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Abstract At finite lattice spacing, Lagrangian and Hamil-
tonian predictions differ due to discretization effects. In the
Hamiltonian limit, i.e. at vanishing temporal lattice spacing
a;, the path integral approach in the Lagrangian formalism
reproduces the results of the Hamiltonian theory. In this work,
we numerically calculate the Hamiltonian limit of a U (1)
gauge theory in (2 4+ 1) dimensions. This is achieved by
Monte Carlo simulations in the Lagrangian formalism with
lattices that are anisotropic in the time direction. For each
ensemble, we determine the ratio between the temporal and
spatial scale with the static quark potential and extrapolate
to a; — 0. Our results are compared with the data from
Hamiltonian simulations at small volumes, showing agree-
ment within < 2¢. These results can be used to match the
two formalisms.

1 Introduction

Gauge theories are fundamental in our understanding of force
mediation in the standard model (SM) of particle physics. Of
the three forces unified in the SM, the strong force or quan-
tum chromodynamics (QCD) is special because it is strongly
coupled in the low energy regime. Therefore, it requires a
non-perturbative treatment, which is possible in the lattice
regularisation of gauge theories pioneered by Wilson [1].
While primarily applied to QCD, the lattice regularisation is
applicable to any gauge theory.
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In practice, any computation in a lattice gauge theory
requires one to choose either the path integral formalism
enabling mainly Monte Carlo (MC) simulations of such the-
ories, or the Hamiltonian formalism. The basis for the former
has been provided already by Wilson, for the latter the corre-
sponding Hamiltonian has been derived not much later based
on general arguments in Ref. [2] by Kogut and Susskind,
while Creutz derived the same expression for the Hamilto-
nian by explicitly constructing the transfer matrix [3]. The
Hamiltonian formulation has recently attracted fresh atten-
tion since it represents the natural formulation one would
use on a future digital quantum computer. Compared to the
MC approach, Hamiltonian simulations have the advantage
that for instance systems at finite density or real time evo-
lution can be studied. However, the development state of
current quantum computing devices limits such simulations
to rather small systems. Alternatively, tensor network states
can be used, which see rapid development as well [4—8]. Still,
Hamiltonian simulations are currently restricted to systems
with a relatively small number of degrees of freedom.

Ideas to nevertheless usefully apply Hamiltonian simu-
lations already now include a clever combination with MC
simulations, profiting from the respective strengths simulta-
neously [9-15]. One such idea has been brought forward in
Ref. [9] and further investigated in Ref. [10]. It requires the
matching of Hamiltonian and Lagrangian simulations: both
formulations encompass the bare gauge coupling as a single
parameter, which is directly related to the scale of the cor-
responding theory. However, being a bare parameter implies
that simply using the same numerical value for the coupling
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will, at least at finite lattice spacing, likely lead to sizeable
artefacts. An alternative is to connect the MC simulations
with the Hamiltonian ones by taking the continuum limit in
time direction, as the construction by Creutz suggests. This
continuum limit in time direction has been studied previously
in Refs. [16-18] based on the so-called anisotropic formu-
lation of lattice gauge theories [19]. Most relevant for our
work here is Ref. [16], where the authors study a U(1) the-
ory using the anisotropic Wilson plaquette action. They take
the temporal continuum limit keeping the §-value fixed. They
compare to Green’s Function Monte Carlo results which they
comment, however, to be unreliable due to strong dependence
on the trial wave function.

In this paper we will go beyond Refs. [16,17] in two
ways: first, we will take the continuum limit in time direc-
tion in compact pure U(l) gauge theory while keeping
a suitable spatial length fixed, which we determine non-
perturbatively. Second, we directly compare our extrapolated
results from MC simulations with Hamiltonian simulations,
finding agreement within 2¢. It is conceptually straightfor-
ward to extend this to non-Abelian lattice gauge theories.
The continuum limit a; — 0 is not considered in this work,
we rather want to compare the two formulations at fixed a;.
We reported on a first stage of this work in Ref. [20].

The paper is organised as follows: First, we give an
overview of the theory in Sect. 2. Then we introduce the
setup that we used for simulation in Sect. 3, and go into
detail on our determination of the temporal continuum limit
in Sect. 3.1.2. We present our results in Sect. 4, discuss them
in Sect. 5, and conclude in Sect. 6.

2 Theoretical background
2.1 Lagrangian formulation
On the Lagrangian side, we use the anisotropic Wilson
action [19,21], which reduces to the standard Wilson action

for the special value of the anisotropy parameter &inpyt = 1.
It reads:

Sw = L 3 Re (1 — Py@)
%-mput 5.
+BEmpu Y Re (1 — Py (X)), ()

X,i>j

where Py, (X) is the so-called plaquette operator:
Py = U@ Uy + Q) U E + D) U (@) . @)

&input 18 the bare anisotropy and 8 = 1/ g(z) the inverse squared
coupling constant. The gauge links U, (X) are elements of
U(1) and can, hence, be parametrised as U = e'¢ with a
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real-valued angle ¢. X is a point in our 2 + 1 dimensional
lattice and the directions n € {0, 1, 2}. MC simulations of
the theory described by the action Sy can be performed using
standard Markov Chain MC methods, such as the Metropolis
algorithm. More details on the algorithm will be given below.

The renormalised anisotropy &.en represents the ratio of
temporal to spatial lattice spacing a; /a; . &ren can be estimated
from MC simulations in different ways, with the idea always
being to compute one physical observable O in units of both
a; and ag. Once a; O and ag; O have been determined, the
renormalised anisotropy is estimated as

o = 20 & 3)
ren — 4,0 = as-

In this paper we use two different choices for such an observ-
able O, both based on the so-called static quark potential
V, see for instance Ref. [16]. The static quark potential can
be determined from planar Wilson loops W (a,.x, a,y) with
extents a,x and a,y. Here, a, represents the lattice spacing
in direction p, which can be one of the spatial directions or
the time direction. Since we are working in Euclidean space-
time, the expectation values of Wilson loops decay exponen-
tially in spatial as well as temporal directions. By forming
purely spatial Wilson loops W, and spatial-temporal Wilson
loops Wy, one obtains

Wss(x/ag, (y + 1) /ay) _ B
Welcae yjas  — OPasVs(x/as)),

. Wux/as, (1 + Dfa) B
O W tjay | CPCaVix/an).

y—)OO

“

Again, due to the fact that we are working in Euclidean space-
time, we have at equal distance V; = Vj up to a constant shift
and, therefore, the anisotropy can be determined from a fit of

1
a;Vi(x/as) +c 5

ren

asVs(x/as) =

to the data for the two potentials as a function of distance.
The fit parameter c represents the difference in self-energy in
Vi and V; and arises from the fact that the potentials are mea-
sured along different axes. The self energy depends on the
direction in which the quarks propagate [22]. In the above
determination, the quarks propagate in the temporal direc-
tion in the measurement of the temporal potential, and prop-
agate in the spatial direction in the measurement of the spatial
potential. We refer to this procedure as the one based on the
“normal” potential.

The second way to determine the potential is the one also
used by Ref. [23], and we refer to this method as the one based
on the “sideways” potential. In this procedure the potential is
determined varying the first argument in the corresponding
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Wilson loops as follows

m Ws((x + 1) /as, y/as)
Wis(x/as, y/as)
W ((x + 1) /a5, t/ar)

Jim Wer Cc/as. 1/ar) = exp(—asVi(t/ar)).

= exp(—a; Vs(y/ay)),

X—> 00

(6)

Now the argument is that if the potentials are equal, the dis-
tances in physical units must be equal as well. Thus, the
anisotropy can be determined from

Vi(y/as) = Vi(t/ay)) = y=t =
éren:@:& (7)

agt dg

Since we rarely have spatial and temporal extents such that
Vs and V; are equal, we rescale the y-dependence of V; until
the two curves V;(§eny/ag) and V; (¢ /a,) agree within errors,
which gives the renormalised anisotropy.

In practice, we start by interpolating linearly between any
two neighbouring points 7 /a; and (¢t + 1)/a; (excluding the
smallest 7-value) of the potential V;. Next, we determine for
each value of Vj the corresponding scaling factor n(y/a;)
by matching the value of V(y/as) to the appropriate linear
interpolation. Finally, we obtain &., by averaging over all
n(y/as).

Using the determinations of the Wilson loop above, the
quarks propagate in the spatial direction in the measure-
ment of both the spatial and temporal potential. Therefore
the potentials have the same self energy effects.

2.1.1 Sommer parameter ro and setting the scale
The static potential, which in 2 4 1 dimensions has the form
V@r)=a+or+dIn(r). (®)

can be used to define a length scale rg, the so-called Sommer
parameter [24], as follows

d
ﬂavwmﬂn=c )

in units of the spatial lattice spacing a,. In QCD, the physical
value of rq is known to be around 0.5 fm for ¢ = 1.65, but,
in the U(1) theory at hand its physical value is unknown.
However, this is not relevant for our procedure, as we only
need an observable in units of the spatial lattice spacing with
a well defined continuum limit. We use a value of ¢ = 1.65,
because it turns out to be in the linear region of the potential
and we stick to the notation rg/a;. Once the potentials are
parametrised using the form Eq. (8), the corresponding value
of ro/as can be determined. It allows one to fix the spatial
lattice spacing: if in two simulations with parameters (3, &)

and (B’, £') the same ro/a; is measured within uncertainties,
both simulations exhibit the same a;.

In practice, we determine rg by fitting the potential form
Eq. (8) to the data. Then, we take the derivative analytically
and express rg/a; as follows

1o d d\> ¢
—=—-—+ (—) - —, (10)

ag 20 20 o

with the parameters o and d from Eq. (8) and ¢ from Eq. (9).
2.2 Hamiltonian

The Kogut—Susskind Hamiltonian for the pure U(1) lattice
gauge theory in (2+1) dimensions is given by [2]

A 1 A e
Hiot = Z ( 2 2) ey Z (P + PF> :
r

(1)

where a is the lattice spacing and g is the bare coupling.
The operator L:T;, . represents the dimensionless electric field
on the link starting from the lattice site at coordinates 7 =
(rl, rz) in the dlrectlon pL € {1, 2}. The plaquette operator
P = U, 1U,+1 2U~+2 1U~ is defined as the product of four
unitary link operators U; 7 u» Where the notation 7 +1 = (r1 +
1,rp) and ¥ + 2 = (r{, r, + 1) indicates the neighbouring
sites in the 1 and 2 directions, respectively. The link operator
is defined as

Or.,0 = €54, (12)

where f_\';, u 18 the discretized vector field in the compact for-
mulation, i.e., the values of agf{;, . are constrained to lie
within the interval [0, 27r). Note that l};, w4 18 a unitary oper-
ator. The commutation relations between the electric field
operator E;,U and the link operator U " read

(B, U 1= 5, 280 13
(E7,. 0;/4‘] = —37’;,3““0},’”. (14)

The gauge-invariant states satisfy Gauss’s law at every site
;:’

[ ) (EM - E?—u,u) - Q?} |®) =0, (15)
n=1.2

where Q; are the static charges. Instead of considering the
full Hilbert space and enforcing Gauss’s law, we formulate
the theory directly on the gauge-invariant subspace, by using
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the Gauss’s law constraints to eliminate certain degrees of
freedom [25-29].

For a numerical implementation of the Hamiltonian, the
gauge degrees of freedom must be truncated to a finite dimen-
sion because the electric field values are unbounded, result-
ing in an infinite-dimensional Hilbert space for these degrees
of freedom. The continuous U (1) gauge group can be dis-
cretized in the electric basis to the group of integers Zy; 1.
The integer / sets the truncation level, i.e., the discretized
gauge fields are constrained to integer values within the range
[—1, ] [25]. The total Hilbert space dimension is (2/ + DY,
where N is the number of gauge fields.

The eigenstates ey, of the electric field operator E;, P
form a basis,

Ei/t |e7 ) = €7 i lerp)  erp € =111, (16)

on which the link operators l};y u and l}; , actas raising and
lowering operators, respectively,

Urpuler ) = lery +1). UL, leru) = ler —1). (D)

When discretizing a gauge theory, one needs to give up either
unitarity or the exact commutation relations between the elec-
tric field and link operators in Egs. (13) and (14). In our case,
the commutation relations are preserved for the truncated
operators, but unitarity is lost, 0?'11 Uz, # 1. This can be
seen from the matrix representation of the link operators [27],

0 0 0 1 0
. 1 0 "
U , U'— 0 0
0 0 0 1
0 1 0 0 0
(18)

However, unitarity is recovered in the limit of [ — oo0.
The resulting errors due to the finite truncation parameter
[ have been investigated in Refs. [30,31]. Alternative meth-
ods for defining the electric field and link operators have been
explored in Refs. [32-35].

In order to analytically derive the Kogut—Susskind Hamil-
tonian in Eq. (11) from the Wilson action in Eq. (1), one needs
to employ the transfer matrix method [3]. This derivation has
been performed for various quantum field theories in arbi-
trary dimensions, for example, for studying transport coeffi-
cients [36] and the topological 6-term of (non)Abelian lattice
gauge theories in (3+1) dimensions [28]. Since the Wilson
action is defined on a (d + 1)-dimensional space-time lat-
tice and the Kogut—Susskind Hamiltonian is defined on a
d-dimensional spatial lattice, the limit of a; — 0 has to be
taken when deriving Eq. (11) from Eq. (1) using the transfer
matrix formalism [3].

@ Springer

The parameters of the resulting Kogut—Susskind Hamilto-
nian generally differ from the original parameters of the Wil-
son action, due to renormalization effects. Thus, when com-
bining Hamiltonian and Lagrangian lattice methods, these
parameters need to be matched.

3 Methods
3.1 Lagrangian

We use two different Markov Chain Monte Carlo algorithms
to simulate the lattice action Eq. (1). We use periodic bound-
ary conditions in all directions. For values of &jppye > 1/4
we use the standard Metropolis algorithm, where each link
is updated 10 times per sweep. We discard an appropriate
amount of sweeps to account for thermalisation, and only
analyse every 50th or every 100th configuration to account
for autocorrelation effects. For anisotropies smaller than
&input = 1/4, we encounter issues with critical slowing down
and, therefore, use a combination of heatbath and overrelax-
ation algorithms, with ten heatbath steps per overrelaxation
step. Only in the case of &jppue = 0.18, five heatbath steps are
followed by five overrelaxation steps.

Details of the algorithm can be found in Ref. [37] (see in
particular the arXiv version).

We provide our codes for the generation of the gauge
ensembles and for the analysis of the ensembles in [38]!.
For the analysis, we have used the library [39].

When performing the limit £ — 0, we keep the spatial
volume (a;L)? fixed and scale the time extent T by éiﬁ;}ut
in order to keep both the physical spatial and time extents
constant.

In total, we have generated 82 ensembles with L = 16
with B-values in the range (1.39, 1.75) and &jnpyc-values
1,4/5,2/3,1/2,2/5,1/3,1/4,1/5,0.18. Even smaller val-
ues of the anisotropy turned out to be unrealistic due to too
long equilibration and autocorrelation times. A list of all
ensembles is compiled in the Appendix in Table 8 together
with relevant parameter values, algorithm, autocorrelation
times, and number of configurations included in the analy-
sis. The bootstrap method is used for the statistical analysis
with 500 bootstrap samples. Residual autocorrelation times
are taken into account as discussed in Appendix A.

In principle, one would perform the stochastic simula-
tions in 2 4 1 dimensions in the very same spatial volume
used also in the Hamiltonian simulations. However, this tar-
get volume is so small that the static potential in the relevant
region of distances, ro/as and the renormalised anisotropy
cannot be determined reliably. Therefore, a two-step proce-

! Please see the README-files for more information on how to gen-
erate the ensembles and how to replicate the analysis.
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dure is required in which rg/ag and the parameter-values for
the temporal continuum limit are determined in large spa-
tial volume. This is followed by dedicated simulations with
L = 3 to match the volume of the Hamiltonian simulations.

In addition to the L = 16 simulations, we have also gener-
ated 54 dedicated L = 3 ensembles, which exactly match the
spatial volume used in the Hamiltonian simulations. These
are listed in the Appendix in Table 9. The time extent T for
given &inpue Was chosen equal to the large volume simulations
at the same &inpy.

Further, the range of 8-values we can use in practice for the
matching is restricted: for too small S-values ay is too large to
reliably determine the static potential from Lagrangian simu-
lations. On the other hand, for too large B-values, the Hamil-
tonian simulations we are using are suffering from significant
truncation errors. This leaves us currently with a window of
B-values in the limit § — 0 between 8§ = 1.35and 8 = 1.5.

3.1.1 Determining ro and &ep,

Once we have determined the Wilson loops, we extract
the potential by computing the ratios Egs. (4) and (6), and
determine the values of the potential using fits to effective
masses. In order to account for ambiguities in the choice of
the fit range, we perform a model averaging procedure, see
Appendix B. This allows us to compute statistical or com-
bined statistical and systematic errors for each value of the
potential. From the potential we determine &, and ro/a;
from different ranges of distances in the intervals I¢, and
I, respectively. The various choices can be combined in
different ways, which we use to define analysis chains, all of
which are compiled in Table 1. The most important differ-
ence between the analysis chains is whether they include a
systematic error (label ET) or not (label ES).

3.1.2 Taking the temporal continuum limit

For the generation of ensembles we start with isotropic sim-
ulations corresponding t0 & = &ippye = 1 at a given B-value
B = Biso and determine ro/as(Biso) = riso. Then, for all
&input-values smaller than one, we perform simulations for
several B-values in the region of ry/ag-values close to rig,
until one ensemble reproduces ris, within errors. We denote
the corresponding B-parameter with 8 = PBmaich and the
plaquette-value with P = Ppach, Which are the ones we
use for the continuum extrapolation. Note that Bpacn and
Pratch depend on the particular analysis chain.

By definition, the value of Bnawch has no statistical uncer-
tainty, because it is the input value to the simulation of the
corresponding matching ensemble. This is unrealistic and,
as it turns out, also impractical for the remaining analysis.
Thus, we perform a linear bootstrap fit to the data of ro/a;
as function of B at fixed &jnput, and use the bootstrap error

from the fit as an estimate for the statistical uncertainty of
Bmatch- In the fit we only include ensembles with ry/a; dif-
fering from rig, by less than 0.3. &, is taken directly from
the matching ensemble, and it is also determined separately
for each analysis chain. Ppygech, on the other hand, has only
statistical uncertainties.

In principle, there is also a systematic effect from choos-
ing the matching ensemble: there might be two simulation
points with rg/ag-values equally close within errors to rigg.
However, in practice this appeared to be irrelevant, since in
particular &y is basically independent of 8 at fixed &jnpu;.

In Fig. 1 we show the spatial-spatial and spatial-temporal
plaquette as a function of B on the left-hand side and the
renormalized anisotropy &g, as a function of § on the right-
hand side, both at fixed &npye = 0.8, with Biso = 1.7 and
L = 16. We see that the plaquette behaves linearly with g,
whereas &, does not depend on 8 within errors.

In selecting the matching B for every &jnput, we can define a
trajectory of constant spatial lattice spacing for each analysis
chain.

For every point along these trajectories we then perform
dedicated L = 3 simulations to control finite volume effects.
We apply two different procedures for the finite size correc-
tion: either we directly extrapolate the small volume results
to the continuum limit, or we first extrapolate the ratio

P(L=3,&%)

2 _ P =5,G0n)
R(%_ren) - P(L =16, érzen)

(19)

and combine them with the extrapolated value of P(L = 16)
to correct for finite size effects in the continuum limit. We
call the two methods “direct” and “ratio”, respectively.

The temporal continuum extrapolation of the spatial pla-
quette and B is then performed by fitting polynomials
P, (£2,) of degree n,, in &2 to the data, equivalent to an
extrapolation in atz, which is expected for a pure gauge theory.
The extrapolations are performed with different fit ranges in
&ren, and with different degrees n,. In particular, we have
two sets of continuum extrapolations denoted as cA and cB,
respectively, which mainly differ by the inclusion or exclu-
sion of &jppye = 0.18 in cA and cB, respectively. The two
different sets of fits are compiled in Table 2.

For each of the eight analysis chains, we perform all eight
fits listed in Table 2, leading to 64 continuum limits, for the
pair (B8, P).

The 64 pairs fall into four sets of equal size corresponding
to the extrapolation set—analysis chain combinations (cA-
ES), (cB-ES), (cA-ET) and (cB-ET), respectively.

We extract the statistical error of the final results of the
sets cA and cB from the standard deviation of the bootstrap
distribution of the unweighted average over all pairs in (cA-
ES) and (cB-ES), respectively. Likewise, the combination of
statistical and systematic error is obtained from (cA-ET) and
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Table 1 Summary of the different analysis chains. The potential type
refers to those defined in Sect. 2.1. The intervals I, and I, indicate
the range of distances in units of the spatial lattice spacing a; used to
determine &, and ro/ay, respectively. For the different error determi-

nations see Appendix B. The systematic error arises from uncertainty
in choosing the fit range for the effective masses. In the following, we
refer to the different analysis chains with the labels in the first column
(see text)

Label Potential type I, I, Included error
NI1ES Normal [2,7] [1,7] Statistical only
S1ES Sideways [2,7] [1,7] Statistical only
NOES Normal [2, 8] [1, 8] Statistical only
SOES Sideways [2, 8] [1, 8] Statistical only
NIET Normal [2,7] [1,7] Statistical and systematic
SIET Sideways [2,7] [1,7] Statistical and systematic
NOET Normal [2, 8] [1, 8] Statistical and systematic
SOET Sideways 2, 8] [1, 8] Statistical and systematic
Q - -
S 5 T
o
e.0]
£= _ -
@]
2 ¢ i
@ .
= S (0]
< | o spatial g
_ o
-~ | & temporal w o -
= T T
o ﬁ 1
= 1
N 0]
= |
e
o = 1
s =] T
< 1.60 1.62 1.64 1.66 1.68 1.70 1.60 1.62 1.64 1.66 1.68 1.70

B

Fig. 1 Spatial and temporal plaquette (left panel) and renormalised
anisotropy (right panel) as functions of 8 for &;py = 0.8 and Biso = 1.7.
&pen 18 determined from the analysis chain NOET, see Table 1. The solid

Table 2 Two sets of extrapolations cA and cB used to calculate a com-
bined continuum limit of the fits. The same fit ranges are used for all
trajectories and for all fits to the continuum limit — for 8, the plaquettes

g

lines represent fits to the data, and the shaded regions the corresponding
bootstrap errors. The fits are linear in § for the plaquette, and a constant

for &ren

and for R. We list the anisotropies that are included in the polynomial
fits and the degrees of the polynomials

cA cB

&Einput-values np &input-values np
0.18,1/5,1/4 1 1/5,1/4,1/3 1
0.18,1/5,1/4,1/3 1 1/5,1/4,1/3,2/5 1
0.18,1/5,1/4,1/3,2/5 2 1/5,1/4,1/3,2/5,1/2 2
0.18,1/5,1/4,1/3,2/5,1/2 2 1/5,1/4,1/3,2/5,1/2,2/3 2
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(cB-ET). Additionally, we include for (cA-ET) and (cB-ET)
separately the spread of the different continuum results as
follows

1 2
2 2
Gspread, tot — unweighted + N Z (V«unweighted - Mi) (20)

1

in the corresponding systematic uncertainty. Here,
(1, 0 )unweighted TEpresents the mean and standard deviation
from the combined bootstrap samples, and p; the mean val-
ues of the single fits. We fold this systematic uncertainty into
our bootstrap distribution of (cA-ET) and (cB-ET), respec-
tively, by an appropriate rescaling, analogous to what is
described in Appendix A. A flow chart of this procedure
is given in Fig. 11.

To summarise this technical discussion: the procedure
described above leaves us with a purely statistical error oy,
a combined error o¢omp from the statistical error and the sys-
tematic errors from choosing the plateau points, and a com-
bination of ocomp and the error due to the spread, ogpreadtot-
In the end we can isolate the single errors using the relations
Jszlaread = aszpread,tot - O'czcmb and alazot = Gczomb - Gsztat and
eventually quote the errors ogpread, Opot and ogar. As final
temporal continuum results for the observables g, P(L =
16), P(L = 3) and R, we quote the mean values from the
unweighted averages over (cA-ET) and (cB-ET).

3.2 Hamiltonian

As discussed in Sect. 2.2, we use the Gauss’s law to eliminate
some gauge degrees of freedom, thereby restricting the theory
to the gauge-invariant space. More specifically, we treat the
Gauss’s law in Eq. (15) as a set of constraints on the electric
operators, and solve this set of equations over the electric
operators. While there are N Gauss’s law constraints, they
are not independent, since there is a conservation of charges,
which, in the pure gauge case, means the constraints sum to
zero. Therefore, there are only N — | independent constraints,
which allows us to express N — 1 arbitrary electric field
operators, i.e., effectively eliminating them, in terms of the
remaining ones. Since the eliminated electric fields do not
contribute directly to the dynamics, their corresponding link
operators become identities. For a two-dimensional L x L
square lattice, where N = L2, L? — 1 out of the 2L? gauge
degrees of freedom are eliminated. Thus, the Hamiltonian
is expressed in terms of the L> + 1 remaining gauge fields.
This reduces the number of basis states from (2] + 1)2L2 to
21+ 1)L2+1 , which in practice, alleviates the computational
costs significantly.

Here we perform exact diagonalization of a 3 x 3 lattice
with periodic boundary conditions to solve for the ground
state |¢). Then, we evaluate the plaquette expectation value,

defined by

(P) = <‘~I’o

% Z (13; + ﬁ;) \1/0>, 21)
Z

where V is the number of plaquettes in the lattice. Note that
we set the lattice spacing a = 1 throughout our simulations.
Truncating the electric field on the dynamical links to a range
of [—1, ] can in principle lead to configurations where the
links that have been eliminated implicitly carry an electric
flux exceeding this range. These would violate discrete sym-
metries of the Hamiltonian and are unphysical. To ensure
that our results are not affected by such effects, the simula-
tions are carried out over a range of 1/g in (0, 10] and for
I € {1, 2,3, 4}. We find that the values of (PP) obtained for
I = 2,3, 4 agree with each other up to 1/¢g? = 1.5, and are
thus not affected by truncation artifacts. Beyond these values
of the inverse coupling, the values start to deviate for dif-
ferent / values, indicating that the simulations are no longer
reliable.

3.3 Comparing Lagrangian and Hamiltonian simulations

We compare the Lagrangian results, obtained with the meth-
odsin Sect. 3.1 and the Hamiltonian results, obtained with the
methods in Sect. 3.2, in the two-dimensional Bmatch-Pmatch-
plane. We use confidence ellipses in addition to error bars
to display the errors of our measurements. The confidence
ellipses are constructed from the errors of the continuum limit
results of Bmatch and Pmatch and the correlation between them.
To quantify the deviation between Lagrangian and Hamilto-
nianresults, we scale the confidence ellipse until it is touching
the interpolation of the Hamiltonian result. Then we convert
the radius of this touching ellipse into the probability that a
point from the Lagrangian distribution is within the ellipse
and thus not a match to the Hamiltonian, i.e. the probability
that the Hamiltonian and Lagrangian measurements do not
match. We convert the mismatch probability into the prob-
abilities of standard deviations of the normal distribution.
The detailed formula for the ellipses and the probabilities
are given in Appendix C.

4 Results

In this section, we mainly present results of the stochastic
simulations. The results from the Hamiltonian simulations
are only required at the end when we compare it with the
results in the temporal continuum limit.

In Fig.2, we exemplarily show three equilibration histo-
ries of the plaquette: we plot P — (P) as a function of the
number of Monte Carlo steps, where (P) is computed after
equilibrium is reached. Each step corresponds to a complete
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Fig. 2 Thermalisation of the plaquette for the input anisotropies
Einpue € {0.18,1/5,1}. All data were generated by the heatbath-
overrelaxation algorithm, and the ensembles have the lattice sizes

L? x T = 16> x 88,80, 16 ~ 162 x 16/&inpur. We show the dif-
ference between the measurement and the mean value of the plaquette

Fig. 3 Integrated
autocorrelation time of the
plaquette for different input
anisotropies. B = 1.7 is kept
constant, the red squares
correspond to points with 100
sweeps between measurements,
the black circles to 50 sweeps
between measurements. The
dashed line shows the ideal case
Tint = 0.5. The inset is a
close-up of the lower right
region of the larger figure. All
simulations were done with the
Metropolis-algorithm

0
N

20

15

Tint

10

2.0

Tint

1.0

0.5

# sweeps

® 50
® 100

0.9 1.0

sweep over the lattice. The main difference between the three
panels is the value of &jnpy, which is &inpye = 0.18 in the left-
most panel, &npye = 0.2 in the middle, and &ippy = 1 in the
rightmost panel. The ensembles have constant ay, leading to
different 8. The values of Bmaich Were taken from the analysis
chain NOET and Biso = 1.65. For &jppye = 1, thermalisation
is achieved almost instantly, for &,pue = 1/5 it takes about
2000 Monte Carlo steps, and for &ippye = 0.18, thermali-
sation is only achieved after about 25000 steps. Also, one
observes long-range fluctuations at the smallest value of the
anisotropy, hinting at larger autocorrelation times.
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In the following, we show results exemplarily for the anal-
ysis chain NOET. We show the integrated autocorrelation
times for constant § and simulation with the Metropolis-
algorithm in Fig. 3, and we observe that the autocorrelation
increases roughly exponentially with decreasing &jppue. For
anisotropies that are close to 1, we see an ideal autocorre-
lation time with 7, ~ 0.5. For decreasing &inpu, the error
on the integrated autocorrelation time grows larger, but also
Tine itself grows. For &ypue = 1/4, the autocorrelation grows
to Tiny = 17.7(63). This prevents us from simulating even
smaller anisotropies with the Metropolis-algorithm.
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Fig. 4 The matching points for b~
analysis chain NOET. The upper o § input =
points correspond to the © —o— 1
matching points for Biso = 1.7, ~ T
the lower ones to Biso = 1.65 B 4/ 5
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In Fig. 4, we illustrate the tuning procedure to determine
Brmatch at fixed ro/as = rigo for two values of Big, = 1.65
and Biso = 1.7. We plot ro/ay of the matching ensemble as a
function of B, where the different symbols indicate different
values of &input, as indicated in the figure legend. The value
of riso determined at Bigo is shown as the black circle with
statistical uncertainty, and — to guide the eye — also by the
dashed horizontal line with error band.

In Fig. 5, we show the renormalized anisotropy as a func-
tion of the input anisotropy at the matching points, i.e. at
fixed lattice spacing, for the same values of Biso. The diag-
onal line shows the line of &input = &ren, and we see that in
most cases, &ren is smaller than &inpue. However the deviation
is small, the maximum deviation is 25%, and the median
deviation is 15%. We observe only small differences in &y
when comparing the two Siso-values.

For convenience, we compile the results in Table 3 for
Biso = 1.7 and in Table 4 for Bjso = 1.65. For all our &jppuc
values we list the corresponding values of &ren, Pmatch, and
Bmatch- These results are again exemplary for all the different
analysis chains.

The next step in our analysis is the continuum limit in
time direction, for which we show examples in Fig.6 for
Bmatch and Ppaeenh With L = 16 and Sjso = 1.7 as functions
of £2,,, corresponding to an extrapolation in the cA-ET set
with &ippue € {0.18,1/5,1/4} and n, = 1 (see Table 2, i.e.
extrapolations linear in Sr%n). The analogous extrapolations
with L = 3 for P and the ratio R Eq. (19) are shown in Fig. 7.
In both figures, the best fits are represented by the solid lines
and its statistical uncertainties by the shaded bands. The red
point marks the continuum limit.

Taking into account now all analysis chains and the dif-
ferent sets of extrapolations leaves us with four sets of pairs
of plaquette- and S-values in the temporal continuum limit.

1.5 1.6 1.7

ﬁiso - +
1—— 1.65
—a— 1.70

1.0

gren

0.2
%

0.2 0.4 0.6 0.8 1.0
ginput

Fig. 5 &., at the matching points for analysis chain NOET. The red
squares correspond to the matching points for Bis, = 1.7, the black
circles to Biso = 1.65. The diagonal line shows the line of &ren = &jnpu

These pairs are visualised in Fig.8 for the set cA-ET. The
results of the Hamiltonian simulations are represented by the
(black) upside-down triangles, connected by solid (black)
lines to guide the eye. The continuum limits for L = 16 are
represented by the green circles. The results of the extrapo-
lation of the plaquette measured at L = 3 are shown as red
diamonds, and the results obtained by extrapolating R(Er%n)
and multiplying with the L = 16 result are shown as blue tri-
angles. The open (filled) symbols correspond to Siso = 1.65
(1.70). The error bars show the combination of the statisti-
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Table 3 Results for Biso = 1.7 with ro/as; matched to riso = 3.462(40). The data are taken from the NOET analysis chain

sinput IBmatch é:ren Praeh (L = 16) Prach (L = 3)
4/5 1.6400(79) 0.768(23) 0.714953(69) 0.73809(39)
2/3 1.6075(82) 0.641(26) 0.69608(16) 0.71914(38)
12 1.5550(84) 0.437(15) 0.671986(85) 0.69449(33)
2/5 1.5250(86) 0.356(17) 0.66057(15) 0.68326(33)
1/3 1.5000(96) 0.288(17) 0.65218(17) 0.67443(27)
1/4 1.490(15) 0.2056(75) 0.64999(20) 0.67088(73)
1/5 1.4600(90) 0.1653(69) 0.64151(17) 0.66374(20)
0.18 1.4500(91) 0.1513(50) 0.639007(46) 0.66121(31)

Table 4 Results for Biso = 1.65 with ro/a; matched to rigo = 3.231(52). The data are taken from the NOET analysis chain

éfinput ﬁmatch gren Prach (L = 16) Prach (L = 3)
4/5 1.600(10) 0.770(55) 0.70256(17) 0.72695(39)
2/3 1.565(11) 0.614(32) 0.68209(18) 0.70697(41)
172 1.490(11) 0.442(28) 0.64864(14) 0.67443(36)
2/5 1.480(14) 0.340(17) 0.644819(91) 0.66879(33)
1/3 1.450(10) 0.280(13) 0.63424(11) 0.65885(29)
1/4 1.420(14) 0.2072(86) 0.62530(16) 0.64942(69)
1/5 1.420(10) 0.1610(71) 0.62759(21) 0.65129(20)
0.18 1.405(10) 0.1474(36) 0.622708(27) 0.64660(40)
o
10
g 1 —
=)
3 | 2
A g =
E E
Q Q
o™
©‘ i
o ;DH j
|/ —
g i o Pmatch o Bmatch
o A limit A limit
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.00 0.01 0.02 0.03 0.04 0.05 0.06
2 2
ren ren

Fig. 6 The temporal continuum limit of Ppaech and Bmatch- The points are the result of analysis chain NOET. The plaquette is measured at L = 16.
The fit is a linear fit including all three points corresponding to &ypye = (0.18, 1/5,1/4) and Biso = 1.7
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Fig. 7 The temporal continuum limit of Pp,ech and R(Srzen). The points are the result of analysis chain NOET. The plaquette is measured at L = 3.
The fit is a linear fit including all three points. &inpye = (0.18, 1/5, 1/4) and Biso = 1.7

cal error and the systematic error from the calculation of the
potential. First, we observe that the L = 16 results without
finite size corrections do not match the Hamiltonian results.
However, once L = 3 is considered the MC results are much
closer to the Hamiltonian results.

Finally, we combine the continuum limits for all differ-
ent sets of parameters and analysis chains as discussed in
Sect. 3.1.2. The result of analysis set cA and the direct extrap-
olation of the small volume result is shown in Fig.9. The
black triangles are the combined / = 3 and / = 4 Hamilto-
nian results, joined by a linear interpolation. The blue squares
represent the Lagrangian results at L = 16 and the red cir-
cles the results at L = 3. The open (filled) symbols corre-
spond to Biso = 1.65 (1.70). The left (open) points corre-
spond to Biso = 1.65 and show a residual 1.49¢ deviation
from the Hamiltonian curve. For the right (filled) points with
Biso = 1.70 the deviation amounts to 1.88c.

The ellipse in Fig. 9 indicates a lower correlation between
B and P than one might expect from the spread of the points
in Fig. 8. This is because the points in Fig. 8 correspond to fits
with the same parameters for P and 3, but in the final result,
also the correlations between fits with different parameters
enter, and these are lower than the correlations between the
fits with the same parameters. The confidence ellipse of the
Lagrangian result was calculated as described in Sect. 3.3
and Appendix C.

A comparison of all analysis sets and of the two ways of
implementing the small volume limit are shown in Fig. 10.
The black triangles represent again the combined / = 3 and
| = 4 Hamiltonian results, joined by a linear interpolation.
The red circles are the results of the cB extrapolation set

with the direct extrapolation at L = 3, the blue squares are
the same set but with the small volume effects determined by
the ratio R. The green diamonds correspond to the cA direct
extrapolation and the maroon upside-down triangles to the
ratio extrapolation of the same extrapolation set. The open
(filled) symbols correspond to Siso = 1.65 (1.70).

The two ways of calculating the small volume effects are
fully compatible. The results of the two extrapolation sets
lead to compatible results for Bmaich, the results for Ppach
are compatible for Biso = 1.7 and deviate by less than 20 for
ﬂiso = 1.65.

The results for the matching § are given in Table 5, the
plaquettes at the matching point are given in Tables 6 and 7
for the extrapolation sets cA and cB respectively. The four
errors we quote correspond to statistical only, the systematic
error from calculating the potential energies, the systematic
error from the spread of the different continuum limit results,
and the total error, added in quadrature.

5 Discussion

In Fig. 2 we see that the number of sweeps it takes to reach
an equilibrium state grows with decreasing &input, eventually
leading to critical slowing down. This is also seen in the
autocorrelation times in Tables 8 and 9 and Fig. 3, they grow
with decreasing anisotropy. For &ippye > 1/4, we were able
to simulate with the standard Metropolis algorithm, whereas
for even smaller anisotropies, the autocorrelation was too
large and we were unable to even achieve thermalisation. The

combination of heatbath and overrelaxation algorithms miti-
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® 1.—=16 ¥ Hamiltonian
o & L=3, direct O [, = 1.65
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Fig. 8 All continuum limits in the set cA-ET. The error bars show The limit at L = 16, the direct fit of the L = 3 data, and the result
the combination of the statistical error and the error due to choos- obtained for L = 3 by using the ratio R = P(L = 3)/P(L = 16). The
ing the plateau boundaries. The open (filled) symbols correspond to Hamiltonian results are a combination of truncations / = 3 and [/ = 4,
Biso = 1.65 (1.70). We display several different continuum limits: interpolated linearly

<
&)
E
o
® [.=3
B =16
A Hamiltonian
<o Biso - ]_65
® Bi, = 1.70
1.36 1.38 1.40 1.42 1.44 1.46 1.48
Bmatch
Fig. 9 Combined continuum limits for the plaquette and 8. The error fits in the set cA, with P(L = 3) calculated directly. The open (filled)
markers correspond to the statistical error, the systematic error from symbols correspond to Biso = 1.65 (1.70). The ellipse is determined
choosing the potential plateaus, and the systematic error of the spread with the procedure explained in Appendix C.1. Further explanations are
of the different continuum limit fits. In some cases the statistical error is in the text

so small it is not visible. The results are from the combination of all the
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Fig. 10 Combined continuum limits for the plaquette and S for every combination of extrapolation set and small volume extrapolation. Further

explanations are in the text

TableS The coupling constant 8 at the matching point. For explanation
of the errors given see in the text

Biso set Bmatch

1.65 cB 1.403(06)(10)(06)[13]
1.7 cB 1.450(06)(17)(08)[20]
1.65 cA 1.393(06)(08)(04)[11]
1.7 cA 1.431(05)(10)(13)[17]

Table 6 The different plaquette observables at the matching point for
the extrapolation set cA. For explanation of the errors given see in the
text. 9 measures the difference between the Lagrangian and Hamiltonian
simulations as explained in Appendix C.2

Biso 1.65 1.7

Set cA cA

P(L =16) 0.6073(06)(48)(69)[84] 0.6297(14)(18)(26)[35]
P(L = 3) direct 0.6337(07)(45)(56)[72] 0.6541(10)(16)(29)[34]
0 dir. 1.49 1.88

P(L =3)ratio 0.6303(07)(50)(72)[88] 0.6520(15)(18)(28)[36]
0 rat. 1.87 1.87

gated the critical slowing down enough to make simulations
at &inpue = 1/5, 0.18 feasible. However, for &ipput < 0.18 we
could not reach equilibrium in reasonable simulation times.

This restricts of course how close we could get with our
simulations to the temporal continuum limit. Still, we are
confident that our procedure of following different analysis
chains, and of using different sets of temporal continuum
extrapolations leads to reliable estimates of the uncertainties.

Table 7 Same as Table 6, but for extrapolation set cB

Biso 1.65 1.7

Set cB cB

P(L = 16) 0.6233(04)(11)(67)[67] 0.6334(07)(18)(27)[34]
P(L = 3) direct 0.6495(03)(07)(46)[47] 0.6574(07)(14)(15)[22]
0 dir. 1.57 0.61

P(L =3)ratio  0.6469(04)(12)(69)[70] 0.6553(07)(19)(28)[34]

0 rat. 0.66 1.77

In fact, the total uncertainty is in almost all results dominated
by systematic uncertainties. Moreover, statistical fluctuations
are more likely to average out in our procedure.

It is also reassuring that the extrapolation sets cA and cB
lead to compatible results: we recall that the most significant
difference between the two is the in- or exclusion of the data
at the smallest &;,pui-value. Therefore, the data at the smallest
&input-value confirm our temporal continuum limit results, but
are not strictly necessary.

Our results in the temporal continuum limit are in agree-
ment with the Hamiltonian results within two o'; the largest
deviation is 1.87¢. This indicates in general that taking the
temporal continuum limit in the Euclidean (2 4+ 1) dimen-
sional lattice theory is equivalent to the Hamiltonian lattice
theory for the specific lattice action and Hamiltonian quoted
in the introduction.

Still, there might be a systematic effect unaccounted for,
because all our extrapolation results lie below the Hamil-
tonian curve. One possible explanation for this systematic
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deviation could be the truncation on the Hamiltonian side.
This seems not to be the case because larger /-values tend
to push the plaquette values up at fixed . Despite the dis-
cussion from above, we certainly cannot be 100% sure that
we are close enough to the temporal continuum limit, which
might offer one explanation for the systematic deviation.
However, this will need further investigation in the future.

6 Summary and outlook

We have performed the temporal continuum limit in a U(1)
lattice gauge theory using stochastic simulations in the
Lagrangian formalism. We performed this temporal contin-
uum limit using the anisotropic lattice formulation starting
with two S-values from the isotropic side. Trajectories of
constant spatial lattice spacing are defined by keeping the
Sommer parameter ro/ay fixed. The so obtained temporal
continuum results for the plaquette and the coupling B are
compared to results from a direct Hamiltonian simulation.
We find general agreement within two o between Hamilto-
nian and extrapolated Lagrangian results. As discussed in the
previous section, the deviation is systematic towards lower
plaquette values for the extrapolated results, for which we
currently do not have a good explanation. Our procedure
allows us to calculate observables at the same lattice spacing
ay in both theories. For the comparison between the theories,
we are not interested in the limit a; — 0, but instead we use
the matching point to combine advantages of both theories
at fixed lattice spacing.

There are several immediate extensions that we leave for
the future: On the path integral side, it is possible to use other
parameters to set the scale, e.g. the time 7o from the gradient
flow, or a fermion mass or decay constant in a fermionic the-
ory. In a fermionic theory we could also use other matching
variables, like the mass gap.

On the Hamiltonian side, the goal is to simulate larger lat-
tices, which simplifies the matching. This can be achieved by
other methods beyond exact diagonalization, such as Tensor
Networks and future Quantum Computers. Larger lattices
in future simulations would make other matching variables
beyond the plaquette possible, and would reduce the need for
finite volume extrapolations.

An extension to higher dimensions or other lattice gauge
theories, in particular QCD, is conceptually straightfor-
ward, but will be computationally demanding on both the
Lagrangian and the Hamiltonian side.
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Appendix A. Autocorrelation

A common way to deal with autocorrelation is to block the
data before bootstrapping it. However, our results showed
that this lead to a bad estimation of the covariance matrix,
and thus unreliable results of the potential energies.

We take care of the autocorrelation in a different way: The
potential energies are still determined with bootstrapping,
but with block length 1. At the same time, we determine the
autocorrelation of the original data with the UWerr-algorithm
[40] implemented in [39]. We then rescale the results of the
bootstrapping to take the autocorrelation into account. The
error is rescaled with 27j,; and each bootstrap sample x is
rescaled to be xpew = Xo1d + (Xold — i) - (2 - Ting — 1), with
1 the unbiased mean. This ensures that the difference of the
bootstrap sample to the unbiased mean is 27, times as large,
so the error increases by the required amount.

We also draw bootstrap samples of the plaquette. There,
we set the block length to 47:5lt to take the autocorrelation
into account.
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Appendix B. Using AIC to determine the potential points

The potential points are computed with the help of the Akaike
Information Criterion (AIC) [41].

We fit the ratios from Egs.(4) and (6) to a constant in
the region (t1, #2). All possible combinations with #; > 1
and 1, — ;1 > 2 are used, and each fit result is assigned the
weight

1
w = exp (—§~(X2+2—(t2—t1))> (22)

with x2 the sum of residues of the fit.

The weights are normalized to one. We assume the results
are normally distributed and combine the weights, means
and standard deviations o to give the cumulative distribution
function (cdf)

1 £y — i
w1+ == O = 1) (23)
i 201.2

cdf(y) =

where erf is the error function and y is the potential energy.

The cdf is used to find the median g5, the 16% quantile
q16 and the 84% quantile gg4 of the distribution of the masses.
The procedure is repeated for each bootstrap sample.

The medians of the bootstrap samples represent the sta-
tistical error. However, q1¢ and gg4 also give us information
about the total error, including the systematic uncertainty in
choosing the correct boundaries of the effective mass fit.

We use 0comb = %(qg4 — q16) of the result of the original
data as an estimate of the total error, and ot = $d(g50.boot)
as an estimate of the statistical error.

To use the total error in the further analysis, we rescale
each bootstrap sample so that it is "“’l‘“" further away from
the mean, similar to the rescaling to take into account the
autocorrelation as described in Appendix A. We can extract

2 2 2
the systematic error from o, = gt + Opor-

Appendix C. Determining confidence level
Appendix C.1. Getting a touching ellipse

We want to determine the difference between the Hamilto-
nian and Lagrangian results and do this geometrically with
an ellipse.

We piece wise linearly interpolate the Hamiltonian results
and determine the equation for each piece.

We know the Lagrangian result (8, P) and its errors
(0, op). This is the centre point of the ellipse, and the ratio
of the errors is the ratio of the major axes of the ellipse. The
pUﬁUP

angle ¢ of the ellipsis is given by tan(2¢) =

, with p

the correlation coefficient of the bootstrap samples of 8 and
P [42].
The ellipse can be written in the general form as

Apxx? 4+ 2A,xy + Ayyy? +2Bex +2Byy +C =0 (24)

or, written in matrix form

T

X Axx Axy By X

y Ay Ay By | [y ] =0=XTAX (25)
1 B, B, ¢) \1

with

Are =0 - sin’(§) + o - cos” ()
Axy = (0p = 0f) - sin(¢) - cos(¢)
Ayy = 0 - cos*(§) + o - sin® ()

sz_Axx',B_Axy'P
By = —Axy-B— Ay - P
C=Axx B> +2ABP + Ay P? — 050} (26)

Here we have set the major axes equal to the errors, as is
the starting case for our calculation.

We interpret the Hamiltonian interpolation as a polar to
the ellipse. The interpolation can be expressed as a line of
the form Dx + Ey + F = 0 = BT X. This curve is invariant
under a rescaling of B.

A polar to a point P can be written as PT AX = 0 [43].

Setting the two descriptions of the polar equal to each
other, we get

PTA=BT « AP=B & P=A""B. (27)
With
-1
Xp Axx Axy By D
yp | = | Aw Ay By E (28)
zp B, By C F

the pole has the coordinates ( );P , Z L), where we chose zp

as our rescaling factor for the polar equation. If the polar is
a tangent to the ellipse, the pole is the touching point and
directly on the ellipse [43]. In that case, it fulfils the ellipse
equation Eq. (24).

For determining the matching level, we keep the angle,
centre point and ratio of the major axes fixed, but vary the
length of the major axes by setting them to rop and rog.

Finding the matching level and radius is reduced to a root-
finding procedure: We keep everything except the radius r
fixed, and vary the radius until the pole is on the ellipse, and
thus the polar is a tangent at the radius r*. We call the ellipse
corresponding to the radius r* the matching ellipse, because
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at this radius it touches the interpolation of the Hamiltonian Ensembles
results. A determine &yen, 70/as in

We do this for every interpolated piece, and then select
only the piece(s) for which the matching point is on the piece
itself. This usually only yields one matching point and level
of deviation, but in case several points match, we select the
one with the lower r*.

C.2. Getting a confidence level from the radius

A non-tilted ellipse centred at the origin can be written as

X 2 y 2
(—) + <—> =ys. (29)
Ox oy

The probability distribution for x, y is

2 2
dxdy --2
Plx,y) = ——4 _; 2F 207 (30)

(2m)oxoy

Integrating over this in the area of the ellipse gives us
the probability p that a point is inside the ellipse p = 1 —
exp (—0.5 - s).

We can apply this to a tilted ellipse as well, and identify
B, P with x, y and r*2 with s.

From the matching ellipse, we can thus calculate the prob-
ability p that a point from the Lagrangian distribution is
inside the ellipse and not a match to the Hamiltonian.

‘We convert this probability into units of the standard devi-
ation of the normal distribution.

We determine the deviation level, 9, by setting p = ®(0)—
@ (—0), with ® the cumulative density function of the normal
distribution. We determine 9 by a root-finding procedure on

(D) — D(=D)) — (1 —exp (—0.5 : r*2>) —0. (31

Appendix D. Systematics of continuum limit

Our procedure to average over different ways of taking the
continuum limit from Sect. 3.1.2 is visualised in Fig. 11.
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Fig. 11 Visualisation of the different steps of the analysis procedure.
The procedure is described in detail in Sect. 3.1.2. We display only four
analysis chains (see Table 1) and four kinds of fit to the continuum limit
(see Table 2). The analysis goes from top to bottom, and we denote the
inclusion (exclusion) of a systematic error from the potential by dotted
(dashed) lines, and the inclusion (exclusion) of the smallest anisotropy
in the fits for the continuum limit by black (red) lines

Appendix E. Used configurations

The configurations are given in Table 8 for L = 16 and in
Table 9 for L = 3.
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Table 8 Listof configurations with L = 16 that were used to determine
the continuum limit. We give the coupling 8, the input anisotropy &input
the number of thermalised configurations on which we did measure-
ments, the number of spatial and temporal lattice points, the algorithm

used for generation, the number of sweeps that were done between
measurements and the integrated autocorrelation time of the spatial-
spatial plaquette. The algorithm is one of heatbath-overrelaxation (hb)
and Metropolis (met)

Einput B # confs. L T algo # sweeps Tint

1 1.65 5500 16 16 met 50 0.490(13)
1 1.7 9748 16 16 met 100 0.497(10)
4/5 1.59 1500 16 20 met 50 0.516(65)
4/5 1.6 1500 16 20 met 50 0.585(95)
4/5 1.615 1500 16 20 met 50 0.499(45)
4/5 1.63 1500 16 20 met 50 0.489(44)
4/5 1.64 9749 16 20 met 100 0.490(10)
4/5 1.65 4749 16 20 met 100 0.502(39)
4/5 1.6521 1750 16 20 met 50 0.496(34)
4/5 1.665 1500 16 20 met 50 0.497(63)
4/5 1.7 4749 16 20 met 100 0.503(39)
4/5 1.75 4749 16 20 met 100 0.500(25)
2/3 1.54 28000 16 24 hb 10 0.581(26)
2/3 1.555 3750 16 24 met 50 0.500(16)
2/3 1.56 3750 16 24 met 50 0.500(16)
2/3 1.565 1500 16 24 met 50 0.519(66)
2/3 1.58 2749 16 24 met 100 0.550(63)
2/3 1.595 7749 16 24 met 100 0.533(36)
2/3 1.6 28000 16 24 hb 10 0.578(25)
2/3 1.6075 1750 16 24 met 50 0.487(62)
2/3 1.7 1500 16 24 met 50 0.491(57)
1/2 1.49 2749 16 32 met 100 0.600(76)
1/2 1.515 1500 16 32 met 50 0.513(75)
1/2 1.525 4750 16 32 met 100 0.610(61)
1/2 1.53 4749 16 32 met 100 0.562(51)
1/2 1.54 5750 16 32 met 50 0.569(52)
1/2 1.55 4749 16 32 met 100 0.516(40)
1/2 1.555 5750 16 32 met 50 0.563(47)
1/2 1.56 5750 16 32 met 50 0.567(49)
1/2 1.575 5750 16 32 met 50 0.523(41)
1/2 1.7 1500 16 32 met 50 0.62(11)
2/5 1.45 5500 16 40 met 50 0.840(98)
2/5 1.46 2500 16 40 met 50 0.80(13)
2/5 1.47 5500 16 40 met 50 0.727(78)
2/5 1.48 5500 16 40 met 50 0.678(70)
2/5 1.495 5500 16 40 met 50 1.28(18)
2/5 1.511 1750 16 40 met 50 0.66(11)
2/5 1.52 5500 16 40 met 50 0.802(91)
2/5 1.525 2500 16 40 met 50 0.74(11)
2/5 1.55 5500 16 40 met 50 0.729(78)
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Table 8 continued
Einput B # confs. L T algo # sweeps Tint

2/5 1.57 5500 16 40 met 50 1.17(16)
2/5 1.7 1500 16 40 met 50 1.81(52)
1/3 1.43 15000 16 48 met 50 1.32(13)
1/3 1.44 15000 16 48 met 50 1.23(11)
1/3 1.45 7000 16 48 met 50 1.19(15)
1/3 1.46 15000 16 48 met 50 1.118(97)
1/3 1.47 4750 16 48 met 100 0.782(93)
1/3 1.48 2749 16 48 met 100 0.93(15)
1/3 1.4814 3500 16 48 met 50 1.38(25)
1/3 1.5 3000 16 48 met 50 1.55(31)
1/3 1.51 4749 16 48 met 100 1.29(20)
1/3 1.515 15000 16 48 met 50 2.75(36)
1/3 1.55 4749 16 48 met 100 1.60(27)
1/3 1.7 6000 16 48 met 50 2.34(43)
1/4 1.4 16002 16 64 met 50 5.23(88)
1/4 1.415 9000 16 64 met 100 10.931)
1/4 1.42 9000 16 64 met 100 3.05(52)
1/4 1.43 22002 16 64 met 50 5.56(84)
1/4 1.4378 17002 16 64 met 50 6.6(12)
1/4 1.45 10000 16 64 met 50 6.9(16)
1/4 1.46 2499 16 64 met 100 2.90(81)
1/4 1.47 2499 16 64 met 100 2.92(82)
1/4 1.49 9000 16 64 met 100 5.3(11)
1/4 1.5 9000 16 64 met 100 5.1(11)
1/4 1.53 8999 16 64 met 100 9.8(27)
1/4 1.7 7999 16 64 met 50 17.7(63)
1/5 1.39 7502 16 80 hb 50 2.41(40)
1/5 1.4 7502 16 80 hb 50 2.22(36)
1/5 1.41 7502 16 80 hb 50 3.09(57)
1/5 1.42 3500 16 80 hb 50 2.39(54)
1/5 1.435 7501 16 80 hb 50 3.52(68)
1/5 1.46 7502 16 80 hb 50 3.52(68)
1/5 1.47 7502 16 80 hb 50 3.71(74)
1/5 1.48 7502 16 80 hb 50 4.7(10)
0.18 1.39 176221 16 88 hb 50 1.55(15)
0.18 1.395 260004 16 88 hb 50 1.61(13)
0.18 1.4 176256 16 88 hb 50 1.38(12)
0.18 1.405 260004 16 88 hb 50 1.64(13)
0.18 1.41 175633 16 88 hb 50 1.80(18)
0.18 1.45 176286 16 88 hb 50 2.76(34)
0.18 1.46 176291 16 88 hb 50 3.20(42)
0.18 1.47 176288 16 88 hb 50 3.12(40)
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Table 9 List of configurations with L = 3 that were used to determine
the continuum limit. We give the coupling 8, the input anisotropy &input
the number of thermalised configurations on which we did measure-
ments, the number of spatial and temporal lattice points, the algorithm

used for generation, the number of sweeps that were done between
measurements and the integrated autocorrelation time of the spatial-
spatial plaquette. The algorithm is one of heatbath-overrelaxation (hb)
and Metropolis (met)

Einput B # confs. L T algo # sweeps Tint

1 1.65 9667 3 16 met 50 0.4818(99)
1 1.7 9667 3 16 met 50 0.497(10)
4/5 1.6 7501 3 20 met 100 0.491(20)
4/5 1.615 7501 3 20 met 100 0.489(23)
4/5 1.64 7501 3 20 met 100 0.522(36)
4/5 1.65 9667 3 20 met 50 0.500(20)
4/5 1.6521 7501 3 20 met 100 0.490(11)
2/3 1.56 7251 3 24 met 100 0.481(11)
2/3 1.5614 7251 3 24 met 100 0.502(33)
2/3 1.565 7251 3 24 met 100 0.496(31)
2/3 1.58 9167 3 24 met 50 0.501(23)
2/3 1.595 46250 3 24 hb 20 0.4944(80)
2/3 1.6 7251 3 24 met 100 0.498(31)
2/3 1.6075 7251 3 24 met 100 0.499(12)
1/2 1.49 9667 3 32 met 100 0.496(10)
1/2 1.515 9667 3 32 met 100 0.493(10)
1/2 1.5381 9667 3 32 met 100 0.607(44)
1/2 1.54 8667 3 32 met 50 0.493(21)
1/2 1.55 8667 3 32 met 50 0.498(11)
1/2 1.5514 9667 3 32 met 100 0.532(32)
1/2 1.5531 8667 3 32 met 50 0.634(51)
1/2 1.555 9667 3 32 met 100 0.491(10)
2/5 1.46 14501 3 40 met 100 0.502(24)
2/5 1.4638 14501 3 40 met 100 0.724(51)
2/5 1.47 14501 3 40 met 100 0.507(22)
2/5 1.48 14501 3 40 met 100 0.667(45)
2/5 1.51 7667 3 40 met 50 0.573(43)
2/5 1.511 7667 3 40 met 50 0.524(34)
2/5 1.52 14501 3 40 met 100 0.539(28)
2/5 1.525 14501 3 40 met 100 0.729(51)
1/3 1.44 37001 3 48 met 100 0.605(24)
1/3 1.4406 37001 3 48 met 100 1.407(93)
1/3 1.45 37001 3 48 met 100 1.310(83)
1/3 1.46 4667 3 48 met 50 0.791(95)
1/3 1.48 4667 3 48 met 50 0.93(12)
1/3 1.4814 37001 3 48 met 100 1.326(85)
1/3 1.5 37001 3 48 met 100 1.292(82)
1/4 1.42 49334 3 64 met 100 9.6(13)
1/4 1.43 29336 3 64 met 50 4.53(55)
1/4 1.4378 2667 3 64 met 50 2.39(61)
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Table 9 continued

Einput B # confs. L T algo # sweeps Tint

1/4 1.47 49334 3 64 met 100 1.72(11)
1/4 1.49 49334 3 64 met 100 12.8(19)
1/5 1.41 47499 3 80 hb 200 0.820(37)
1/5 1.42 47500 3 80 hb 200 0.868(40)
1/5 1.46 47499 3 80 hb 200 0.923(44)
1/5 1.47 47500 3 80 hb 200 0.964(47)
1/5 1.48 47500 3 80 hb 200 0.986(48)
0.18 1.39 36770 3 88 hb 500 1.349(87)
0.18 1.395 36000 3 88 hb 500 1.284(81)
0.18 1.4 36000 3 88 hb 500 1.420(95)
0.18 1.405 19742 3 88 hb 500 1.28(11)
0.18 1.45 36756 3 88 hb 500 1.69(12)
0.18 1.46 37277 3 88 hb 500 1.99(15)
0.18 1.47 36000 3 88 hb 500 1.75(13)
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