)3 indeed features the polygamma factors observed in (1.6), demonstrating an impressive
matching between localisation and string theory.

In Section 4, we thus draw the conclusion that despite its success at the supergravity
level, the resolution procedure outlined above is not immediately applicable at the level
of higher-derivative corrections, where it neglects contributions from virtual twisted sector
modes. This was not observed in the Z2 case [12], due to the fact that ψ(2)(12) = −14ζ(3)

and the lack of knowledge about the explicit form of the supersymmetric completion of the
R4-term (1.2) . We thus require a more complete survey of twisted string amplitudes and
the resulting α′-corrections to the 6d supergravity theory for a detailed comparison to the
strong-coupling expansion of twisted observables in gauge theory. We plan to return to this
challenge in future work.

Finally, we would like to comment on an interesting limit of the ZL orbifold theories
discussed in this paper, which is the limit of L→ ∞, where the opening angle of the orbifold
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singularity shrinks to 0 while the number of twisted sectors grows infinitely, resulting in an
infinitely “long” quiver. This limit has recently been considered in the localisation literature
[13], and we would like to comment to what level our understanding of ZL orbifold theories
survives there. These comments are the subject of Appendix B.

2 The 6d effective action from geometry

We first review the resolution procedure, which provides a geometric interpretation of the
massless twisted sector fields expected from the string theory spectrum (see Appendix
A). Identifying the twisted sector as localised modes of 10d supergravity, allows us to
dimensionally reduce the 10d supergravity action to an effective 6d theory for the local
degrees of freedom. One simply has to integrate the respective mode profile across the
resolution space. This may be done at an abstract level in algebraic geometry language,
where C2/ZL is known as an AL−1 singularity, and where the resolution cycle overlaps are
encoded by the elements of the Cartan matrix of the associated Lie algebra in the ADE
classification [33]. We will review this logic in a more pedestrian differential geometric
language to build intuition for the resolutions at hand.

2.1 Review of the Gibbons-Hawking background

We begin by reviewing some properties concerning the resolutions of C2/ZL orbifolds. Res-
olution geometries for this class of singularities are given by the Gibbons-Hawking multi-
centered metrics [31], which take the form

ds2GHL
= U−1(x)

(
dτ + wi(x)dx

i
)2

+ U(x)dxidx
i , U(x) =

L∑
i=1

1

|x− x⃗i|
. (2.1)

The scalar potential U(x) satisfies the 3d Poisson equation with point charges at x⃗i and
the vector potential wi(x) is related to U(x) via

∇iU(x) = ±εjki ∇jwk(x) . (2.2)

These metrics are self-dual solutions to the vacuum Einstein equations, and may be de-
scribed as a non-trivial U(1) fibration over an R3 base, where the fiber size is controlled
by U(x)−1 and degenerates at the positions x⃗i of the centers (referred to sometimes as
gravitational instantons). The vector potential wi(x) defines a U(1) connection on R3 and
has Dirac string-like singularities along lines coming out of each center, which may be re-
moved by appropriate patching around x⃗i if the fiber coordinate τ is taken to have global
periodicity 4π [31].

Let us first consider a configuration of coincident instantons at x⃗i = 0. Transforming
to spherical coordinates, (2.1) becomes 2

ds2 =
L

r
dr2 + 4Lr (σ2x + σ2y + σ2z) , (2.3)

2We have re-scaled the fiber coordinate such that ψ = τ
L
∈ [0, 4π

L
) to factor out an overall L.
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where we have identified the SU(2) left-invariant Cartan one-forms

σx =
1

2

(
sinψ dθ−sin θ cosψ dϕ

)
, σy = −1

2

(
cosψ dθ+sin θ sinψ dϕ

)
, σz =

1

2

(
dψ+cos θ dϕ

)
.

(2.4)
These involve two additional angular coordinates,3 and allow us to express the three-sphere
metric as a Hopf fibration over S2. After a coordinate transformation ρ2 = 4Lr, we can
recast the above metric in the locally flat form

ds2 = dρ2 + ρ2(σ2x + σ2y + σ2z) . (2.5)

The case of L = 1 corresponds to a globally flat metric on C2 in spherical coordinates, while
for L > 1 the metric is globally C2/ZL (it is asymptotically locally Euclidean or ALE) .
This is due to the (reduced) periodicity 4π

L of ψ, resulting in an orbifold singularity at ρ = 0.
In the limit of coincident gravitational instantons, we thus make contact with the orbifold
background.

The orbifold singularity is resolved when the gravitational instantons become spatially
separated (x⃗i ̸= x⃗j if i ̸= j), allowing for the construction of a smooth atlas. The relative
positions of the L centers on the base then generate 3(L−1) genuine moduli of the resolution
space. Because the fiber shrinks to a point at the positions of the instantons, one expects
finite-sized two-cycles {Σn} arising as S1 fibrations over line segments connecting any two
centers. One may convince oneself that the number of linearly independent two-cycles is
(L− 1). This configuration is depicted in Figure 3.

x⃗i−1 x⃗i x⃗i+1

R3

· · · · · ·

Σi−1 Σi

Figure 3: Depiction of the resolution space (2.1) as an S1 fibration over R3 for a generic
configuration of instantons at x⃗i, x⃗i±1 ∈ R3. The two-cycle Σi is spanned by the fiber and
a curve connecting x⃗i, x⃗i+1.

When studying supergravity on such resolved backgrounds, we may thus consider form-
fields wrapping these two-cycles. In particular, there exists a set of (L − 1) anti-self-dual,
closed, normalisable two-forms {ωn} which are representatives of the non-trivial cohomology
classes of H2(GHL,Z). We choose to normalise them as∮

Σn

ωm = δnm . (2.6)

3These are θ ∈ [0, π], ϕ ∈ [0, 2π). The Cartan one-forms satisfy the useful identity dσi = ϵijkσj ∧ σk.
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The normalisability property of the two-forms ωn implies that their overlap over the resolu-
tion space is finite. A direct calculation of the overlap integral (carried out in the following
section (2.2)) reveals that the overlap integral is given by∫

GHL

ωn ∧ ⋆ωm = −(C−1)nm , (2.7)

where (C−1)nm denote the elements of the inverse Cartan matrix of the AL−1 algebra.
Poincaré duality then relates (2.7) to the intersection matrix of a set of two-cycles {Σn},
which form a basis of representatives of the non-trivial homology classes in the Poincaré
dual H2(GHL,Z), as Σn ∩ Σm = −(C−1)nm.4 The basis of two-forms defined by (2.6) and
(2.7) was the one used in [8, 22] to construct an effective action for twisted scalar modes
on AdS5 × S1, which was then used to match localisation results of the dual quiver gauge
theory. We will henceforth adopt this basis.

2.2 Effective action for wrapped two-form fields

With Figure 2 in mind, let us now consider type IIB supergravity on the resolved geometry.
The ten-dimensional supergravity fields wrapping the two-cycles, in combination with the
resolution moduli, generate the expected (L− 1) tensor multiplets of 6d N = (2, 0) super-
gravity. The bosonic field content can be understood as follows: the wrapped RR four-form
C4 becomes a self-dual two-form in the 6d effective theory, while the wrapped NSNS and
RR two-forms B2 and C2 become 6d scalars bn(y) and cn(y) via the decomposition 5

B2 =

L−1∑
n=1

bn(y)ωn(x) , C2 =

L−1∑
n=1

cn(y)ωn(x) . (2.8)

Each resolution cycle further contributes three geometric moduli, completing the tally of
bosonic modes in a tensor multiplet of 6d N = (2, 0) supergravity. Focusing on the wrapped
B2-field, which, for L = 2, corresponds to operators Tk(y) in (1.3), the idea is to obtain
explicit field configurations and formulate their low-energy effective action.

We begin by arguing that the effective action for wrapped B2-field is insensitive to the
configuration of instantons on the base. To see this, we assume an arbitrary configuration of
non-coincident instantons on R3. Two-cycles can be created by lifting curves γ : [0, 1] → R3

with endpoints γ(0) = x⃗i and γ(1) = x⃗j to the total space (including the fiber coordinate).
If the endpoints coincide (x⃗i = x⃗j), then γ(t) is a closed curve on R3 and can be contracted
to a point. In this case, the two-cycle is homologically trivial and can be regarded as the
boundary of a surface in R3. To construct H2(GHL,Z), we must identify non-trivial two-
cycles up to such boundary cycles. This means that all curves γ(t) with equal endpoints
are homologically equivalent. Using this equivalence relation, we conclude that any set of
linear-independent non-trivial elements ofH2(GHL,Z) forms a maximal tree of (L−1) edges

4The canonical intersection matrix of the two-cycles on the GHL resolution is, however, given by −Cnm

[33]. The two-forms {ω̃n} which are Poincaré dual to the set of canonically-intersecting two-cycles are
related to the two-forms in (2.6) via the change of basis ω̃n = −Cmn ωm.

5Unless otherwise specified, we will collectively denote by y the coordinates of the ‘external’ factor of
the target space (here R1,5), and by x the coordinates of the ‘internal’ factor (here C2/ZL).
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connecting the different centers x⃗i. Different maximal trees thus correspond to equivalent
bases of representatives (up to an isomorphism) of the non-trivial homology classes of
H2(GHL,Z).

B2 is defined up to gauge transformations B2 → B2 + dχ1, with χ1 a globally well-
defined one-form. This gauge freedom allows us to set B2 = 0 on trivial cycles. However,
B2 may still have (non-exact) components in H2(GHL,Z), from which it follows that its
periods bn =

∮
Σn
B2, must be gauge invariant.6 Furthermore, any deformation of the

cycle Σn can be written as the addition of an exact two-cycle to Σn, on which B2 can be
gauged away. The B2-field wrapping these cycles is therefore not sensitive to the actual
embeddings, only to the topology of the maximal tree, thus generating the expected (L−1)

twisted scalars bn in the resolved geometry. We adopt a naming convention for the wrapped
B2-field components where we choose an ordering of instantons such that the periods bn
are given by the component of the total B2-field wrapping the two-cycle with endpoints at
x⃗n and x⃗n+1.

Upon integrating the 10d supergravity action on such wrapped cycles, we end up with
overlap integrals of the form (2.7), which are topological invariants. When considering
bn(x) and cn(x) as in (2.8), we may therefore distribute the instanton centers x⃗i in whatever
configuration we like without changing the outcome.7 For concreteness, we will therefore
choose to work with a configuration of non-coincident, equally-spaced instantons along the
z-axis in cylindrical coordinates (r, φ, z) on the base. In these coordinates, the relevant
quantities of the metric (2.1) are

U(r, z) =
L∑
i=1

1√
r2 + (z − zi)2

, wi(r, z)dx
i =

L∑
i=1

(z − zi)√
r2 + (z − zi)2

dφ . (2.9)

A basis of non-trivial 2-cycles Σn is spanned by the fiber τ and the line segments z ∈ [zi, zi+1]

at r = 0.
We now present the explicit B2-field configuration wrapping these resolution cycles Σn.

The appropriate closed, anti-self-dual two-forms may be expressed as 8

ωn(r, z) = An(r, z)(e
1 ∧ e2 − e3 ∧ e4) + Bn(r, z)(e

2 ∧ e3 − e1 ∧ e4) , (2.10)

where the functions An(r, z) and Bn(r, z) are given by

An(r, z) =
W 2

n − U2

16π

[
zWn

U
+

1

2

(
1 +

W 2
n

U2

)]
, (2.11)

Bn(r, z) =
W 2

n − U2

16π

2rWn

U
. (2.12)

6This can be seen explicitly by combining a gauge transformation with Stoke’s theorem so that bn →
bn +

∮
Σn

dχ1 = bn +
∮
∂Σn

χ1 = bn.
7This may also be checked explicitly, e.g. by varying the position of an instanton and confirming

invariance of the effective action.
8In cylindrical coordinates, we take the orthonormal frame of the metric (2.1) to be e1 =

√
Udr , e2 =

r
√
Udφ , e3 =

√
Udz , e4 = 1√

U
(dτ + wφdφ), with orientation ε1234 = +1.

– 9 –



In the above, we have introduced the “auxiliary” scalar potential

Wn(r, z) =
L∑
i=1

ci,n√
r2 + (z − zi)2

, ci,n =

{
−1, i ≤ n

1, i > n
, (2.13)

which is an ordered sum with coefficients ±1. Since ωn is closed, it is locally exact. Away
from r = 0, it may therefore be expressed through the one-form potential

χn(r, z) =
1

8π

[
1

r

Wn(r, z)√
U(r, z)

e2 − Wn(r, z)√
U(r, z)

e4

]
, Wn(r, z) =

L∑
i=1

ci,n
(z − zi)

Ri
, (2.14)

such that ωn = dχn. Here, we defined the “auxiliary” connection Wn(r, z), which obeys the
relation (2.2) with the auxiliary scalar potential (2.13).

We now need to determine various integrals of the constructed two-forms ωn. First,
the period integral for any component ωn wrapping the ith two-cycle Σi is given by∮

Σi

ωn =
ci+1,n − ci,n

2
= δi,n , (2.15)

obeying precisely the required normalisation (2.6). One may then check explicitly that the
overlap integrals ∫

GHL

ωn ∧ ⋆ωm = −(C−1)mn =
mn

L
−min{m,n} , (2.16)

are satisfied, as expected from algebraic geometry (cf. (2.7)).
We are now in a position to derive the effective 6d dynamics of the type IIB twisted

scalars bn(y), corresponding to the wrapped components of ωn on the resolution cycles of
R1,5 × C2/ZL. The relevant part of the ten-dimensional type IIB supergravity action is

S10 ⊃ − 1

2κ210

∫
d10x

√
g10

(
1

2 · 3!
|H3|2

)
, H3 = dB2 , (2.17)

where 2κ210 = (2π)7g2s(α
′)4 is the ten-dimensional gravitational constant. The integration

over GHL boils down to (2.16), but we will restore appropriate length units and decompose
the total B2 field as B2(y, x) = (4π2α′)

∑
n bn(y)ωn(x), where x now collectively denotes

the coordinates of GHL. Performing the integral, we obtain the following effective six-
dimensional action for the twisted scalars bn(y)

Seff ⊃ 1

2κ26

∫
R1,5

d6y
√
−g6

1

2

L−1∑
n,m=1

(C−1)nm∇bn(y) · ∇bm(y) ,

1

2κ26
=

(4π2α′)2

2κ210
=

1

(2π)3g2s(α
′)2

,

(2.18)

where the mixing between different scalar modes is a consequence of the non-trivial overlaps
(2.16). The same effective action would also arise for the twisted scalars cn(y), descending
from the RR two-form C2.
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2.3 Towards embedding in AdS5 × S5

So far, we have considered supergravity on the Ricci-flat resolution space R1,5 ×GHL and
constructed a 6d effective theory for the twisted sector fields propagating in R1,5. In the
context of holography, one would instead like to study the resolution of AdS5 × S5/ZL,
which is supported by F5-flux.

In [20], an approximation close to the orbifold singularity was considered, in which
the space-time approaches AdS5 × S1 × C2/ZL. The argument was simply to consider the
10d supergravity action in the background AdS5 × S1 × GHL and analyse what kind of
coupling to the background could arise for the wrapped supergravity modes which constitute
the twisted sector. For the wrapped B2 and C2 fields discussed above, a coupling to the
background F5-flux is mediated by the Chern-Simons term in the 10d action

S10 ⊃ − 1

4κ210

∫
B2 ∧ F3 ∧ F5 , F3 = dC2 , (2.19)

which, evaluated on the approximate geometry and after collapsing the resolution, yields a
contribution

Seff ⊃ 1

2κ26

∫
AdS5×S1

d6y
√
−g6

−4
L−1∑

n,m=1

(C−1)nmbn(y) · ∂χcm(y)

 . (2.20)

Here, ∂χ is the derivative in the S1-direction. This contribution should be added to the
quadratic action (2.18) (and the equivalent one for cn(y)), which, in turn, should be evalu-
ated on AdS5×S1. The bn(y) and cn(y) fields can be further decomposed into Fourier modes
on S1, labelled by integers k. Finally, diagonalisation of the kinetic term by introducing
a±n = cn ± ibn [8, 12, 20] results in the AdS5 spectrum

m2
± = k(k ± 4) , (2.21)

which matches the spectrum observed in the dual gauge theory. This justifies using 10d
supergravity in the approximate AdS5 × S1 ×GHL background to generate a 6d (5d after
KK-reduction on S1) effective theory at least at two-derivative level.

In order to compare to more refined quantities such as correlators like (1.4), which
localisation can compute in principle to any order in large λ, one would need to extend
the analysis beyond supergravity to string theory corrections. In 10d, these take the form
of higher-derivative corrections starting at order (α′)3 (cf.(1.2)). Similar corrections are
expected in lower dimensions. Indeed, in the strong coupling expansion in (1.6), the first
correction term (after renormalisation of λ, which was discussed in [9]) appears at order
(λ′)−

3
2 ∼ (α′)3. This is in contrast to the unorbifolded AdS5 × S5 background, where such

corrections are generically absent, matching a direct evaluation of the R4-term (1.2) which
vanishes as well. Thus, the orbifold singularity itself seems to cause (α′)3-corrections to
appear.

In an ideal world, one would like to perform a string theory calculation on the AdS5 ×
S5/ZL background to directly match the (α′)3-corrections predicted by localisation. Quan-
tisation of string theory on RR-backgrounds such as AdS5 × S5 has not been successfully
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implemented yet, so a quantisation of string theory in the orbifold background is clearly
beyond reach. We can, however, quantise string theory in the flat background R1,5×C2/ZL

and try to at least attain some structural matching. This will be the approach presented
in Section 3.

An alternative approach would be to rely on the reasoning in Figure 2, also for AdS5×
S5/ZL. This would entail finding a smooth string background AdS5 × M5

L that resolves
the orbifold singularity and allows us to study 10d supergravity and its α′-corrections,
in particular for twisted sector fields wrapping (or parameterising) the resolution cycles.
This would be a direct refinement of the approximation in [20], which only considers the
local AdS5 × S1 × GHL geometry. For Z2 orbifolds, such a resolution was constructed in
[12], albeit featuring some irregular monodromies. This could be achieved since GH2 is
equivalent [34] to the Eguchi-Hanson space [35, 36], which allows for a simple introduction
of background curvature. For L ̸= 2, no such coordinate system is available and resolutions
M5

L are unknown.
As a first step towards constructing these resolutions, one can instead consider the limit

k → ∞ with fixed ν ≡ k√
λ
, in which the strings under consideration move with large angular

momentum on the S1 subspace of the orbifold fixed locus. In the moving frame of such
strings, the ambient AdS5×S5/ZL approaches a pp-wave background [37–43] described by
the metric

ds210 =− 4dy+dy− − µ2
(
y2 + ρ2

)
(dy+)2 + dyidyi + dρ2 + ρ2

(
σ2x + σ2y + σ2z

)
, (2.22)

where y± are light-cone coordinates built from AdS-time and the S1-angle χ. The coor-
dinates yi (i = 1, 2, 3, 4) originate from the remaining AdS5 dimensions and we used the
parameterisation of (2.5) to parameterise C2/ZL. This background is a pp-wave with the
transverse geometry R4 × C2/ZL. The supporting 5-form flux becomes

F5 = 4µ dy+ ∧
(
dy1 ∧ dy2 ∧ dy3 ∧ dy4 − ρ3dρ ∧ σx ∧ σy ∧ σz

)
. (2.23)

This geometry can be explicitly resolved by glueing in a Gibbons-Hawking geometry (2.1)

ds210 =− 4dy+dy− − µ2
(
y2 + h(x, τ)

)
(dy+)2 + dyidyi + ds2GHL

, (2.24)

where h(x, τ) is a solution of the Poisson equation

∇2
GHL

h(x, τ) = 8 . (2.25)

The simplest particular solution is given by

h(x, τ) = 4

L∑
n=1

|x− x⃗i| . (2.26)

We could add harmonic pieces h0(x, τ) satisfying ∇2
GHL

h0 = 0 to this solution, but will
refrain for the time being.9 For any such choice, the resolved pp-wave background (2.24)

9The appropriate choice of harmonic piece would presumably be fixed by taking the Penrose limit of the
full resolution AdS5 ×M5

L.
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constitutes a solution of the supergravity equations of motion once the flux is updated to

F5 = 4µdy+ ∧
(
dy1 ∧ dy2 ∧ dy3 ∧ dy4 − volGHL

) . (2.27)

We would now like to investigate the wrapped B2 and C2 modes with large angular mo-
mentum k along the S1 subspace. The naive Ansatz (2.8) has to be modified to

B2(y
±, y, r, z) = e2iνy

−
L−1∑
n=1

bn(y)(ωn + µ∆ωn,ν) , (2.28)

in order to solve the equations of motion. The correction term ∆ωn,ν features mixed terms
of the form dy+ ∧ ei but does not functionally depend on the flat coordinates (y+, yi).
The fields bn(y) and cn(y) again mix due to the interaction term (2.20). After combining
a±n = cn ± ibn as before, we find the scalar equation of motion[

2iν∂+ + ∂i∂
i + 2iν∂+ − µ2ν2|y|2 ∓ 4µν

]
a±n (y) = 0 , (2.29)

appropriate for a pp-wave background with an interaction term (2.20). The main technical
challenge is the explicit construction of ∆ωn,ν , which has been successful in the Z2 case (see
[12]) but involves the solution of intricate systems of partial differential equations, going
beyond the scope of this paper.

With this setup in place, one may now consider (α′)3-corrections to the 10d supergravity
action. The complete supersymmetric completion of the R4 term (1.2) is not known at this
time (see [32, 44–50] for partial results). Instead, [12] considered general covariant eight-
derivative terms involving four-fields, two of which being G3 = F3 + iH3 and the other two
being non-vanishing background fields on (2.24). Focusing on the terms with the highest
number of derivatives acting on G3, the following index structure may appear in the 10d
Lagrangian 10

L ⊃ (α′)3ζ(3)FµνστρCτρ αβ
(
i∇µḠνσ

γ∇2Gαβγ + . . .
)
. (2.30)

Here, C denotes the Weyl tensor built from derivatives of the metric. Inserting the wrapped
fields as in (2.28) and integrating this term over the resolution space GHL, one ends up
with a quite complicated correction to the 6d effective theory on (y±, yi)-space. In the
limit where the resolution shrinks to a point |x⃗i| ∼ a → 0, the Weyl tensor has divergent
components, which can be cancelled by suitable linear combinations with subleading terms
in (2.30) [12]. The resulting finite part then contributes

∆S6 ∼ ζ(3)

∫
dy+dy−d4y

√
−g6

L−1∑
n,m=1

(C−1)nm

(
i∇µān∇3

−∇µam + 4ān∇4
−am + c.c.

)
.

(2.31)
This term results in a correction of the two-point function of the twisted fields without
changing the conformal dimension 11

Rn,k ∼ 1 + ζ(3)ν3c , (2.32)
10We denote ten-dimensional indices by greek letters, e.g. µ ∈ {0, 1, 2, ..., 9}.
11The argument in [12] leading to this result did not rely on the precise form of ∆ωn,k.
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where a numerical constant c was left undetermined.
In order to compare this correction to that predicted by the localisation result (1.6),

we take a BMN-type limit of (1.6) where k → ∞ with fixed ν ≡ k√
λ

at strong coupling.
The precise form of the correction as predicted by localisation is then

Rn,k(λ) →
4π2ν2

sin2
(
nπ
L

)e2ν(√λ′−
√
λ)

[
1− ν3

6

[
4ζ(3) + ψ(2)

(n
L

)
+ ψ(2)

(
1− n

L

)]
+O

(
ν5
)]
.

(2.33)

Comparing these expressions we can indeed confirm that the kinematic factor ν3 is
reproduced. However, we observe a disparity in the transcendental factor. The localisation
result features polygamma terms that are not present in the naive dimensional reduction
of the 10d (α′)3 term, which has a universal scaling of ζ(3). The polygammas may be
expressed in terms of ζ(3) for L = 2, 3, 4, 6, but in the generic case no such simplification
exists, resulting in a concrete mismatch.

This calls into question whether the 10d reasoning presented in Figure 2 applies at the
level of (α′)3-corrections. Our approach so far was to expand around α′ → 0 and then take
the resolution size a to 0, but one may doubt whether this is the correct order to consider.

3 The twisted Virasoro-Shapiro amplitude

We now consider the opposite order of limits in Figure 2, where we first collapse the resolu-
tion to the honest orbifold background R1,5×C2/ZL and then study type IIB theory in this
background. The first step is a computation of the spectrum, which we review in Appendix
A. We then want to compute string amplitudes, but in order to account for untwisted and
twisted external states, we need to modify the vertex operators at play. In particular, the
twisted sector vertex operators cannot feature macroscopic momentum in the C2/ZL plane,
and are therefore localised to the orbifold singularity.

Once the string amplitudes have been calculated, one may perform an expansion in
small α′ and consider the effective theory governing the massless spectrum of the super-
string. In regular type IIB theory, the large amount of supersymmetry constrains this
effective field theory severely, leading to 10d type IIB supergravity. This supergravity the-
ory captures exactly the tree-level two- and three-point correlators of string theory with
massless external particles. However, already at the level of four-point functions, additional
(α′)3-corrections emerge, which result in eight-derivative correction terms such as (1.2) to
this supergravity theory [32]. In the case of the orbifold theory, only half-maximal super-
symmetry is preserved. Moreover, since the twisted sector is localised on a 6d submanifold
of the target space, the natural language is that of 6d N = (2, 0) supergravity with one
supergravity and (L+1) tensor multiplets. This theory will also receive α′-corrections from
four-point string amplitudes.

In order to determine the appropriate α′-corrections from string theory, we have a
plethora of twisted correlators to compute, additional to the untwisted ones we can bor-
row from the regular type IIB theory. Twisted correlators have been discussed in [51, 52].
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Here, we will present an example of such a calculation and show that the structure of
(α′)3-corrections in orbifold theories differs from the conventional type IIB expectations.
In particular, we observe a departure from the universal ζ(3) prefactor in type IIB theory
towards a combination of polygamma values. This matches the observation made in the lo-
calisation literature (cf. (1.6)), demonstrating impressive consistency across the holographic
duality.

3.1 Construction of a sample amplitude

In order to compute the necessary string amplitude, we choose to work in the RNS formal-
ism. In flat space, the worldsheet theory is governed by the action

SRNS = − 1

2π

∫
dzdz̄

(
2

α′∂X
µ∂̄Xµ + iψµ∂̄ψµ + iψ̃µ∂ψ̃µ

)
, (3.1)

where we chose super-conformal gauge. The relevant OPEs are

∂Xµ(z1)∂X
ν(z2) ∼ −α

′

2

ηµν

(z1 − z2)2
, ψ(z1)

µψ(z2)
ν ∼ ηµν

z1 − z2
, (3.2)

and similarly for the anti-holomorphic fields. The bosons can be coherently superimposed
to form vertex operators with OPE

: eik
µ
1Xµ(z1,z̄1) :: eik

µ
2Xµ(z2,z̄2) :∼ |z1 − z2|α

′k1·k2 : ei(k
µ
1+kµ2 )Xµ(z2,z̄2) : . (3.3)

We will also choose to bosonise the fermions, such that they can be represented in
terms of five complex scalar fields Hi(z) (i ∈ {1, 2, 3, 4, 5}) as

1√
2
(ψ2i−1(z)± iψ2i(z)) ∼ : e±iHi(z) : . (3.4)

To ensure consistent OPEs, we normalise Hi such that

∂Hi(z1)∂Hj(z2) ∼ − δij
(z1 − z2)2

, : eiHi(z1) :: e−iHi(z2) :∼ 1

z1 − z2
. (3.5)

Analogously, the anti-holomorphic fermions are bosonised to yield the anti-holomorphic
part of Hi.12

In order to perform the orbifolding procedure, we need to identify the appropriate ZL

action on the worldsheet fields. To that end, it is useful to define the complex combinations

Z4 = X6 + iX7 , Z5 = X8 + iX9 , (3.6)

which parameterise two orthogonal (internal) C planes. The orbifold action we want to
quotient by takes the form

ΓL : Z4 → e
2πi
L Z4 , Z5 → e−

2πi
L Z5 , H4 → H4 +

2π

L
, H5 → H5 −

2π

L
. (3.7)

12We neglect subtleties about bosonic zero-modes and will, in the following, often drop the worldsheet-
coordinate dependence for brevity.
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Untwisted vertex operators are generated by acting with the projector

P =
1

L

L−1∑
n=0

Γn
L , (3.8)

on regular type IIB vertex operators, for example,

: eik6X
6
: → 1

L

L−1∑
n=0

: eik6 cos(
2πn
L )X6

:: e−ik6 sin( 2πn
L )X7

: , (3.9)

implying that momentum vectors ν⃗ = (k6, k7, k8, k9)T are identified under actions of ΓL.
We will henceforth split the bosonic momentum vectors into the “internal part” ν⃗ and the
“external part” k⃗ = (k0, k1, k2, k3, k4, k5)T and omit the vector arrows.

To this set of untwisted vertex operators we have to add the twisted sector, generated
by twist operators Σn which generate the appropriate monodromy

ϕ(z + ϵe2πi)Σn(z) = Γn
L (ϕ(z + ϵ)) Σn(z) , (3.10)

for an arbitrary field ϕ. For the fermionic fields, this monodromy can be created by a vertex
operator but for the bosonic fields the twist operator σn may only be defined implicitly by

Σn(z) =: ei
n
L
H4(z)+iL−n

L
H5(z) : σn(z) . (3.11)

A completion by anti-holomorphic parts is implied. The conformal weight of σn is known to
be h(σn) = h̄(σn) =

n(L−n)
L2 [52], which, together with the fermionic vertex operator results

in a total twist operator contribution of h(Σn) = h̄(Σn) = 1
2 . This is precisely enough

to raise the twisted sector vacuum to the massless level, once ghosts and superghosts are
accounted for. Note, however, that we cannot combine σn with an internal momentum
operator : eiν·X :.13 This confirms our expectation that twisted sector states are localised
on the 6d fixed subspace of the orbifold action, in which it may move with momentum k.

The appearance of the bosonic twist operators σn makes explicit calculations slightly
more cumbersome. A standard prescription to deal with such operators is the introduction
of a covering map z(t) [51, 52], which locally around the twist operators behaves as z(t) ∼ tL.
This allows us to patch together the bosonic monodromy to make the bosons periodic in
t. In this covering space, one then performs ordinary free boson calculations without any
twist operator insertions and pulls back the result at the very end. For our purposes it will
be enough to restrict our attention to the simplest twisted amplitude available, involving
only two twisted vertex operators. We use conformal symmetry to move them to 0 and z∞,
respectively, which results in the simple covering map

z(t) =
tLz∞
tL + z∞

−→
z∞→∞

z(t) = tL . (3.12)

One can easily check that an expansion around t = 0 and t = ∞ yields the appropriate
monodromies.

13Performing the OPE of these operators returns the twist operator σn and possible fractional modes
excited on top, but crucially, the vertex operator is annihilated in the process.
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We have now set up most of the theory, aside from a proper discussion of ghost-,
superghost- and BRST-properties. As this discussion is parallel to the case of usual type
IIB strings on flat space, we refer to the textbooks, e.g. [53]. We now want to compute a
simple tree-level four-point amplitude involving two twisted and two untwisted states and
analyse how it differs from the Virasoro-Shapiro amplitude we know from type IIB string
theory on flat space [32]. Since we are mostly interested in the overall coefficient, we will
not work out the full tensor structure of twisted amplitudes, but keep a full analysis of the
precise kinematics as an interesting challenge for future research. Without further ado, let
us consider the following NS-NS sector vertex operators

V0(z0, z̄0) = : c(z0)c̃(z̄0)e
−ϕ(z0)e−ϕ̃(z̄0)Σne

ik0·X(z0,z̄0) : , (3.13)

V∞(z∞, z̄∞) = : c(z∞)c̃(z̄∞)e−ϕ(z∞)e−ϕ̃(z̄∞)ΣL−ne
ik∞·X(z∞,z̄∞) : , (3.14)

V1(z1, z̄1) = : c(z1)c̃(z̄1)e
−ϕ(z1)e−ϕ̃(z̄1)eiH3(z1,z̄1)eik1·X(z1,z̄1)Peiν·X(z1,z̄1) : , (3.15)

Vz(z, z̄) = : e−ϕ(z)e−ϕ̃(z̄)eiH3(z,z̄)eikz ·X(z,z̄)Pe−iν·X(z,z̄) : . (3.16)

Here, c, c̄ are bc-ghost insertions in anticipation of fixing z0 → 0, z∞ → ∞ and z1 → 1 by
way of PSL(2,C) transformations on the Riemann sphere. The final integration is only over
the position of Vz(z, z̄). The fields ϕ, ϕ̄ denote the bosonisation of the βγ-superghosts. They
signal that all these operators are in the (−1,−1)-picture. This is actually a problem since
the overall picture number on the sphere should be (−2,−2). To alleviate the mismatch,
we have to raise the picture of two of the vertex operators by acting with the picture raising
operator (PRO)

PRO ∼ 2eϕTF + . . . , TF ∼ i

2
ψµ∂X

µ + . . . . (3.17)

Although this procedure would be difficult to perform in general, we note that the polarisa-
tions of the operators in (3.15) and (3.16) have been chosen such that the contraction of the
H3 vertex operators vanishes unless picture raising generates precisely the necessary opera-
tors to balance out the H3-charge. We can therefore remain ignorant of the full expressions
and simply extract the required terms

[PRO ,V0(z0, z̄0)] ⊃ : c(z0)c̃(z̄0)e
−iH3(z0,z̄0)Σne

ik0·X(z0,z̄0) : , (3.18)

[PRO ,V∞(z∞, z̄∞)] ⊃ : c(z∞)c̃(z̄∞)e−iH3(z∞,z̄∞)ΣL−ne
ik∞·X(z∞,z̄∞) : , (3.19)

where we dropped a kinematic prefactor and assumed that there is some generic momentum
in the (4, 5)-plane for both vertex operators. We may equally consider any other orientation
of the untwisted operators, so this assumption is merely a kinematic one and not important
to our argument.

We can now get to work on computing the four-point function∫
C
dzdz̄ ⟨V∞(z∞, z̄∞)Vz(z, z̄)V1(z1, z̄1)V0(z0, z̄0)⟩ . (3.20)

Up to inconsequential numerical factors, most contributions can be computed directly. We
split the bosonic and fermionic CFTs into “external” and “internal” parts probing R1,5 and
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C2/ZL, respectively. Sending z0 → 0 and z1 → 1, but keeping z∞ finite for now, we end up
with the contributions

CB
ext ∼ |z∞ − z|α

′k∞·kz |z∞ − 1|α
′k∞·k1 |z∞|α

′k∞·k0 |z|α
′kz ·k0 |z − 1|α

′kz ·k1 ,

CF
ext ∼ |z∞ − z|−2|z∞ − 1|−2|z∞|2|z|−2|z − 1|2 ,

CF
int ∼ |z∞|−2+

4n(L−n)

L2 ,

Cbc ∼ |z∞|2|z∞ − 1|2 ,
Cβγ ∼ |z − 1|−2 .

(3.21)

The only remaining contribution from internal bosons and twist operators

CB
int(z, z̄) = ⟨σL−n(z∞, z̄∞)Pe−iν·X(z,z̄)Peiν·X(1,1)σn(z0, z̄0)⟩ , (3.22)

requires a treatment with covering space methods. Note first that overall momentum con-
servation restricts the momenta ν and −ν to sum to 0. The two projection operators P
therefore cannot generate non-vanishing cross-terms and their only contributions are simul-
taneous rotations of both ν and −ν by an action of Γn

L, which we shall denote by νn and
−νn. The correlator for each of these rotations is identical so we may drop the projection
operators completely in favour of a single factor L−1. When employing the covering map
(3.12), the primary operators involved have to be transformed according to

O(z, z̄) =
∣∣z′(t)∣∣−∆O(t, t̄) . (3.23)

We will expand this prefactor in large z∞. Furthermore, the untwisted operators inserted
at 1 and z have multiple pre-images in covering space, so they decompose into L mirror
operators at locations ξmL and k

√
zξmL , where ξL = e

2πi
L denotes the Lth root of unity and

m ∈ {0, 1, ...L− 1}. We thus end up with a covering map expression of the form

CB
int = L−1−α′ν2−4

n(L−n)

L2 |t|−
(L−1)

2
α′ν2 |z∞|−4

n(L−n)

L2 |ϵ|4
n(L−n)

L ×

⟨
L−1∏
m=0

: eiνnm·X(ξmL ,ξ−m
L ) :

L−1∏
l=0

: eiνnl·X(tξlL,t̄ξ
−l
L ) :⟩

1
L .

(3.24)

We used a cut-off ϵ around the twist-operator insertions at t = 0 and t = ∞. For a precise
treatment of the twist operator regularisation see a parallel discussion in [54]. Essentially,
these factors may be absorbed in the normalisation of the twist-operators.

The various mirror images of the individual vertex operators may contract either among
themselves, resulting in the expressions (n ̸= 0)

∏
l<m

|ξlL − ξmL |α′ν2 cos( 2πn
L

(l−m)) =

L−1∏
m=1

|1− ξmL |
L
2
α′ν2 cos( 2πn

L
m) , (3.25)

∏
l<m

|t(ξlL − ξmL )|α′ν2 cos( 2πn
L

(l−m)) = |t|−
L
2
α′ν2

L−1∏
m=1

|1− ξmL |
L
2
α′ν2 cos( 2πn

L
m) , (3.26)
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or with mirrors of the other respective vertex operator, resulting in the contribution

L−1∏
l,m=0

∣∣∣ξlL − tξmL

∣∣∣α′ν2 cos( 2πn
L

(l−m))
=

L−1∏
m=0

|1− tξmL |−Lα′ν2 cos( 2πn
L

m) . (3.27)

Combining the various contributions and returning to the original worldsheet coordinates,
we end up with

CB
int =

C

L
|z|−

α′ν2
2 |z∞|−4

n(L−n)

L2

L−1∑
l=0

L−1∏
m=0

∣∣∣1− L
√
zξ

(m+l)
L

∣∣∣−α′ν2 cos( 2πn
L

m)
, (3.28)

where we abbreviated a constant factor

C = L−1−α′ν2
L−1∏
m=1

|1− ξmL |α
′ν2 cos( 2πn

L
m) . (3.29)

Note that we restricted ourselves to the principal branch of L
√
z and accounted for this

choice by averaging over all preimages.
We may now collect the factors (3.21) and (3.28) and observe in particular that all

terms involving z∞ nicely cancel in the z∞ → ∞ limit, once the kinematic conditions
k0+k1+k∞+kz = 0 and k2

∞ = 0 are enforced. To make contact with the usual notation,
we define six-dimensional Mandelstam variables

s = −(k0 + k1)
2 , t = −(k0 + k∞)2 , u = −(k0 + kz)

2 . (3.30)

Since we consider massless external states, the 6d momenta satisfy

k2
0 = k2

∞ = 0 , k2
1 = k2

z = −ν2 ⇒ s+ t+ u = 2ν2 . (3.31)

The final integral expression now takes the form∫
C
dzdz̄ |z|−

α′u
2

−2|1− z|−
α′
2
(t−2ν2) 1

L

L−1∑
l=0

L−1∏
m=0

∣∣∣1− L
√
zξ

(m+l)
L

∣∣∣−α′ν2 cos( 2πn
L

m)
, (3.32)

which is generally hard to evaluate.

3.2 Low-energy expansion of the integral

Since we do not expect closed-form expressions for the integral (3.32), obtaining its low-
energy expansion requires analysing its pole structure directly at the level of the integrand.
We first study the poles in the u-channel, in which virtual twisted states are exchanged.
These poles are associated to a potential |z| → 0 divergence of (3.32), where the vertex
operator inserted at z approaches the one inserted at 0.

The main divergent term in this limit is |z|−
α′u
2

−2, while the other terms remain finite.
We may therefore consider a small-α′ expansion of these additional terms. For the |1 − z|

– 19 –



factor in (3.32), we expand as

|1− z|−
α′(t−2ν2)

2 =1 +
α′(t− 2ν2)

4

∞∑
r=1

zr + z̄r

r

+
α′2(t− 2ν2)2

32

∑
r,s≥1

(zrz̄s + zsz̄r) + (zr+s + z̄r+s)

rs
+O

(
α′3) . (3.33)

To deal with the product factor, we use the fact that for |z| < 1

log
∣∣∣1− L

√
zξ

(m+l)
L

∣∣∣ = Re
[
log

(
1− L

√
zξ

(m+l)
L

)]
= −1

2

∞∑
k=1

z
k
L ξ

(m+l)k
L + z

k
L ξ

−(m+l)k
L

k
.

(3.34)
The logarithm of the product factor in (3.32) may then be written as 14

log

[
L−1∏
m=0

|1− L
√
zξ

(m+l)
L |−α′ν2 cos

(
2πn
L m

)]
=
α′ν2

2

∞∑
p=0

Re

[
ξnlL z

p+
n
L

p+ n
L

+
ξ−nl
L z(p+1)−n

L

(p+ 1)− n
L

]

=
α′ν2

2
Re

[
ξlnL z

n
LΦ

(
z, 1,

n

L

)
+ ξ−nl

L z1−
n
LΦ

(
z, 1, 1− n

L

)]
,

(3.35)

making manifest its representation in terms of the Lerch transcendent Φ(z, s, α). Exponen-
tiating the above and performing a small α′ expansion yields

1

L

L−1∑
l=0

L−1∏
m=0

∣∣∣1− L
√
zξm+l

L

∣∣∣−α′ν2 cos
(
2πn
L m

)
=

1

L

L−1∑
l=0

[
1 +

α′ν2

4

∑
q∈Q

ξσnlL zq + ξ−σnl
L z̄q

q
+

α′2ν4

32

∑
q,q′∈Q

(ξσnlL zq + ξ−σnl
L z̄q)(ξσ

′nl
L zq

′
+ ξ−σ′nl

L z̄q
′
)

qq′
+O

(
α′3)] ,

(3.36)

where we have introduced the indices q, q′ ∈ Q := {p + n
L , p + 1 − n

L : p ∈ Z≥0} and
abbreviated the sign factors

σ = σ(q) =

{
+1 , if q = p+ n

L

−1 , if q = p+ 1− n
L ,

σ′ = σ(q′) . (3.37)

Exchanging the order of summation to first perform the sum over l, the linear term in (3.36)
vanishes automatically since

∑L−1
l=0 ξ

±nl
L = 0 for n ̸= 0. The additional phases l arising from

14To do so, we note that only terms with k = ±nmodL are present in the final sum. This is a consequence
of evaluating sums of the form

L−1∑
m=0

cos

(
2πn

L
m

)
ξ
(m+l)k
L =

LξlkL
2

(δk,nmodL + δk,−nmodL) .

We may thus parametrise the surviving terms as k = pL+ n and k = (p+ 1)L− n where p ∈ Z≥0.
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the averaging over the different covering maps (cf. (3.28)) enforce a set of selection rules
on the quadratic term due to the fact that

L−1∑
l=0

ξ
ln(σ±σ′)
L = Lδσ,∓σ′ . (3.38)

The above condition, in turn, implies that the only surviving terms must be of one of
two forms: either zq z̄q′ terms with σ = σ′ or (anti)holomorphic terms zq+q′ (z̄q+q′) with
σ = −σ′, from which we can deduce that q + q′ ∈ Z≥1. One finds that (3.36) reduces to

1 +
α′2ν4

32

∑
q,q′∈Q

(zq z̄q
′
+ zq

′
z̄q)δσ,σ′ + (zq+q′ + z̄q+q′)δσ,−σ′

qq′
+O

(
α′3) . (3.39)

Collecting these expansions, the integrand of (3.32) may be written as

|z|−2−α′u
2

[
1 +

α′(t− 2ν2)

4

∞∑
r=1

zr + z̄r

r

+
α′2(t− 2ν2)2

32

∑
r,s≥1

(zrz̄s + zsz̄r) + (zr+s + z̄r+s)

rs

+
α′2ν4

32

∑
q,q′∈Q

(zq z̄q
′
+ zq

′
z̄q)δσ,σ′ + (zq+q′ + z̄q+q′)δσ,−σ′

qq′
+O

(
α′3)] ,

(3.40)

in a small α′ expansion. We now transform to polar coordinates on C defined by ρ ∈ [0, ρ0]

and θ ∈ [0, 2π), where ρ0 is an arbitrary cut-off scale that we can set to 1. Upon performing
the angular integral, both the linear term and the (anti-)holomorphic quadratic term coming
from (3.33) vanish. The same is true for the (anti-)holomorphic terms from (3.36) since the
selection δσ,−σ′ rule ensures that q + q′ ∈ Z≥1. The angular integral further projects the
mixed terms of the form zrz̄s down to the diagonal part r = s of the sum. The selection
rule δσ,σ′ ensures that q − q′ ∈ Z, which allows us to use the same argument for the mixed
terms zq z̄q′ . Performing the radial integral on the surviving terms yields 15

2π

−α′u
2

+
πα′2(t− 2ν2)2

8

∑
r≥1

1

r2(2r − α′u
2 )

+
πα′2ν4

8

∑
q∈Q

1

q2(2q − α′u
2 )

+O
(
α′3) . (3.41)

From the above expression, we obtain poles in the u-channel whenever

u =
4

α′ r , u =
4

α′

(
p+

n

L

)
, u =

4

α′

(
p+ 1− n

L

)
, (3.42)

where r, p ∈ Z≥0. This is in agreement with the masses of excitations found in Appendix
A. In particular, for L = 1, we reproduce exactly the poles of the usual Virasoro-Shapiro
amplitude at u = 4

α′ r for integer r.

15We are regularising the integral by shifting u into the convergent region. The divergence of the integral
then generates poles in u.
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For small α′, the leading pole at u = 0 dominates (3.41) and we may therefore expand
(3.41) in α′ to find

− 4π

α′u
+
πα′2(t− 2ν2)2

16

∑
r≥1

1

r3
+
πα′2ν4

16

∑
q∈Q

1

q3
+O

(
α′3) . (3.43)

We now turn our attention to the s-channel divergences of (3.32), corresponding to
the limit where the vertex operators inserted at 0 and 1 approach each other. These
divergences become manifest in the regime where |z| → ∞. It is therefore convenient to
transform z → 1

w , such that the divergent limit is |w| → 0. The integral (3.32) becomes∫
dwdw̄ |w|−

α′s
2 −2|1− w|−

α′(t−2ν2)
2

1

L

L−1∑
l=0

L−1∏
m=0

∣∣∣1− L
√
wξ

(m+l)
L

∣∣∣−α′ν2 cos
(
2πn
L m

)
, (3.44)

which has the same form as (3.32) with u↔ s exchanged. The s-channel poles thus appear
at the same locations (3.42) as in the u-channel and the α′-expansion singles out the leading
pole at s = 0, resulting in the expression

− 4π

α′s
+
πα′2(t− 2ν2)2

16

∑
r≥1

1

r3
+
πα′2ν4

16

∑
q∈Q

1

q3
+O

(
α′3) , (3.45)

in complete analogy with the u-channel.
We finally observe that there is no t-channel divergence at small α′, since the pole

at t = 2ν2 is absent. This is due to the polarisations chosen in (3.15) and (3.16), which
generate a kinematic prefactor to the amplitude that scales as (t − 2ν2)2, suppressing the
pole at t = 2ν2. The Taylor expansions around z = 0 and w = 0 may be trusted all the
way to |z| = |w| = 1− ϵ. Since the integral is bounded on the annulus |z| ∈ (1− ε, 1 + ε),
the contribution from this region may be dropped in the limit ε→ 0. We may thus simply
add (3.43) and (3.45) together to obtain the final expression for the small α′ expansion of
(3.32), which reads

4π

α′
(t− 2ν2)

su
+
πα′2

16

[
2(t− 2ν2)2ζ(3)− ν4

[
ψ(2)

(n
L

)
+ ψ(2)

(
1− n

L

)]]
+O

(
α′3) . (3.46)

The above shows the presence of a correction term originating from twisted virtual par-
ticles that generates precisely the combination of polygamma functions observed in (1.6).
We note that its kinetic factor does not include a dependence on the 6d Mandelstams
(s, t, u), since it is generated purely by internal modes. Untwisted operators of the form
(3.15) without internal momentum (ν = 0) would not generate polygamma terms in the
amplitude. This can also be seen directly from the integral form (3.32), which reduces to
the conventional Virasoro-Shapiro amplitude (restricted to 6d) when ν = 0. Of course one
could also consider operators with excitations in the internal dimensions. We expect that
they result in similar polygamma terms with more involved kinetic factors. We would like
to explore further twisted correlators in the future, but take the current calculation as a suc-
cessful proof of concept suggesting that the polygamma factors in (1.6) should be matched
to (α′)3-corrections that arise from the low-energy expansion of twisted Virasoro-Shapiro
amplitudes.
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4 Conclusion

In this paper, we investigated type IIB string theory on AdS5×S5/ZL orbifold backgrounds.
In particular, we have studied to what extent the subleading terms in the strong-coupling
expansion of twisted correlators (1.6) can be matched to α′-corrections of the effective 6d
supergravity theory for twisted string modes. We presented two possible approaches to this
question.

The first approach, outlined in Section 2, was motivated by the resolution procedure
R1,5×C2/ZL → R1,5×GHL, from which one may deduce an effective 6d supergravity action
for the twisted sector fields. Although this approach can in principle be applied to curved
backgrounds such as AdS5 × S5/ZL [20], a full solution of the equation of motion that
resolves the orbifold singularity is quite difficult to construct. Even in the simplest case of
L = 2, only an irregular geometry is known [12]. However, at least in the pp-wave limit,
such geometries can be constructed and an effective 6d theory may be deduced.

We then attempted to apply this logic at the level of (α′)3-corrections. The full ex-
pression for the (α′)3-term in 10d is so far unknown, so we can only argue for the presence
of certain appropriate covariant tensor structures, which we can tune precisely in order
to match the kinetic factors in (1.6). However, any such corrections necessarily feature a
factor ζ(3), which is universal to the 10d (α′)3-correction term. This is in conflict with the
localisation result (1.6).

Motivated by this observation, we turned to the second approach in Section 3, where
we considered the (α′)3-terms in the low-energy expansion of a sample string amplitude
involving twisted sector states. In contrast to the usual Virasoro-Shapiro amplitude, we now
have to insert twisted vertex operators for these twisted external states. As a consequence,
twisted states also appear as resonances, changing the pole structure of the amplitude. We
showed that this results in the appearance of twist-dependent polygamma factors alongside
the usual ζ(3), in agreement with the localisation result (1.6).

This result should be taken as a proof of concept that the polygamma factors are a
consequence of the exchange of virtual twisted states. A more thorough analysis of string
amplitudes in the various sectors and polarisations would be an interesting challenge for
future research. This would give us direct access to the effective (α′)3-corrections and their
tensor structure in 6d. However, these string amplitudes can only be constructed in the
locally flat R1,5 × C2/ZL space, and not in AdS5 × S5/ZL, since quantisation of the string
on RR-backgrounds is beyond reach. One may try to circumvent this issue by applying the
AdS Virasoro-Shapiro Ansatz introduced in [55]. Aside from the pole structure and residues
of the flat space orbifold amplitude, this would require working out the specific details of
the (super)conformal block expansion in the dual quiver gauge theory and perhaps some
input from integrability. We would like to investigate this direction in the near future.

Aside from the special cases of L = 2, 3, 4, 6, where the polygammas can be expressed
in terms of ζ(3), our results seem to imply that the resolution procedure investigated in
Section 2 is incomplete and does not capture string amplitudes with twisted sector external
and intermediate states. This statement is puzzling given that string theory on a completely
smooth resolution space AdS5 × M5

L should have a sensible low-energy expansion, which
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is expected to take the form of the string effective action (supergravity plus additional
α′-correction terms) evaluated on AdS5 × M5

L background. This reasoning could break
down at several stages. The most disappointing scenario would be the inexistence of a
globally well-defined resolution AdS5 ×M5

L. It would then be interesting to clearly isolate
the obstruction, given that approximate arguments seem successful at supergravity level. A
more likely scenario is that the approximations we relied on, especially when approximating
field configurations close to the singularity were too naive. There is also a good chance that
taking the resolution size to 0 we should have employed a more subtle renormalisation
procedure. Still, it seems rather challenging to explain the appearance of polygamma
functions instead of the generic ζ(3) with purely geometric arguments.

To settle these questions satisfactorily, one may require a complete study of string
theory on the resolution space AdS5 × M5

L, which is far outside our current technical
capabilities. In fact, the historical motivation for studying orbifolds [56, 57] was to probe
the smooth but complicated geometry of the K3-manifold by going to a more tractable
orbifold limit. The resolution procedure goes against this logic, resulting in an arguably
more complicated background from a string-theoretic point of view. Trying to argue for
α′-corrections at the level of the resolution is thus discouraged by our results. It seems at
this stage more feasible to study string amplitudes directly on the locally flat orbifold space
and then perhaps evaluate the resulting effective 6d theory on AdS5 × S1 background. We
presented the first promising steps in this direction.
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A Spectrum of type IIB string theory on R1,5 × C2/ZL

In this appendix we review the construction of the orbifold spectrum from basic mode
expansions. We will show that the twisted sectors generate intermediate mass levels in
between the massless and the first excited level (m2 = 4

α′ ) of the unorbifolded type IIB
string. In the limit L → ∞, this mass gap is densely filled by a continuum of massive
twisted states, which we comment on in Appendix B.

We choose to work in light-cone gauge for simplicity. In the RNS formalism, the
appropriate supersymmetric worldsheet action

SRNS, LC = − 1

2π

∫
dzdz̄

(
2

α′∂X
µ∂̄Xµ + iψµ∂̄ψµ + iψ̃µ∂ψ̃µ

)
, (A.1)

features eight bosons Xµ(z, z̄) and eight fermions ψµ(z), ψ̃µ(z̄) of either chirality. The
mode expansions of the left-moving fields are 16

Xµ(z) = xµ − i

√
α′

2
αµ
0 ln z + i

√
α′

2

∑
m∈Z\{0}

αµ
m

m
z−m , (A.2)

ψµ(z) =
∑
rNS/R

ψµ
r z

−r−1
2 , rNS ∈ Z + 1

2 , rR ∈ Z , (A.3)

and similarly for the right-movers X̃µ(z) , ψ̃µ(z). Here, we distinguished between Neveu-
Schwarz (NS) and Ramond (R) boundary conditions for the fermionic fields. Quantisation
promotes the coefficients of the mode expansions to raising and lowering operators, depend-
ing on the sign of their mode index. String states are then generated by acting with raising
operators on a vacuum. To ensure modular invariance, a GSO projection is required,
combining sectors of appropriate boundary conditions. Before orbifolding, the massless
spectrum is generated by th first excited NS state ψµ

−1/2 |0; k⟩NS, in the 8v of SO(8), and by

one of the massless R-sector ground-states |R⟩α or |R⟩α̇, in the 8s or 8c representations of
SO(8). Each left/right NS/R sector has 8 physical degrees of freedom. Taking the appro-
priate tensor products therefore results in the familiar 256 massless states furnishing the
supergravity multiplet of 10d type II supergravity.

Upon orbifolding, the untwisted sector is generated by projecting the above 256 states
to invariant states under the action (1.1) of ΓL. It is convenient to encode the ΓL phase of
the left-moving fields by an integer charge q ∈ {−1, 0, 1} and to define complex combinations

Z4 =
1√
2
(X6 + iX7) , Z5 =

1√
2
(X8 + iX9) , Ψ4 =

1√
2
(ψ6 + iψ7) , Ψ5 =

1√
2
(ψ8 + iψ9) .

(A.4)
These have the following charges under (1.1)

q(Z4) = q(Z̄5) = q(Ψ4) = q(Ψ̄5) = 1 ,

q(Z5) = q(Z̄4) = q(Ψ5) = q(Ψ̄4) = −1 .
(A.5)

16Here, the index µ ∈ {2, 3, ..., 9} denotes the physical directions in light-cone gauge. We will often split
µ = (a, i), where a = {2, 3, 4, 5} refer to the physical directions in the external R1,5 space and i = {6, 7, 8, 9}
correspond to the physical degrees of freedom on the internal C2/ZL factor of the background.
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In addition, we may decompose the R-vacuum into four uncharged vacua and two vacua of
charge ±1, respectively. Introducing a similar charge, q̃, for the right-moving fields we may
impose ZL-invariance as

q + q̃ ≡ 0 mod L . (A.6)

For the massless spectrum we have |q| ≤ 1, and if L > 2 this means that q = −q̃. Thus
the only tensor products q ⊗ q̃ that survive the orbifold projection combine ZL charges
as (+1) ⊗ (−1), 0 ⊗ 0 or (−1) ⊗ (+1), resulting in a total of 96 states in the untwisted
sector of the theory.17 Out of these, 80 organise into the gravity and two tensor multiplets
of 6d N = (2, 0) supergravity. The remaining 16 states should be absent from the local
spectrum near the orbifold singularity, but form ZL-invariant non-singlet representations
of the broken SU(2)L group. According to [30], these are non-normalisable, untwisted bulk
modes on the resolution space which furnish an extra tensor multiplet of 6d N = (2, 0)

supergravity.
The (L−1) twisted sectors are generated by imposing the twisted boundary conditions18

Z4(e
2πiz) = ei

2πn
L Z4(z) , Z5(e

2πiz) = e−i
2πn
L Z5(z) , (A.7)

and similarly for (Ψ4,Ψ5) and right-moving fields. Here n ∈ {1, . . . , L− 1} labels the indi-
vidual twist sectors. These twisted boundary conditions result in fractional mode numbers
at the level of the mode expansions (A.2)

Z4(z) = i

√
α′

2

∑
m∈Z

α
(4)

m−n
L

m− n
L

z−(m−n
L) , Z5(z) = i

√
α′

2

∑
m∈Z

α
(5)

m+
n
L

m+ n
L

z−(m+
n
L) , (A.8)

with a similar modification for the fermionic mode expansions. Note the absence of zero-
modes along the internal directions, implying that twisted modes are localised to the orb-
ifold fixed point. We summarise the moding and minimal contribution to L0 (i.e. the
corresponding mass gap) of the different oscillators in Table 1.

The fractional modes shift the zero-point energy of the (left-moving) NS vacuum in the
nth twisted sector by

δhNS

(n
L

)
=ζH

(
−1,

n

L

)
+ ζH

(
−1, 1− n

L

)
− 2ζ(−1)

+ 2ζH

(
−1,

1

2

)
− ζH(−1, α+)− ζH(−1, α−)

=min
(n
L
, 1− n

L

)
,

(A.9)

where ζH is the Hurwitz ζ-function and we have used α+ = n
L + 1

2 , α− = 1
2 − n

L for n
L ≤ 1

2

and α+ = n
L − 1

2 , α− = 3
2 − n

L for n
L > 1

2 , in line with Table 1.

17For L = 2, the allowed additional tensor products (+1)⊗(+1) and (−1)⊗(−1), bring the total massless
states up to 128, matching the expectation in [30]. The 32 ‘extra’ states here combine with the 16 non-local
states to form three additional tensor multiplets in the 3 of the broken SU(2)L ⊂ SO(4).

18Alternatively, they may be seen as generated by the twist vertex operators (3.11), which implement the
appropriate monodromies.
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NSL/R RL/R

oscillator moding min∆L0 moding min∆L0

Za Z 1 Z 1

(Z4, Z̄5) Z + n
L 1− n

L Z + n
L 1− n

L

(Z5, Z̄4) Z − n
L

n
L Z − n

L
n
L

ψa Z + 1
2

1
2 Z 1

(Ψ4, Ψ̄5) Z + 1
2 + n

L
1
2 − n

L Z + n
L 1− n

L

(Ψ5, Ψ̄4) Z + 1
2 − n

L
1
2 + n

L Z − n
L

n
L

Table 1: Modings and mass gap for the different types of excitation modes. This table
applies for n

L ≤ 1
2 . For n

L > 1
2 , the fermionic modes with mode number −(−1

2 +
n
L) become

new lowest-level creation modes and similarly, −(12 − n
L) becomes an annihilator, turning

the −(32 − n
L) mode into the lowest-level creation mode.

The standard type IIB GSO projection condition keeps NS states with odd number
of worldsheet fermions ensuring that the twisted NS vacuum |0; k⟩(n)NS is projected out. To
generate the first states that survive GSO, one thus needs to act with the lowest fermionic
oscillators on the twisted vacuum |0; k⟩(n)NS . We end up with two massless states in the
left-moving NS sector

(Ψ4)−
(
1
2−

n
L

) |0; k⟩(n)NS , (Ψ̄5)−
(
1
2−

n
L

) |0; k⟩(n)NS , (A.10)

for n
L ≤ 1

2 and analogous expressions involving {Ψ5, Ψ̄4} for n
L > 1

2 .
In the R sector, the shift of the zero-point energy due to the fractional modes ensures

that the twisted R vacuum is exactly massless in every twisted sector. However, only two
fermionic zero modes arise, resulting in four possible ground state polarisations. The GSO
projection imposes a chirality condition, reducing the spinor degeneracy to two states in
the left-moving R sector.

At this stage, one therefore has two massless states in each NS/R sector. Accounting
for all the twisted sectors and the appropriate tensor products to form closed string states,
we find a total of 16(L− 1) ZL-invariant massless states, which organise into (L− 1) tensor
multiplets of 6d N = (2, 0) supergravity.

Having outlined the massless spectrum, we could now generate infinite towers of massive
states by acting with the different oscillators on the R/NS ground states. As presented in
Table 1, the various towers of excited states start at masses

m2 =
4

α′ min∆L0 ≥
4

α′min
(n
L
, 1− n

L

)
, (A.11)

and result in a plethora of energy levels with generic level separation ∆m2 = 4
α′L . We note,

in particular, that the energy spectrum becomes continuous in the limit L→ ∞ with fixed
α′, which will be the topic of Appendix B.

The spectrum of excited states is most conveniently summarised by the torus partition
function

ZH(τ, τ̄) = TrH

(
qL0−1q̄L̄0−1

)
, (A.12)
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where q = eiπτ depends on the torus modulus τ and H denotes the Hilbert space of physical
states. As discussed above, string theory on a ZL orbifold background can be constructed by
taking the flat space theory and projecting to ZL-invariant states, resulting in the untwisted
sector. This is captured by inserting the projection operator (3.8) into the partition function
(A.12), and is nothing else than imposing Γn

L-twisted boundary conditions on the timelike
circle and summing over all choices of n. In order to guarantee modular invariance, we then
similarly have to add (L − 1) twisted sectors, where we impose closure up to Γm

L on the
spacelike circle.

For convenience, we may define Zm
L
, n
L

as the partition function (A.12) imposing Γm
L -

and Γn
L-twisted boundary conditions on the timelike and spacelike circles, respectively. The

ZL orbifold partition function then takes the form [56, 57]

Zorb =
1

L

L−1∑
m,n=0

Zm
L
, n
L
. (A.13)

On can directly generalise the construction of the type IIB partition function Z0,0 to
twisted sectors by introducing the elliptic theta function

da,b(
m
L ,

n
L) = θ

[
a
2 + m

L
b
2 + n

L

]
(0|τ) =

∞∑
l=−∞

q(l+
a
2
+m

L
)2e2πi(l+

a
2
+m

L
)( b

2
+ n

L
) . (A.14)

The torus partition functions in the individual sectors then takes the explicit form

Zm
L
, n
L
=

1

|Imτ |2

∣∣∣∣∣f(mL , nL)2η(τ)6

∑
a,b(−1)a+b+abda,b(0, 0)

2da,b(
m
L ,

n
L)da,b(−

m
L ,−

n
L)

d1,1(
m
L ,

n
L)d1,1(−

m
L ,−

n
L) + Im τ η(τ)6δ0c δ

0
d

∣∣∣∣∣
2

. (A.15)

Here, η(τ) denotes the Dedekind η-function which captures bosonic modes. The sum in the
numerator encodes the GSO projection. The factor

f(mL ,
n
L) =

{
4 sin2(nLπ) , m = 0, n ̸= 0

1 , else ,
(A.16)

captures the contribution of bosonic zero modes, which only appear at m = 0. We may
now explicitly compute the orbifold partition function (A.13) and find that Zorb = 0. Note
that the torus partition function naturally includes antiperiodic boundary conditions for
fermions on the time-like circle and therefore is more akin to a supersymmetric index than
an unrefined partition function. The vanishing of the partition function is then understood
as a direct consequence of the unbroken supersymmetry of the orbifold theory.

To investigate the actual spectrum of states, it is more useful to cancel this sign factor
(−1)F in (A.12) and consider the unrefined partition function Z̃, which can be computed
by shifting da,b → da,b−1 in the numerator of (A.15). One can then perform an expansion in
small q and determine the energy spectrum from the exponents and the multiplicities from
the coefficients. As an example, for L > 4 a typical untwisted and twisted sector spectrum
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takes the form 19

Z̃0 =
1

L

L−1∑
n=0

Z̃0, n
L
∼ 96 + 17920(qq̄)4 + . . . , (A.17)

Z̃ 1
L
=

1

L

L−1∑
n=0

Z̃ 1
L
, n
L
∼ 16 + 256(qq̄)

4
L + 1024(qq̄)

8
L + . . . . (A.18)

The massless spectrum matches precisely the explicit construction performed above.

B Comments on the large-L limit

An interesting limit of the ZL orbifold theories discussed in this paper is that of L → ∞,
where the opening angle of the orbifold singularity shrinks to 0 while the number of twisted
sectors grows infinitely. The gauge theory dual description of this limit is given in terms of
“long” quivers with infinitely many gauge nodes.

In this paper we have discussed the construction of low-energy effective theories de-
scribing the massless modes of string theory. The restriction to the massless level is justified
by the finite mass gap to the first excited level, which in the orbifold theory on R1,5×C2/ZL

is given by

∆m2 =
4

Lα′ . (B.1)

This allows us to choose a cut-off Λ below this scale and integrate out all excited states
which are heavier than this cut-off. If one were to take L → ∞ at fixed α′, the excited
spectrum of the string becomes continuous, invalidating this naive low-energy expansion.
However, we may take inspiration from the parallel behaviour of zero-modes in a Kaluza-
Klein compactification on a circle of radius R, which allows for momentum modes with
massesm2

KK = n2

R2 and winding modes with massesm2
w = R2w2

α′2 . As R→ ∞, the momentum
modes generate a continuum which corresponds to the momentum along the decompactified
circle. If R→ 0, however, the winding modes become continuous suggesting the appearance
of a “T-dual” non-compact dimension. A similar phenomenon is now expected to occur in
the large-L limit of the orbifold theory, suggesting that the twist number n

L , enumerating the
twisted sectors, may be interpreted as a continuous variable parametrising an “emergent”
dimension, which replaces the vanishing angular dimension around the orbifold singularity.
This “dual” geometry is yet to be understood completely.

In the context of AdS/CFT, the large-L limit has been discussed on the gauge theory
side, where it is sometimes called a “deconstruction” limit of the quiver gauge theory [58, 59],
hinting at an effective 5d theory. This limit was also probed by interpolating localisation
results like (1.6) to large L [13]. Interestingly, in [13], evidence for an emergent fifth
dimension was only found in the particular double scaling limit where

√
λ

L
=
RAdS

Lα′ ≪ 0 , (B.2)

19The orbifolds with L ≤ 4 feature larger degeneracies, essentially due to coincidences within the mode
expansion.
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at strong coupling. At fixed AdS radius RAdS, this limit corresponds precisely to the
vanishing of the twisted sector mass gap (B.1) ∆m2 → 0. The emergence of a fifth dimension
in gauge theory is thus directly associated to the large-L duality in string theory.

If, on the other hand, one performs a scaling limit with finite
√
λ
L , the mass gap (B.1)

remains finite and one may take L→ ∞ at the level of the effective low-energy theory. Let
us outline how our construction of the effective 6d theory in Section 2 behaves in this limit.

B.1 Effective action at large L

We now consider the continuous L→ ∞ limit on the resolution space and investigate how
the field configurations (2.10) and dynamics of the twisted scalars are affected. In order
to approach this limit, we choose a linear distribution of instantons on R3 parametrised
by x⃗n =

(
0, 0, a

L−1(2n − L − 1)
)
,20 where a denotes the resolution parameter. In this

configuration, we introduce an “interpolating” coordinate

σ =
2n− L− 1

L− 1
∈ [−1, 1] , (B.3)

which becomes continuous in the large-L regime, where the configuration of centers along a
line degenerates into a smooth linear distribution of instanton charge of fixed length 2a along
the z-axis.21 This coordinate labels the position along the line segment at which the sign of
the auxiliary potential (2.13) changes, playing the role of the discrete twist index n in the
continuum limit. We will also assume a finite charge density ρ = L−1

4πa
δ(r)
r H(z− a)H(z+ a)

on the linear distribution of instantons. In this regime, the scalar, vector and auxiliary
potentials in (2.9) and (2.13) become 22

U(r, z) =

∫
d3x⃗′

ρ√
r2 + (z − z′)2

=
L− 1

2a

[
sinh−1

(
z + a

r

)
− sinh−1

(
z − a

r

)]
,

w · dx =
L− 1

2a

[√
r2 + (z + a)2 −

√
r2 + (z − a)2

]
dφ ,

Wn(x) →W (σ; r, z) =

∫
d3x⃗′ρ

sgn(z′ − σ)√
r2 + (z − z′)2

=
L− 1

2a

[
2 sinh−1

(
z − σ

r

)
− sinh−1

(
z − a

r

)
− sinh−1

(
z + a

r

)]
,

(B.4)

where we replaced the constants ci,n of (2.13) by sgn(z′−σ). One may thus find an explicit
anti-self-dual solution to the vacuum Einstein’s equations in the continuous L → ∞ limit

20This preserves U(1) ⊂ SO(3) rotational symmetry of the base, but breaks manifest ZL symmetry.
21The discrete L→ ∞ limit of (2.1) was considered in [60], where the resolved space features an infinite

discrete family of compact two-cycles. The metric becomes asymptotically locally flat (ALF) at infinity,
approaching R3 ×S1, with the circle at infinity having fixed radius. In our case, the “smeared” distribution
of centers along the line of charge results in a continuum distribution of two-cycles along the resolved line.

22These quantities are only approximations in the large-L limit. A proper resummation treatment shows
there are subleading O

(
L0

)
terms which become suppressed and are therefore dropped in this limit.
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of (2.1), taking the form

ds2 =
L− 1

2a

[(
sinh−1

(
z + a

r

)
− sinh−1

(
z − a

r

))−1 [
dτ ′ +

(√
r2 + (z + a)2 −

√
r2 + (z − a)2

)
dφ

]2
+

(
sinh−1

(
z + a

r

)
− sinh−1

(
z − a

r

))(
dr2 + r2dφ2 + dz2

) ]
,

(B.5)
where we have re-scaled the fiber coordinate τ → τ ′ ∈ [0, 2a

L−14π) in order to extract a
common factor of L−1

2a from the metric. The total B2-field becomes a continuous distribution
of the individual wrapped components along the line of “instanton charge”, and admits a
representation of the form

B2(y, r, z) =
L− 1

2

∫ 1

−1
dσ B2(σ; y, r, z) , (B.6)

where its components B2(σ; y, r, z) now depend on σ and are given as

B2(σ; y, r, z) = πα′ b(σ; y)

[
A(σ; r, z)(e1∧e2−e3∧e4)+B(σ; r, z)(e2∧e3−e1∧e4)

]
, (B.7)

where A(σ; r, z) = ∂zΨ(σ; r, z) and B(σ; r, z) = ∂rΨ(σ; r, z) with

Ψ(σ; r, z) =
sinh−1( z−σ

r )− sinh−1( z−a
r )

sinh−1( z+a
r )− sinh−1( z−a

r )
− 1

2
. (B.8)

We choose to re-scale the components as B2 → ( 2
L−1)

3/2aB2 for later convenience. In order
to arrive at the large-L analogue of (2.18), we are thus interested in computing the integral∫

d10x |dB2|2 →
2a

L− 1

∫ 1

−1
dσ

∫ 1

−1
dσ′

∫
d10x dB2(σ; y, r, z) ∧ ⋆10 dB2(σ

′; y, r, z) , (B.9)

making use of the field configurations (B.7). Omitting the R1,5 dependence for the moment,
we need to evaluate the large-L analogue of (2.16), which reads

2a

L− 1

∫ 1

−1
dσ

∫ 1

−1
dσ′

∫ ∞

0
dr

∫ ∞

−∞
dz

[
rU(A(σ)A(σ′) + B(σ)B(σ′))

]
, (B.10)

where we have dropped the (r, z) dependence of the various functions. Our choice of re-
scaling the components has made the integral (B.10) finite in the orbifold limit a→ 0.

The metric (B.5) blows up near the line of continuous charge, so one may worry that the
integrand of (B.10) could be divergent. A local expansion around the singular locus proves
the absence of putative divergences. We have evaluated (B.10) numerically for arbitrary
fixed values of σ, σ′ ∈ [−1, 1], allowing to extract its σ′, σ profiles respectively.

We observe that taking the continuous large-L limit of (2.17) and then performing the
overlap integral (B.10) over the GHL→∞ resolution leads to an effective action of the form

Seff ⊃ (4π2α′)2

2κ210

∫ 1

−1
dσ

∫ 1

−1
dσ′K(σ, σ′)

∫
d6y

√
g6

1

2
∇b(σ; y) · ∇b(σ′; y) . (B.11)
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The explicit algebraic form of the kernel K(σ, σ′) is yet to be determined, but its profile for
σ′ = 0 and a = 1 is shown in Figure 4.

We now compare this result to the continuous large-L limit at the level of the discrete
action (2.18). A priori, it is not clear that dimensional reduction and taking L→ ∞ should
be commuting procedures, but we will nevertheless find agreement in this case: After noting
that the twist numbers n

L ,
m
L ∈ [0, 1) become continuous in this limit, one finds an action

of the form

Seff ⊃ 1

2κ26

∫ 1

0
d
(n
L

)∫ 1

0
d
(m
L

)
K
(n
L
,
m

L

)∫
d6y

√
g6∇b

(n
L
; y
)
· ∇b

(m
L
; y
)
, (B.12)

where the non-local kernel is given by

K
(n
L
,
m

L

)
=

[
1−max

(n
L
,
m

L

)]
min

(n
L
,
m

L

)
. (B.13)

Its explicit form follows directly from the limiting procedure, and it is reminiscent of some
of the expressions found in [61]. The derivatives in (B.12) act along R1,5 directions yµ of the
background. We will assume a smooth dependence of the modes b(nL ; y) on the continuous
coordinate n

L , which may be related to the interpolating coordinate σ via

σ = 2
n

L
− 1 . (B.14)

After this transformation, we observe (see e.g. Figure 4) that this kernel matches precisely
the result of the explicit geometric construction above. This allows us to determine the
explicit algebraic form of K(σ, σ′) in (B.11) as

K(σ, σ′) =
1

4

(
1−max(σ, σ′)

) (
1 + min(σ, σ′)

)
. (B.15)

We thus conclude that taking the continuum large-L limit and integrating over the resolu-
tion space are commuting procedures.

B.2 Diagonalisation of the kernels

Starting with (2.18), we may express the effective action in the continuous L→ ∞ limit in
terms of an integral over a single continuous coordinate by considering the discrete Fourier
transform

bn(y) =
2√
L

(
b0 +

L−1∑
α=1

e
i2πα
L nbα(y)

)
, (B.16)

of the scalars bn(y) in the discrete L regime, in line with the analysis of [8]. Here α ∈ [0, L−1]

is the twisted sector label in momentum space and b0 is a constant zero-mode that does
not affect the dynamics. This transformation diagonalises C−1 and allows us to evaluate
one of the two sums in (2.18). Going to large L requires defining continuous momenta
p = 2πα

L ∈ [−π, π) conjugate to positions n
L . The effective action (B.12) then becomes

Seff ⊃ 1

2κ26

L

2π

∫
d6y

√
g6

∫ π

−π
dp

1

4 sin2(p2)
∇b(p; y)∇b∗(−p; y) , (B.17)
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Figure 4: Numerical integration (left) showing σ profile of (B.10) for a = 1 and σ′ = 0.
The analytic plot (right) is obtained after transforming the kernel (B.15) according to (B.14)
for the same values of a and σ′. In this case the functions are simply 1+σ

2 for σ ∈ [−1, 0]

and 1−σ
2 for σ ∈ [0, 1]. Remarkably, these match exactly. We have checked this matching

for various different values of σ and σ′.

where the factor (4 sin2(p2))
−1 is due to the eigenvalues of C−1. This is the expected form

of the effective action (2.18) in the continuous large-L limit in momentum-space using the
algebraic geometry language of the flat space resolutions (see e.g. [13]).

On the other hand, we can also introduce an appropriate basis that diagonalises the
kernel (B.15), which was obtained directly from our field configurations (B.7). This proce-
dure is analogous in spirit to (B.16). An orthogonal basis of eigenfunctions achieving this
diagonalisation takes the form sin

(
πn
2 (σ + 1)

)
, so that we can identify

K(σ, σ′) = 2

∞∑
n=1

sin
(
πn
2 (σ + 1)

)
sin

(
πn
2 (σ′ + 1)

)
n2π2

. (B.18)

We may thus parametrise the twisted scalars b(σ; y) as

b(σ; y) =

∞∑
n=1

√
2

nπ
bn(y) sin

(πn
2
(σ + 1)

)
, (B.19)

corresponding to a Fourier series expansion with vanishing Dirichlet boundary conditions.
Note that at the extremal values (σ = ±1) of the interpolating coordinate, the field con-
figuration vanishes. Indeed, one may identify the kernel (B.15) as the Green’s function of
a one-dimensional Laplacian on a compact interval σ ∈ [−1, 1]. The effective action (B.11)
then takes the form

Seff ⊃ 1

2κ26

∫
d6y

√
g6

∞∑
n=1

1

2
∇bn(y) · ∇bn(y) , (B.20)

featuring an infinite tower of massless fields bn(y) with canonically normalised kinetic terms.
This action differs from that in (B.17) by a mere normalisation (4 sin2 (p/2))−1. In locally
flat space, there is no obstruction to choosing a canonical normalisation for the bn(y) field
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as in (B.20). This situation may change once interaction terms are introduced. In partic-
ular, in the resolution of AdS5 × S5/ZL, the factor (4 sin2 (p/2))−1 seems crucial to match
localisation results from the string side (see [8] for finite L and [13] for the large-L limit).
One may wonder if that factor in the localisation results should be equally attributed to
mere convention or whether some physical interpretation of the (4 sin2 (p/2))−1 factor is
possible.
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