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Abstract At finite lattice spacing, Lagrangian and Hamil-

tonian predictions differ due to discretization effects. In the

Hamiltonian limit, i.e. at vanishing temporal lattice spacing

at , the path integral approach in the Lagrangian formalism

reproduces the results of the Hamiltonian theory. In this work,

we numerically calculate the Hamiltonian limit of a U (1)

gauge theory in (2 + 1) dimensions. This is achieved by

Monte Carlo simulations in the Lagrangian formalism with

lattices that are anisotropic in the time direction. For each

ensemble, we determine the ratio between the temporal and

spatial scale with the static quark potential and extrapolate

to at → 0. Our results are compared with the data from

Hamiltonian simulations at small volumes, showing agree-

ment within < 2σ . These results can be used to match the

two formalisms.

1 Introduction

Gauge theories are fundamental in our understanding of force

mediation in the standard model (SM) of particle physics. Of

the three forces unified in the SM, the strong force or quan-

tum chromodynamics (QCD) is special because it is strongly

coupled in the low energy regime. Therefore, it requires a

non-perturbative treatment, which is possible in the lattice

regularisation of gauge theories pioneered by Wilson [1].

While primarily applied to QCD, the lattice regularisation is

applicable to any gauge theory.

a e-mail: gross@hiskp.uni-bonn.de (corresponding author)

In practice, any computation in a lattice gauge theory

requires one to choose either the path integral formalism

enabling mainly Monte Carlo (MC) simulations of such the-

ories, or the Hamiltonian formalism. The basis for the former

has been provided already by Wilson, for the latter the corre-

sponding Hamiltonian has been derived not much later based

on general arguments in Ref. [2] by Kogut and Susskind,

while Creutz derived the same expression for the Hamilto-

nian by explicitly constructing the transfer matrix [3]. The

Hamiltonian formulation has recently attracted fresh atten-

tion since it represents the natural formulation one would

use on a future digital quantum computer. Compared to the

MC approach, Hamiltonian simulations have the advantage

that for instance systems at finite density or real time evo-

lution can be studied. However, the development state of

current quantum computing devices limits such simulations

to rather small systems. Alternatively, tensor network states

can be used, which see rapid development as well [4–8]. Still,

Hamiltonian simulations are currently restricted to systems

with a relatively small number of degrees of freedom.

Ideas to nevertheless usefully apply Hamiltonian simu-

lations already now include a clever combination with MC

simulations, profiting from the respective strengths simulta-

neously [9–15]. One such idea has been brought forward in

Ref. [9] and further investigated in Ref. [10]. It requires the

matching of Hamiltonian and Lagrangian simulations: both

formulations encompass the bare gauge coupling as a single

parameter, which is directly related to the scale of the cor-

responding theory. However, being a bare parameter implies

that simply using the same numerical value for the coupling
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will, at least at finite lattice spacing, likely lead to sizeable

artefacts. An alternative is to connect the MC simulations

with the Hamiltonian ones by taking the continuum limit in

time direction, as the construction by Creutz suggests. This

continuum limit in time direction has been studied previously

in Refs. [16–18] based on the so-called anisotropic formu-

lation of lattice gauge theories [19]. Most relevant for our

work here is Ref. [16], where the authors study a U(1) the-

ory using the anisotropic Wilson plaquette action. They take

the temporal continuum limit keeping the β-value fixed. They

compare to Green’s Function Monte Carlo results which they

comment, however, to be unreliable due to strong dependence

on the trial wave function.

In this paper we will go beyond Refs. [16,17] in two

ways: first, we will take the continuum limit in time direc-

tion in compact pure U(1) gauge theory while keeping

a suitable spatial length fixed, which we determine non-

perturbatively. Second, we directly compare our extrapolated

results from MC simulations with Hamiltonian simulations,

finding agreement within 2σ . It is conceptually straightfor-

ward to extend this to non-Abelian lattice gauge theories.

The continuum limit as → 0 is not considered in this work,

we rather want to compare the two formulations at fixed as .

We reported on a first stage of this work in Ref. [20].

The paper is organised as follows: First, we give an

overview of the theory in Sect. 2. Then we introduce the

setup that we used for simulation in Sect. 3, and go into

detail on our determination of the temporal continuum limit

in Sect. 3.1.2. We present our results in Sect. 4, discuss them

in Sect. 5, and conclude in Sect. 6.

2 Theoretical background

2.1 Lagrangian formulation

On the Lagrangian side, we use the anisotropic Wilson

action [19,21], which reduces to the standard Wilson action

for the special value of the anisotropy parameter ξinput = 1.

It reads:

SW =
β

ξinput

∑

�x,i

Re (1 − P0i (�x))

+βξinput

∑

�x,i> j

Re
(

1 − Pi j (�x)
)

, (1)

where Pµν(�x) is the so-called plaquette operator:

Pµν(�x) = Uµ(�x) Uν(�x + µ̂) U †
µ(�x + ν̂) U †

ν (�x) . (2)

ξinput is the bare anisotropy and β = 1/g2
0 the inverse squared

coupling constant. The gauge links Uµ(�x) are elements of

U(1) and can, hence, be parametrised as U = eiϕ with a

real-valued angle ϕ. �x is a point in our 2 + 1 dimensional

lattice and the directions µ ∈ {0, 1, 2}. MC simulations of

the theory described by the action SW can be performed using

standard Markov Chain MC methods, such as the Metropolis

algorithm. More details on the algorithm will be given below.

The renormalised anisotropy ξren represents the ratio of

temporal to spatial lattice spacing at/as . ξren can be estimated

from MC simulations in different ways, with the idea always

being to compute one physical observable O in units of both

at and as . Once at O and as O have been determined, the

renormalised anisotropy is estimated as

ξren =
at O

as O
=

at

as

. (3)

In this paper we use two different choices for such an observ-

able O , both based on the so-called static quark potential

V , see for instance Ref. [16]. The static quark potential can

be determined from planar Wilson loops W (aµx, aν y) with

extents aµx and aν y. Here, aµ represents the lattice spacing

in direction µ, which can be one of the spatial directions or

the time direction. Since we are working in Euclidean space-

time, the expectation values of Wilson loops decay exponen-

tially in spatial as well as temporal directions. By forming

purely spatial Wilson loops Wss and spatial-temporal Wilson

loops Wst , one obtains

lim
y→∞

Wss(x/as, (y + 1)/as)

Wss(x/as, y/as)
= exp(−as Vs(x/as)),

lim
t→∞

Wst (x/as, (t + 1)/at )

Wst (x/as, t/at )
= exp(−at Vt (x/as)).

(4)

Again, due to the fact that we are working in Euclidean space-

time, we have at equal distance Vt = Vs up to a constant shift

and, therefore, the anisotropy can be determined from a fit of

as Vs(x/as) =
1

ξren
at Vt (x/as) + c (5)

to the data for the two potentials as a function of distance.

The fit parameter c represents the difference in self-energy in

Vs and Vt and arises from the fact that the potentials are mea-

sured along different axes. The self energy depends on the

direction in which the quarks propagate [22]. In the above

determination, the quarks propagate in the temporal direc-

tion in the measurement of the temporal potential, and prop-

agate in the spatial direction in the measurement of the spatial

potential. We refer to this procedure as the one based on the

“normal” potential.

The second way to determine the potential is the one also

used by Ref. [23], and we refer to this method as the one based

on the “sideways” potential. In this procedure the potential is

determined varying the first argument in the corresponding
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Wilson loops as follows

lim
x→∞

Wss((x + 1)/as, y/as)

Wss(x/as, y/as)
= exp(−as Vs(y/as)),

lim
x→∞

Wst ((x + 1)/as, t/at )

Wst (x/as, t/at )
= exp(−as Vt (t/at )).

(6)

Now the argument is that if the potentials are equal, the dis-

tances in physical units must be equal as well. Thus, the

anisotropy can be determined from

Vs(y/as) = Vt (t/at ) ⇒ y = t ⇒

ξren =
at y

as t
=

at

as

(7)

Since we rarely have spatial and temporal extents such that

Vs and Vt are equal, we rescale the y-dependence of Vs until

the two curves Vs(ξren y/as) and Vt (t/at ) agree within errors,

which gives the renormalised anisotropy.

In practice, we start by interpolating linearly between any

two neighbouring points t/at and (t + 1)/at (excluding the

smallest t-value) of the potential Vt . Next, we determine for

each value of Vs the corresponding scaling factor η(y/as)

by matching the value of Vs(y/as) to the appropriate linear

interpolation. Finally, we obtain ξren by averaging over all

η(y/as).

Using the determinations of the Wilson loop above, the

quarks propagate in the spatial direction in the measure-

ment of both the spatial and temporal potential. Therefore

the potentials have the same self energy effects.

2.1.1 Sommer parameter r0 and setting the scale

The static potential, which in 2 + 1 dimensions has the form

V (r) = a + σr + d ln(r). (8)

can be used to define a length scale r0, the so-called Sommer

parameter [24], as follows

r2 d

dr
V (r)|r=r0 = c (9)

in units of the spatial lattice spacing as . In QCD, the physical

value of r0 is known to be around 0.5 fm for c = 1.65, but,

in the U(1) theory at hand its physical value is unknown.

However, this is not relevant for our procedure, as we only

need an observable in units of the spatial lattice spacing with

a well defined continuum limit. We use a value of c = 1.65,

because it turns out to be in the linear region of the potential

and we stick to the notation r0/as . Once the potentials are

parametrised using the form Eq. (8), the corresponding value

of r0/as can be determined. It allows one to fix the spatial

lattice spacing: if in two simulations with parameters (β, ξ)

and (β ′, ξ ′) the same r0/as is measured within uncertainties,

both simulations exhibit the same as .

In practice, we determine r0 by fitting the potential form

Eq. (8) to the data. Then, we take the derivative analytically

and express r0/as as follows

r0

as

= −
d

2σ
+

√

(

d

2σ

)2

−
c

σ
, (10)

with the parameters σ and d from Eq. (8) and c from Eq. (9).

2.2 Hamiltonian

The Kogut–Susskind Hamiltonian for the pure U(1) lattice

gauge theory in (2+1) dimensions is given by [2]

Ĥtot =
g2

2

∑

�r

(

Ê2
�r ,1 + Ê2

�r ,2

)

−
1

2a2g2

∑

�r

(

P̂�r + P̂
†
�r

)

,

(11)

where a is the lattice spacing and g is the bare coupling.

The operator Ê�r ,µ represents the dimensionless electric field

on the link starting from the lattice site at coordinates �r =

(r1, r2) in the direction µ ∈ {1, 2}. The plaquette operator

P̂�r = Û�r ,1Û�r+1,2Û
†
�r+2,1

Û
†
�r ,2

is defined as the product of four

unitary link operators Û�r ,µ, where the notation �r +1 ≡ (r1 +

1, r2) and �r + 2 ≡ (r1, r2 + 1) indicates the neighbouring

sites in the 1 and 2 directions, respectively. The link operator

is defined as

Û�r ,µ = eiag �A�r ,µ , (12)

where �A�r ,µ is the discretized vector field in the compact for-

mulation, i.e., the values of ag �A�r ,µ are constrained to lie

within the interval [0, 2π). Note that Û�r ,µ is a unitary oper-

ator. The commutation relations between the electric field

operator Ê�r ,ν and the link operator Û �r ′,µ
read

[Ê�r ,ν, Û �r ′,µ
] = δ�r , �r ′δν,µÛ�r ,ν, (13)

[Ê�r ,ν, Û
†
�r ′,µ

] = −δ�r , �r ′δν,µÛ
†
�r ′,ν

. (14)

The gauge-invariant states satisfy Gauss’s law at every site

�r ,

[

∑

µ=1,2

(

Ê�r ,µ − Ê�r−µ,µ

)

− Q�r

]

|
〉 = 0, (15)

where Q�r are the static charges. Instead of considering the

full Hilbert space and enforcing Gauss’s law, we formulate

the theory directly on the gauge-invariant subspace, by using
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the Gauss’s law constraints to eliminate certain degrees of

freedom [25–29].

For a numerical implementation of the Hamiltonian, the

gauge degrees of freedom must be truncated to a finite dimen-

sion because the electric field values are unbounded, result-

ing in an infinite-dimensional Hilbert space for these degrees

of freedom. The continuous U (1) gauge group can be dis-

cretized in the electric basis to the group of integers Z2l+1.

The integer l sets the truncation level, i.e., the discretized

gauge fields are constrained to integer values within the range

[−l, l] [25]. The total Hilbert space dimension is (2l + 1)N ,

where N is the number of gauge fields.

The eigenstates e�r ,µ of the electric field operator Ê�r ,µ

form a basis,

Ê�r ,µ

∣

∣e�r ,µ

〉

= e�r ,µ

∣

∣e�r ,µ

〉

, e�r ,µ ∈ [−l, l] , (16)

on which the link operators Û�r ,µ and Û
†
�r ,µ

act as raising and

lowering operators, respectively,

Û�r ,µ

∣

∣e�r ,µ

〉

=
∣

∣e�r ,µ + 1
〉

, Û
†
�r ,µ

∣

∣e�r ,µ

〉

=
∣

∣e�r ,µ − 1
〉

. (17)

When discretizing a gauge theory, one needs to give up either

unitarity or the exact commutation relations between the elec-

tric field and link operators in Eqs. (13) and (14). In our case,

the commutation relations are preserved for the truncated

operators, but unitarity is lost, Û
†
�r ,µ

Û�r ,µ 
= 1. This can be

seen from the matrix representation of the link operators [27],

Û �→











0 . . . . . . 0

1 . . . . . . 0

0
. . .

... 0

0 . . . 1 0











, Û † �→











0 1 . . . 0

0
...

. . . 0

0 . . . . . . 1

0 . . . . . . 0











.

(18)

However, unitarity is recovered in the limit of l → ∞.

The resulting errors due to the finite truncation parameter

l have been investigated in Refs. [30,31]. Alternative meth-

ods for defining the electric field and link operators have been

explored in Refs. [32–35].

In order to analytically derive the Kogut–Susskind Hamil-

tonian in Eq. (11) from the Wilson action in Eq. (1), one needs

to employ the transfer matrix method [3]. This derivation has

been performed for various quantum field theories in arbi-

trary dimensions, for example, for studying transport coeffi-

cients [36] and the topological θ -term of (non)Abelian lattice

gauge theories in (3+1) dimensions [28]. Since the Wilson

action is defined on a (d + 1)-dimensional space-time lat-

tice and the Kogut–Susskind Hamiltonian is defined on a

d-dimensional spatial lattice, the limit of at → 0 has to be

taken when deriving Eq. (11) from Eq. (1) using the transfer

matrix formalism [3].

The parameters of the resulting Kogut–Susskind Hamilto-

nian generally differ from the original parameters of the Wil-

son action, due to renormalization effects. Thus, when com-

bining Hamiltonian and Lagrangian lattice methods, these

parameters need to be matched.

3 Methods

3.1 Lagrangian

We use two different Markov Chain Monte Carlo algorithms

to simulate the lattice action Eq. (1). We use periodic bound-

ary conditions in all directions. For values of ξinput ≥ 1/4

we use the standard Metropolis algorithm, where each link

is updated 10 times per sweep. We discard an appropriate

amount of sweeps to account for thermalisation, and only

analyse every 50th or every 100th configuration to account

for autocorrelation effects. For anisotropies smaller than

ξinput = 1/4, we encounter issues with critical slowing down

and, therefore, use a combination of heatbath and overrelax-

ation algorithms, with ten heatbath steps per overrelaxation

step. Only in the case of ξinput = 0.18, five heatbath steps are

followed by five overrelaxation steps.

Details of the algorithm can be found in Ref. [37] (see in

particular the arXiv version).

We provide our codes for the generation of the gauge

ensembles and for the analysis of the ensembles in [38]1.

For the analysis, we have used the library [39].

When performing the limit ξ → 0, we keep the spatial

volume (as L)2 fixed and scale the time extent T by ξ−1
input

in order to keep both the physical spatial and time extents

constant.

In total, we have generated 82 ensembles with L = 16

with β-values in the range (1.39, 1.75) and ξinput-values

1, 4/5, 2/3, 1/2, 2/5, 1/3, 1/4, 1/5, 0.18. Even smaller val-

ues of the anisotropy turned out to be unrealistic due to too

long equilibration and autocorrelation times. A list of all

ensembles is compiled in the Appendix in Table 8 together

with relevant parameter values, algorithm, autocorrelation

times, and number of configurations included in the analy-

sis. The bootstrap method is used for the statistical analysis

with 500 bootstrap samples. Residual autocorrelation times

are taken into account as discussed in Appendix A.

In principle, one would perform the stochastic simula-

tions in 2 + 1 dimensions in the very same spatial volume

used also in the Hamiltonian simulations. However, this tar-

get volume is so small that the static potential in the relevant

region of distances, r0/as and the renormalised anisotropy

cannot be determined reliably. Therefore, a two-step proce-

1 Please see the README-files for more information on how to gen-

erate the ensembles and how to replicate the analysis.
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dure is required in which r0/as and the parameter-values for

the temporal continuum limit are determined in large spa-

tial volume. This is followed by dedicated simulations with

L = 3 to match the volume of the Hamiltonian simulations.

In addition to the L = 16 simulations, we have also gener-

ated 54 dedicated L = 3 ensembles, which exactly match the

spatial volume used in the Hamiltonian simulations. These

are listed in the Appendix in Table 9. The time extent T for

given ξinput was chosen equal to the large volume simulations

at the same ξinput.

Further, the range of β-values we can use in practice for the

matching is restricted: for too small β-values as is too large to

reliably determine the static potential from Lagrangian simu-

lations. On the other hand, for too large β-values, the Hamil-

tonian simulations we are using are suffering from significant

truncation errors. This leaves us currently with a window of

β-values in the limit ξ → 0 between β = 1.35 and β = 1.5.

3.1.1 Determining r0 and ξren

Once we have determined the Wilson loops, we extract

the potential by computing the ratios Eqs. (4) and (6), and

determine the values of the potential using fits to effective

masses. In order to account for ambiguities in the choice of

the fit range, we perform a model averaging procedure, see

Appendix B. This allows us to compute statistical or com-

bined statistical and systematic errors for each value of the

potential. From the potential we determine ξren and r0/as

from different ranges of distances in the intervals Iξren and

Ir0 , respectively. The various choices can be combined in

different ways, which we use to define analysis chains, all of

which are compiled in Table 1. The most important differ-

ence between the analysis chains is whether they include a

systematic error (label ET) or not (label ES).

3.1.2 Taking the temporal continuum limit

For the generation of ensembles we start with isotropic sim-

ulations corresponding to ξ = ξinput = 1 at a given β-value

β = βiso and determine r0/as(βiso) ≡ riso. Then, for all

ξinput-values smaller than one, we perform simulations for

several β-values in the region of r0/as-values close to riso,

until one ensemble reproduces riso within errors. We denote

the corresponding β-parameter with β = βmatch and the

plaquette-value with P = Pmatch, which are the ones we

use for the continuum extrapolation. Note that βmatch and

Pmatch depend on the particular analysis chain.

By definition, the value of βmatch has no statistical uncer-

tainty, because it is the input value to the simulation of the

corresponding matching ensemble. This is unrealistic and,

as it turns out, also impractical for the remaining analysis.

Thus, we perform a linear bootstrap fit to the data of r0/as

as function of β at fixed ξinput, and use the bootstrap error

from the fit as an estimate for the statistical uncertainty of

βmatch. In the fit we only include ensembles with r0/as dif-

fering from riso by less than 0.3. ξren is taken directly from

the matching ensemble, and it is also determined separately

for each analysis chain. Pmatch, on the other hand, has only

statistical uncertainties.

In principle, there is also a systematic effect from choos-

ing the matching ensemble: there might be two simulation

points with r0/as-values equally close within errors to riso.

However, in practice this appeared to be irrelevant, since in

particular ξren is basically independent of β at fixed ξinput.

In Fig. 1 we show the spatial-spatial and spatial-temporal

plaquette as a function of β on the left-hand side and the

renormalized anisotropy ξren as a function of β on the right-

hand side, both at fixed ξinput = 0.8, with βiso = 1.7 and

L = 16. We see that the plaquette behaves linearly with β,

whereas ξren does not depend on β within errors.

In selecting the matching β for every ξinput, we can define a

trajectory of constant spatial lattice spacing for each analysis

chain.

For every point along these trajectories we then perform

dedicated L = 3 simulations to control finite volume effects.

We apply two different procedures for the finite size correc-

tion: either we directly extrapolate the small volume results

to the continuum limit, or we first extrapolate the ratio

R(ξ2
ren) =

P(L = 3, ξ2
ren)

P(L = 16, ξ2
ren)

(19)

and combine them with the extrapolated value of P(L = 16)

to correct for finite size effects in the continuum limit. We

call the two methods “direct” and “ratio”, respectively.

The temporal continuum extrapolation of the spatial pla-

quette and β is then performed by fitting polynomials

Pn p (ξ
2
ren) of degree n p in ξ2

ren to the data, equivalent to an

extrapolation in a2
t , which is expected for a pure gauge theory.

The extrapolations are performed with different fit ranges in

ξren, and with different degrees n p. In particular, we have

two sets of continuum extrapolations denoted as cA and cB,

respectively, which mainly differ by the inclusion or exclu-

sion of ξinput = 0.18 in cA and cB, respectively. The two

different sets of fits are compiled in Table 2.

For each of the eight analysis chains, we perform all eight

fits listed in Table 2, leading to 64 continuum limits, for the

pair (β, P).

The 64 pairs fall into four sets of equal size corresponding

to the extrapolation set–analysis chain combinations (cA-

ES), (cB-ES), (cA-ET) and (cB-ET), respectively.

We extract the statistical error of the final results of the

sets cA and cB from the standard deviation of the bootstrap

distribution of the unweighted average over all pairs in (cA-

ES) and (cB-ES), respectively. Likewise, the combination of

statistical and systematic error is obtained from (cA-ET) and
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Table 1 Summary of the different analysis chains. The potential type

refers to those defined in Sect. 2.1. The intervals Iξren and Ir0 indicate

the range of distances in units of the spatial lattice spacing as used to

determine ξren and r0/as , respectively. For the different error determi-

nations see Appendix B. The systematic error arises from uncertainty

in choosing the fit range for the effective masses. In the following, we

refer to the different analysis chains with the labels in the first column

(see text)

Label Potential type Iξren Ir0 Included error

N1ES Normal [2, 7] [1, 7] Statistical only

S1ES Sideways [2, 7] [1, 7] Statistical only

N0ES Normal [2, 8] [1, 8] Statistical only

S0ES Sideways [2, 8] [1, 8] Statistical only

N1ET Normal [2, 7] [1, 7] Statistical and systematic

S1ET Sideways [2, 7] [1, 7] Statistical and systematic

N0ET Normal [2, 8] [1, 8] Statistical and systematic

S0ET Sideways [2, 8] [1, 8] Statistical and systematic

Fig. 1 Spatial and temporal plaquette (left panel) and renormalised

anisotropy (right panel) as functions of β for ξinput = 0.8 and βiso = 1.7.

ξren is determined from the analysis chain N0ET, see Table 1. The solid

lines represent fits to the data, and the shaded regions the corresponding

bootstrap errors. The fits are linear in β for the plaquette, and a constant

for ξren

Table 2 Two sets of extrapolations cA and cB used to calculate a com-

bined continuum limit of the fits. The same fit ranges are used for all

trajectories and for all fits to the continuum limit – for β, the plaquettes

and for R. We list the anisotropies that are included in the polynomial

fits and the degrees of the polynomials

cA cB

ξinput-values n p ξinput-values n p

0.18, 1/5, 1/4 1 1/5, 1/4, 1/3 1

0.18, 1/5, 1/4, 1/3 1 1/5, 1/4, 1/3, 2/5 1

0.18, 1/5, 1/4, 1/3, 2/5 2 1/5, 1/4, 1/3, 2/5, 1/2 2

0.18, 1/5, 1/4, 1/3, 2/5, 1/2 2 1/5, 1/4, 1/3, 2/5, 1/2, 2/3 2
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(cB-ET). Additionally, we include for (cA-ET) and (cB-ET)

separately the spread of the different continuum results as

follows

σ 2
spread, tot = σ 2

unweighted +
1

N

∑

i

(

µunweighted − µi

)2
(20)

in the corresponding systematic uncertainty. Here,

(µ, σ )unweighted represents the mean and standard deviation

from the combined bootstrap samples, and µi the mean val-

ues of the single fits. We fold this systematic uncertainty into

our bootstrap distribution of (cA-ET) and (cB-ET), respec-

tively, by an appropriate rescaling, analogous to what is

described in Appendix A. A flow chart of this procedure

is given in Fig. 11.

To summarise this technical discussion: the procedure

described above leaves us with a purely statistical error σstat,

a combined error σcomb from the statistical error and the sys-

tematic errors from choosing the plateau points, and a com-

bination of σcomb and the error due to the spread, σspread,tot.

In the end we can isolate the single errors using the relations

σ 2
spread = σ 2

spread,tot − σ 2
comb and σ 2

pot = σ 2
comb − σ 2

stat and

eventually quote the errors σspread, σpot and σstat. As final

temporal continuum results for the observables β, P(L =

16), P(L = 3) and R, we quote the mean values from the

unweighted averages over (cA-ET) and (cB-ET).

3.2 Hamiltonian

As discussed in Sect. 2.2, we use the Gauss’s law to eliminate

some gauge degrees of freedom, thereby restricting the theory

to the gauge-invariant space. More specifically, we treat the

Gauss’s law in Eq. (15) as a set of constraints on the electric

operators, and solve this set of equations over the electric

operators. While there are N Gauss’s law constraints, they

are not independent, since there is a conservation of charges,

which, in the pure gauge case, means the constraints sum to

zero. Therefore, there are only N−1 independent constraints,

which allows us to express N − 1 arbitrary electric field

operators, i.e., effectively eliminating them, in terms of the

remaining ones. Since the eliminated electric fields do not

contribute directly to the dynamics, their corresponding link

operators become identities. For a two-dimensional L × L

square lattice, where N = L2, L2 − 1 out of the 2L2 gauge

degrees of freedom are eliminated. Thus, the Hamiltonian

is expressed in terms of the L2 + 1 remaining gauge fields.

This reduces the number of basis states from (2l + 1)2L2
to

(2l +1)L2+1, which in practice, alleviates the computational

costs significantly.

Here we perform exact diagonalization of a 3 × 3 lattice

with periodic boundary conditions to solve for the ground

state |�0〉. Then, we evaluate the plaquette expectation value,

defined by

〈P〉 ≡

〈

�0

∣

∣

∣

∣

1

2V

∑

�r

(

P̂�r + P̂
†
�r

)

∣

∣

∣

∣

�0

〉

, (21)

where V is the number of plaquettes in the lattice. Note that

we set the lattice spacing a = 1 throughout our simulations.

Truncating the electric field on the dynamical links to a range

of [−l, l] can in principle lead to configurations where the

links that have been eliminated implicitly carry an electric

flux exceeding this range. These would violate discrete sym-

metries of the Hamiltonian and are unphysical. To ensure

that our results are not affected by such effects, the simula-

tions are carried out over a range of 1/g2 in (0, 10] and for

l ∈ {1, 2, 3, 4}. We find that the values of 〈P〉 obtained for

l = 2, 3, 4 agree with each other up to 1/g2 = 1.5, and are

thus not affected by truncation artifacts. Beyond these values

of the inverse coupling, the values start to deviate for dif-

ferent l values, indicating that the simulations are no longer

reliable.

3.3 Comparing Lagrangian and Hamiltonian simulations

We compare the Lagrangian results, obtained with the meth-

ods in Sect. 3.1 and the Hamiltonian results, obtained with the

methods in Sect. 3.2, in the two-dimensional βmatch-Pmatch-

plane. We use confidence ellipses in addition to error bars

to display the errors of our measurements. The confidence

ellipses are constructed from the errors of the continuum limit

results of βmatch and Pmatch and the correlation between them.

To quantify the deviation between Lagrangian and Hamilto-

nian results, we scale the confidence ellipse until it is touching

the interpolation of the Hamiltonian result. Then we convert

the radius of this touching ellipse into the probability that a

point from the Lagrangian distribution is within the ellipse

and thus not a match to the Hamiltonian, i.e. the probability

that the Hamiltonian and Lagrangian measurements do not

match. We convert the mismatch probability into the prob-

abilities of standard deviations of the normal distribution.

The detailed formula for the ellipses and the probabilities

are given in Appendix C.

4 Results

In this section, we mainly present results of the stochastic

simulations. The results from the Hamiltonian simulations

are only required at the end when we compare it with the

results in the temporal continuum limit.

In Fig. 2, we exemplarily show three equilibration histo-

ries of the plaquette: we plot P − 〈P〉 as a function of the

number of Monte Carlo steps, where 〈P〉 is computed after

equilibrium is reached. Each step corresponds to a complete
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Fig. 2 Thermalisation of the plaquette for the input anisotropies

ξinput ∈ {0.18, 1/5, 1}. All data were generated by the heatbath-

overrelaxation algorithm, and the ensembles have the lattice sizes

L2 × T = 162 × 88, 80, 16 ≈ 162 × 16/ξinput. We show the dif-

ference between the measurement and the mean value of the plaquette

Fig. 3 Integrated

autocorrelation time of the

plaquette for different input

anisotropies. β = 1.7 is kept

constant, the red squares

correspond to points with 100

sweeps between measurements,

the black circles to 50 sweeps

between measurements. The

dashed line shows the ideal case

τint = 0.5. The inset is a

close-up of the lower right

region of the larger figure. All

simulations were done with the

Metropolis-algorithm

sweep over the lattice. The main difference between the three

panels is the value of ξinput, which is ξinput = 0.18 in the left-

most panel, ξinput = 0.2 in the middle, and ξinput = 1 in the

rightmost panel. The ensembles have constant as , leading to

different β. The values of βmatch were taken from the analysis

chain N0ET and βiso = 1.65. For ξinput = 1, thermalisation

is achieved almost instantly, for ξinput = 1/5 it takes about

2000 Monte Carlo steps, and for ξinput = 0.18, thermali-

sation is only achieved after about 25000 steps. Also, one

observes long-range fluctuations at the smallest value of the

anisotropy, hinting at larger autocorrelation times.

In the following, we show results exemplarily for the anal-

ysis chain N0ET. We show the integrated autocorrelation

times for constant β and simulation with the Metropolis-

algorithm in Fig. 3, and we observe that the autocorrelation

increases roughly exponentially with decreasing ξinput. For

anisotropies that are close to 1, we see an ideal autocorre-

lation time with τint ≈ 0.5. For decreasing ξinput, the error

on the integrated autocorrelation time grows larger, but also

τint itself grows. For ξinput = 1/4, the autocorrelation grows

to τint = 17.7(63). This prevents us from simulating even

smaller anisotropies with the Metropolis-algorithm.
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Fig. 4 The matching points for

analysis chain N0ET. The upper

points correspond to the

matching points for βiso = 1.7,

the lower ones to βiso = 1.65

In Fig. 4, we illustrate the tuning procedure to determine

βmatch at fixed r0/as = riso for two values of βiso = 1.65

and βiso = 1.7. We plot r0/as of the matching ensemble as a

function of β, where the different symbols indicate different

values of ξinput, as indicated in the figure legend. The value

of riso determined at βiso is shown as the black circle with

statistical uncertainty, and – to guide the eye – also by the

dashed horizontal line with error band.

In Fig. 5, we show the renormalized anisotropy as a func-

tion of the input anisotropy at the matching points, i.e. at

fixed lattice spacing, for the same values of βiso. The diag-

onal line shows the line of ξinput = ξren, and we see that in

most cases, ξren is smaller than ξinput. However the deviation

is small, the maximum deviation is 25%, and the median

deviation is 15%. We observe only small differences in ξren

when comparing the two βiso-values.

For convenience, we compile the results in Table 3 for

βiso = 1.7 and in Table 4 for βiso = 1.65. For all our ξinput

values we list the corresponding values of ξren, Pmatch, and

βmatch. These results are again exemplary for all the different

analysis chains.

The next step in our analysis is the continuum limit in

time direction, for which we show examples in Fig. 6 for

βmatch and Pmatch with L = 16 and βiso = 1.7 as functions

of ξ2
ren, corresponding to an extrapolation in the cA-ET set

with ξinput ∈ {0.18, 1/5, 1/4} and n p = 1 (see Table 2, i.e.

extrapolations linear in ξ2
ren). The analogous extrapolations

with L = 3 for P and the ratio R Eq. (19) are shown in Fig. 7.

In both figures, the best fits are represented by the solid lines

and its statistical uncertainties by the shaded bands. The red

point marks the continuum limit.

Taking into account now all analysis chains and the dif-

ferent sets of extrapolations leaves us with four sets of pairs

of plaquette- and β-values in the temporal continuum limit.

Fig. 5 ξren at the matching points for analysis chain N0ET. The red

squares correspond to the matching points for βiso = 1.7, the black

circles to βiso = 1.65. The diagonal line shows the line of ξren = ξinput

These pairs are visualised in Fig. 8 for the set cA-ET. The

results of the Hamiltonian simulations are represented by the

(black) upside-down triangles, connected by solid (black)

lines to guide the eye. The continuum limits for L = 16 are

represented by the green circles. The results of the extrapo-

lation of the plaquette measured at L = 3 are shown as red

diamonds, and the results obtained by extrapolating R(ξ2
ren)

and multiplying with the L = 16 result are shown as blue tri-

angles. The open (filled) symbols correspond to βiso = 1.65

(1.70). The error bars show the combination of the statisti-
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Table 3 Results for βiso = 1.7 with r0/as matched to riso = 3.462(40). The data are taken from the N0ET analysis chain

ξinput βmatch ξren Pmatch(L = 16) Pmatch(L = 3)

4/5 1.6400(79) 0.768(23) 0.714953(69) 0.73809(39)

2/3 1.6075(82) 0.641(26) 0.69608(16) 0.71914(38)

1/2 1.5550(84) 0.437(15) 0.671986(85) 0.69449(33)

2/5 1.5250(86) 0.356(17) 0.66057(15) 0.68326(33)

1/3 1.5000(96) 0.288(17) 0.65218(17) 0.67443(27)

1/4 1.490(15) 0.2056(75) 0.64999(20) 0.67088(73)

1/5 1.4600(90) 0.1653(69) 0.64151(17) 0.66374(20)

0.18 1.4500(91) 0.1513(50) 0.639007(46) 0.66121(31)

Table 4 Results for βiso = 1.65 with r0/as matched to riso = 3.231(52). The data are taken from the N0ET analysis chain

ξinput βmatch ξren Pmatch(L = 16) Pmatch(L = 3)

4/5 1.600(10) 0.770(55) 0.70256(17) 0.72695(39)

2/3 1.565(11) 0.614(32) 0.68209(18) 0.70697(41)

1/2 1.490(11) 0.442(28) 0.64864(14) 0.67443(36)

2/5 1.480(14) 0.340(17) 0.644819(91) 0.66879(33)

1/3 1.450(10) 0.280(13) 0.63424(11) 0.65885(29)

1/4 1.420(14) 0.2072(86) 0.62530(16) 0.64942(69)

1/5 1.420(10) 0.1610(71) 0.62759(21) 0.65129(20)

0.18 1.405(10) 0.1474(36) 0.622708(27) 0.64660(40)

Fig. 6 The temporal continuum limit of Pmatch and βmatch. The points are the result of analysis chain N0ET. The plaquette is measured at L = 16.

The fit is a linear fit including all three points corresponding to ξinput = (0.18, 1/5, 1/4) and βiso = 1.7
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Fig. 7 The temporal continuum limit of Pmatch and R(ξ2
ren). The points are the result of analysis chain N0ET. The plaquette is measured at L = 3.

The fit is a linear fit including all three points. ξinput = (0.18, 1/5, 1/4) and βiso = 1.7

cal error and the systematic error from the calculation of the

potential. First, we observe that the L = 16 results without

finite size corrections do not match the Hamiltonian results.

However, once L = 3 is considered the MC results are much

closer to the Hamiltonian results.

Finally, we combine the continuum limits for all differ-

ent sets of parameters and analysis chains as discussed in

Sect. 3.1.2. The result of analysis set cA and the direct extrap-

olation of the small volume result is shown in Fig. 9. The

black triangles are the combined l = 3 and l = 4 Hamilto-

nian results, joined by a linear interpolation. The blue squares

represent the Lagrangian results at L = 16 and the red cir-

cles the results at L = 3. The open (filled) symbols corre-

spond to βiso = 1.65 (1.70). The left (open) points corre-

spond to βiso = 1.65 and show a residual 1.49σ deviation

from the Hamiltonian curve. For the right (filled) points with

βiso = 1.70 the deviation amounts to 1.88σ .

The ellipse in Fig. 9 indicates a lower correlation between

β and P than one might expect from the spread of the points

in Fig. 8. This is because the points in Fig. 8 correspond to fits

with the same parameters for P and β, but in the final result,

also the correlations between fits with different parameters

enter, and these are lower than the correlations between the

fits with the same parameters. The confidence ellipse of the

Lagrangian result was calculated as described in Sect. 3.3

and Appendix C.

A comparison of all analysis sets and of the two ways of

implementing the small volume limit are shown in Fig. 10.

The black triangles represent again the combined l = 3 and

l = 4 Hamiltonian results, joined by a linear interpolation.

The red circles are the results of the cB extrapolation set

with the direct extrapolation at L = 3, the blue squares are

the same set but with the small volume effects determined by

the ratio R. The green diamonds correspond to the cA direct

extrapolation and the maroon upside-down triangles to the

ratio extrapolation of the same extrapolation set. The open

(filled) symbols correspond to βiso = 1.65 (1.70).

The two ways of calculating the small volume effects are

fully compatible. The results of the two extrapolation sets

lead to compatible results for βmatch, the results for Pmatch

are compatible for βiso = 1.7 and deviate by less than 2σ for

βiso = 1.65.

The results for the matching β are given in Table 5, the

plaquettes at the matching point are given in Tables 6 and 7

for the extrapolation sets cA and cB respectively. The four

errors we quote correspond to statistical only, the systematic

error from calculating the potential energies, the systematic

error from the spread of the different continuum limit results,

and the total error, added in quadrature.

5 Discussion

In Fig. 2 we see that the number of sweeps it takes to reach

an equilibrium state grows with decreasing ξinput, eventually

leading to critical slowing down. This is also seen in the

autocorrelation times in Tables 8 and 9 and Fig. 3, they grow

with decreasing anisotropy. For ξinput ≥ 1/4, we were able

to simulate with the standard Metropolis algorithm, whereas

for even smaller anisotropies, the autocorrelation was too

large and we were unable to even achieve thermalisation. The

combination of heatbath and overrelaxation algorithms miti-
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Fig. 8 All continuum limits in the set cA-ET. The error bars show

the combination of the statistical error and the error due to choos-

ing the plateau boundaries. The open (filled) symbols correspond to

βiso = 1.65 (1.70). We display several different continuum limits:

The limit at L = 16, the direct fit of the L = 3 data, and the result

obtained for L = 3 by using the ratio R = P(L = 3)/P(L = 16). The

Hamiltonian results are a combination of truncations l = 3 and l = 4,

interpolated linearly

Fig. 9 Combined continuum limits for the plaquette and β. The error

markers correspond to the statistical error, the systematic error from

choosing the potential plateaus, and the systematic error of the spread

of the different continuum limit fits. In some cases the statistical error is

so small it is not visible. The results are from the combination of all the

fits in the set cA, with P(L = 3) calculated directly. The open (filled)

symbols correspond to βiso = 1.65 (1.70). The ellipse is determined

with the procedure explained in Appendix C.1. Further explanations are

in the text
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Fig. 10 Combined continuum limits for the plaquette and β for every combination of extrapolation set and small volume extrapolation. Further

explanations are in the text

Table 5 The coupling constant β at the matching point. For explanation

of the errors given see in the text

βiso set βmatch

1.65 cB 1.403(06)(10)(06)[13]

1.7 cB 1.450(06)(17)(08)[20]

1.65 cA 1.393(06)(08)(04)[11]

1.7 cA 1.431(05)(10)(13)[17]

Table 6 The different plaquette observables at the matching point for

the extrapolation set cA. For explanation of the errors given see in the

text. d measures the difference between the Lagrangian and Hamiltonian

simulations as explained in Appendix C.2

βiso 1.65 1.7

Set cA cA

P(L = 16) 0.6073(06)(48)(69)[84] 0.6297(14)(18)(26)[35]

P(L = 3) direct 0.6337(07)(45)(56)[72] 0.6541(10)(16)(29)[34]

d dir. 1.49 1.88

P(L = 3) ratio 0.6303(07)(50)(72)[88] 0.6520(15)(18)(28)[36]

d rat. 1.87 1.87

gated the critical slowing down enough to make simulations

at ξinput = 1/5, 0.18 feasible. However, for ξinput < 0.18 we

could not reach equilibrium in reasonable simulation times.

This restricts of course how close we could get with our

simulations to the temporal continuum limit. Still, we are

confident that our procedure of following different analysis

chains, and of using different sets of temporal continuum

extrapolations leads to reliable estimates of the uncertainties.

Table 7 Same as Table 6, but for extrapolation set cB

βiso 1.65 1.7

Set cB cB

P(L = 16) 0.6233(04)(11)(67)[67] 0.6334(07)(18)(27)[34]

P(L = 3) direct 0.6495(03)(07)(46)[47] 0.6574(07)(14)(15)[22]

d dir. 1.57 0.61

P(L = 3) ratio 0.6469(04)(12)(69)[70] 0.6553(07)(19)(28)[34]

d rat. 0.66 1.77

In fact, the total uncertainty is in almost all results dominated

by systematic uncertainties. Moreover, statistical fluctuations

are more likely to average out in our procedure.

It is also reassuring that the extrapolation sets cA and cB

lead to compatible results: we recall that the most significant

difference between the two is the in- or exclusion of the data

at the smallest ξinput-value. Therefore, the data at the smallest

ξinput-value confirm our temporal continuum limit results, but

are not strictly necessary.

Our results in the temporal continuum limit are in agree-

ment with the Hamiltonian results within two σ ; the largest

deviation is 1.87σ . This indicates in general that taking the

temporal continuum limit in the Euclidean (2 + 1) dimen-

sional lattice theory is equivalent to the Hamiltonian lattice

theory for the specific lattice action and Hamiltonian quoted

in the introduction.

Still, there might be a systematic effect unaccounted for,

because all our extrapolation results lie below the Hamil-

tonian curve. One possible explanation for this systematic
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deviation could be the truncation on the Hamiltonian side.

This seems not to be the case because larger l-values tend

to push the plaquette values up at fixed β. Despite the dis-

cussion from above, we certainly cannot be 100% sure that

we are close enough to the temporal continuum limit, which

might offer one explanation for the systematic deviation.

However, this will need further investigation in the future.

6 Summary and outlook

We have performed the temporal continuum limit in a U(1)

lattice gauge theory using stochastic simulations in the

Lagrangian formalism. We performed this temporal contin-

uum limit using the anisotropic lattice formulation starting

with two β-values from the isotropic side. Trajectories of

constant spatial lattice spacing are defined by keeping the

Sommer parameter r0/as fixed. The so obtained temporal

continuum results for the plaquette and the coupling β are

compared to results from a direct Hamiltonian simulation.

We find general agreement within two σ between Hamilto-

nian and extrapolated Lagrangian results. As discussed in the

previous section, the deviation is systematic towards lower

plaquette values for the extrapolated results, for which we

currently do not have a good explanation. Our procedure

allows us to calculate observables at the same lattice spacing

as in both theories. For the comparison between the theories,

we are not interested in the limit as → 0, but instead we use

the matching point to combine advantages of both theories

at fixed lattice spacing.

There are several immediate extensions that we leave for

the future: On the path integral side, it is possible to use other

parameters to set the scale, e.g. the time τ0 from the gradient

flow, or a fermion mass or decay constant in a fermionic the-

ory. In a fermionic theory we could also use other matching

variables, like the mass gap.

On the Hamiltonian side, the goal is to simulate larger lat-

tices, which simplifies the matching. This can be achieved by

other methods beyond exact diagonalization, such as Tensor

Networks and future Quantum Computers. Larger lattices

in future simulations would make other matching variables

beyond the plaquette possible, and would reduce the need for

finite volume extrapolations.

An extension to higher dimensions or other lattice gauge

theories, in particular QCD, is conceptually straightfor-

ward, but will be computationally demanding on both the

Lagrangian and the Hamiltonian side.
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Appendix A. Autocorrelation

A common way to deal with autocorrelation is to block the

data before bootstrapping it. However, our results showed

that this lead to a bad estimation of the covariance matrix,

and thus unreliable results of the potential energies.

We take care of the autocorrelation in a different way: The

potential energies are still determined with bootstrapping,

but with block length 1. At the same time, we determine the

autocorrelation of the original data with the UWerr-algorithm

[40] implemented in [39]. We then rescale the results of the

bootstrapping to take the autocorrelation into account. The

error is rescaled with 2τint and each bootstrap sample x is

rescaled to be xnew = xold + (xold − µ) · (2 · τint − 1), with

µ the unbiased mean. This ensures that the difference of the

bootstrap sample to the unbiased mean is 2τint times as large,

so the error increases by the required amount.

We also draw bootstrap samples of the plaquette. There,

we set the block length to 4τ 2
int to take the autocorrelation

into account.
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Appendix B. Using AIC to determine the potential points

The potential points are computed with the help of the Akaike

Information Criterion (AIC) [41].

We fit the ratios from Eqs. (4) and (6) to a constant in

the region (t1, t2). All possible combinations with t1 > 1

and t2 − t1 > 2 are used, and each fit result is assigned the

weight

w = exp

(

−
1

2
·
(

χ2 + 2 − (t2 − t1)
)

)

(22)

with χ2 the sum of residues of the fit.

The weights are normalized to one. We assume the results

are normally distributed and combine the weights, means µ

and standard deviations σ to give the cumulative distribution

function (cdf)

cdf(y) =
∑

i

wi ·
1

2



1 +
erf(y − µi )

√

2σ 2
i



 (23)

where erf is the error function and y is the potential energy.

The cdf is used to find the median q50, the 16% quantile

q16 and the 84% quantile q84 of the distribution of the masses.

The procedure is repeated for each bootstrap sample.

The medians of the bootstrap samples represent the sta-

tistical error. However, q16 and q84 also give us information

about the total error, including the systematic uncertainty in

choosing the correct boundaries of the effective mass fit.

We use σcomb = 1
2
(q84 − q16) of the result of the original

data as an estimate of the total error, and σstat = sd(q50,boot)

as an estimate of the statistical error.

To use the total error in the further analysis, we rescale

each bootstrap sample so that it is σcomb
σstat

further away from

the mean, similar to the rescaling to take into account the

autocorrelation as described in Appendix A. We can extract

the systematic error from σ 2
comb = σ 2

stat + σ 2
pot.

Appendix C. Determining confidence level

Appendix C.1. Getting a touching ellipse

We want to determine the difference between the Hamilto-

nian and Lagrangian results and do this geometrically with

an ellipse.

We piece wise linearly interpolate the Hamiltonian results

and determine the equation for each piece.

We know the Lagrangian result (β, P) and its errors

(σβ , σP ). This is the centre point of the ellipse, and the ratio

of the errors is the ratio of the major axes of the ellipse. The

angle φ of the ellipsis is given by tan(2φ) =
2ρσβσP

σ 2
β −σ 2

P

, with ρ

the correlation coefficient of the bootstrap samples of β and

P [42].

The ellipse can be written in the general form as

Axx x2 + 2Axy xy + Ayy y2 + 2Bx x + 2By y + C = 0 (24)

or, written in matrix form





x

y

1





T 



Axx Axy Bx

Axy Ayy By

Bx By C









x

y

1



 = 0 = X̃ T AX̃ (25)

with

Axx = σ 2
β · sin2(φ) + σ 2

P · cos2(φ)

Axy = (σ 2
P − σ 2

β ) · sin(φ) · cos(φ)

Ayy = σ 2
β · cos2(φ) + σ 2

P · sin2(φ)

Bx = −Axx · β − Axy · P

By = −Axy · β − Ayy · P

C = Axx · β2 + 2Axyβ P + Ayy P2 − σ 2
βσ 2

P . (26)

Here we have set the major axes equal to the errors, as is

the starting case for our calculation.

We interpret the Hamiltonian interpolation as a polar to

the ellipse. The interpolation can be expressed as a line of

the form Dx + Ey + F = 0 = BT X̃ . This curve is invariant

under a rescaling of B.

A polar to a point P can be written as PT AX̃ = 0 [43].

Setting the two descriptions of the polar equal to each

other, we get

PT A = BT ⇔ AP = B ⇔ P = A−1 B. (27)

With




xP

yP

zP



 =





Axx Axy Bx

Axy Ayy By

Bx By C





−1 



D

E

F



 (28)

the pole has the coordinates ( xP

zP
,

yP

zP
), where we chose zP

as our rescaling factor for the polar equation. If the polar is

a tangent to the ellipse, the pole is the touching point and

directly on the ellipse [43]. In that case, it fulfils the ellipse

equation Eq. (24).

For determining the matching level, we keep the angle,

centre point and ratio of the major axes fixed, but vary the

length of the major axes by setting them to rσP and rσβ .

Finding the matching level and radius is reduced to a root-

finding procedure: We keep everything except the radius r

fixed, and vary the radius until the pole is on the ellipse, and

thus the polar is a tangent at the radius r∗. We call the ellipse

corresponding to the radius r∗ the matching ellipse, because
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at this radius it touches the interpolation of the Hamiltonian

results.

We do this for every interpolated piece, and then select

only the piece(s) for which the matching point is on the piece

itself. This usually only yields one matching point and level

of deviation, but in case several points match, we select the

one with the lower r∗.

C.2. Getting a confidence level from the radius

A non-tilted ellipse centred at the origin can be written as

(

x

σx

)2

+

(

y

σy

)2

= s. (29)

The probability distribution for x, y is

P(x, y) =
dxdy

(2π)σxσy

e
− x2

2σ2
x

− y2

2σ2
y . (30)

Integrating over this in the area of the ellipse gives us

the probability p that a point is inside the ellipse p = 1 −

exp (−0.5 · s).

We can apply this to a tilted ellipse as well, and identify

β, P with x, y and r∗2 with s.

From the matching ellipse, we can thus calculate the prob-

ability p that a point from the Lagrangian distribution is

inside the ellipse and not a match to the Hamiltonian.

We convert this probability into units of the standard devi-

ation of the normal distribution.

We determine the deviation level,d, by setting p = 
(d)−


(−d), with 
 the cumulative density function of the normal

distribution. We determine d by a root-finding procedure on

(
(d) − 
(−d)) −
(

1 − exp
(

−0.5 · r∗2
))

= 0. (31)

Appendix D. Systematics of continuum limit

Our procedure to average over different ways of taking the

continuum limit from Sect. 3.1.2 is visualised in Fig. 11.

Fig. 11 Visualisation of the different steps of the analysis procedure.

The procedure is described in detail in Sect. 3.1.2. We display only four

analysis chains (see Table 1) and four kinds of fit to the continuum limit

(see Table 2). The analysis goes from top to bottom, and we denote the

inclusion (exclusion) of a systematic error from the potential by dotted

(dashed) lines, and the inclusion (exclusion) of the smallest anisotropy

in the fits for the continuum limit by black (red) lines

Appendix E. Used configurations

The configurations are given in Table 8 for L = 16 and in

Table 9 for L = 3.
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Table 8 List of configurations with L = 16 that were used to determine

the continuum limit. We give the coupling β, the input anisotropy ξinput,

the number of thermalised configurations on which we did measure-

ments, the number of spatial and temporal lattice points, the algorithm

used for generation, the number of sweeps that were done between

measurements and the integrated autocorrelation time of the spatial-

spatial plaquette. The algorithm is one of heatbath-overrelaxation (hb)

and Metropolis (met)

ξinput β # confs. L T algo # sweeps τint

1 1.65 5500 16 16 met 50 0.490(13)

1 1.7 9748 16 16 met 100 0.497(10)

4/5 1.59 1500 16 20 met 50 0.516(65)

4/5 1.6 1500 16 20 met 50 0.585(95)

4/5 1.615 1500 16 20 met 50 0.499(45)

4/5 1.63 1500 16 20 met 50 0.489(44)

4/5 1.64 9749 16 20 met 100 0.490(10)

4/5 1.65 4749 16 20 met 100 0.502(39)

4/5 1.6521 1750 16 20 met 50 0.496(34)

4/5 1.665 1500 16 20 met 50 0.497(63)

4/5 1.7 4749 16 20 met 100 0.503(39)

4/5 1.75 4749 16 20 met 100 0.500(25)

2/3 1.54 28000 16 24 hb 10 0.581(26)

2/3 1.555 3750 16 24 met 50 0.500(16)

2/3 1.56 3750 16 24 met 50 0.500(16)

2/3 1.565 1500 16 24 met 50 0.519(66)

2/3 1.58 2749 16 24 met 100 0.550(63)

2/3 1.595 7749 16 24 met 100 0.533(36)

2/3 1.6 28000 16 24 hb 10 0.578(25)

2/3 1.6075 1750 16 24 met 50 0.487(62)

2/3 1.7 1500 16 24 met 50 0.491(57)

1/2 1.49 2749 16 32 met 100 0.600(76)

1/2 1.515 1500 16 32 met 50 0.513(75)

1/2 1.525 4750 16 32 met 100 0.610(61)

1/2 1.53 4749 16 32 met 100 0.562(51)

1/2 1.54 5750 16 32 met 50 0.569(52)

1/2 1.55 4749 16 32 met 100 0.516(40)

1/2 1.555 5750 16 32 met 50 0.563(47)

1/2 1.56 5750 16 32 met 50 0.567(49)

1/2 1.575 5750 16 32 met 50 0.523(41)

1/2 1.7 1500 16 32 met 50 0.62(11)

2/5 1.45 5500 16 40 met 50 0.840(98)

2/5 1.46 2500 16 40 met 50 0.80(13)

2/5 1.47 5500 16 40 met 50 0.727(78)

2/5 1.48 5500 16 40 met 50 0.678(70)

2/5 1.495 5500 16 40 met 50 1.28(18)

2/5 1.511 1750 16 40 met 50 0.66(11)

2/5 1.52 5500 16 40 met 50 0.802(91)

2/5 1.525 2500 16 40 met 50 0.74(11)

2/5 1.55 5500 16 40 met 50 0.729(78)
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Table 8 continued

ξinput β # confs. L T algo # sweeps τint

2/5 1.57 5500 16 40 met 50 1.17(16)

2/5 1.7 1500 16 40 met 50 1.81(52)

1/3 1.43 15000 16 48 met 50 1.32(13)

1/3 1.44 15000 16 48 met 50 1.23(11)

1/3 1.45 7000 16 48 met 50 1.19(15)

1/3 1.46 15000 16 48 met 50 1.118(97)

1/3 1.47 4750 16 48 met 100 0.782(93)

1/3 1.48 2749 16 48 met 100 0.93(15)

1/3 1.4814 3500 16 48 met 50 1.38(25)

1/3 1.5 3000 16 48 met 50 1.55(31)

1/3 1.51 4749 16 48 met 100 1.29(20)

1/3 1.515 15000 16 48 met 50 2.75(36)

1/3 1.55 4749 16 48 met 100 1.60(27)

1/3 1.7 6000 16 48 met 50 2.34(43)

1/4 1.4 16002 16 64 met 50 5.23(88)

1/4 1.415 9000 16 64 met 100 10.9(31)

1/4 1.42 9000 16 64 met 100 3.05(52)

1/4 1.43 22002 16 64 met 50 5.56(84)

1/4 1.4378 17002 16 64 met 50 6.6(12)

1/4 1.45 10000 16 64 met 50 6.9(16)

1/4 1.46 2499 16 64 met 100 2.90(81)

1/4 1.47 2499 16 64 met 100 2.92(82)

1/4 1.49 9000 16 64 met 100 5.3(11)

1/4 1.5 9000 16 64 met 100 5.1(11)

1/4 1.53 8999 16 64 met 100 9.8(27)

1/4 1.7 7999 16 64 met 50 17.7(63)

1/5 1.39 7502 16 80 hb 50 2.41(40)

1/5 1.4 7502 16 80 hb 50 2.22(36)

1/5 1.41 7502 16 80 hb 50 3.09(57)

1/5 1.42 3500 16 80 hb 50 2.39(54)

1/5 1.435 7501 16 80 hb 50 3.52(68)

1/5 1.46 7502 16 80 hb 50 3.52(68)

1/5 1.47 7502 16 80 hb 50 3.71(74)

1/5 1.48 7502 16 80 hb 50 4.7(10)

0.18 1.39 176221 16 88 hb 50 1.55(15)

0.18 1.395 260004 16 88 hb 50 1.61(13)

0.18 1.4 176256 16 88 hb 50 1.38(12)

0.18 1.405 260004 16 88 hb 50 1.64(13)

0.18 1.41 175633 16 88 hb 50 1.80(18)

0.18 1.45 176286 16 88 hb 50 2.76(34)

0.18 1.46 176291 16 88 hb 50 3.20(42)

0.18 1.47 176288 16 88 hb 50 3.12(40)
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Table 9 List of configurations with L = 3 that were used to determine

the continuum limit. We give the coupling β, the input anisotropy ξinput,

the number of thermalised configurations on which we did measure-

ments, the number of spatial and temporal lattice points, the algorithm

used for generation, the number of sweeps that were done between

measurements and the integrated autocorrelation time of the spatial-

spatial plaquette. The algorithm is one of heatbath-overrelaxation (hb)

and Metropolis (met)

ξinput β # confs. L T algo # sweeps τint

1 1.65 9667 3 16 met 50 0.4818(99)

1 1.7 9667 3 16 met 50 0.497(10)

4/5 1.6 7501 3 20 met 100 0.491(20)

4/5 1.615 7501 3 20 met 100 0.489(23)

4/5 1.64 7501 3 20 met 100 0.522(36)

4/5 1.65 9667 3 20 met 50 0.500(20)

4/5 1.6521 7501 3 20 met 100 0.490(11)

2/3 1.56 7251 3 24 met 100 0.481(11)

2/3 1.5614 7251 3 24 met 100 0.502(33)

2/3 1.565 7251 3 24 met 100 0.496(31)

2/3 1.58 9167 3 24 met 50 0.501(23)

2/3 1.595 46250 3 24 hb 20 0.4944(80)

2/3 1.6 7251 3 24 met 100 0.498(31)

2/3 1.6075 7251 3 24 met 100 0.499(12)

1/2 1.49 9667 3 32 met 100 0.496(10)

1/2 1.515 9667 3 32 met 100 0.493(10)

1/2 1.5381 9667 3 32 met 100 0.607(44)

1/2 1.54 8667 3 32 met 50 0.493(21)

1/2 1.55 8667 3 32 met 50 0.498(11)

1/2 1.5514 9667 3 32 met 100 0.532(32)

1/2 1.5531 8667 3 32 met 50 0.634(51)

1/2 1.555 9667 3 32 met 100 0.491(10)

2/5 1.46 14501 3 40 met 100 0.502(24)

2/5 1.4638 14501 3 40 met 100 0.724(51)

2/5 1.47 14501 3 40 met 100 0.507(22)

2/5 1.48 14501 3 40 met 100 0.667(45)

2/5 1.51 7667 3 40 met 50 0.573(43)

2/5 1.511 7667 3 40 met 50 0.524(34)

2/5 1.52 14501 3 40 met 100 0.539(28)

2/5 1.525 14501 3 40 met 100 0.729(51)

1/3 1.44 37001 3 48 met 100 0.605(24)

1/3 1.4406 37001 3 48 met 100 1.407(93)

1/3 1.45 37001 3 48 met 100 1.310(83)

1/3 1.46 4667 3 48 met 50 0.791(95)

1/3 1.48 4667 3 48 met 50 0.93(12)

1/3 1.4814 37001 3 48 met 100 1.326(85)

1/3 1.5 37001 3 48 met 100 1.292(82)

1/4 1.42 49334 3 64 met 100 9.6(13)

1/4 1.43 29336 3 64 met 50 4.53(55)

1/4 1.4378 2667 3 64 met 50 2.39(61)
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Table 9 continued

ξinput β # confs. L T algo # sweeps τint

1/4 1.47 49334 3 64 met 100 1.72(11)

1/4 1.49 49334 3 64 met 100 12.8(19)

1/5 1.41 47499 3 80 hb 200 0.820(37)

1/5 1.42 47500 3 80 hb 200 0.868(40)

1/5 1.46 47499 3 80 hb 200 0.923(44)

1/5 1.47 47500 3 80 hb 200 0.964(47)

1/5 1.48 47500 3 80 hb 200 0.986(48)

0.18 1.39 36770 3 88 hb 500 1.349(87)

0.18 1.395 36000 3 88 hb 500 1.284(81)

0.18 1.4 36000 3 88 hb 500 1.420(95)

0.18 1.405 19742 3 88 hb 500 1.28(11)

0.18 1.45 36756 3 88 hb 500 1.69(12)

0.18 1.46 37277 3 88 hb 500 1.99(15)

0.18 1.47 36000 3 88 hb 500 1.75(13)
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