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Spinning black holes could produce ultralight particles via the superradiance instability. These particles
form a dense cloud around the host black hole, introducing new opportunities for the detection of ultralight
new physics. When the black hole is part of a binary system, the binary can trigger transitions among
different states of the cloud configuration. Such transitions backreact on the orbital dynamics, modifying
the frequency evolution of the emitted gravitational waves. Based on this observation, black hole binaries
were proposed as a way to test the existence of ultralight particles. We investigate the effects of the self-
gravity of the cloud on the orbital evolution and on the gravitational wave emission. We find that cloud self-
gravity could lead to a density-dependent modification of the energy levels of ultralight particles and that it
could alter the order of hyperfine energy levels. The crossing of hyperfine levels prevents binaries from
triggering resonant hyperfine transitions, and allows them to approach radii that could trigger resonant
transitions of fine levels. We study the implications of these findings, especially in the context of future
space-borne gravitational wave observatory, the Laser Interferometer Space Antenna (LISA). For
quasicircular, prograde, and equatorial orbits, we find that LISA could probe ultralight particles in the

mass range 10715 eV-10"13 eV through gravitational wave observations.
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I. INTRODUCTION

Ultralight particles appear ubiquitously in numerous
beyond the standard model scenarios. A canonical example
is the quantum chromodynamics (QCD) axion as a solution
to the strong CP problem [1-8]. Additionally, axionlike
particles and dark photons are often considered as bench-
mark models for phenomenological studies of ultralight
new physics. Some of them are associated with theoretical
motivations such as solving the electroweak hierarchy
problem [9—15]. They might also constitute the dark matter
in the present Universe [16—18].

Black holes (BHs) provide interesting ways to probe
ultralight new physics. A spinning black hole can, through
the superradiance instability, produce a dense cloud of
ultralight particles whose Compton wavelength matches its
size. This process extracts the angular momentum of the
black hole, limiting its maximum spin [19]. At the same
time, a cloud of ultralight particles could source continuous
gravitational waves (GWs) through annihilation and spon-
taneous emission [19]. This observation leads to a series of
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surveys to probe ultralight fields via black hole spin
measurements and searches for continuous gravitational
wave emission generated by these ultralight particles
[20-29].

Another interesting proposal is to use black hole binaries
to search for ultralight new physics [30,31]. In the non-
relativistic limit, the cloud-BH system is often described as
a gravitational atom, analogous to a hydrogen atom, where
the black hole serves as the proton and the cloud acts as the
electron. When a superradiating black hole forms a binary,
the secondary object can trigger a resonant transition
between cloud states whose level spacing matches the
orbital frequency of the binary. Such transitions then
backreact on the orbital dynamics. Depending on the types
of transitions and the orientation of orbits, the binary may
harden faster or slower than in cases without the super-
randiance cloud. This leaves nontrivial time-dependent
signatures in the emitted gravitational waves, from which
one might infer the existence of ultralight particles.

In this work, we examine the impact of the self-gravity of
the cloud on the orbital dynamics and the emission
of gravitational waves. By self-gravity, we refer to the
gravitational potential of the cloud itself. We find that
self-gravity introduces density-dependent energy level
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corrections and that this leads to the crossing of certain
hyperfine energy levels of the gravitational atom. As a
consequence, a binary undergoes a sequence of resonances
distinct from the one without self-gravity effects.

We study the implications of these findings, especially in
the context of the future space-borne gravitational wave
interferometer LISA. Focusing on quasicircular, prograde,
and equatorial orbits, we find that the self-gravity-induced
level crossing allows the binary to enter fine resonances
which occur closer to the central rotating black hole. This
widens the observational prospects of ultralight particles
because gravitational waves emitted by harder binaries are
louder and exhibit a faster frequency evolution. In Fig. 1,
we summarize one of the main findings of this work—the
parameter space, where we could potentially probe the
existence of a superradiance cloud through the observation
of gravitational waves in LISA. This result is obtained
under several requirements, such as the frequency of
gravitational wave falling within the LISA frequency band
and the waveform being distinguishable from those without

FIG. 1. Parameter space showing current constraints and the
region in which ultralight particles can be probed with LISA for a
total observational time span T, = 4 yr. Shaded area indicates
regions where LISA is sensitive to ultralight particles via
observations of GWs emitted at the hyperfine resonance |322) <«
[320) (blue) and at the fine resonance |322) <> |31 — 1) (purple).
These regions are based on the computation of fitting factor,
which will be discussed in Sec. IV. The region shaded in lighter
blue is where our approximation of neglecting off-diagonal
matrix element of the self-gravity breaks down (see Sec. V D).
The fine resonance can be reached due to the level crossing
induced by the self-gravity of the cloud. The black contours show
the horizon distance at which LISA can observe emitted GWs
with SNR = 5, while the red contours shows the mass of the
spinning black hole M;. We consider only quasicircular, pro-
grade, equatorial orbits and assume the mass of secondary object
q = M,/M, = 0.05 for the hyperfine transition and ¢ = 0.02 for
the fine transition. Constraints from black hole spin-down are
overlaid as vertical gray bands [21,25,28,29].

a superradiance cloud, among others. The result suggests
that ultralight particles could be probed with LISA in the
unexplored mass range of u = 107°-10"13 eV. Details
will be presented in the following sections.

This work is organized as follows. In Sec. II, we review
the basic features of the superradiance cloud and the idea of
using binary black holes to probe the existence of ultralight
new physics. In Sec. III, we investigate the impact of self-
gravitational effects of the cloud on binary dynamics. In
particular, we show that it introduces density-dependent
corrections to the energy spectrum and that it could induce
crossing among hyperfine levels. In Sec. IV, we discuss the
observational implications of these findings, particularly
focusing on the future space-borne gravitational wave
detector LISA. In Sec. V, we discuss assumptions and
simplifications made in the main text that could potentially
alter the conclusion of the work. We conclude in Sec. VI.
Throughout this work, we choose the natural unit ¢ = 7 =
1 and the mostly positive metric signature = (— + +-+).

II. REVIEW

We review the binary dynamics in the presence of a
superradiance cloud. We begin with the basic properties of
superradiance instability in Sec. II A, and proceed to
discuss the idea of using the binary system as a way to
probe ultralight new physics [30,31] in Sec. II B.

A. Superradiance

We consider a light scalar particle in the nonrelativistic
limit. The action for the scalar field is

1 1
S = /d4x\/—_g {—29”'/0;4‘/1’01/45—2#2452 ) (1)

where g, is the Kerr metric and u is the mass of scalar
particle. We do not consider the self-interaction in this
work. In the nonrelativistic limit, the scalar field can be
expanded as

P(t,x) = \/%_ue""”q/(t, x) + H.c.. (2)

The Klein-Gordon equation for ¢) can be written in the form
of Schrodinger equation,

- V2 «a
iy~ (———;)l// = Hyy, (3)

2

where o = GMpu is the fine structure constant of the
system and M, is the black hole mass. The system
resembles the hydrogen atom, and for this reason the
cloud-BH system is often referred to as a gravitational
atom. Here the Kerr metric is expanded to the leading order
in a; higher order corrections lead to fine and hyperfine
splitting of energy levels.
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The spectrum of ultralight particles is similar to that of
the hydrogen atom. It consists of a discrete and a continu-
ous spectrum. The discrete spectrum is characterized by
three integer quantum numbers; the principal, angular, and
magnetic quantum number, (n, Z, m). The discrete energy
spectrum up to O(a) is given by [32]

Euom _a_z_a_“ (2¢ -3n+ 1)a*
w  2n* 8nt n*(¢+1/2)
2a,ma’

TR T ) @

Transitions between two levels, (n,£,m) and (n', ¢, m’),
can be categorized according to the change of quantum
numbers:

(1) Bohr transitions: transitions between energy levels
with different principal quantum numbers, n # n’'.
The level spacing is AEggy,, = O(a?).

(ii) Fine transitions: transitions between energy levels
with the same principal quantum number but with
different angular quantum numbers, i.e., n = n’ and
¢ # ¢'. The level spacing is AEg,. = O(a*).

(iii) Hyperfine transitions: transitions between levels
with the same principal and angular quantum num-
ber but with different magnetic quantum numbers,
ie.n=n',¢ =7¢,and m # m'. The level spacing is
AEygper = O(a,a’), where a, =J/(GM?) is the
dimensionless spin parameter.

This work will focus on fine and hyperfine transitions, in

which the self-gravity effect is more relevant.

The spectrum also develops an imaginary part due

to the boundary condition at the black hole horizon.
Consequently, the eigenfrequency of the system is

Wppm = Enfm + lrnfmv

where the imaginary part I',,,,, is given by [32,33],

anm & (mQ+ - wnfm)'

Here Q. = a./[2r (1 ++/1—a?)] with r, = GM,. When
I,z > 0, superradiance instability occurs, leading to an
exponential production of ultralight particles. Conversely,
when I',,,,, < 0, the cloud decays back to the black hole.
The superradiance instability occurs only for those states
with magnetic quantum number aligned in the direction of
the spin axis, i.e., m > 0, hence the process extracts
angular momentum from the black hole. This continues
until the black hole spins down enough such that
anm & (mQ+ _ﬂ) ~ 0.

For a wide range of fine structure constants and
black hole spin parameters, the superradiance instability
predominantly produces either [211) or [322). We confirm
this in Fig. 2 by computing the ratio between the cloud
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FIG. 2. Cloud mass fraction g, = M./M, for ty, = 100 Myr
and initial BH spin a) = 0.9. The right panel shows the cloud
mass fraction g, for [211) and |322) states. We only show the
region with ¢, > 1073, The upper boundary of the contours is
due to the annihilation of the cloud into gravitational waves,
while the lower boundary arises because the age of the system 7,
is too short for the superradiance instability to develop. The star
corresponds to a benchmark point for which the cloud evolution
is studied as a function of time in Fig. 12. The left panel shows the
cloud mass fraction of [322) at #,,; = 100 Myr as a function of a;
for u = 10~5-10712 eV. The red dashed line shows the maxi-
mum achievable cloud mass without the annihilation of bosons
into gravitational waves. The black line shows the behavior of
g™ « o for small fine structure constants. See Appendix A 3 b
for details on the cloud mass computation.

mass and the black hole mass gq. = M_./M, for each state.
For the figure, we choose the age of the system
foys = 100 Myr, and initial black hole spin a, = 0.9. We
then numerically solve a set of equations for M; and M,
which are presented in Appendix A 3 b. The result mildly
depends on 7. For a phenomenological reason, we only
consider the parameter space where the cloud is dominantly
in the |322) state. We will use the above result as an input
for the analyses that follow.

B. Binary

In a binary system, the gravitational atom is tidally
perturbed by a secondary object. The Schrodinger equation
is then given by

VZ a
= —-———-=-4+V , 5
s < 0w + *>l// (5)
where V. is the perturbation due to the secondary body,

Valrir) =gl - LT )

r=r @] %

Here, ¢ = M,/M, is the ratio between the mass of the
rotating black hole and the secondary object, and r,(¢) is
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the position of the secondary object. The second and third
terms in parentheses cancel the monopole and dipole terms
in the expansion of the potential around r = 0. The above
Schrodinger equation is presented in the black hole
comoving coordinate system. A detailed discussion is
presented in Appendix A.

The system resembles a hydrogen atom with a
time-dependent perturbation. The similarity is most
clearly illustrated by approximating the system to a
two-level system. Consider two levels {|1),[2)} =
{|n1¢1my), )}. Each of them is an eigenstate of
the unperturbed Hamiltonian, H|i) = E;|i). We always
denote the superradiance state with |1) and a state that
can resonate with it via the time-dependent perturbation
with |2). A generic state can be written as

lw) = c1(D]1) + c2(1)]2).

The Schrodinger equation is then given by

B v
’“‘<<2|v*|1> E, ) @)

where ¢ = (c;c,)T. Although the imaginary part of the
spectrum is important for the evolution of the system, we
ignore it for now for simplicity.

The time-dependent perturbation V triggers transitions
among cloud states. To investigate the transitions, we need
to specify an orbit r,(¢). We consider a quasicircular
prograde equatorial orbit. The orbit lies in the xy-plane,
and its angular momentum vector is aligned with the black
hole spin direction Z. We further restrict ourselves to
ry > rg = 1/pa; the orbit remains outside of the cloud
whose size is given by the Bohr radius rp. In this case, the
potential can be expanded as

Z Z Vom e b0 (8)

=2 m,=—

rr*

where the coefficient V., is given by

4z i

Vv =—qa——F—
Com, qazf* T 1 ri*+1

Yoo, (D)Y5 p, (7/2.0), (9)
and the orbital phase ¢, (7) is given by

b, (1) = i/'dﬂsz@’), (10)

with the orbital frequency Q(f) = \/GM/r3(t) and the
total mass of the system M = M| + M, + MC.1 The plus

'"We assume that the center-of-mass of the cloud coincides with
the black hole and treat the cloud-BH as a single object
constituting the binary system with the secondary object. This
will be discussed again in the Appendix.

and minus signs in (10) are for prograde and retrograde
orbits, respectively. The time-dependence is fully factor-
ized as exp[—im ¢, (1)]. The Schrodinger equation can be
written as

. El }/e_iAm12¢*(l)
€= <y*6+iAmlz(/)*(t) E, ¢ (11)

where y =3 4 o iam, {11V e, am,[2) and Amyy = my —m,.
This form makes its similarity with a quantum mechanical
two-level system transparent. If the orbital frequency is
constant, ¢, (t) = £Qr, the resonant transition occurs
when (E| — E,) = £Am,Q; the secondary object in the
binary plays the role of a laser in resonant transitions of
the gravitational atom. In reality, the orbital frequency
slowly drifts to a higher value as the binary hardens
through gravitational wave emission. Note also that a
prograde orbit excites only levels with (E; —E,)/
(m; —m,) > 0, while a retrograde orbit excites levels with
(Ey — Ey)/(my —my) < 0.

These resonant transitions backreact on the orbital
evolution. As the resonant transition changes the angular
momentum of the cloud and as the total angular momentum
must be conserved, the orbit may decay faster or slower in
the presence of the cloud-binary interaction. Whether the
orbit decays faster or slower depends on the nature of
excitation and the orientation of the orbit. From the angular
momentum balance equation (see Appendix A 3), one finds
the orbital frequency evolution equation as

dQ dQ dQ
- (== p— 12
dt (df)Gw+<dt>c1’ (12)

where (dQ/dt)gw and (dQ/dt), each denotes the change
of orbital frequency due to the gravitational wave emission
and due to cloud internal transitions, respectively. Each of
them is given by

(E) = 956(GM JREIOLTEN (13)

dt
dQ\ _, 30°M,
at ),

where M, = [(M, + M_.)M,]3/°/M"/3 is the chirp mass.
The sign in (14) is determined by the relative orientation of
the orbital angular momentum with respect to the black
hole spin; prograde (retrograde) orbits take the + (—) sign.
Ignoring the decay rate of the cloud states I'; and focusing
on a two-level system with a prograde orbit, the cloud
contribution can be written as

() ocom—my "o (15)

3QY3M, m; [d|c,-|2

— . A2
G o ek -, 04

dt dt
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FIG. 3. Top: a schematic picture describing the sequence of
important orbital resonances with an initial |322) cloud. The
orange band around [322) <> [300) denotes the radii around
which the mixing with |300) significantly backreacts to the orbit
and a three-level description is necessary. This will be discussed
in Sec. VA. Bottom: the orbital dynamics at the resonance
[322) < |320) without self-gravity corrections. Compared to the
evolution without the cloud (dashed line), the binary hardens
much more slowly. The green line denotes the evolution obtained
in the two-level approximation, while the dark blue line is
obtained in a three-level system, including |300). As this hyper-
fine transition is adiabatic, the orbit almost completely converts
[322) — |320) and |320) decays subsequently. By the time the
orbit reaches to orbital separations that can trigger fine transitions
such as the [322) <> |31 — 1) resonance, the entire cloud has
disappeared; this conclusion will be altered when the self-gravity
correction is included. Here €, is the resonance frequency
computed with the parameters at the beginning of the evolution
and 7 = [Q(dQ/d1)Gy]|q, is the typical evolution timescale for

the orbit due to the GW emission.

Since the hyperfine and fine transitions of |322) have
(E; — E,)/(m; —m,) > 0, a resonance can only be trig-
gered by a prograde orbit. Since (m; —m,) > 0 for both
fine and hyperfine transitions, (dQ/dt), < 0. The back-
reaction triggers a floating orbital behavior; the orbit decays
slower as the cloud pumps its angular momentum into the
binary system [31].

Figure 3 shows a schematic picture of the sequence of
orbital resonances considered in this work and an example
of a floating orbit. For a quasicircular prograde orbit, the
resonance |322) <> |320) is triggered first among others.
This transition tends to deplete the cloud almost entirely, as
one can see in the bottom panel of the figure. We will see in
the next section that self-gravity alters this behavior. The
mixing with the nonsuperradiance state |300) is important
both for hyperfine and fine transitions, which will be
discussed in more detail in Sec. V A. The floating behavior
is slightly different from the ones presented in previous
literature. The difference can be attributed to the change of
mass and spin of the black hole due to the decay of cloud states;
the result in Fig. 3 is obtained by solving the Schrodinger
equation, the angular momentum balance equation, and the
equation for the black hole and cloud mass simultaneously.
Note that Q is the resonance frequency of the |322) <> [320)
transition computed with values of @ and a,, atthe beginning of
the numerical evaluation.

III. SELF-GRAVITY

Ultralight particles interact among themselves through
the gravitational interaction. This gravitational self-inter-
action perturbs the Hamiltonian as

- VZ «a
= (_ﬂ_;+vc>wi (16)

where the potential due to the self-interaction V_.(z,r) is
given by

1 1 rr
Vc(t,r) = —qca/d3r’|y/(t,r/)|2 |:|r—r" —7—T:| . (17)

I

The system is now described by a nonlinear Schrodinger
equation. Note ¢g. = M_./M,. The additional terms in
parentheses appear due to our coordinate choice.

As the cloud mass could easily be a few percent of the
massive black hole, the corrections of the energy spectrum
might be large enough so that it becomes comparable to the
hyperfine and fine level splitting. Parametrically, the self-
gravity correction is AEy s ~ g.a/rg where rg = 1/pa is
the Bohr radius of the gravitational atom. As already shown
in Fig. 2, the maximum cloud mass fraction scales as g, &
a® [34] (see Appendix A 3 b), and therefore the self-gravity
correction could be as large as AE s ~ g,.a/rg ~ ua*. This
is of the same order as the fine splitting AEg,. = ua®,
and parametrically larger than the hyperfine splitting
AEyper = ua,o’. The Bohr levels are barely affected.

For a quantitative analysis, we assume an axisymmetric
system. In particular, we assume that the cloud is initially in
a pure state of |322). With this assumption, we compute the
correction to the energy level of each state as

AE,;,, = (nfm|V.|nfm).
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FIG. 4. The energy level difference between the [322)
state and a few other states. The level crossing occurs for
the |322) <> |320) transition for = 10713 eV around a ~ 0.31.
Fine transition levels are affected at most at 30%. We choose
the value of ¢. with an initial spin parameter a, = 0.9 and
fage = 100 Myr, and use the nonrelativistic spectrum for
this result. Dashed lines show the level spacing without the
self-gravity corrections.
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As the cloud has a nontrivial angular distribution, this
correction is generally nonuniversal for states with different
quantum numbers. At the same time, the correction
depends on the total cloud mass.

Figure 4 shows self-gravity corrections for fine and
hyperfine transitions of the superradiance |322) state. The
solid (dashed) lines show the level spacing with (without)
the self-gravity corrections. For this result, we use the
nonrelativistic spectrum (4) and the cloud fraction ¢, for
u = 10713 eV, initial spin parameter a, = 0.9, and the age
of the system #,,, = 100 Myr. The corrections to [322) and
|32 — 2) are identical due to the reflection symmetry of the
system. Fine levels are affected at most by less than a
factor of two at small values of «, while the hyperfine
splitting [322) <> |320) is significantly affected. In par-
ticular, these hyperfine levels change their relative order
around a ~ (0.3-0.4.

The above discussion ignores a possible mixing between
states induced by self-gravity. In axisymmetric systems,
self-gravity triggers mixing between levels that share the
same magnetic quantum number, e.g., |322) with [422),
|522), |542), and so on. Consider the mixing of |322) with
|422). Since |422) has a different principal quantum
number, the correction to the energy level is suppressed

quasi-circular, prograde and equatorial
(o, 11, ¢, ) = (0.37, 1071, 0.03, 0.06)

2 ~
o 150 B ™~
& 1.25¢
~1
(&
1
<
0 L
e — 3-lvapp. {322),[31 - 1),300)}
= 100+ 2-v app. {|322), 31 — 1)}
g

0 z I z :
170 175 180 185 190
t/7

FIG.5. Left: the orbital dynamics at the hyperfine |322) <> |320) resonance. All parameters are chosen the same as in Fig. 3.
The self-gravity correction is included. As the effective level splitting between these two states changes its sign, a prograde
orbit can no longer trigger the resonant transition with them. The cloud still depletes in the 3-level analysis, which is due to the
large decay width of the nonsuperradiance [300) state. The above result suggests that the orbit can reach closer to the black
hole, and trigger the resonant transition of the fine levels |322) <> [31 —1). Right: the orbital dynamics around the fine
transition |322) <> |31 —1). The difference between two-level and three-level approximation is noticeable. The mixing with
[300) makes the orbit harden at a much slower rate well before the binary enters the resonance band of the [322) < |31 —1)
transition. If the cloud somehow survives by the time it enters the resonance band of the fine transition, there could be another
period of evolution in which the binary exhibits a floating behavior as can be seen in the inset plot. For this result, we choose a
smaller ¢ = 0.03. Here €, is the resonance frequency of each level, computed at the beginning of the numerical evolution with

the self-gravity corrections.
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as |(422|V.|322)|?/(E3» — E4), which is negligible
compared to (322|V.|322). The same conclusion
hold for other states. For instance, ) could mix
with |300). Although it is a mixing between fine levels,
one can show that the correction due to the mixing
|(320|V.|300)|?/(Esp — E309) is still smaller than
(320]V.]320) or (300|V.|300) by three orders of magni-
tude for a wide range of a. The results shown in Fig. 4 are
therefore not significantly affected by the mixing of states.

This level crossing offers new observational opportuni-
ties. As the hyperfine transition |322) <> |320) induced by
the secondary object tends to be adiabatic, the orbit
completely transfers the superradiance state |322) to the
nonsuperradiance state |320), which then decays to the
black hole. We have already observed this behavior in
Fig. 3. The only possibility to probe ultralight particles in
this case is therefore by observing the gravitational waves
emitted by the binary at this resonance. However, for a
moderately small «, the resonance occurs too far away from
the massive black hole, leading to either too small gravi-
tational wave strain or too slow change of the gravitational
wave frequency, both of which hinder the detection of
ultralight particles via GW observations.

With self-gravity correction, the prograde orbit can no
longer trigger the resonance transition between |322) and
|320> as [(El + AEI) - (E2 + AEz)]/(ml - m2> < O fOf
a <03 —-04. This is shown by the numerical result
presented in the left panel of Fig. 5. The other hyperfine
transition [322) <> |32 —2) can still resonate with a pro-
grade orbit, but this resonance tends to be nonadiabatic as it
can be triggered only with the £ =4 mode of the
perturbation V., and does not play an important role in
the orbital evolution. Not resonating with |322) < |320),
the orbit can approach closer to the black hole, and resonate
with fine levels, e.g., |322) <> |31 —1). As the fine
transitions take place closer to the black hole, the strain
and the frequency change of the gravitational wave could
potentially be large enough for LISA even with a moder-
ately small a, thereby providing another possibility to
probe ultralight particles. In the following section, we
examine this possibility and investigate in detail the
implications of self-gravity for the detection of ultralight
bosons with a binary system.

IV. OBSERVATIONAL TARGET

To examine whether we can detect ultralight particles
with LISA through the observation of GWs, we focus on
two observational targets:

(i) GWs emitted at |322) <

(i) GWs  emitted  at

a<03-04
For the detection of ultralight bosons, two conditions must
be met: (i) GWs must be measurable, and (ii) the meas-
urement contains enough information such that it has a

320) with @ > 0.3 — 0.4
322) & 31— 1)  with

discriminating power to distinguish two hypotheses, the
one with and the one without ultralight bosons.

The measurability condition (i) is assessed by the

following criteria:

(1) GW frequency. The frequency of GWs emitted at the
resonance should be within the LISA frequency
band, fgw €[1073, 1] Hz.

(2) GW frequency drift. The frequency drift of GWs
during the observation should be larger than the
frequency resolution of the detector, Afgw > 1/
Tops- Otherwise, the signal is confined to a single
frequency bin and can likely be fit without invoking
the ultralight cloud, rendering it indistinguishable
from GWs emitted by a system without the cloud.
For T, = 4 yr, we require Afgw > 8 x 107 Hz.

(3) Signal-to-noise ratio. The signal-to-noise ratio
(SNR) should be above threshold for a detection
of the signal. We require

HOE
/I A e (18)

S_
==

where h(f) is the GW strain, S,(f) is the detector
noise power spectral density, and py, is a predefined
detection threshold. This condition can be rephrased
as a maximum distance to the binary that achieves a
detection with SNR = py,. For the computation of
the SNR, we use the LISA noise power spectrum in
Ref. [35] with the galactic confusion noise presented
in Ref. [36].

The detectability condition (ii) is assessed by the fitting

factor

(h(atrue> |h(01/>)
' \/(h(atrue) |h(0true))(h(av) |h(0b)) ’

where the inner product is defined as

Here h(@) denotes the waveform of gravitational waves.
The waveform is characterized by a set of parameters
0={f_, M., q. pu a}, where f_ is the frequency of GWs
at the beginning of the observational campaign. This set
only includes the intrinsic variables; the extrinsic variables
are already algebraically maximized in the fitting factor.
The inner product in (19) is maximized only over a subset
of parameters 0, = {f_, M.}, assuming that ¢, — 0,
a— oo, and u — oo. The resulting h(@,) represents a
waveform of GWs from the system without the cloud.
The fitting factor therefore measures how well the vacuum
waveform £(6,) could fit the GW signals emitted from a
system with a cloud of ultralight particles.

(19)

F = maxy

(AB) =2Re/_°°df 5
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FIG. 6. Summary of the measurability conditions and the
mismatch. The black contours show the maximum distance from
which the emitted gravitational waves can be detected at LISA
with a signal-to-noise ratio py, = 5. The mismatch § = 1 — F is
overlaid. The purple map shows the mismatch for GWs emitted at
the fine resonance |322) <> |31 — 1), while the blue map shows it
for GWs emitted at the hyperfine resonance |322) <> |320).
We stress that the fine transition can only be reached for a <
0.3-0.4 as a result of the level crossing. We choose ¢ = 0.05
for the hyperfine and ¢ = 0.02 for the fine transition. We
compute the fitting factor only for the parameter space with
q.(100 Myr) > 107%. The red contours show the mass of the
rotating black hole, while the gray shaded region shows the
constraints from black hole spin measurements [21,25,28,29].

Figure 6 shows the intersection of the three measurability
requirements and the fitting factor. The measurability
condition is illustrated by the black contours, representing
the maximum distance to a source from which gravitational
waves can be detected by LISA with a signal-to-noise ratio
of py, = 5. For both fine and hyperfine transitions, LISA
can measure GWs emitted at the resonances from sources a
few tens to hundreds megaparsec away from us. At the same
time, we show the fitting factor computed at each point of the
parameter space where the measurability conditions are
satisfied. In the figure, we show the mismatch

s=1-Fel0.1].

When two waveforms are orthogonal to each other, the
mismatch is 6§ = 1. In this case, the GWs emitted from the
binary with and without the cloud can be distinguished from
each other. For this figure, we choose T, = 4 yr, and use
the numerically obtained cloud mass fraction ¢.(100 Myr).
We assume a mass ratio of the companion and central black
hole of g = 0.05 for the hyperfine transition and of ¢ = 0.02
for the fine transition.

To quantify the detectability of the cloud, we require the
mismatch to satisfy [37-41],

D
S=1-F>—2 21
RN (21)

where D is the number of parameters fitted in the fitting
factor. In our case D = 2. The right-hand side of this
criterion is the mismatch that could arise as a result of pure
statistical fluctuations. We therefore impose that the mis-
match arising from genuine differences between two wave-
forms exceeds the statistical fluctuation. In practice, we
impose a stricter condition; the mismatch to be 26 away
from null for a conservative estimate. For SNR = 5, we
require 6 = 1 — F > 0.16 for the detectability of the cloud.

When computing the fitting factor, we must specify the
frequency of the gravitational wave that enters the detector
during the observation. Suppose that the observational
campaign runs for 7€ [tg — 2 yr, fy + 2 yr|, where ¢, is
the midpoint of the observation. The fitting factor shown in
Fig. 6 is computed by assuming fgw(ty) = Qy/z for the
hyperfine resonance and fgw (o) =~ 1.36(Qq/7) for the fine
resonance. In other words, we assume that the GWs emitted
near each resonance enter at the midpoint of the campaign.
As such GWs contain the richest information about the
cloud, they provide the clearest way to test the existence of
ultralight particles.

The resulting mismatch depends on the frequency of
gravitational waves fgw/(7o) that enters the detector during
the observation. To examine how the mismatch changes as
a function of fgw(#), we repeat the computation with

Fowlio) =22 (22)

where ¢ parametrizes the deviation of the GW frequency
from the resonance frequency. In Fig. 7, we show the region
of mismatch that satisfies the criterion (21) at 2¢ for
different choices of c. For the hyperfine transition, the
largest region is achieved around ¢ = 1, confirming that
GWs from the resonance contain the most information on
the cloud around the rotating black hole. On the other hand,
for the fine transition, the largest region is achieved for
¢ =~ 1.36. The reason for this is due to [300); before the
binary enters the fine resonance, the cloud depletes due
to its mixing with |300), and the resonance frequency
increases compared to €, which is specified at the
beginning of the numerical evaluation. Figure 1 is obtained
based on Figs. 6-7; in particular, the projections in Fig. 1
are obtained from the union of mismatch contours shown in
Fig. 7. Details on the computation of fitting factor and the
results for other values of the mass ratio g are presented in
Appendix C.

Before ending this section, we add a brief comment on
the mismatch. The mismatch can be interpreted as a
reduction of the signal-to-noise ratio due to a mismodeling
of the waveform. To see this, consider a data stream in the
strong-signal limit,
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FIG. 7. Contours of mismatch satisfying § > 4D/2SNR? for different choices of ¢, defined via f(t,) = ¢(Qy/x). Left: the mismatch
for the hyperfine transition |322) <> |320) with ¢ = M,/M, = 0.05. The mismatch sharply drops as c¢ drifts away from ¢ =1,
suggesting that the ability to probe the existence of the cloud crucially depends on whether the gravitational waves emitted at the
resonance enter the detector during the observational campaign. Right: the mismatch for the fine transition |322) <> |31 — 1) with
q = M,/M, = 0.02. The results for other combinations of (c, ¢q) are presented in Appendix C.

s(t) = he(1:0.) + n(1) ® he(1;0.),

where n(t) is some Gaussian noise, and 4,(t;0,.) is the true
gravity wave strain parametrized by 6. The optimal
statistic with a template 7(@) can be defined as

(sIn0) 3
(h(®)1())

When the template matches with the true waveform, the
maximum signal-to-noise ratio is given by

ﬁ:

S .

() = maxd) = (hO 0. 24
max

When one chooses /#(8) = h(@,) which does not match the

signal exactly, the maximum signal-to-noise ratio is

reduced by

% — max(p) = <%> 7 (25)

The fitting factor F can therefore be understood as the
reduction of the maximum signal-to-noise ratio due to
mismodeling of the waveform [42].

V. DISCUSSION

A. Mixing with 3s
The mixing with spectator states (that do not participate
to the resonance) could be important for the evolution of the
system. A primary example is the mixing of [322) with
[300). Due to its quantum numbers, the 3s state has a large
decay rate I'yp) o ua, and at the same time, it can mix

nonresonantly with the state [322) via the quadrupole
component of the perturbation V,. Its importance for
orbital dynamics is already hinted in the numerical results
presented in previous sections, e.g., Figs. 3 and 5. This
behavior was already observed in the work of Tong ef al.
[43]. See also Refs. [44,45] for discussions on finite decay
width of states and its implication for orbital dynamics.

The mixing introduces a steady decay of the |322) state
into the black hole. Consider a two-level system, consisting
of {|1),|3)} ={|322),]300)}. With a diagonal phase
rotation, one can show that the two-level Hamiltonian
(11) can be written as

.. Ey — Am3Q/2 4
ic = e, (206)
Y E3 +Am13Q/2+lF

where Q = ¢, () is the orbital frequency for the prograde
Orbit, Am13 =my —ms, AE13 = E1 - E3, and I' is the
decay rate of the spectator state |3). From this, the mixing
angle may be estimated as

4

0~ .
AE13 - Am13Q — i

(27)

Even though the state initially begins with the nondecaying
|1) state, it finds itself in the decaying |3) state with a
probability of |#|?, causing a steady decay of the |1) state
throughout the evolution,

le1|* o« exp [—2/tdt’|«9|2l"]. (28)

A more detailed derivation this expression will be given in
Appendix B.
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This steady decay is already observed in Fig. 3. The
occupation number of the superradiance state steadily
decreases in the three-level approximation until it reaches
the resonance of |322) <> |320). The decay induced by
mixing (28) reasonably agrees with the numerical result
when an additional numerical factor of 1.7 is introduced in
the exponent. This steady decay of the superradiance state
could limit the possibility of observing the ultralight cloud
through GWs, as it might exhaust the entire cloud well
before it reaches resonances [43,46].

Furthermore, the mixing-induced decay backreacts to the
orbit. The orbital evolution of a three-level system is
retarded compared to that of a two-level system, as shown
in Fig. 3. This can be explained as follows. The super-
radiance state dumps its energy into the black hole,
|322) — [300) — |BH), through the mixing enabled by
the secondary object and the [300) decay. During this
process, the state transfers its angular momentum to the
secondary object’s orbit, causing the orbit in the three-level
system to float longer compared to the one in the two-level
system.

This mixing-induced backreaction causes a more
dramatic orbital behavior near the resonance [322) <>
|31 — 1). The right panel of Fig. 5 shows that the orbit
floats for a much longer period of time due to its mixing
with |[300). Contrary to the hyperfine case, the orbit gains a
large angular momentum from the mixing-induced cloud
evolution as much as it loses via gravitational wave
emission. The system then enters a quasiequilibrium state
where the angular momentum gain from the cloud
(dQ/dt),, balances the angular momentum loss due to
the GW emission (dQ/dt)gy. This behavior continues
until the cloud is fully exhausted. In the case of the right
panel of Fig. 5, a small |322) population survives, enough
for the [322) <> |31 — 1) resonance to be triggered. This is
shown as an inset plot in the top panel.

B. Relativistic corrections

Throughout this work, we use the nonrelativistic
approximation, expected to be valid for a/Z < 1. The
results in the previous section are shown up to a = 0.6,
which is still smaller than unity, but not sufficiently. It is
therefore important to check if the conclusions of the
previous sections still hold at least qualitatively when
relativistic corrections are included.

Relativistic effects could modify the spectrum and wave
functions. The change in the real part of the spectrum could
affect the sequence of orbital resonances, including the
level crossing of |322) < |320), while the imaginary part
of the spectrum could affect the mixing-induced evolution
of the BH-cloud system. At the same time, the change in the
wave function could modify the matrix element of pertur-
bations, and thereby, affecting the resonant transitions. To
quantify these effects, we compute the fully relativistic
spectrum and wave function, following the procedure

outlined by Dolan [47] with a saturated spin parameter
a, = 2a/(1 + a?) for the |322) cloud (see Appendix D for
more details). For illustration, we consider a benchmark
with g = 10713 eV.

The level crossing of |[322) <> |320) remains the
same. This phenomenon occurs at a relatively small
a < 0.3—0.4, and thus is expected to be less affected
by relativistic effects. This is confirmed by the numerically
computed relativistic spectrum shown in the top panel of
Fig. 8; the level crossing still occurs around a = 0.3 even
after including relativistic corrections to the spectrum.

The orbital resonance sequence remains mostly the
same. For fine transitions at small a, e.g., @ < 0.3, the
orbit will still trigger the transition [322) <> |31 — 1) first
among the other fine transitions. This can be checked in the
bottom panel of Fig. 8. For hyperfine transitions, a
quasicircular orbit will trigger |322) <> |320) first among
all the others, except for a fine structure constant around
a = 0.6 in which |322) <> |31 — 1) might be triggered first.

Level Crossing of |322) (relativistic)

— [322) ¢ [320)
— [322) > [32-2) ]

05 06

T

——
— 322) & \31>\§

)
— [322) ¢ [31 - 1) ]
[322) « [300) 3
P B E

05 06

Resonances of |322), prograde orbit
F— [322) > [320) p=10"13 eV
= [322) <> [32-2) 3
[ |322) <> [311) 1
)
)

—2L
1077 e 1322) 5 31— 1)
- [322) <+ |300)

——
—
-
—
—

Qo/p

1074

1064

FIG. 8. Top: same as Fig. 4 but including relativistic correc-
tions. Bottom: resonant frequencies for the indicated transitions.
Thick lines include both self-gravity and relativistic corrections.
Solid opaque lines show the nonrelativistic limit with self-gravity,
while dashed lines show the same limit without self-gravity.
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FIG. 9. The squared mixing angle multiplied with the decay
width. We show the nonrelativistic result (blue dotted), the
relativistic result (green), and the result with relativistic correction
to the spectrum but with nonrelativistically computed matrix
element (orange dashed). We choose u = 10713 eV, ¢ = 0.05,
and Q = 0.2€3)_31-1) as a reference frequency. Self-gravity
corrections to the spectrum are also included.

The evolution due to the mixing with the spectator |300)
might be affected by relativistic corrections. First, the decay
rate of |300) changes by a factor of few compared to the
nonrelativistic approximation. Second, the level splitting
AE |3 = E3, — E3 differs from its nonrelativistic counter-
part by a factor of few and also changes its sign at @ ~ 0.37.
Third, the matrix element y;3 might change due to the
relativistic correction to the wave function. Combined
together, they could modify the exponent of (28).

To examine this, we compute #°T" near the fine reso-
nance, including relativistic corrections to the decay rate of
|300), to the level splitting E3,, — E3g, and the matrix
element. The result is shown in Fig. 9. The relativistic result
(green solid) is larger than the nonrelativistic one (blue
dotted) by a factor of few for @ < 0.4. This is mainly due to
relativistic corrections to the energy spectrum: the orange
dashed line—computed with relativistic corrections to the
decay width and energy spectrum but using the non-
relativistic matrix element y—almost reproduces the fully
relativistic result. At @ 2 0.4 the relativistic result is up to
one order of magnitude smaller than the nonrelativistic
result due to relativistic corrections of the matrix element
(see Fig. 16 in the Appendix).

The above arguments show that the level crossing
behavior as well as the orbital dynamics remains qualita-
tively the same even after including relativistic corrections.
The relativistic corrections considered in this section are
however restricted. We only consider relativistic correc-
tions to the energy spectrum and the wave function due to
an isolated black hole. There are other corrections we do
not include: perturbations nonlinear in the external matter
distribution, O(g") (n >2), and perturbations of order
O(ga™) (n > 2). Here g stands for both ¢ and g.. In the

following section, we will consider one of the ignored ones:
a perturbation of O(q,a*) order. Another possible source of
error can come from a partial metric reconstruction when
the secondary approaches the primary in the presence of the
cloud: for the largest values of a considered in this work,
the used Kerr metric perturbed with the secondary (see
Appendix A 1 for details) may not be the proper metric to
describe the binary system in presence of the cloud. To
fully account for all these corrections, a dedicated numeri-
cal simulation is required.

C. Corrections from cloud angular momentum

The gravitational self-interaction introduces additional
corrections to the energy spectrum. Takahashi et al. [48]
showed that the angular momentum of the cloud affects the
spectrum at the order of the hyperfine splitting. As it is also
due to the gravitational self-interaction, it depends on the
occupation number of the cloud itself. In our analysis, we
have ignored this correction. We assess below the relative
importance of the self-gravity with other self-gravitational
corrections.

We begin with the nonrelativistic expansion of the scalar
action. With the Kerr metric, the scalar action (1) can be
expanded as

S—/d4x(£2+£4+£5+~~), (29)

where £, is the leading order Lagrangian that gives rise to
the unperturbed Schrodinger equation (3) and £, is the
O(a*) correction corresponding to the fine splitting. The
hyperfine splitting arises from L5 term [30]

Ls = —igPy o, (30)

where ¢'* ~ —2a,(GM)?/r>. The correction to the time-
space component of the metric from the cloud is obtained
assuming a flat background [48]

e
89, = 4G / d3x’—|g”_(’;,)|, (31)

where  Q, =4(yiowa —wady}) and wy is the
cloud wave function. The Hamiltonian is corrected by
AH = 5¢'?(idy) = —5¢'’ L., and the energy correction due
to the angular momentum of the cloud is given by

AE,;,, = —m{ntm|5g'? |ntm). (32)
For the [322) cloud, the level splitting between |322) and
|320) due to the cloud angular momentum is given by

209

AE,,, = ——uq.a*.
ang 30240/,!6]‘(1 (33)
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As it is already expected, this correction is order of
O(a®), while the self-gravity correction studied in
this work is O(a*). With the explicit result for the
self-gravity correction for the [322) and [320) states,
AEg s = —(6851/967680)uq a*, which arises from the
correction 6g,,, we find

AE,,
£~ —a?. (34)
AEse]f

The angular momentum correction remains at most at the
level of ~30% for the entire range of fine structure constant,
where the hyperfine transition is phenomenologically
relevant.”

D. Off-diagonal self-gravity matrix element

We have neglected the off-diagonal self-gravity matrix
elements (1|V|2) in the numerical evolution of the system.
In the following, we offer justifications for this simplified
treatment.

Consider the hyperfine splitting between [322) and
|320). We assume that the initial cloud configuration is
lw) « |322). Before the secondary object is introduced, the
Hamiltonian of the system is diagonal due to the axisym-
metry of the system, i.e., (322|V.|320) = 0. Only when the
secondary object is introduced the axisymmetry of the
system is explicitly broken and |322) begins to mix
possibly with |320). Hence, we expect the size of the
off-diagonal element due to the self-gravity to be para-
metrically suppressed by the relative occupation number of
|320) to |322) state. For a < 0.3 — 0.4, resonant mixing is
not possible in the first place due to the crossing of levels,
and therefore we expect that the off-diagonal element
(322|V.|320) is irrelevant for the dynamical evolution
of the system across the hyperfine splitting. For
a > 0.3 — 0.4, resonant mixing is possible, which could
lead to a nonvanishing off-diagonal matrix element.

In Fig. 10, we numerically check the relative size of
(1|V4|2) and (1|V.|2). We obtain the orbital evolution by
solving the system numerically without (1|V.|2) as before
and use the numerical results to compute the relative size of
(1|V4]2) and (1|V_]2). For the hyperfine |322) <> |320)
transition, the off-diagonal element of V. could be greater
than that of V. in the region below the thick black line. This
region does not overlap much with the parameter space
where the mismatch is relevant for detectability

*This estimate should be considered as an approximate one.
The correction to the metric 6g,;, when expressed in the black
hole comoving coordinate, has no monopole and dipole con-
tributions, and hence (31) should be subtracted with 1/x" + x -
x'/x3 in the same manner as in the case of V, and V,. This
reduces the estimate (34) by two orders of magnitude. At the
same time, dg,; contains other terms that arise from the coordinate
transformation between the barycenter frame and the comoving
frame, whose effect is expected to be at the same order.

| spin constraints
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FIG. 10. Same as Fig. 6, but we highlight the region where the
off-diagonal self-gravity matrix element is larger than the off-
diagonal matrix element of the perturbation due to the secondary.
Above the black line, we find |(1|V,]2)| < |[(1|V,|2)|. We see
that, for the region where the mismatch is large, our treatment of
ignoring off-diagonal self-gravity can be justified. Note that
[(1|V,|2)| < |[{1|V|2)| during the entire period of the fine
resonance. The gray line shows the values of (u, ;) where level
crossing between |322) and |320) happens.

0 =1—F > 0.16. For the fine transition, the off-diagonal
self-gravity is always smaller than that of secondary object
for the entire evolution. This results suggests that the off-
diagonal self-gravity does not play a significant role,
especially for the parameter space where the mismatch is
non-negligible. In Fig. 1 we show the small region of
parameter space where |[(1|V,|2)| < [(1|V.]2)| with a
lighter blue shading.

E. Other effects

In this work, we neglect environmental effects such as
the presence of an accretion disk. An accretion disk can
significantly alter the formation history of the superra-
diance cloud, as the central BH changes its mass at a non-
negligible rate [49]. The main focus of our work is on BHs
with masses in the range 103-10°M, as evident from
Fig. 1. These objects, known as intermediate-mass black
holes, are particularly elusive. So far, there have been hints
of their role as ultraluminous x-ray (ULX) sources [50].
However, no consensus on the accretion properties of these
sources has been reached due to the lack of direct imaging
of the disks [50]. Moreover, the measurement of the BH
mass in ULXs depends on assumptions about the structure
of the accretion disk itself, further complicating the search.
Therefore, we leave the investigation of possible accretion
disk effects on our system to future work.

We neglect phenomena such as boson accretion by the
secondary and the dynamical friction experienced by the
secondary as it moves through the superradiance cloud.
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The former effect causes small time-dependent variations in
the masses of both the secondary and the cloud, and is
subdominant compared to the latter [51]. The latter effect,
dynamical friction, is related to the ionization of the boson
cloud and has been studied in the literature [51,52].
Ionization is a dissipative effect, in the sense that it
contributes to the depletion of the cloud once the motion
of the secondary object excites bound-free transitions in the
cloud. However, ionization has no impact on the orbital
dynamics for the binary separations relevant to our work.
For the values of a and the resonances we consider, the
relevant orbital separations are always r,/rz > 100, i.e.,
much larger than the separations at which ionization is a
sizable effect r, /rpy < 20 [51,52].

VI. CONCLUSION

We investigated the implications of the self-gravity of a
superradiance cloud for the orbital evolution of the binary
system. We showed that self-gravity changes the energy
spectrum of the cloud in a density-dependent way and that
it introduces a crossing of the |322) and |320) states. We
studied the implications of these findings for resonant
transitions of the cloud, concentrating on a quasicircular,
prograde, and equatorial orbit. Without level crossing, in
most cases the cloud is depleted entirely when the orbit
enters the resonance |322) <> |320). In contrast, with level
crossing, this hyperfine resonance cannot be activated by
a prograde orbit in a significant region of parameter
space. As a result, the orbit can explore the inner part
of the system, potentially triggering the fine reso-
nance |322) < [31 —1).

We also investigated the observational implications in the
context of the future space-borne interferometer LISA. We
identified two disjoint regions in the parameter space where
LISA can directly probe a GW signal from a binary in a cloud
of ultralight bosons. These two disjoint regions are due to the
level crossing behavior induced by self-gravity. We found
that LISA could probe ultralight bosons in the unconstrained
mass range 107! eV-10"'3 eV. Combined with other
proposals to probe dense wave dark matter environment
around black holes, e.g., [53,54], LISA is expected to probe a
wide mass range of ultralight new physics. This is also
complementary to other proposed/existing searches, e.g.,
using black hole spin measurements [27], continuous gravi-
tational wave searches [24], and the motion of S2 stars and
their spectroscopy around Sgr A* [55,56].

While promising, our results are limited in several ways.
Our analysis remains at the nonrelativistic Newtonian level.
Although we have shown in a restricted fashion that the
relativistic corrections would not qualitatively change the
conclusion drawn in the work, a more careful numerical
simulationis required to fully determine the detectability of the
cloud in LISA for arelatively large a. In fact, arecent work by
May et al. [57] investigated the effects of self-gravity on the
continuous gravitational wave emission from boson clouds

using numerical simulations. It would be interesting to
perform a numerical simulation of a binary system with a
cloud, and check if the numerical results would match with the
nonrelativistic predictions presented in this work.

In addition, the fitting factor computation involves the
simplest vacuum waveform characterized by the chirp mass
and the reference frequency. We do not include any other
environmental effects, e.g., accretion disk, and post-
Newtonian corrections for 4(@,), which will enhance the
expressibility of the vacuum waveform, and hence decrease
the mismatch of the two waveforms. It would be interesting
to include the environmental effects such as those discussed
in Refs. [58,59] and at the same time post-Newtonian
corrections to repeat the fitting factor computation. We
leave this for future study.

Finally, we considered only a quasicircular, prograde,
equatorial orbit for simplicity. Recent works by Boskovi¢
et al. [60] and Tomaselli et al. [61,62] investigated the
impact of orbits with nonvanishing eccentricity and incli-
nation. In particular, the authors of Refs. [60,62] found that
the existence of the cloud can leave an interesting signature
in the eccentricity distribution of black hole binaries.
Extending the present analysis to include eccentricity
and inclination as well as possibilities of retrograde orbits
could be another interesting future direction.
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APPENDIX A: EQUATIONS

We justify the set of equations we use to investigate the
binary system with a boson cloud. We first specify the
metric of a rotating black hole deformed by external matter
distribution (Appendix A 1), derive the equations governing
the internal dynamics of the cloud (Appendix A 2), and
obtain the angular momentum balance equation and the
evolution equations for the black hole and cloud mass
(Appendix A 3).

1. Deformed metric

We begin with the metric of an isolated rotating black
hole. The Kerr metric is given by

7 2
ds® = —<1 —%r)d? wafd¢+ A7
p P

B 72 1 a2 — a2 Asin2d
+ﬁ2d92+(r —I—a)/_)za sin

sin®0d¢?

(A1)

in the Boyer-Lindquist coordinates ¥ = (7, F, 0, q?ﬁ) Here
re =2GM, A =7 —ri+a* p* =7 +a’cos’0, a=
J/M and M are the black hole spin and mass, respectively.
Since we are interested in the dynamics after the cloud is
saturated, the dimensionless spin parameter is a, =
a/GM = O(a) and therefore the metric might be expanded
to the linear order in the spin parameter assuming a < 1.
We find

2argsin’0 _ -

2 —fdP A [ AP+ PdD? — didp  (A2)

7

where p =7, f = 1 —r,/7, and dQ> = d6” + sin® Odp>.

The above metric is incomplete. It is valid for an isolated
black hole, while we consider a system where the black
hole is surrounded by another compact object and the
boson cloud. The external matter distribution deforms the
metric around the rotating black hole, and the resulting
metric deviates from the isolated one (A2).

Such a tidally deformed metric can be found by
following a few steps. First, we consider a deformed metric
around a fiducial worldline y, along which a rotating black
hole is located. Its neighborhood is chosen such that it
includes no external matter.” This region is denoted as \V in
Fig. 11. The metric in this neighborhood is then described
by the symmetric and trace-free electric &;; = Ry;y; and
magnetic tidal tensors B;; = 1 €X' Ry 4, and their derivatives
evaluated on y [63,64]. These tidal tensors are unspecified
at this level.

3Note that for the largest values of a considered in this work,
part of the cloud could enter the A/ region. In this case a metric
reconstruction would be required, including also the cloud on top
of the perturbation given by the secondary.

FIG. 11. A schematic figure describing the matching process to
find a tidally deformed metric around the black hole. The region
N surrounds a rotating black hole, and it is assumed to be
vacuum. The region P denotes a region where the gravity is weak
such that one can perform a post-Newtonian expansion. The
boundaries of the region A/ and P are represented by solid blue
and red lines, respectively. We assume that there exists an overlap
region O where the metric expanded in A/ and in P are both valid.
By matching these two metrics, the tidal tensors are determined as
a function of external matters.

The tidal tensors are determined by a matching pro-
cedure. We perform a post-Newtonian expansion of the
metric in the region P, where gravity is sufficiently weak.
This region includes external matter. We assume that there
exists an overlap region O where the two metrics—the one
expanded in N and the other in P—are both valid. By
matching these two metric in O, one can determine the tidal
tensors and its derivative as a function of the external matter
distribution. In what follows, we sketch the matching
procedure at the Newtonian level. The matching at the
post-Newtonian level for nonrotating and slowly rotating
black hole is carried out in detail in Refs. [65,66]. See also
Ref. [67] for a pedagogical discussion.

The metric in the neighborhood A/ may be given by
[64,68]

Joo ~ —1+—

2
o, Z W _l)ef(r)ng +--- (A3)

9ij ® 05 (A4)

where Xt = ¥1x"2 .. %, & =&, Q = (sinfcos ¢,
sin@sin ¢, cos @), and lim,_ e,(r) = 1. The metric is
expanded at the Newtonian level. Only linear terms of the
tidal tensor are kept. In addition, the metric is expressed in

Cartesian harmonic coordinates,
X = (F-GM)Q' =F,Q.

The above metric satisfies the harmonic gauge condition,
d,(y/=9¢") = 0. The metric in the harmonic gauge is
identical to (A2) at the Newtonian level. The difference
occurs at the post-Newtonian level.

This form of the metric is an interpolation between the
metric of an isolated black hole (A2) and a tidally deformed
metric around a fiducial worldline y without a black hole,
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where the latter is obtained by Zhang [64]. With the
boundary condition lim,, e,(r) =1, one recovers
Zhang’s metric in the asymptotic region. The detailed form
of e,(r) is obtained in Refs. [66,68] for nonrotating and
rotating black holes by solving the vacuum field equation.
For our purpose, the detailed form of e,(r) is unimportant.

The tidal tensors can be found by matching (A3)-(A4)
with the post-Newtonian expansion in the overlap region.
At the Newtonian level, one finds the metric in the region P
as

Joo = -1+ ZU(I,x), (AS)
9ij = bij- (A6)
The potentials are given by
GM
U(t,x) = ————+ U™(1,x), (A7)
e —z(1)]|

where 7/(¢) is the position of the black hole in this
coordinate system and U'(z,x) is the potential due to
the external matter. We model the rotating black hole as an
object with a monopole mass distribution, which is justified
by the end result of the matching procedure [65,66]. The
coordinate system (¢, x') in which this metric is obtained is
the barycenter coordinate system, which differs from the
BH comoving coordinate (7, ¥'). For the harmonic gauge
condition, one also requires d,U + 0 jU/ =0.

For the matching, we perform a coordinate transforma-
tion to convert the barycenter coordinate to the comoving
coordinate, while maintaining harmonic gauge condition
and post-Newtonian ordering. Such coordinate transforma-
tion is known [67,69]

r=t+a(f,x’)+--- (A8)
x=x4+7(1)+ - (A9)

where ellipsis denote post-Newtonian corrections. Here
[67]

a(t,x') = A(7) + v;(1)X', (A10)
with v = i = dz'/dt. The function A(7) is arbitrary at this

point, and will be determined by the matching process.
Under this transformation, the metric is written as

g()(’)z—l—l—ZU(f,.i'), (All)

Each potential is given by

— A

; ; | ,
Utx)=U(tx)-A +§1;2 — a;x’

GM N .
=—+ (UM -A+ 112/2)
T'n
© L

7 rex =i X frex
+ (0,0 - q;) - x +;Z0LU t(A13)

where  U(1,x)=UFx+z) and  a(f) = 0;(7) =
dv;(7)/dt. The external potential is expanded around the
worldline of the rotating black hole X = 0.

Since the two metrics are given in the same coordinate
system in the same gauge, we can finally match them in the
overlap region. The matching of the 1/7,-term in g55
justifies the treatment of the black hole as a monopole in
the Newtonian expansion of the metric. Furthermore, by
matching terms at each order of x*, we find

A7) = U™(7,0) + v%/2, (A14)
a;(1) = 0,U%(%,0), (A15)
EL(F) =— ﬁ% Ue(7,0). (A16)

The second line is nothing but the Newtonian equation of
motion for the rotating black hole. This matching deter-
mines the function A(7) as well as the tidal tensors £; . The
tidally deformed black hole metric in the comoving
coordinate system can be therefore summarized as

r

© 2 X
go~—1+=>+ Y —xo U, (A17)
ry — f

In the time-time component of the metric, the term —1 +
ry/F, will provide a 1/r-potential for the gravitational
atom, while the rest will provide the Hamiltonian pertur-
bations V, and V., discussed in the main text. At the post-
Newtonian level, the tidal perturbation in the time-space
component g;; provides a correction to the energy spectrum
from the angular momentum of the cloud. From the power
counting, we can already expect that such corrections will
be (v/c)? ~a* suppressed compared to the self-gravity
correction arising from ggg.

2. Cloud equation

We first derive the Schrédinger equation in the comoving
coordinates discussed in the previous section. We sketch
the detailed computations of matrix elements. We then
introduce a Bloch equation to solve the three-level system.
The resulting set of equations is used in the main text to
study the behavior of the system around resonances.
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a. Schrodinger equation

For the Schrodinger equation, we begin with the action
of a minimally coupled scalar (1),

1 1
S = /d“x\/ -9 {—Eg””a,,(j)aygb - zﬂzfﬁz .

Expanding the scalar field in the nonrelativistic limit
¢(,%) = [e" ¥y (7,X) + H.c.]//2u and using the tidally
deformed metric in the harmonic coordinate (A17)—(A18),
we find the nonrelativistic action at the Newtonian level as

2
S~ / d*xy* [id; + v_ V} v, (A19)
2p

where V= u(1+¢")/2. We have assumed that
|V/V| < u. Additionally, we have ignored terms like
(V/u)(iy*o,p) and (V/u)|Vw|?*/2u as we remain at the
Newtonian level. The Schrodinger equation can be read
directly from the quadratic action.

The potential can be decomposed into the one due to the
rotating black hole V; and the ones due to the external
matter distribution V.,

V=V, + V.

where V arises from —1 + r,/7;, in (A17), and V,, arises
from the rest. Together with the kinetic term, the potential
Vi(r) constitutes the unperturbed Hamiltonian of the
system,

i V: o«
0= 2u 7

where @« = GMu is the gravitational fine structure con-
stant. The system is practically identical to that of the
hydrogen atom.

The external potential consists of two terms: one from
the secondary object in the binary and the other from the
cloud of ultralight particles. To find the Hamiltonian
perturbation, we first note that U, (¢,7) of each external
matter distribution can be written as

d3 7_/ pext (f7 ’_J)

0ext(t’ f) = GMext |f _ '—./

. (A20)

where p.(F) is the energy density in the comoving
coordinate, normalized as [ d*Fp.(F) = 1. For the secon-
dary object, pey(F) = 63)(F — F,) with 7, =r; —r, being
the separation between the rotating black hole and the
secondary object. For the cloud, p(F) = |w(F)|*. From this,
the external potential can be found as

© =
- X frex
Vext(r) - _MZFaLU“ t
=2 """
B _ 1 1 r-7
= —GMext/«l/dBFI/)ext('J) {m—;—w :
(A21)

The last two terms in the parentheses cancel the monopole
and dipole terms in the multipole expansion of 1/|F — 7, | in
the limit 7 = 0. This justifies the equations we use in the
main text for the investigation of the internal dynamics of
the cloud.

b. Matrix element

We use time-dependent perturbation theory to solve
the system. In doing so, we compute the matrix
element of the perturbation. Note first that the spatial
part of the bound-state wave function can be written as
a product of the radial wave function and the spherical
harmonics

anm(i) = Rmf(?) Yem (’A.)’

where the radial wave function R,,(7) is given by

o (N e (2T
nrg ==\ nry )

Here rp=1/ua is the gravitational Bohr radius.
Denoting the eigenstate of the unperturbed Hamiltonian
as |i) = |n;¢;m;), the matrix element can be
found as

(A22)

({Vex(P)]J) = ~GMe / &t (P (7)

RN B T B
X/d3r/pext(r/) |:|’—,_'—,/|_?_ 73|

(A23)

The integral can be decomposed into a radial and angular
integral. The quantity in the squared parentheses can be
expanded in the spherical harmonics basis,

1 1 77
FF
4r e 7
— 5 Y* ! Y A ,
=20 + 1 <r£+1 Fe+1 O] o ()Y i (F)
= S T F )Y )Y ) (A24)
‘m 2041 o "
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where r. = max (7, 7) and r. = min(7, 7). It is clear that
the monopole and dipole vanish in the expansion around
7 = 0. The matrix element can be written as

GM exth

I'p

({|Vext(F)J) =

ZMH% iIZ,))- (A25)
We introduce the dimensionless integrals

o0 o0
17, (ij) :rB/ d??ZR,.Rj/ AP P2 (7, 7)) pem(F),
0 0

(A26)

12,(ij) = / QY (MY p(MYs (), (A27)

where pext(’_‘) = mepfm<?)yfm(9’ ¢) and Ri = Rn,f[<;)'
The angular integral encodes a set of selection rules, e.g.,
m=m;—m;,|6;—C;| <L+ and 6+ 0+ =
2p with p e Z [30].

We consider a pointlike particle of mass M,. In this
case, the normalized density is peq(F) = 6@ (F—7,),
and its spherical harmonics coefficient is pg,(F) =
7728(F — 7, )Y%,,(#+). The radial integral becomes

I, = Yo )rs / " AP PR(PR,(FF, (. 7,).  (A28)

For a quasicircular equatorial orbit, the time-dependence
can be fully factorized as an exponential, Y}, (7,) =
Y%, (7/2,0)e=™9+(0) with the orbital phase ¢, (7). In this
case, the matrix element can be written as

(i|Vext(F)j) = yije amut+() (A29)
where Am;; = m; —m; and
GMzﬂ 4 «
yij =~ Yfm(ﬂ"/2 O)Ifm(l.])
l"B fZ‘ ‘2f + 1
X [rB [) ” dF PR;R;F(F, ?*)} (A30)

Note that the angular integral 19, (ij) selects m = Am;; =
m; —m; via the selection rule. The remaining part of the
radial integral in (A28) is the same as Egs. (3.7)-(3.9)
of Ref. [30].

¢. Two-level system

Let us now consider a two-level system. We begin with
the Schrodinger equation

W= (Hy+V,+ V),

where V, is the perturbation due to the secondary object in
the binary, and V., is due to the cloud itself. We consider
two states denoted as {|1),|2)}, where |1) represents the
dominant cloud state and |2) represents the state that can be
resonantly excited from |1) via the perturber. A general
state will be written as

(@) = c1(D[1) + 2(7)[2).

We are interested in the evolution of the time-dependent
coefficients c¢;,(7). We assumed a different magnetic
quantum number for each state, i.e., m; # m, and a
quasicircular and equatorial orbit.

The Schrodinger equation can be written in a matrix form

= [Hy+ Vi + Ve (A31)

where the matrix elements are given by
[Hyl;j = (E; +il)d;;, (A32)
[V.]yj = yige amit=(), (A33)

Weignore the diagonal term of [V, ;; as it only provides time-
independent correction to the energy level, which is para-
metrically smaller than the self-gravity corrections. In
addition, we ignore the off-diagonal matrix elements of
the self-gravity term (see Sec. V D). The Schrodinger
equation can be explicitly written as

J/lze_iA’nIZ(p* (t)

. E, + AE, + il
IcC =
E, + AE, + i,

7/128+iAm‘2¢*(t)

>c (A34)

d. Three-level system

The equation of a two-level system can be generalized to
a three-level system. Consider now {|1),|2),[3)} with
an additional spectator state |3) with a large decay width.
We are primarily interested in |3) = |300). A generic
cloud state can then be written as |y) = c¢;(7)[1) +

¢2(7)|2) + ¢3(7)|3). The matrix elements of unperturbed
Hamﬂtoman [Hy];; and the perturbation due to the secon-
dary object [V,];; are given by the same form as already
given in (A32)—(A33). The resulting Hamiltonian takes the
same form as (A34).

This form of Hamiltonian is not particularly convenient
for numerical purposes. For the numerical computation, we
first eliminate the phases of [V,];; by performing a phase
rotation, ¢; — c;e', with

0; = —m;p, (1) + g(7),

where ¢(7) is an arbitrary function. By choosing 2g =
(my 4+ my)p. — (E, + E,), we find the Schrodinger
equation as

(A35)
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Ap | -
Tl+lr‘1

712 713
ic= 712 —%‘F i 723 c. (A36)
713 723 —%4‘1'13

All phases are absorbed into the diagonal elements. Here
we introduced A;; = (E; + AE;) — (E; + AE;) — Am;;Q
with the orbital frequency Q(7) = ¢, (7). At the resonance
of {[i), )} A;; = 0.

Instead of solving for the complex vector ¢, we solve for
elements of the density matrix, i.e.,

— *
/)ij = CiCj'

In particular, we define

u = 2(Repys, Reps;, Repyr)”,

v =2(Impsy, Im py3,Tmpyy )",

w= \/§(P117P22’P33)T- (A37)
We find that the Schrodinger equation becomes
u
v | =B|v]|, (A38)
w w

where the 9 x 9 antisymmetric matrix B is given by

I3 0 0 —As; 712 —713 0 0 0
0 I 0 —712 —As Y23 0 0 0
0 0 I'p V13 —723 —Ap 0 0 0
Ay Y2 T3 I 0 0 0 —\/§723 \/5723
B= | -r2 Az 723 0 INE 0 V2113 0 =215 |. (A39)
Y13 —r; Ap 0 0 I'ip —\/5712 \/2712 0
o 0 0 0 —V2rs V2 I, 0 0
0 0 0 V23 0 V2715 0 2T, 0
0 0 0 —V2r;s  V2ri; 0 0 0 2T

where I';; =I; +1T';. This resembles an optical Bloch
equation. This equation is simultaneously solved with
the equations for the spin and mass of the black hole
and the orbital frequency, which will be discussed in the
next section.

3. Balance equation

We introduce a set of equations to investigate the
interaction between the cloud and the binary system. In
Appendix A 3 a, we review the angular momentum balance
equation, which is used in the main text to study the
backreaction of the cloud onto the binary system and the
evolution of the gravitational wave frequency. In
Appendix A3b, we review the evolution equations for
the black hole and the cloud mass.

a. Angular momentum

The angular momentum balance equation is given by

dj

— = A40
dt ’ ( )

where J is the total angular momentum of the system and
T is the gravitational torque. We work in the barycenter

|
coordinate system (7,x) and assume a quasicircular equa-
torial orbit. The spin of the black hole is aligned along the
+Z2 direction. Furthermore, we assume that the center-of-
mass of the cloud coincides with the rotating black hole.*
Along the Z-direction, the torque is given by [67]

2 (O

7T, =sign(L,) (A41)

SMN\ r,

where M = M| + M, + M, is the total mass and u,
(M, +M_.)M>/M is the reduced mass between the sec-
ondary object and the black hole-cloud system. The total
angular momentum is given by

J.,=L,+J.+ Jgu. (A42)

*When the cloud is composed of a coherent superposition of
two states with different parity, the center-of-mass of the cloud in
the comoving frame might oscillate around the black hole.
Although this could happen in the case of a fine transition
{|322),]31 = 1)}, we do not expect a large deviation of the
center-of-mass of the cloud from the center of the comoving
frame, as the relative occupation number of the |31 — 1) state
remains very small due to its decay.
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where Jpy = a,GM? is the spin of the black hole, J, =
(M /pu) > m;|c;|* is the total angular momentum of the
cloud, and L, = £pu,/GMr, is the orbital angular
momentum. The sign of the orbital angular momentum
is determined by the orientation of the orbit; it takes the +
(—) sign for a prograde (retrograde) orbit.

The angular momentum balance equation can be written
as an equation for the orbital frequency. As we assume a
quasicircular orbit, the orbital frequency is given by

GM

s

Q= (A43)

We find that the balance equation can be written as

_ %y,

Q L (GM)PQN3

SM( )
3QY3 M, —~m; (d|c;]?
S ) ) MR ER B Ad4
(GM)2/3 U, Z P < dt ilcil ) ( )

In deriving the above equation, we use the following
angular momentum evolution equation [49,70]

m;

‘7BH ~ —2MCZ7F1'|C[
i

2, (A45)

which is obtained by computing the angular momentum
flux across the black hole horizon. The above equation is
only approximate. For multiple cloud modes, there exist
interference terms in the above expression. Such terms
oscillate much faster than the typical timescale at which
the black hole spin changes, and hence they can be
neglected [70].

We solve (A38) and (A44) altogether. However, they are
given in different coordinate systems; the Bloch equation is
given in the comoving coordinate (7,%), while the fre-
quency evolution equation is given in the barycenter
coordinate system (7,x). The transformation between the
barycenter time and the comoving time is given in (AS).
The difference of these two time coordinates will give rise
to additional terms multiplied by a(7, x')/c? in (A44). As
we remain at the Newtonian level, we will ignore such
terms and simply take ¢ = 7 for the numerical computation.

b. Mass

For the discussion in the main text, we use the numeri-
cally obtained cloud mass fraction ¢, = M./M . We detail
how this is obtained in a similar way to the discussion
in [27].

We solve a set of equations governing the evolution of
the black hole mass, the cloud mass, and the spin of the
black hole. In particular, we solve

008 pw=10""%eV, a; =0.25, al = 0.9
f 211 392 ]
0.06F 210 1322} 7]
S 0.04F :
0.02F

I T L T T T T
time [yr]

FIG. 12. The time evolution of the cloud mass for the bench-
mark point (¢, ) = (0.25,107'* V) shown as a star in Fig. 2.
The initial spin is set to a’. = 0.9. The blue line shows when the
cloud is in the |211) state, while the red line shows when it is in
the |322) state. The vertical line corresponds to the reference time
100 Myr at which the cloud is fully saturated.

dM,
1 — N or e, A46
- Z- M (A46)
dM¢
—= 2[T; — (CSW /) M| M¢, (A47)
da m; M¢
* :_Z L _2a, |2r,—L, A48
dt i <a a*> ‘M, (A49)

where M. is the mass of ith superradiance state, e.g.,
i =|211),|322),- -+, and T$W is the annihilation rate of the
ith cloud state into gravitational waves. The annihilation
rates are given as [34]

rSY /u = 10"2a"3(u/M,), (A49)

T /u = (3x107%)a' (u/M,). (A50)
In Fig. 2, we show numerical results on the cloud mass
fraction at f, = 100 Myr in the parameter space (a.u).
For presentation, we choose to show only when g, > 107,
The maximum cloud mass fraction can be analytically
estimated. The superradiance instability extracts the angu-
lar momentum of the black hole by exponentially produc-
ing ultralight particles in a sequential manner. For example,
the extraction first takes place through the production of
|211) for a relatively small fine structure constant. The
|211) cloud saturates when
I'x (mQ, —u) ~0. (A51)
Here Q, =a,/2r, and r, = GM,(1 £+/1—a2). Even
after the |211) cloud saturates, further extraction can occur
via the production of [322) and states with higher angular
momentum.
Consider now a scenario where the kth dominant super-

radiant state saturates. The black hole mass at this moment

(k)

is denoted as M, and the kth superradiant cloud mass is
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denoted as Mgk). Note that Mgk) :M(lk_l) —Mﬁ.k ) The

dimensionless spin parameter at the saturation can be
obtained by solving (A51). We find

(k) 4a<k)/mk

ay’ = ————— AS52
: 1+ 4(a® /my)? (A32)
where a(¥) is the fine structure constant at the point of the
saturation of the kth dominant cloud, and m; is the
magnetic quantum number of such cloud state.
Using the definition of the dimensionless spin parameter

a, = J/GM?, we can write a® as

a0 JK) _ JE=D 4 AJ
Coom P G - my
aik—1)<1+M§k)>2 my M(ck)< Mﬁ”)
M®) a0 T 0
(A53)

where we use AJ = —m, (M" /11). Substituting (A52) into
the above equation, using a® = oD /(1 + MY /M <1k)),
and solving for qu = Mgk) /M YC), we find

kfl)auf-l)

alk=1) ai
W LTI 16 R0 ey
2(1 - a Va1 /my)

(A54)

This can be solved iteratively. When solving (A54) iter-
atively, one must carefully choose the dimensionless spin
parameter and the fine structure constant at each iteration.
When kth superradiant state begins to be produced, it renders
the (k— 1)th state unstable. The (k — 1)th state could
subsequently decay back to the black hole, spinning up
the black hole and increasing the black hole mass. For the
cases considered in this work, the (k — 1)th state annihilates
into gravitational waves before it can decay to the black hole,
and hence, the dimensionless spin parameter and fine
structure constant at each iteration are approximately given
by the saturated value (AS52). For the maximum mass
fraction of the |211) state, the above estimation is identical
to the estimation given as (F11) in Ref. [34].

APPENDIX B: MIXING-INDUCED DECAY

The mixing between a superradiance state and a rapidly
decaying state can significantly change the dynamics of the
binary system. To demonstrate this, we consider a two-level
system without self-gravity. We consider {|1), |3)} where
the spectator state |3) is assumed to have a large decay
width, e.g., |3) = [300).

The Schrodinger equation is

For the discussion, we ignore the self-gravity correction to
the energy level and also the instability or decay width of
the states |1). The unperturbed Hamiltonian is then
approximated as H, = diag(E;, E; + il'). The matrix
element for the perturbation is given by [V,]; =
yije~Amif« By performing a diagonal phase rotation,
~ikitc., the Schrodinger equation can be written as

iéz( 0 7em>c
ye s )

where A = (E| — E3)t — Am3¢,(t) and y =y;3. The
initial condition of the system is c¢;(—o0) =1
and ¢3(—o0) = 0.

Solving the Schrodinger equation for ¢3 up to O(y), we
find

ci—e

(B1)

t : / J
os(t) ~ —i/ dt ye ial) el(=1) (B2)

Using the above result, we find the solution for ¢; up to
O(r?) is

t
&(1) m 2 / dr 8O- -0 (B3)

Most of the contribution arises from # ~ ¢ as the phase
oscillates rapidly. Expanding A(#') = A(t) + A(f — t) and
ignoring the slow time-dependence of y(7), we find that the
real part of ¢;/c; is

. ZF
Reﬁz 4 > 5 -
ci [(Ey = E3) = Am;zQJ* +T

(B4)

This reproduces (28). While this term arises only in the
second order perturbation theory, it can significantly
modify the orbital dynamics due to the large decay width
I' of the spectator state.

APPENDIX C: CALCULATION OF THE
FITTING FACTOR

We consider a scenario in which the gravitational wave is
emitted from a binary system embedded in the cloud. We
use the fitting factor to estimate the detectability of the
cloud in LISA via gravitational waves observations. The
fitting factor is defined as

o (h(Be)|1(6,))
= maxy ,
"V (h(Oyue) [1(Oe) ) (R(D,) 1 (0,))

with the inner product given in Eq. (20). Here h(0)
represents the waveform of GWs emitted from the system
with the cloud. The inner product is maximized only over a
subset of parameters 6, = {f_, M.} as discussed in the

f
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main text. The waveform %(6,) represents the GWs that
would have been emitted from the system without the cloud
of ultralight particles. The fitting factor hence measures the
degree of mismatch between two waveforms that represent
GWs emitted from the system with and without the cloud.
The extrinsic parameters are already maximized in the
above expression. The fitting factor takes a value F € [0, 1];
F =1 would indicate that two waveforms are indistin-
guishable. We detail below the computation of the fitting
factor.

We assume that the detector operates in the time interval
t€(t_, ty] with 1. =ty & Tys/2, Where 1, is an arbitrary
reference time, and 7 is the total observational time span.
The waveform is given by [71]

23
i e0(f, = 1)0(f - 1)

Here A is the frequency independent amplitude of the
strain, ¥ is the phase, and f. is the frequency of
gravitational wave at the beginning and end of the
observational campaign ¢,. The step functions ensure that
the strain vanishes when the GW frequency is not in the
band [f_, f,]. The phase can be written as [71]

h(f) = A (c1)

‘P(f) = 2”f(t* + r) - q)(t*) -9, (CZ)
where 9 is a constant phase factor, r is the distance to the
source, and ®(z,) is the phase of gravitational wave at the
retarded time ¢, defined through 2zf = ®(¢,). The time ¢,
can be interpreted as the time at the source frame when the
gravitational wave of frequency f is emitted. For the

following discussion, we rewrite the phase as

Y(f) =2zft_ + N(f) - (C3)
where 8 is a constant phase, and A is defined as
'/ (f f/)
d
Ny =2 [ ar (c4)

The main difference between two waveforms arises from
the difference in their phase evolution f inside the integral
in AV in Eq (C4).

When computing the fitting factor, we assume gravita-
tional waves emitted from the cloud-binary system as a true
signal. We also assume f(#) =~ (Qy/7); the gravitational
waves emitted at the resonance enter the detector at the
middle of the observational campaign. The entry and exit
frequencies f, can be computed at each point in the
parameter space (a, u, q.). We then repeat the computation
for different choices of GW frequencies that enter the
detector in the middle of the observational campaign

flto) = c(Q/f) with ¢ # 1.

The inner product of the waveforms is

4/3
(h(0,)[h(0,)) = 442 / df(f()f) fl ()

4/3
M%mmw>Mm/dﬂ@@—<w

where f, and f, are the frequency evolution with and
without the cloud, and S,(f) is the noise power spectral
density in the strain unit. The inner product between the
two templates is

1y ( f)4/3 oA
h(Oyue) |1 01} = 4A AR d
({0 (0.) e [ arS
(C7)
where  f_ =max(f’, %), f, =min(f%,f$), and
AY = ¥(0,) — ¥(0yy). The vacuum waveform is gov-

erned by two parameters 6, = {f", M_}, while the other
parameters are taken as g. = 0, @ = oo, and y — oo. The
exit frequency f* is determined by the other two param-
eters, f7 = f1(f*. M.).

Combining these inner products, we find the fitting
factor as

’f . ,,f 4/3 oAV
7 P2
F = max - 7 50 Gufo) . (C8)

4 frf 3 (xf) 1]
[ ar H T ar A

where N' = N (0,) — N (0y). The absolute value of the
numerator appears after one maximizes the extrinsic
parameter AJ.

The integral in the numerator of (C8) is computed via a
fast Fourier transform. The number of frequency bins N is
decided based on the minimum value of the phase difference
found before a scan of the parameter space. For a meaningful
evaluation of the oscillating integrand, we require N, > 2|
min[AN(f¢, M) AN (<, M9)]|, with M? defined
such that f.(f(t)) = f,/.(f(to))|M(:M9. The maximization
over @, is achieved via the Nelder-Mead algorithm in the
scipy.optimize library. The algorithm takes an initial
guess of @, as input. To search for the global maximum
efficiently, we run the algorithm from 10° different initial
points. The initial point for £ is fixed to f<, while the initial
point for M, is sampled from the normal distribution
centered around either M or MY, depending on which
one provides the lowest AN The standard deviation of the
normal distribution is varied a few times to ensure a good
coverage of the parameter space of 6,.

We present some examples of the fitting factor calcu-
lation in Fig. 13. We show the behavior of frequency
evolution, phase difference, and other related quantities for
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FIG. 13. Examples of calculation of the fitting factor. Upper plots show hyperfine transitions aligned with the resonance frequency
¢ = f(ty)/(Qy/7) = 1.0, while lower plots show fine transitions with ¢ = 1.36. The other parameters are shown in the plot titles. Note
that f = Qy/m and 7 = [Qy(dQ/dt)™! lo—q,] are computed with true parameters 6y at the beginning of numerical evaluation. For each
plot, each panel shows, from top to bottom, (i) the frequency evolution f x 7/ f(t,), (ii) the difference in the frequency evolution between
different hypotheses, (iii) the phase difference |AW|, and (iv) the real part of the integrand of the numerator the fitting factor in Eq. (C8).
The blue line presents the result obtained by fitting the vacuum waveform to the true signal, while the orange is the result without any
fitting procedure. From the bottom panel of each plot, the mismatch § can be estimated by counting the fraction of the frequency range
where the integrand is rapidly oscillating.
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FIG. 14. The contours of mismatch satisfying the detectability criterion (21) at 2¢ confidence. The fitting factor is computed with
different choices of the misalignment frequency factor ¢, defined via f(1y) = ¢(Q/x). We label these choices as 100(c — 1)%. The
thick dashed black contours show the union of all the other contours. Top: the results for the hyperfine resonance. The value of ¢ that
contributes to most of the sensitivity is ¢ ~ 1. For chosen values of ¢, LISA might be able to test the mass of ultralight particles down to
u =~ 10715 eV with the best coverage obtained for large values of ¢ = 0.05, and 0.08. Bottom: the results for the fine resonance. The most
relevant value is ¢ ~ 1.36 but the precise value depends on ¢, y, and «;. In this case LISA could probe the mass of ultralight particles
down to y =~ 107 eV, with best coverage of the parameter space for values of ¢ smaller than in the hyperfine case, i.e., g = 0.01 and

0.02, due a larger surviving cloud mass for lower mass ratios.

the vacuum waveform with the best-fit parameter @y
obtained from the procedure described above and with 6.
without any fitting procedure. The upper plots show
examples for the hyperfine transition with a = 0.5, while
the lower plots show the examples of fine transitions with
a =0.3. Other parameters chosen for this numerical
analysis are shown in the plot title.

Both examples of the hyperfine transition exhibit a clear
sign of resonance behavior. While the frequency evolution
before and after the resonance is similar to the vacuum
evolution, the resonance introduces a sudden dephasing of
gravitational waves before or after the resonance. Even if
the parameters @, are chosen so that it fits the true signal
after (before) the resonance, such a vacuum waveform still
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leads to a large dephasing due to the mismatch of the
waveform before (after) the resonance, resulting in a
mismatch as large as 6 ~0.5.

The two examples of the fine transition show two
qualitatively different behaviors. The example on the left
shows a frequency evolution that can be fit well by a
vacuum waveform. This is because the gravitational waves
that enter the detector are emitted away from the resonance
for this particular choice of parameters. The mismatch
almost vanishes in this case. The example on the right
shows a scenario in which the observed gravitational waves
are emitted near the fine resonance. The vacuum waveform
is insufficient to fit the frequency evolution, resulting in a
large mismatch.

As already discussed in the main text, the mismatch
depends on whether the observed gravitational waves
are emitted near the resonance. In our analysis, this is
parametrized by the free parameter ¢ defined by
f(tg) = c(Qy/x). To assess the sensitivity of our results
to the precise value of ¢ and also ¢, we compute the
mismatch for different values of (c,q) in Fig. 14. The
contours show the region of the parameter space in which
the mismatch satisfies the detectability criterion (21) at 2o.
Each colored contour assumes a distinct value of c¢. The
percentage denotes the deviation of ¢ from ¢ = 1. The
hyperfine transition is sensitive to c; a small deviation away
from the resonance results in a large reduction in the
mismatch. The fine transitions are less sensitive to c. This
might be attributed to the stronger influence of the |300)
state during evolution.

APPENDIX D: RELATIVISTIC
CORRECTIONS

In the nonrelativistic limit, the wave function of the
gravitational atom is well approximated by a hydrogenic
wave function. However, at large a, the wave function
receives relativistic corrections. These effects could have an
impact on the self-gravity corrections and in general matrix
elements that couple different states. We investigate the
difference between the hydrogenic wave functions and the
ones obtained by solving the equation of motion for the
scalar field in Boyer-Lindquist coordinates on the Kerr
background. Our discussion closely follows Dolan [47].

The Klein-Gordon equation is

(D _/42)¢ =0. (Dl)
One can decompose the field ¢ as
1 o
¢ = _\/Z_M e—zu)telm(panz(H)Rfm(r) +H.c.. (DZ)

The equation of motion in spherical coordinates gets
decomposed as

—4dmGMwar + m*a>
A

d dR,,, @?(r* + a?)?
== (a
0 dr( dr ) + [

- (a)zaz +u2r2 +Afm):| Rfm (D3)

1 d (. dS, m?
= 2 (sing®m 2 — Apm|S
sin6’dt9<sm d9>+[’< oS0~ Gig T hem | Sem

(D4)

where k? = a?(w? — u?) is the degree of spheroidicity. The
energy and angular eigenvalues (w,Ay,,) are unknown.
In the limit @ — 0, the spheroidal harmonics reduce
to spherical harmonics Y, and A,, — (¢ + 1) to the
angular momentum eigenvalues in the hydrogen
atom. For wvalues up to «x~7, the expansion
Apw = €(€+ 1)+ 325, fx*, with appropriate coeffi-
cients f; tabulated by Seidel [72], is a good approximation.

With the expected behavior of radial and angular
functions at the boundary, we may look for a solution of
the following form:

Rfm(r) (r(i: r+m—11+1 eQrZan <r . ) R (DS)
Sm(0) = (1= u)V2(1 + u)ll/2x i

(D6)

We define 6 = 2r (@ — Q. )r /(ry —r_), Q = \/ii* — w?
and y = r,(4* — 2w?)/Q. Recall that Q, = a,m/(2r,) is

the angular velocity of the outer horizon

ro =ry(1++/1-a?). The series coefficients a,=
a o satisfy

Andpi +ﬂnan + Ynln—1 = O’ (D7)

apay + Poayg =0 (D8)

with expressions for {a,,f,,7,} for both cases given in
[47,73]. One can rewrite these relations as a continued
fraction

oY1
ﬁ _ oy
L™ -

Bo - ~0. (D9)

The above continued fraction, truncated at 7~
O(10°-10%), is solved simultaneously for the radial and
angular coefficients. The eigenvalues (w,Ay,) are
obtained, from which we get the relativistic spectrum of
the cloud.
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FIG. 15.

Relativistic wave functions evaluated on the equatorial plane at different radii for the {|322),

0.6

320).

300), |31 — 1)} states.

The colors indicate different values of a. The thick dashed line shows the nonrelativistic wave functions.

From the radial and angular coefficients, we
construct the radial function R,,(r) as well as angular
function Sy,,(0). The wave function can be written
as  Woom(x) = €™ Ry, (r)Ss,(0) with normalization
1 = [dx|w,rm(x)]*. These relativistic wave functions
are then used to compute the matrix elements.

We show the relativistic wave functions for the
{|322),320), |300), |31 — 1)} states in Fig. 15. For

(322|V,[320) at €2j309) 320
ERRIe 005 3
E ;:,LL =101 eV E
= 10_8r — hydrogenic':i
— B relativistic g
£10712!\\\\l\\\\l\\\\l\\\Tl\t\\i
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«
= 1079
S, 1078
_ 10~10§
—10—12!””“‘”:Hunuun‘H‘;
0.1 02 03 04 05 0.6
«

small values of «, the wave functions match the
hydrogenic one. For larger a, the wave functions
become narrower, with the peak shifting closer to the
black hole. The relativistic corrections of the wave
functions associated with the hyperfine transitions are
mild and so are the corrections to the matrix elements.
This is confirmed by the explicit calculation shown
in Fig. 16.

(322|V,|31 — 1) at Q|322>,‘3171>

T T 3
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FIG. 16. Comparison of matrix elements of interest computed at different resonance frequencies in the hydrogenic approximation

(thick dashed) and with relativistic wave functions (solid lines).
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