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Abstract: Collider processes at the highest available partonic center-of-mass energies —

10 TeV and above — exhibit a new regime of electroweak interactions where electroweak

gauge bosons mostly act as quasi-massless partons in vector boson fusion processes. We

scrutinize these processes using the Equivalent Vector boson Approximation (EVA) based on

its implementation in the Monte Carlo generator framework Whizard. Using a variety of

important physics processes, including top pairs, Higgs pairs, neutrino pairs, and vector boson

pairs, we study the behavior of processes initiated by transverse and longitudinal vector bosons,

both W and Z induced. By considering several distributions for each process, we conclude

that: there is no universal, process-independent prescription which minimizes the discrepancies

between EVA- and matrix-element-based predictions; even by resorting to process-by-process

prescriptions, we typically observe significant observable-dependent effects; the uncertainties

associated with parameter dependencies in the EVA can be as large as O(100%), and can

only possibly be reduced by careful process-dependent kinematical selections.

Keywords: Electroweak Precision Physics, Higher Order Electroweak Calculations

ArXiv ePrint: 2507.19285

∗Corresponding author.

Open Access, © The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2025)002



J
H
E
P
1
1
(
2
0
2
5
)
0
0
2

Contents

1 Introduction 1

2 Theoretical framework of the EVA 2

2.1 Kinematic derivation of the EVA structure functions 3

2.2 EVA implementation in Whizard 5

2.3 Convolution with structure functions: 2 → 2 scattering example 6

3 Comparison of EVA with full matrix elements 7

3.1 Di-Higgs 8

3.2 τ -neutrinos 11

3.3 Di-photon 13

3.4 Top pairs 15

3.5 Associated ZH production 16

3.6 Vector boson scattering 18

3.7 Di-Higgs at high-energy hadron colliders 18

4 Conclusions 19

A Technical details on EVA in WHIZARD 22

1 Introduction

One of the most important tasks after the current run of the Large Hadron Collider (LHC) and

its high-luminosity phase will be to study electroweak (EW) interactions in their high-energy

regime, well above the scale where the symmetry is broken, Λ ∼ 4πv ∼ 3 TeV. Unlike QCD,

the EW interactions have never been probed in this energy regime, far above their intrinsic

scale. There are also many other reasons for energy-frontier collider-based particle physics,

like beyond the Standard Model (BSM) searches or searches for dark matter, that motivate

particle collisions at the multi-TeV scale. The US Particle Physics Project Prioritization Panel

(P5) report [1], following the Snowmass Community Summer Studies of 2022, has advocated

the path towards a 10 TeV (and maybe more) parton-center-of-mass energy collider, for which

three technology paths are potentially feasible: as a proton-proton collider synchrotron [2],

as a circular muon collider [3] or as an electron-positron or photon-based plasma wakefield

collider [4]. At such a collider, a new regime of EW interactions will enter, more and more

resembling the “unbroken” phase of separate (quasi-)massless non-Abelian SU(2)L vector

bosons and scalar Goldstone bosons.

An important feature of physics predictions at the LHC is the fact that one can decouple

different parts of an interaction by finding the energy regime relevant for each of them and

applying the concept of factorization. This, among other things, leads to the definition of

parton distribution functions (PDFs), which describe the probability of finding a given parton

with certain kinematic properties inside of a proton to subsequently participate in a hard
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interaction. A similar concept can be applied to high-energy lepton colliders. For instance,

if a process initiated by a photon emitted collinearly from a charged lepton is considered,

one can describe the interaction by convoluting a universal structure function incorporating

the probability of the emission with a matrix element for the hard, photon-initiated process.

Such an approach, known as the Equivalent Photon Approximation [5–7], has been broadly

discussed in the literature (see e.g. [8–12]). The treatment was also later extended to the

weak-boson case [13–15]; the so-called Equivalent Vector Boson Approximation (EVA) relies

on the fact that massive vector bosons can be effectively viewed as massless for collision

energies well above the electroweak scale [16–30]. The EPA and EVA are mostly based on an

identification and separation of regions that lead to logarithmic enhancements due to soft or

collinear splittings in the initial state; the corresponding factorized entities are historically

called structure functions, motivated from the picture of deep inelastic scattering (DIS). A

systematic quantum field theoretic approach leads to a factorization where such logarithms

can be systematically resummed by means of a Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) equation [31–33]: it such a case the structure functions become parton distribution

functions (PDFs) in a field theoretic embedding. In the past decade, it was demonstrated

that this framework can be also applied to the resummation of large initial state EW

collinear logarithms, potentially helping to improve the precision of the predictions for multi-

TeV interactions [34, 35]. Moreover, there is very recent work on the formal derivation of

electroweak splitting functions without relying on a specific Lorentz frame [36].

In this paper, we focus on the EVA and study its potential for simplifying calculations

for both future high-energy lepton and hadron colliders with a focus on future muon colliders.

Though this approach is equally suited for BSM (cf. the complexity of BSM resonance searches

in vector boson scattering [37–39]) and SM processes, for the sake of conciseness, we will focus

on standard candle SM processes in this paper. We will start our study with a hypothetical

e+µ−-collider for a theoretically simple setup where most non-vector boson fusion topologies

are absent and we, hence, expect the approximation to hold best. Then, we continue with

more realistic setups, experimentally viable signatures and cuts to show the regions of phase

space of the approach and this quality there.

The paper is structured as follows: in section 2 we give a brief kinematic derivation of the

EVA, discuss its implementation in the Monte Carlo event generator framework Whizard

and show semi-numerical convolutions of the EVA structure functions with hard squared

matrix elements for simple 2 → 2 processes. In section 3, we compare full matrix elements for

many key SM processes with the corresponding vector boson fusion processes using the EVA,

and study phase space cuts and scale choices. Finally, we summarize our findings in section 4.

In the appendix, we give some practical details on the usage of the EVA within Whizard.

2 Theoretical framework of the EVA

In this section, we give a general overview of how the EVA is derived and discuss a few

crucial points for our study. For a detailed derivation, we refer the reader e.g. to appendix

B of [27] or section 4.2.2. of [40] .
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3. The emission amplitude is used to define one structure function per polarization which

is eventually convoluted with the differential (polarized) cross section of the residual

squared amplitude. These structure functions describe the probability of a vector boson

emission with a given energy fraction and polarization off the beam.

4. Notice that the EVA only describes topologies as the one shown figure 1, viz. t-channel

contributions. Other topologies like s-channel diagrams or bremsstrahlung are neglected

in the approximation. In the following, we will use the term vector boson fusion

(VBF)-like topologies for the ones contained within the EVA when it is applied for two

incoming partons.

This derivation of the EVA for VBF processes resembles the picture of a double EW

current or double DIS-like approximation as e.g. also described in [43]. For the moment,

applying the approximation again to just a single beam, we can write the EVA as more

precisely as

σ(fAfB → f ′
AX) =

∑

λ

∫

dp′
∣
∣
∣
∣
∣
ME(fA → f ′

AVλ) × 1

q2 − m2
V

∣
∣
∣
∣
∣

2

︸ ︷︷ ︸

→Fλ(p′)

⊗
∫ n−1∏

i

dpi

∣
∣
∣MH(fBVλ → X)

∣
∣
∣

2
, (2.4)

where by M we denote the spin averaging or sum over the incoming/outgoing fermion spins.

In here, we also indicate the kinematic origin of the EVA structure functions Fλ. Several

approximations are carried out in eq. (2.4) to arrive at the final formula for the EVA:

a) the sum over polarizations is carried out only after convolving the structure functions

with the hard process amplitude. This effectively neglects interferences between off-

diagonal polarizations in the amplitude and conjugate amplitude.

b) The hard amplitude takes the incoming vector boson as on-shell, while in the full process

for generic VBF phase spaces the EW vector boson will always be space-like.

Next, the phase space of the beam remnant will be parameterized as

d3p′ =
EA

2
dx dp2

⊥ dφ, (2.5)

where p′ 0 = (1 − x)EA and we take x = EV /EA as the energy fraction with respect to the

beam “parton”, i.e. the Bjorken x. Now, a collinear approximation is carried out in ME which

simply corresponds to a small angle expansion for the angle between the vector boson and

the beam parton to leading power in p2
⊥/(−q2).2 In this limit, the hard matrix element MH

becomes independent of p⊥, but depends on x via the energy of the vector boson. Therefore,

from eq. (2.4), the definition for the structure functions can be written as

FλV
(x, p2

⊥,max) =

∫ p2
⊥,max

0

dp2
⊥

16π2

xx̄

(p2
⊥ − x̄M2

V )2

∣
∣
∣ME(fA → f ′

AVλV
)
∣
∣
∣

2

collinear
, (2.6)

2Note that in the original derivation of the EVA in [14], no small-angle approximation was carried out

in the emission amplitude M
E , but only in the fact that the partons of the hard matrix element are taken

on-shell.
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where x̄ = 1 − x. Inserting the emission amplitudes in the collinear limit into this formula,

we eventually arrive at the leading power structure functions

F−(x, p2
⊥,max) =

(gA − gV )2 + (gA + gV )2x̄2

16π2x

[

ln

(

p2
⊥,max

+ x̄M2
V

x̄M2
V

)

−
p2

⊥,max

p2
⊥,max

+ x̄M2
V

]

,

F+(x, p2
⊥,max) =

(gA + gV )2 + (gA − gV )2x̄2

16π2x

[

ln

(

p2
⊥,max

+ x̄M2
V

x̄M2
V

)

−
p2

⊥,max

p2
⊥,max

+ x̄M2
V

]

,

F0(x, p2
⊥,max) =

(g2
A + g2

V )x̄

4π2x

p2
⊥,max

p2
⊥,max

+ x̄M2
V

.

(2.7)

All three depend on the scale choice p⊥,max, but only the transverse structure functions entail

a logarithmic enhancement. Moreover, the approximation depends on the minimum energy

fraction xmin taken by the vector boson when using the phase space parameterization of

eq. (2.5) in eq. (2.4). One of the main goals of our work is to study the influence of these

parameters on the quality of the EVA to describe full matrix element results. From physical

considerations, we need xmin = mV /EA in order to have enough energy for the production

of an on-shell vector boson available and we need to require p⊥,max ≪ EA for the collinear

approximation to remain valid. Nevertheless, following our comparison with full matrix

elements in the next sections, we will discuss and reevaluate these choices as well.

2.2 EVA implementation in Whizard

Whizard [44, 45] is a general-purpose Monte Carlo generator framework designed for the

efficient calculation of multi-particle scattering cross sections and event simulation. Whizard

incorporates many features suitable for future lepton colliders, including beam polarization,

beamstrahlung and Initial State Radiation (ISR) spectra. For the purpose of this study, we

considered only the leading-order contributions in electroweak interactions, while Whizard

is also capable of automated NLO QCD+EW corrections [46–49]. For many of the full matrix

element calculations, an efficient integration of high-multiplicity phase spaces in the high-

energy regime is very important, which is a major focus of the Whizard framework [50–52].

Historically, studies for high-multiplicity final states in vector boson scattering processes

at beyond-TeV lepton colliders and difficulties with the EVA description in [53, 54] have even

triggered the first version of Whizard in 1999. An implementation of the EVA treatment

was made available in v1.91 of Whizard in 2008 and validated later as part of the effort

of the full Monte Carlo production for the International Linear Collider (ILC) Technical

Design Report as well as for the Compact Linear Collider (CLIC) [55] and the Circular

Electron-Positron Collider (CEPC) [56]. In 2010, Whizard v2.0.0 was released necessitated

by the infrastructure needs to simulate physics at the LHC. For this release series, the EVA

was reimplemented for v2.2.0 in 2014. Very recently, we revisited this implementation in

the context of Whizard’s NLO release series v3 and found some inconsistencies in the v2

implementation (it effectively averaged the structure functions over the polarizations of the

hard process). We have updated the implementation to resolve this problem and also to

account for polarized beam particles. This implementation will be released in the next update

of Whizard, v3.1.7. In this current implementation, the mode default incorporates the

– 5 –
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full leading power structure functions from eq. (2.7). Two other modes with different choices

of approximation are included to compare with previous studies:

• log_pt for which:

G−(x, p2
⊥,max) =

(gA − gV )2 + (gA + gV )2x̄2

16π2x
ln

(

p2
⊥,max

x̄M2
V

)

,

G+(x, p2
⊥,max) =

(gA + gV )2 + (gA − gV )2x̄2

16π2x
ln

(

p2
⊥,max

x̄M2
V

)

,

G0(x, p2
⊥,max) =

(g2
A + g2

V )x̄

4π2x
,

(2.8)

• log for which:

H−(x, p2
⊥,max) =

(gA − gV )2 + (gA + gV )2x̄2

16π2x
ln

(

p2
⊥,max

M2
V

)

,

H+(x, p2
⊥,max) =

(gA + gV )2 + (gA − gV )2x̄2

16π2x
ln

(

p2
⊥,max

M2
V

)

,

H0(x, p2
⊥,max) =

(g2
A + g2

V )x̄

4π2x
.

(2.9)

Furthermore, Whizard allows to set the minimal value of x and maximal value of p2
⊥,max

(either as a constant value or a dynamical expression, e.g. the hard-process scale, ŝ). In

order to reproduce results with the version of Whizard v2, there is also a legacy mode. In

addition, there are some additional modes for more technical comparisons; for more technical

details on the usage cf. the appendix A.

2.3 Convolution with structure functions: 2 → 2 scattering example

In this section, we give a (semi-)analytic example of the convolution of the EVA structure

functions derived in the previous section with a hard scattering process to study explicitly

the factorization scale dependence and compare it as part of our validation to the Whizard

implementation. Focusing on 2 → 2 scattering, we consider the process Vλ1
Vλ2

→ Xλ′

1
Xλ′

2
at

a high-energy lepton collider, where λi indicate the polarizations of the initial vector bosons

and λ′
i the polarizations (or helicities) of the final states X (for i ∈ {1, 2}), respectively.

In the center-of-mass frame, the cross section can be written as a function of the partonic

center-of-mass energy ŝ as

σλ1λ2

V V →XX(ŝ) =
∑

λ′

1
λ′

2

∫ 1

−1
d(cos θ)

2π

64π2ŝ

|~pX |
|~pV | |Mλ1λ2,λ′

1
λ′

2
|2 , (2.10)

where θ is the scattering angle with respect to the axis of the incoming particles and we have

integrated over the azimuthal angle. The vectors ~pV and ~pX denote the three-momenta of

one of the initial vector bosons V and final states X, respectively. Assuming that the final

states have the same mass MX and denoting as MV the mass of the initial vector bosons,

|~pX |/|~pV | can be written as (ŝ − 4M2
X)/(ŝ − 4M2

V ).
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Within the EVA, each initial vector boson can arise from an incoming lepton beam,

carrying a fraction of the lepton energy xi. The cross section of the VBF process with leptons

as initial states in the EVA, σEVA, is then obtained by the convolution of eq. (2.10) with

the appropriate structure functions of eq. (2.7),

σEVA =
∑

λ1λ2

∫ 1

xmin

∫ 1

xmin

dx1dx2Fλ1
(x1, p2

⊥,max)Fλ2
(x2, p2

⊥,max)σλ1λ2

V V →XX(x1x2s) , (2.11)

where we used the fact that ŝ = x1x2s. Since we are dealing with massive vector bosons,

the minimum value of x1 and x2 should be the ratio of the mass of the vector boson and

the lepton energy, i.e. xmin = 2MV /
√

s. We stress that the physical vector boson masses

are kept in all parts of the calculations.

Changing the integration variables x1 → x′
1 and x2 → m2

V V

x′

1
s

allows to obtain distributions

in terms of the invariant mass of the incoming bosons (or, equivalently, final states) mV V =

mXX =
√

ŝ (note that this is a phase space mapping that is also applied within Whizard).

The EVA cross section is then given by

σEVA =
∑

λ1λ2

∫ √
s

2MX

∫ x′

1,max

x′

1,min

dmV V dx′
1

2mV V

x′
1s

Fλ1

(
x′

1

)
Fλ2

(

m2
V V

x′
1s

)

σλ1λ2

V V →XX(m2
V V ) , (2.12)

where the lower and upper limits of the x′
1 integration are x′

1,min = max(
m2

V V

s
, xmin) and

x′
1,max = min(

m2
V V

xmins
, 1), respectively. We have made implicit the dependence of the structure

functions on p⊥,max and explicit the threshold of the process mV V > 2MX in the integration

limits of mV V , assuming that the final states are heavier than the incoming vector bosons.

As an example, we investigate the Higgs-pair production, ℓ+ℓ′− → W +W − → HH, at a

collider energy of 14 TeV using the EVA as implemented in Whizard utilizing eq. (2.11) and

a separate implementation in Mathematica with eq. (2.12), where the matrix element cal-

culation and the sum over polarization is done using FeynArts [57, 58] and FormCalc [59].

The structure functions are implemented as in eq. (2.7) and the integration over cos θ, x′
1

and mV V is numerically performed for efficiency with the GlobalAdaptive method. We

show a comparison of the Whizard and Mathematica differential distributions for mV V in

figure 2. The minimum momentum fraction is set to 2MW /
√

s for both cases, and the p2
⊥,max

scale is varied. As expected from the functional form of eq. (2.7), the contributions initiated

exclusively by longitudinally polarized W ± bosons have a weaker dependence on p2
⊥,max

as

compared to the cases where one or both of the vector bosons are transverse. Nevertheless,

the scale variations are quite substantial for all cases in the low mV V -region. This is due to

their dependence on x̄M2
V and the fact that x̄ is close to one in this region. This stresses the

fact that the EVA can only be trusted beyond the peak region, i.e. for large mV V .

3 Comparison of EVA with full matrix elements

In this section, we discuss the application of the EVA to a set of processes with growing

complexity in terms of contributing topologies and polarizations. In the following, our

parameter settings are xmin = 2mV /
√

s for the lower Bjorken cutoff, while for the central

value of the transverse momentum, we choose p⊥,max =
√

ŝ/4. The latter is heuristically

– 7 –
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Figure 6. Pseudorapidity distributions for the leading (left) and sub-leading Higgs in p⊥ (right)

for e+µ− → HH + X for
√

s = 10 TeV evaluated with the EWA (blue) and with the full matrix

element. The cut mV V > 1500 GeV is imposed to show events from the region where the invariant

mass distributions for the two evaluations agree.

Next, we show the distributions of transverse momenta and rapidities of the two Higgs

bosons, ordered in p⊥, in figure 5 and figure 6, respectively. In the EVA case, the distributions

are identical, since the transverse momenta are always exactly balanced. Interestingly, we

find that the kinematics of the parton subleading in p⊥ is much better described by the EVA

than the leading ones and this behavior persists when cutting off the threshold region in

mHH , as shown in figure 6. The reason for this lies in the fact that within the EVA, the

vector bosons do not receive any recoil from the beam partons. When ordering the final

states in p⊥ in the full process, the leading one is likely to be the one which was recoiling off

the beam partons. This shifts the peak in the pT,1-distribution to slightly larger values as

compared to the EVA. Nevertheless, after a cut of mHH > 1.5 TeV, we find that the EVA

perfectly describes the kinematics of the subleading parton. This in turn means that this

parton does not recoil against the beams in the full calculation.

Moreover, notice that this behavior for the leading p⊥ parton appears despite the relative

simplicity of the process considered here (i.e. without non-VBF topologies and contributions

from transverse vector bosons being negligible). Therefore, the mismatch is likely more

severe in more complex processes and any kinematic cuts should be treated carefully. In

principle, it would be possible to generate a p⊥,1 kick in the EVA calculation for a given

recoil scheme to rectify the mismatch, but this goes beyond the scope of this paper. Such

p⊥,1 kicks can be either explicitly introduced into the splitting kinematics (so-called recoil

scheme in Whizard), or a p⊥ kick to the beam remnants with a subsequent boost of the

final state system to the new Lorentz frame. The latter approach has been successfully

applied for QED radiation off the initial beams.

3.2 τ -neutrinos

Next, we study e+µ− → ντ ν̄τ + X, where we specifically choose neutrinos of the third family

to avoid non-VBF topologies. Nevertheless, there are weak bremsstrahlung diagrams from
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ŝ/4

EZA
√
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Figure 7. Invariant mass distributions of the ντ ν̄τ -system in e+µ− → ντ ν̄τ + X at
√

s = 10 TeV for

the full matrix element evaluation (red) and EVA results for different values of xmin and p⊥,max.

Z-boson radiation with subsequent Z → νν̄ decay contributing to the process. These in

turn can be tackled by cuts on mνν̄ and generator-level angular cuts, as we will discuss later.

Although not directly experimentally accessible, this process is interesting because, in contrast

to the di-Higgs case, the hard matrix element V V → ντ ν̄τ is dominated by transversely

polarized vector bosons due to the chiral nature of weak interactions, which makes it a good

testing ground for the transverse structure functions F± and their scale dependence.

The results in figure 7 show clearly that the scale dependence plays a much more

pronounced role here. This makes the EVA far less reliable, even if a large invariant mass cut

is applied. Even for scale choices which bring the EVA results close to the full calculation,

the slopes of the tails in the distributions differ. This is signaling a breakdown of the EVA

whenever weak bremsstrahlung-type diagrams contribute to a process (something that will be

even more pronounced in the di-photon case to be discussed later). Moreover, the massless

nature of the final-state partons triggers that p⊥,max ≪ −q2 is not always guaranteed, meaning

that the small-angle approximation is more likely to fail. The contrary is the case when the

process has heavy massive final state partons like the Higgs boson or top quark.

We additionally show the invariant mass distributions arising from the three different

EWA implementations of Fλ, Gλ and Hλ, i.e. eqs. (2.7)–(2.9), in figure 8 with the same xmin

and p⊥,max values. The behavior we find is as expected: Fλ and Gλ agree for large invariant

masses and deviate significantly only in the low-x regime. This is because the structure

functions Gλ only contain the logarithmic terms of Fλ, so they should agree where these

terms are the largest. The structure functions Hλ agree with Gλ in the low energy regime

where x̄ → 1 and deviate at larger invariant masses. This is because the Hλ contain the same

logarithmic terms as Gλ, but with a different (dynamical) scale setting, i.e. they are related

by the replacement p⊥,max → x̄p⊥,max. Therefore, differences between the two are mainly

expected when x̄ → 0, which is the case in the high energy tails.
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Figure 8. Invariant mass distributions of the process ντ ν̄τ system in e+µ− → ντ ν̄τ +X at
√

s = 10 TeV

with the three different major EWA modes implemented in Whizard as defined in eqs. (2.7)–(2.9)

3.3 Di-photon

As a second process dominated by transverse W bosons, we study di-photon production,

e+µ− → W +W − + ν̄eνµ → γγ + ν̄eνµ, at collider energies of 10 TeV. Note that only the gauge

boson degrees of freedom of the W s couple to photons, so there is no EZA equivalent for this

process. Again, the final state particles are massless, and hence the EVA should not give a

perfect description. As photons can be radiated from any part of the process, without cuts

an even worse agreement between EVA and the full process is expected.

In figure 9(a), we show our results for e+µ− → γγ+X. Similarly to ντ ν̄τ -case, this process

is largely dominated by transverse contributions and is therefore heavily scale-dependent. It

exhibits additional non-VBF-like topologies that spoil the accuracy of the EVA. We try to

reduce their effect by imposing generation level cuts on the photons, namely p⊥,γi
> 50 GeV,

∆R > 0.4 and |ηγi
| < 3. Nevertheless, the effect of the non-VBF-like topologies is clearly

visible in the difference between the slopes of the ratios in the distributions. In [28], this

problem has been addressed by introducing a QED Sudakov factor, but even then, the

applicability of the EVA remains rather limited for this process. We could have emulated this

here using Whizard by convolving the process first with the ISR structure function (leading-

logarithmic QED lepton PDF) and then subsequently with the EVA structure function. To

keep the study simple, we refrained from this complication.

Just as in figure 3, in figure 9(a) we show the variation of xmin in the green hatched region.

This clearly shows that this variation solely affects the low mγγ region (see figure 9(b)).

However, due to the sizable transverse contributions (unlike for di-Higgs), the variation of

p⊥,max affects the whole range, including the tail of the distribution.

This is expected from the dependence of the transverse EVA structure functions on

p⊥,max. Nevertheless, the agreement between EVA and the full matrix evaluation remains
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Figure 13. Comparison between EVA (dashed) and full result for the ZH final state for
√

s = 10 TeV

in terms of the rest frame angle θZ,H . We show transverse and longitudinal contributions for the

final-state Z boson separately. On the left, we show the distribution for high invariant masses

mV V > 2200 GeV only while on the right, we show the distribution after the dynamical cut on

cos θZ,H .

a technical cut on the invariant masses of all final state parton pairs which suppresses

contributions from non-VBF like topologies (as can be seen by only the full result being

affected), as shown in figure 12(c). Alternatively, a dynamical cut that depends on the

invariant mass mV V of each event can also work similarly, as shown in figure 12(d).

In order to better understand the effectiveness of the angular cut, we show the differential

distribution in |cos θZ | in figure 13 where transverse and longitudinal contributions of the

final-state Z boson are shown separately. We find that the process is dominated by transverse

contributions and here, the agreement with the full result increases significantly for values of

|cos θZ,H | . 0.9. This is not true for the longitudinal contributions, which first under-, then

overshoot the full results when going from small to large angles. Therefore, a cut on θZ,H

cannot improve the agreement in this case. This means that in general, the cut can only be

useful for processes where the longitudinal contributions are small, so one should not impose

it e.g. on the HH-process. Lowering the cut even further does not increase the agreement

because then, the discrepancy for the longitudinal modes cannot be neglected anymore.

Furthermore, we show in figure 13 how a dynamical cut on cos θZ,H can also achieve

a reasonable improvement by reducing the excess transverse contributions of the EVA at

large values of |cos θZ,H |. Nevertheless, a comparison of figure 12(c) and figure 12(d) shows

that a constant cut on |cos θZ,H | performs better in achieving a flat behavior in the ratio

between EVA and the full result.
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Figure 14. Invariant mass distributions of the W +W −-final state in vector boson scattering

e+µ− → W +W − + X at
√

s = 10 TeV for the full matrix element evaluation (red) and EVA (blue).

On the left, we show the distribution without any cut and on the right after imposing a cut on

cos(θW +,W −). For the latter, we show the |cos(θW +,W −)| < 0.97 cut for the full matrix element and

EWA as solid lines and EWA with other cut values as dashed lines.

3.6 Vector boson scattering

We additionally investigate the case of vector boson scattering, e+µ− → W +W − + X. The

invariant mass distribution mW W without any cuts3 is shown in figure 14(a), where the EVA

deviates significantly from the full matrix evaluation, especially at the high mW W region.

The situation resembles the channel ZH + X, where large contributions in the EVA case

arise when |cos(θW +,W −)| approaches one (with θW +,W − being the angle of the W with

respect to the beam axis in the rest frame of W +W −). Therefore, a cut on |cos(θW +,W −)|
equal to 0.97 significantly improves the agreement between the EWA and the full matrix

evaluation, as shown in figure 14(b). Note that the value for the cut was chosen such that

the agreement between EVA and the full results works best overall. For lower choices of the

cut, the agreement starts decreasing. In any case, we see a slight flattening of the ratio in

figure 14(b) above ∼ 1.5 TeV which we interpret as a meaningful improvement of the EVA

results via the cut. We do not show explicitly the e+µ− → ZZ + X channel, but we checked

that the behavior is very similar in that case.

3.7 Di-Higgs at high-energy hadron colliders

The very generic framework of chains of structure functions and spectra in the beam setup

of Whizard allows for convolving more than one structure function per beam. This has

been mentioned above already for QED ISR convoluted with EVA; in addition, a Gaussian

beam profile or a plasma wakefield beam spectrum could be added. In the same way, one

can successively convolve QCD proton PDFs with the EVA to simulate VBF processes at

3The physical masses of the vector bosons are kept throughout our calculation, but at these high energies

they barely suffice to render the cross-section infrared safe (it would diverge for massless vector bosons).

Therefore, a 20 GeV generator-level cut on p⊥ is applied to the final-state W bosons for better convergence.
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a hadron collider like HL-LHC or FCC-hh. This allows to emulate simulations that had

been set up for physics studies towards the SSC in the late 1980s where automated matrix

element calculations for high-multiplicity processes were simply not possible technically. We

are showing some results here for very simple cases where e.g. a di-Higgs pair is produced in

VBF production from WW fusion. The hard process is again simply W +W − → HH, while

the full process is pp → HH + X, where X now comprises the two tagging jets for VBF

topologies at hadron colliders. Unlike the case at a muon collider where most of the forward

remnants are either neutrinos or muons which are nevertheless lost due to nozzles shielding

the detector, here the tagging jets are in principle visible. This makes these processes more

“exclusive” than at a muon collider, and the full process would depend on the details of the

fiducial tagging jet selections, adding another layer of complications. Similar conclusions have

been found in the study of like-sign vector boson scattering at the LHC in [60], where a set

of different EVA variants was tested. None of those showed satisfactory results without some

sort of fine-tuning in the approximations or cut setups, though. For this reason, we show

these setups here as mere proof of principle of the technical feasibility of the implementation

in Whizard. Again, a study of heavy resonances in VBF at hadron colliders using the

EVA is deferred to future work.

Our showcase comparison for pp → HH + X is shown in figure 15 and the technical

details are as follows: we show two versions of the full matrix element evaluation, one with

only a cut on mHH > 2.5 TeV and one with additional jet cuts. For the latter, we define the

jets using an anti-kT algorithm with a jet radius of 0.4. Moreover, we demand p⊥,j > 20 GeV,

|ηj | < 4.5, mjj > 500 GeV and ∆ηjj > 2.5 for the jets in this case. Both the factorization

scale and the EVA scale p⊥,max are set to 2mH . Interestingly, the EVA result lies in between

the fully inclusive matrix element prediction and our jet cut selection; the EVA is roughly

70% below the inclusive result. Clearly, the matrix element results heavily depend on these

jet cuts, and some tuning would be necessary to mimic the EWA result more exactly. As

mentioned before, this is left to a more detailed study in the future.

4 Conclusions

In this paper, we demonstrated the (re-)validation of the equivalent vector boson approxi-

mation (EVA) based on collinear electroweak splittings in the Monte Carlo event generator

Whizard. Investigating a wide variety of physics processes, we studied phase space regions

and settings of the factorization scale as well as of the kinematic cutoff parameters for low

Bjorken x. We identified regions where the EVA provides a reliable description for processes

described by the “exact” (i.e. leading-order) matrix elements. Precision measurements at the

highest energies will inevitably depend on such fixed-order calculations of complete processes,

possibly enhanced by analytic or semi-analytic resummation techniques. In this framework,

the EVA approach does not offer a competitive description. However, the primary aim of our

paper was to deepen our understanding of phase space regions dominated by electroweak

splitting kinematics and to develop efficient tools for exploring this regime with reduced

computational costs. This is particularly valuable for BSM studies, supporting future analyses

targeting the discovery potential of next-generation energy frontier accelerators such as the

Muon Collider or high-energy hadron colliders such as the FCC-hh and SppC.
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Figure 15. Invariant mass distributions of the HH-system in pp → HH + X at
√

s = 100 TeV for

the full matrix element evaluation using different jet cuts detailed in the text and EVA (blue) results.

Our studies confirmed that the EVA provides a reasonably accurate description for

processes dominated by the fusion of longitudinal gauge boson modes of W or Z, for instance,

the di-Higgs production. Potentially, it can also be applied to BSM resonances that couple

dominantly to the Goldstone boson system, a topic we leave for future studies. In such cases,

there are basically no additional channels present besides the VBF topologies. Conversely,

for processes that are dominated by transversal EW gauge boson modes (e.g. neutrino

production), additional selection cuts have to be applied in order to enrich the kinematic

regime of VBF. Note that in some cases these cuts are merely technical generator-level cuts

which are experimentally unfeasible; nevertheless, such cuts are important for the theoretical

study of the collinear approximation.

A major conclusion of this study is, partially underlining similar discussions following

other recent work on EW splittings and EVA, that there is not yet a generically applicable

set of cuts to construct the fiducial phase space for VBF topologies in a completely process-

independent way. For certain classes of processes, we outlined strategies to identify or enhance

the regions dominated by EW splittings, but we stress that for some cases, the validation

against full matrix calculations remains unavoidable. The key findings of this work can

be summarized as follows:

• The processes mediated by longitudinal vector bosons are described better within

the realm of the EVA than transverse and mixed transverse-longitudinal modes due

to the strong dependence of the transverse structure functions on the scale p⊥,max,

which modifies the shape of differential distributions over the full spectrum. The best

agreement can typically be achieved for dynamical scales around
√

ŝ/4.

• The dependence on lower Bjorken cutoff xmin is obviously most pronounced in the

low-invariant mass regime, where the xi are small for each beam. The naive choice of

this variable corresponding to the minimum energy fraction needed to radiate a massive
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vector boson V off a single beam, xmin = 2mV /ECM, turns out not to be necessarily

optimal for all processes.

• A universal approach to enhancing the reliability of the EVA is to impose a lower bound

on the invariant mass of the final state. A sensible cutoff should consider not only the

masses of the produced particles but also the collision energy, e.g. the ratio of these

quantities. Similarly, the presence of a heavy final state tends to improve the reliability

of the EVA.

• The kinematics of the final states produced via vector boson fusion in the EVA does

not fully match that from the complete matrix element calculation, so all kinematic

cuts must be applied with care. Notably, the EVA tends to describe the kinematics of

the particle subleading in p⊥ more accurately than that of the leading one. The careful

selection of kinematic cuts is even more critical in hadron-hadron collisions where there

is a chain of two different collinear splitting regimes per leg.

• E.g. by the excellent agreement for top pair processes, it is apparent that interferences

between amplitudes for hard processes initiated by differently polarized vector bosons

at the same leg (which are included in the full process but excluded by definition in the

factorized EVA) only play a minor role.

Again, the findings in this study will supposedly help to find phase space regions which

can be more safely described by EVA. As a next step, we will take all EW splittings within

the full SM into account, not only those to EW vector bosons but also those of higher order,

in a full DGLAP evolution. This study lays the foundation for how to take care of kinematics

phase space regions for processes differently combined by EW vector boson polarizations

and to carefully choose kinematics cuts, regimes of splitting kinematics and factorization

scales to best compare to full processes. We stress that for such studies reliable full matrix

element descriptions with stable high-multiplicity Monte Carlo phase space integrations

at leading and potentially next-to-leading order are indispensable. Nevertheless, for the

cases where good agreement can be achieved between the full matrix elements and EVA,

the latter can be used as a surrogate which would e.g. enable scans over BSM parameter

space in a much faster manner.
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A Technical details on EVA in WHIZARD

As mentioned in section 2.1, the new Whizard implementation of the EVA will be made

available in the upcoming Whizard release 3.1.7. Besides the technical information mentioned

in section 2.1 on this implementation, more details can be found in the Whizard manual,

section 5.5.11. Below, we present an example Sindarin file to run Whizard for e+µ− →
HH + X in the EVA framework:

model = SM

sqrts = 10 TeV

beams = "e+", "mu-" => ewa

$ewa_mode = "default" #Other options: "log", "log_pt", "legacy"

ewa_x_min = 2*mW/sqrts

scale = eval 0.25*M [H, H] #Scale corresponding to sqrt(s-hat)/4

process procEWA = "W+", "W-" => H, H

integrate (procEWA)
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