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Spinning black holes could produce ultralight particles via the superradiance instability. These particles
form a dense cloud around the host black hole, introducing new opportunities for the detection of ultralight
new physics. When the black hole is part of a binary system, the binary can trigger transitions among
different states of the cloud configuration. Such transitions backreact on the orbital dynamics, modifying
the frequency evolution of the emitted gravitational waves. Based on this observation, black hole binaries
were proposed as a way to test the existence of ultralight particles. We investigate the effects of the self-
gravity of the cloud on the orbital evolution and on the gravitational wave emission. We find that cloud self-
gravity could lead to a density-dependent modification of the energy levels of ultralight particles and that it
could alter the order of hyperfine energy levels. The crossing of hyperfine levels prevents binaries from
triggering resonant hyperfine transitions, and allows them to approach radii that could trigger resonant
transitions of fine levels. We study the implications of these findings, especially in the context of future
space-borne gravitational wave observatory, the Laser Interferometer Space Antenna (LISA). For
quasicircular, prograde, and equatorial orbits, we find that LISA could probe ultralight particles in the
mass range 10−15 eV–10−13 eV through gravitational wave observations.
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I. INTRODUCTION

Ultralight particles appear ubiquitously in numerous
beyond the standard model scenarios. A canonical example
is the quantum chromodynamics (QCD) axion as a solution
to the strong CP problem [1–8]. Additionally, axionlike
particles and dark photons are often considered as bench-
mark models for phenomenological studies of ultralight
new physics. Some of them are associated with theoretical
motivations such as solving the electroweak hierarchy
problem [9–15]. They might also constitute the dark matter
in the present Universe [16–18].
Black holes (BHs) provide interesting ways to probe

ultralight new physics. A spinning black hole can, through
the superradiance instability, produce a dense cloud of
ultralight particles whose Compton wavelength matches its
size. This process extracts the angular momentum of the
black hole, limiting its maximum spin [19]. At the same
time, a cloud of ultralight particles could source continuous
gravitational waves (GWs) through annihilation and spon-
taneous emission [19]. This observation leads to a series of

surveys to probe ultralight fields via black hole spin
measurements and searches for continuous gravitational
wave emission generated by these ultralight particles
[20–29].
Another interesting proposal is to use black hole binaries

to search for ultralight new physics [30,31]. In the non-
relativistic limit, the cloud-BH system is often described as
a gravitational atom, analogous to a hydrogen atom, where
the black hole serves as the proton and the cloud acts as the
electron. When a superradiating black hole forms a binary,
the secondary object can trigger a resonant transition
between cloud states whose level spacing matches the
orbital frequency of the binary. Such transitions then
backreact on the orbital dynamics. Depending on the types
of transitions and the orientation of orbits, the binary may
harden faster or slower than in cases without the super-
randiance cloud. This leaves nontrivial time-dependent
signatures in the emitted gravitational waves, from which
one might infer the existence of ultralight particles.
In this work, we examine the impact of the self-gravity of

the cloud on the orbital dynamics and the emission
of gravitational waves. By self-gravity, we refer to the
gravitational potential of the cloud itself. We find that
self-gravity introduces density-dependent energy level

*Contact author: hyungjin.kim@desy.de
†Contact author: alessandro.lenoci@mail.huji.ac.il

PHYSICAL REVIEW D 112, 104014 (2025)

2470-0010=2025=112(10)=104014(27) 104014-1 © 2025 American Physical Society

https://ror.org/01js2sh04
https://orcid.org/0000-0002-2209-9262
https://ror.org/03qxff017
https://ror.org/05bnh6r87
https://crossmark.crossref.org/dialog/?doi=10.1103/81dj-kxmy&domain=pdf&date_stamp=2025-11-07
https://doi.org/10.1103/81dj-kxmy
https://doi.org/10.1103/81dj-kxmy


corrections and that this leads to the crossing of certain
hyperfine energy levels of the gravitational atom. As a
consequence, a binary undergoes a sequence of resonances
distinct from the one without self-gravity effects.
We study the implications of these findings, especially in

the context of the future space-borne gravitational wave
interferometer LISA. Focusing on quasicircular, prograde,
and equatorial orbits, we find that the self-gravity-induced
level crossing allows the binary to enter fine resonances
which occur closer to the central rotating black hole. This
widens the observational prospects of ultralight particles
because gravitational waves emitted by harder binaries are
louder and exhibit a faster frequency evolution. In Fig. 1,
we summarize one of the main findings of this work—the
parameter space, where we could potentially probe the
existence of a superradiance cloud through the observation
of gravitational waves in LISA. This result is obtained
under several requirements, such as the frequency of
gravitational wave falling within the LISA frequency band
and the waveform being distinguishable from those without

a superradiance cloud, among others. The result suggests
that ultralight particles could be probed with LISA in the
unexplored mass range of μ ¼ 10−15–10−13 eV. Details
will be presented in the following sections.
This work is organized as follows. In Sec. II, we review

the basic features of the superradiance cloud and the idea of
using binary black holes to probe the existence of ultralight
new physics. In Sec. III, we investigate the impact of self-
gravitational effects of the cloud on binary dynamics. In
particular, we show that it introduces density-dependent
corrections to the energy spectrum and that it could induce
crossing among hyperfine levels. In Sec. IV, we discuss the
observational implications of these findings, particularly
focusing on the future space-borne gravitational wave
detector LISA. In Sec. V, we discuss assumptions and
simplifications made in the main text that could potentially
alter the conclusion of the work. We conclude in Sec. VI.
Throughout this work, we choose the natural unit c ¼ ℏ ¼
1 and the mostly positive metric signature η ¼ ð−þþþÞ.

II. REVIEW

We review the binary dynamics in the presence of a
superradiance cloud. We begin with the basic properties of
superradiance instability in Sec. II A, and proceed to
discuss the idea of using the binary system as a way to
probe ultralight new physics [30,31] in Sec. II B.

A. Superradiance

We consider a light scalar particle in the nonrelativistic
limit. The action for the scalar field is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ −

1

2
μ2ϕ2

�
; ð1Þ

where gμν is the Kerr metric and μ is the mass of scalar
particle. We do not consider the self-interaction in this
work. In the nonrelativistic limit, the scalar field can be
expanded as

ϕðt;xÞ ¼ 1ffiffiffiffiffi
2μ

p e−iμtψðt;xÞ þ H:c:: ð2Þ

The Klein-Gordon equation for ϕ can be written in the form
of Schrödinger equation,

iψ̇ ≈
�
−
∇2

2μ
−
α

r

�
ψ ¼ H0ψ ; ð3Þ

where α ¼ GM1μ is the fine structure constant of the
system and M1 is the black hole mass. The system
resembles the hydrogen atom, and for this reason the
cloud-BH system is often referred to as a gravitational
atom. Here the Kerr metric is expanded to the leading order
in α; higher order corrections lead to fine and hyperfine
splitting of energy levels.

FIG. 1. Parameter space showing current constraints and the
region in which ultralight particles can be probed with LISA for a
total observational time span Tobs ¼ 4 yr. Shaded area indicates
regions where LISA is sensitive to ultralight particles via
observations of GWs emitted at the hyperfine resonance j322i ↔
j320i (blue) and at the fine resonance j322i ↔ j31 − 1i (purple).
These regions are based on the computation of fitting factor,
which will be discussed in Sec. IV. The region shaded in lighter
blue is where our approximation of neglecting off-diagonal
matrix element of the self-gravity breaks down (see Sec. V D).
The fine resonance can be reached due to the level crossing
induced by the self-gravity of the cloud. The black contours show
the horizon distance at which LISA can observe emitted GWs
with SNR ¼ 5, while the red contours shows the mass of the
spinning black hole M1. We consider only quasicircular, pro-
grade, equatorial orbits and assume the mass of secondary object
q ¼ M2=M1 ¼ 0.05 for the hyperfine transition and q ¼ 0.02 for
the fine transition. Constraints from black hole spin-down are
overlaid as vertical gray bands [21,25,28,29].
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The spectrum of ultralight particles is similar to that of
the hydrogen atom. It consists of a discrete and a continu-
ous spectrum. The discrete spectrum is characterized by
three integer quantum numbers; the principal, angular, and
magnetic quantum number, ðn;l; mÞ. The discrete energy
spectrum up to Oðα5Þ is given by [32]

Enlm

μ
¼ 1 −

α2

2n2
−

α4

8n4
þ ð2l − 3nþ 1Þα4

n4ðlþ 1=2Þ

þ 2a�mα5

n3lðlþ 1=2Þðlþ 1Þ : ð4Þ

Transitions between two levels, ðn;l; mÞ and ðn0;l0; m0Þ,
can be categorized according to the change of quantum
numbers:

(i) Bohr transitions: transitions between energy levels
with different principal quantum numbers, n ≠ n0.
The level spacing is ΔEBohr ¼ Oðα2Þ.

(ii) Fine transitions: transitions between energy levels
with the same principal quantum number but with
different angular quantum numbers, i.e., n ¼ n0 and
l ≠ l0. The level spacing is ΔEfine ¼ Oðα4Þ.

(iii) Hyperfine transitions: transitions between levels
with the same principal and angular quantum num-
ber but with different magnetic quantum numbers,
i.e. n ¼ n0, l ¼ l0, andm ≠ m0. The level spacing is
ΔEhyper ¼ Oða�α5Þ, where a� ¼ J=ðGM2

1Þ is the
dimensionless spin parameter.

This work will focus on fine and hyperfine transitions, in
which the self-gravity effect is more relevant.
The spectrum also develops an imaginary part due

to the boundary condition at the black hole horizon.
Consequently, the eigenfrequency of the system is

ωnlm ¼ Enlm þ iΓnlm;

where the imaginary part Γnlm is given by [32,33],

Γnlm ∝ ðmΩþ − ωnlmÞ:

Here Ωþ ¼ a�=½2rgð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ�with rg ¼ GM1. When

Γnlm > 0, superradiance instability occurs, leading to an
exponential production of ultralight particles. Conversely,
when Γnlm < 0, the cloud decays back to the black hole.
The superradiance instability occurs only for those states
with magnetic quantum number aligned in the direction of
the spin axis, i.e., m > 0, hence the process extracts
angular momentum from the black hole. This continues
until the black hole spins down enough such that
Γnlm ∝ ðmΩþ − μÞ ≈ 0.
For a wide range of fine structure constants and

black hole spin parameters, the superradiance instability
predominantly produces either j211i or j322i. We confirm
this in Fig. 2 by computing the ratio between the cloud

mass and the black hole mass qc ¼ Mc=M1 for each state.
For the figure, we choose the age of the system
tsys ¼ 100 Myr, and initial black hole spin a� ¼ 0.9. We
then numerically solve a set of equations for M1 and Mc,
which are presented in Appendix A 3 b. The result mildly
depends on tsys. For a phenomenological reason, we only
consider the parameter space where the cloud is dominantly
in the j322i state. We will use the above result as an input
for the analyses that follow.

B. Binary

In a binary system, the gravitational atom is tidally
perturbed by a secondary object. The Schrödinger equation
is then given by

iψ̇ ¼
�
−
∇2

2μ
−
α

r
þ V⋆

�
ψ ; ð5Þ

where V⋆ is the perturbation due to the secondary body,

V⋆ðr; r⋆Þ ¼ −qα
�

1

jr − r⋆ðtÞj
−

1

r⋆
−
r · r⋆
r3⋆

�
: ð6Þ

Here, q ¼ M2=M1 is the ratio between the mass of the
rotating black hole and the secondary object, and r⋆ðtÞ is

FIG. 2. Cloud mass fraction qc ¼ Mc=M1 for tsys ¼ 100 Myr
and initial BH spin ai� ¼ 0.9. The right panel shows the cloud
mass fraction qc for j211i and j322i states. We only show the
region with qc > 10−5. The upper boundary of the contours is
due to the annihilation of the cloud into gravitational waves,
while the lower boundary arises because the age of the system tsys
is too short for the superradiance instability to develop. The star
corresponds to a benchmark point for which the cloud evolution
is studied as a function of time in Fig. 12. The left panel shows the
cloud mass fraction of j322i at tsys ¼ 100 Myr as a function of αi
for μ ¼ 10−15–10−12 eV. The red dashed line shows the maxi-
mum achievable cloud mass without the annihilation of bosons
into gravitational waves. The black line shows the behavior of
qmax
c ∝ α2 for small fine structure constants. See Appendix A 3 b

for details on the cloud mass computation.
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the position of the secondary object. The second and third
terms in parentheses cancel the monopole and dipole terms
in the expansion of the potential around r ¼ 0. The above
Schrödinger equation is presented in the black hole
comoving coordinate system. A detailed discussion is
presented in Appendix A.
The system resembles a hydrogen atom with a

time-dependent perturbation. The similarity is most
clearly illustrated by approximating the system to a
two-level system. Consider two levels fj1i; j2ig ¼
fjn1l1m1i; jn2l2m2ig. Each of them is an eigenstate of
the unperturbed Hamiltonian, H0jii ¼ Eijii. We always
denote the superradiance state with j1i and a state that
can resonate with it via the time-dependent perturbation
with j2i. A generic state can be written as

jψi ¼ c1ðtÞj1i þ c2ðtÞj2i:
The Schrödinger equation is then given by

iċ ¼
 

E1 h1jV⋆j2i
h2jV⋆j1i E2

!
c; ð7Þ

where c ¼ ðc1c2ÞT . Although the imaginary part of the
spectrum is important for the evolution of the system, we
ignore it for now for simplicity.
The time-dependent perturbation V⋆ triggers transitions

among cloud states. To investigate the transitions, we need
to specify an orbit r⋆ðtÞ. We consider a quasicircular
prograde equatorial orbit. The orbit lies in the xy-plane,
and its angular momentum vector is aligned with the black
hole spin direction ẑ. We further restrict ourselves to
r⋆ > rB ¼ 1=μα; the orbit remains outside of the cloud
whose size is given by the Bohr radius rB. In this case, the
potential can be expanded as

V⋆ðr; r⋆Þ ¼
X
l⋆¼2

Xl⋆
m⋆¼−l⋆

Vl⋆m⋆
e−im⋆ϕ⋆ðtÞ; ð8Þ

where the coefficient Vl�m� is given by

Vl⋆m⋆
¼ −qα

4π

2l⋆ þ 1

rl⋆

rl⋆þ1
⋆

Yl⋆m⋆
ðr̂ÞY�

l⋆m⋆
ðπ=2; 0Þ; ð9Þ

and the orbital phase ϕ⋆ðtÞ is given by

ϕ⋆ðtÞ ¼ �
Z

t
dt0 Ωðt0Þ; ð10Þ

with the orbital frequency ΩðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r3⋆ðtÞ

p
and the

total mass of the system M ¼ M1 þM2 þMc.
1 The plus

and minus signs in (10) are for prograde and retrograde
orbits, respectively. The time-dependence is fully factor-
ized as exp½−im⋆ϕ⋆ðtÞ�. The Schrödinger equation can be
written as

iċ ¼
 

E1 γe−iΔm12ϕ⋆ðtÞ

γ�eþiΔm12ϕ⋆ðtÞ E2

!
c; ð11Þ

where γ ¼Pl⋆≥jΔm12jh1jVl⋆Δm12
j2i and Δm12 ¼ m1 −m2.

This form makes its similarity with a quantum mechanical
two-level system transparent. If the orbital frequency is
constant, ϕ⋆ðtÞ ¼ �Ωt, the resonant transition occurs
when ðE1 − E2Þ ¼ �Δm12Ω; the secondary object in the
binary plays the role of a laser in resonant transitions of
the gravitational atom. In reality, the orbital frequency
slowly drifts to a higher value as the binary hardens
through gravitational wave emission. Note also that a
prograde orbit excites only levels with ðE1 − E2Þ=
ðm1 −m2Þ > 0, while a retrograde orbit excites levels with
ðE1 − E2Þ=ðm1 −m2Þ < 0.
These resonant transitions backreact on the orbital

evolution. As the resonant transition changes the angular
momentum of the cloud and as the total angular momentum
must be conserved, the orbit may decay faster or slower in
the presence of the cloud-binary interaction. Whether the
orbit decays faster or slower depends on the nature of
excitation and the orientation of the orbit. From the angular
momentum balance equation (see Appendix A 3), one finds
the orbital frequency evolution equation as

dΩ
dt

¼
�
dΩ
dt

�
GW

þ
�
dΩ
dt

�
cl
; ð12Þ

where ðdΩ=dtÞGW and ðdΩ=dtÞcl each denotes the change
of orbital frequency due to the gravitational wave emission
and due to cloud internal transitions, respectively. Each of
them is given by�

dΩ
dt

�
GW

¼ þ 96

5
ðGMcÞ5=3Ω11=3; ð13Þ

�
dΩ
dt

�
cl
¼ � 3Ω4=3Mc

ðGMcÞ2=3
X
i

mi

μ

�
djcij2
dt

− 2Γijcij2
�
; ð14Þ

where Mc ¼ ½ðM1 þMcÞM2�3=5=M1=5 is the chirp mass.
The sign in (14) is determined by the relative orientation of
the orbital angular momentum with respect to the black
hole spin; prograde (retrograde) orbits take the þ (−) sign.
Ignoring the decay rate of the cloud states Γi and focusing
on a two-level system with a prograde orbit, the cloud
contribution can be written as

�
dΩ
dt

�
cl
∝ ðm1 −m2Þ

djc1j2
dt

: ð15Þ

1We assume that the center-of-mass of the cloud coincides with
the black hole and treat the cloud-BH as a single object
constituting the binary system with the secondary object. This
will be discussed again in the Appendix.
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Since the hyperfine and fine transitions of j322i have
ðE1 − E2Þ=ðm1 −m2Þ > 0, a resonance can only be trig-
gered by a prograde orbit. Since ðm1 −m2Þ > 0 for both
fine and hyperfine transitions, ðdΩ=dtÞcl < 0. The back-
reaction triggers a floating orbital behavior; the orbit decays
slower as the cloud pumps its angular momentum into the
binary system [31].

Figure 3 shows a schematic picture of the sequence of
orbital resonances considered in this work and an example
of a floating orbit. For a quasicircular prograde orbit, the
resonance j322i ↔ j320i is triggered first among others.
This transition tends to deplete the cloud almost entirely, as
one can see in the bottom panel of the figure. We will see in
the next section that self-gravity alters this behavior. The
mixing with the nonsuperradiance state j300i is important
both for hyperfine and fine transitions, which will be
discussed in more detail in Sec. VA. The floating behavior
is slightly different from the ones presented in previous
literature. The difference can be attributed to the change of
massandspinof theblackholedue to thedecayofcloudstates;
the result in Fig. 3 is obtained by solving the Schrödinger
equation, the angular momentum balance equation, and the
equation for the black hole and cloud mass simultaneously.
Note thatΩ0 is the resonance frequency of the j322i ↔ j320i
transitioncomputedwithvaluesofα anda� at thebeginningof
the numerical evaluation.

III. SELF-GRAVITY

Ultralight particles interact among themselves through
the gravitational interaction. This gravitational self-inter-
action perturbs the Hamiltonian as

iψ̇ ¼
�
−
∇2

2μ
−
α

r
þ Vc

�
ψ ; ð16Þ

where the potential due to the self-interaction Vcðt; rÞ is
given by

Vcðt;rÞ¼−qcα
Z

d3r0jψðt;r0Þj2
�

1

jr−r0j−
1

r0
−
r ·r0

r03

�
: ð17Þ

The system is now described by a nonlinear Schrödinger
equation. Note qc ¼ Mc=M1. The additional terms in
parentheses appear due to our coordinate choice.
As the cloud mass could easily be a few percent of the

massive black hole, the corrections of the energy spectrum
might be large enough so that it becomes comparable to the
hyperfine and fine level splitting. Parametrically, the self-
gravity correction is ΔEself ∼ qcα=rB where rB ¼ 1=μα is
the Bohr radius of the gravitational atom. As already shown
in Fig. 2, the maximum cloud mass fraction scales as qc ∝
α2 [34] (see Appendix A 3 b), and therefore the self-gravity
correction could be as large as ΔEself ∼ qcα=rB ∼ μα4. This
is of the same order as the fine splitting ΔEfine ¼ μα4,
and parametrically larger than the hyperfine splitting
ΔEhyper ¼ μa�α5. The Bohr levels are barely affected.
For a quantitative analysis, we assume an axisymmetric

system. In particular, we assume that the cloud is initially in
a pure state of j322i. With this assumption, we compute the
correction to the energy level of each state as

ΔEnlm ¼ hnlmjVcjnlmi:

Ω|322 320〉Ω|322 31−1〉Ω|322 〉 |〉 |〉 |300〉

1

2

Ω
/Ω

0

quasi-circular, prograde and equatorial

(α, μ, q, qc) = (0.37, 10−14, 0.05, 0.06)

0

1

|c 1
|2

171 172 173 174
t/t̄

0

1

|c 2
|2 [

10
− 4

] 3-lv app. {|322〉, |320〉, |300〉}
2-lv app. {|322〉, |320〉}

FIG. 3. Top: a schematic picture describing the sequence of
important orbital resonances with an initial j322i cloud. The
orange band around j322i ↔ j300i denotes the radii around
which the mixing with j300i significantly backreacts to the orbit
and a three-level description is necessary. This will be discussed
in Sec. VA. Bottom: the orbital dynamics at the resonance
j322i ↔ j320i without self-gravity corrections. Compared to the
evolution without the cloud (dashed line), the binary hardens
much more slowly. The green line denotes the evolution obtained
in the two-level approximation, while the dark blue line is
obtained in a three-level system, including j300i. As this hyper-
fine transition is adiabatic, the orbit almost completely converts
j322i → j320i and j320i decays subsequently. By the time the
orbit reaches to orbital separations that can trigger fine transitions
such as the j322i ↔ j31 − 1i resonance, the entire cloud has
disappeared; this conclusion will be altered when the self-gravity
correction is included. Here Ω0 is the resonance frequency
computed with the parameters at the beginning of the evolution
and t̄ ¼ ½ΩðdΩ=dtÞ−1GW�jΩ0

is the typical evolution timescale for
the orbit due to the GW emission.
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As the cloud has a nontrivial angular distribution, this
correction is generally nonuniversal for states with different
quantum numbers. At the same time, the correction
depends on the total cloud mass.
Figure 4 shows self-gravity corrections for fine and

hyperfine transitions of the superradiance j322i state. The
solid (dashed) lines show the level spacing with (without)
the self-gravity corrections. For this result, we use the
nonrelativistic spectrum (4) and the cloud fraction qc for
μ ¼ 10−13 eV, initial spin parameter a� ¼ 0.9, and the age
of the system tsys ¼ 100 Myr. The corrections to j322i and
j32 − 2i are identical due to the reflection symmetry of the
system. Fine levels are affected at most by less than a
factor of two at small values of α, while the hyperfine
splitting j322i ↔ j320i is significantly affected. In par-
ticular, these hyperfine levels change their relative order
around α ≃ 0.3–0.4.
The above discussion ignores a possible mixing between

states induced by self-gravity. In axisymmetric systems,
self-gravity triggers mixing between levels that share the
same magnetic quantum number, e.g., j322i with j422i,
j522i, j542i, and so on. Consider the mixing of j322i with
j422i. Since j422i has a different principal quantum
number, the correction to the energy level is suppressed

FIG. 4. The energy level difference between the j322i
state and a few other states. The level crossing occurs for
the j322i ↔ j320i transition for μ ¼ 10−13 eV around α ∼ 0.31.
Fine transition levels are affected at most at 30%. We choose
the value of qc with an initial spin parameter a� ¼ 0.9 and
tage ¼ 100 Myr, and use the nonrelativistic spectrum for
this result. Dashed lines show the level spacing without the
self-gravity corrections.

FIG. 5. Left: the orbital dynamics at the hyperfine j322i ↔ j320i resonance. All parameters are chosen the same as in Fig. 3.
The self-gravity correction is included. As the effective level splitting between these two states changes its sign, a prograde
orbit can no longer trigger the resonant transition with them. The cloud still depletes in the 3-level analysis, which is due to the
large decay width of the nonsuperradiance j300i state. The above result suggests that the orbit can reach closer to the black
hole, and trigger the resonant transition of the fine levels j322i ↔ j31 − 1i. Right: the orbital dynamics around the fine
transition j322i ↔ j31 − 1i. The difference between two-level and three-level approximation is noticeable. The mixing with
j300i makes the orbit harden at a much slower rate well before the binary enters the resonance band of the j322i ↔ j31 − 1i
transition. If the cloud somehow survives by the time it enters the resonance band of the fine transition, there could be another
period of evolution in which the binary exhibits a floating behavior as can be seen in the inset plot. For this result, we choose a
smaller q ¼ 0.03. Here Ω0 is the resonance frequency of each level, computed at the beginning of the numerical evolution with
the self-gravity corrections.
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as jh422jVcj322ij2=ðE322 − E422Þ, which is negligible
compared to h322jVcj322i. The same conclusion
hold for other states. For instance, j320i could mix
with j300i. Although it is a mixing between fine levels,
one can show that the correction due to the mixing
jh320jVcj300ij2=ðE320 − E300Þ is still smaller than
h320jVcj320i or h300jVcj300i by three orders of magni-
tude for a wide range of α. The results shown in Fig. 4 are
therefore not significantly affected by the mixing of states.
This level crossing offers new observational opportuni-

ties. As the hyperfine transition j322i ↔ j320i induced by
the secondary object tends to be adiabatic, the orbit
completely transfers the superradiance state j322i to the
nonsuperradiance state j320i, which then decays to the
black hole. We have already observed this behavior in
Fig. 3. The only possibility to probe ultralight particles in
this case is therefore by observing the gravitational waves
emitted by the binary at this resonance. However, for a
moderately small α, the resonance occurs too far away from
the massive black hole, leading to either too small gravi-
tational wave strain or too slow change of the gravitational
wave frequency, both of which hinder the detection of
ultralight particles via GW observations.
With self-gravity correction, the prograde orbit can no

longer trigger the resonance transition between j322i and
j320i as ½ðE1 þ ΔE1Þ − ðE2 þ ΔE2Þ�=ðm1 −m2Þ < 0 for
α≲ 0.3 − 0.4. This is shown by the numerical result
presented in the left panel of Fig. 5. The other hyperfine
transition j322i ↔ j32 − 2i can still resonate with a pro-
grade orbit, but this resonance tends to be nonadiabatic as it
can be triggered only with the l ¼ 4 mode of the
perturbation V⋆, and does not play an important role in
the orbital evolution. Not resonating with j322i ↔ j320i,
the orbit can approach closer to the black hole, and resonate
with fine levels, e.g., j322i ↔ j31 − 1i. As the fine
transitions take place closer to the black hole, the strain
and the frequency change of the gravitational wave could
potentially be large enough for LISA even with a moder-
ately small α, thereby providing another possibility to
probe ultralight particles. In the following section, we
examine this possibility and investigate in detail the
implications of self-gravity for the detection of ultralight
bosons with a binary system.

IV. OBSERVATIONAL TARGET

To examine whether we can detect ultralight particles
with LISA through the observation of GWs, we focus on
two observational targets:

(i) GWs emitted at j322i ↔ j320i with α ≳ 0.3 − 0.4
(ii) GWs emitted at j322i ↔ j31 − 1i with

α≲ 0.3 − 0.4
For the detection of ultralight bosons, two conditions must
be met: (i) GWs must be measurable, and (ii) the meas-
urement contains enough information such that it has a

discriminating power to distinguish two hypotheses, the
one with and the one without ultralight bosons.
The measurability condition (i) is assessed by the

following criteria:
(1) GW frequency. The frequency of GWs emitted at the

resonance should be within the LISA frequency
band, fGW ∈ ½10−5; 1� Hz.

(2) GW frequency drift. The frequency drift of GWs
during the observation should be larger than the
frequency resolution of the detector, ΔfGW > 1=
Tobs. Otherwise, the signal is confined to a single
frequency bin and can likely be fit without invoking
the ultralight cloud, rendering it indistinguishable
from GWs emitted by a system without the cloud.
For Tobs ¼ 4 yr, we require ΔfGW > 8 × 10−9 Hz.

(3) Signal-to-noise ratio. The signal-to-noise ratio
(SNR) should be above threshold for a detection
of the signal. We require

S
N

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

Z
fu

fl

df
jhðfÞj2
SnðfÞ

s
> ρth; ð18Þ

where hðfÞ is the GW strain, SnðfÞ is the detector
noise power spectral density, and ρth is a predefined
detection threshold. This condition can be rephrased
as a maximum distance to the binary that achieves a
detection with SNR ¼ ρth. For the computation of
the SNR, we use the LISA noise power spectrum in
Ref. [35] with the galactic confusion noise presented
in Ref. [36].

The detectability condition (ii) is assessed by the fitting
factor

F ¼ maxθv
ðhðθtrueÞjhðθvÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhðθtrueÞjhðθtrueÞÞðhðθvÞjhðθvÞÞ

p ; ð19Þ

where the inner product is defined as

ðAjBÞ ¼ 2Re
Z

∞

−∞
df

A�ðfÞBðfÞ
SnðfÞ

: ð20Þ

Here hðθÞ denotes the waveform of gravitational waves.
The waveform is characterized by a set of parameters
θ ¼ ff−;Mc; qc; μ; αg, where f− is the frequency of GWs
at the beginning of the observational campaign. This set
only includes the intrinsic variables; the extrinsic variables
are already algebraically maximized in the fitting factor.
The inner product in (19) is maximized only over a subset
of parameters θv ¼ ff−;Mcg, assuming that qc → 0,
α → ∞, and μ → ∞. The resulting hðθvÞ represents a
waveform of GWs from the system without the cloud.
The fitting factor therefore measures how well the vacuum
waveform hðθvÞ could fit the GW signals emitted from a
system with a cloud of ultralight particles.
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Figure 6 shows the intersection of the three measurability
requirements and the fitting factor. The measurability
condition is illustrated by the black contours, representing
the maximum distance to a source from which gravitational
waves can be detected by LISAwith a signal-to-noise ratio
of ρth ¼ 5. For both fine and hyperfine transitions, LISA
can measure GWs emitted at the resonances from sources a
few tens to hundreds megaparsec away from us. At the same
time, we show the fitting factor computed at each point of the
parameter space where the measurability conditions are
satisfied. In the figure, we show the mismatch

δ ¼ 1 − F ∈ ½0; 1�:

When two waveforms are orthogonal to each other, the
mismatch is δ ¼ 1. In this case, the GWs emitted from the
binary with and without the cloud can be distinguished from
each other. For this figure, we choose Tobs ¼ 4 yr, and use
the numerically obtained cloud mass fraction qcð100 MyrÞ.
We assume a mass ratio of the companion and central black
hole of q ¼ 0.05 for the hyperfine transition and of q ¼ 0.02
for the fine transition.
To quantify the detectability of the cloud, we require the

mismatch to satisfy [37–41],

δ ¼ 1 − F >
D

2SNR2
; ð21Þ

where D is the number of parameters fitted in the fitting
factor. In our case D ¼ 2. The right-hand side of this
criterion is the mismatch that could arise as a result of pure
statistical fluctuations. We therefore impose that the mis-
match arising from genuine differences between two wave-
forms exceeds the statistical fluctuation. In practice, we
impose a stricter condition; the mismatch to be 2σ away
from null for a conservative estimate. For SNR ¼ 5, we
require δ ¼ 1 − F > 0.16 for the detectability of the cloud.
When computing the fitting factor, we must specify the

frequency of the gravitational wave that enters the detector
during the observation. Suppose that the observational
campaign runs for t∈ ½t0 − 2 yr; t0 þ 2 yr�, where t0 is
the midpoint of the observation. The fitting factor shown in
Fig. 6 is computed by assuming fGWðt0Þ ¼ Ω0=π for the
hyperfine resonance and fGWðt0Þ ≃ 1.36ðΩ0=πÞ for the fine
resonance. In other words, we assume that the GWs emitted
near each resonance enter at the midpoint of the campaign.
As such GWs contain the richest information about the
cloud, they provide the clearest way to test the existence of
ultralight particles.
The resulting mismatch depends on the frequency of

gravitational waves fGWðt0Þ that enters the detector during
the observation. To examine how the mismatch changes as
a function of fGWðt0Þ, we repeat the computation with

fGWðt0Þ ¼ c
Ω0

π
; ð22Þ

where c parametrizes the deviation of the GW frequency
from the resonance frequency. In Fig. 7, we show the region
of mismatch that satisfies the criterion (21) at 2σ for
different choices of c. For the hyperfine transition, the
largest region is achieved around c ¼ 1, confirming that
GWs from the resonance contain the most information on
the cloud around the rotating black hole. On the other hand,
for the fine transition, the largest region is achieved for
c ≃ 1.36. The reason for this is due to j300i; before the
binary enters the fine resonance, the cloud depletes due
to its mixing with j300i, and the resonance frequency
increases compared to Ω0, which is specified at the
beginning of the numerical evaluation. Figure 1 is obtained
based on Figs. 6–7; in particular, the projections in Fig. 1
are obtained from the union of mismatch contours shown in
Fig. 7. Details on the computation of fitting factor and the
results for other values of the mass ratio q are presented in
Appendix C.
Before ending this section, we add a brief comment on

the mismatch. The mismatch can be interpreted as a
reduction of the signal-to-noise ratio due to a mismodeling
of the waveform. To see this, consider a data stream in the
strong-signal limit,
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FIG. 6. Summary of the measurability conditions and the
mismatch. The black contours show the maximum distance from
which the emitted gravitational waves can be detected at LISA
with a signal-to-noise ratio ρth ¼ 5. The mismatch δ ¼ 1 − F is
overlaid. The purple map shows the mismatch for GWs emitted at
the fine resonance j322i ↔ j31 − 1i, while the blue map shows it
for GWs emitted at the hyperfine resonance j322i ↔ j320i.
We stress that the fine transition can only be reached for α≲
0.3–0.4 as a result of the level crossing. We choose q ¼ 0.05
for the hyperfine and q ¼ 0.02 for the fine transition. We
compute the fitting factor only for the parameter space with
qcð100 MyrÞ > 10−6. The red contours show the mass of the
rotating black hole, while the gray shaded region shows the
constraints from black hole spin measurements [21,25,28,29].
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sðtÞ ¼ hcðt; θcÞ þ nðtÞ ≈ hcðt; θcÞ;

where nðtÞ is some Gaussian noise, and hcðt; θcÞ is the true
gravity wave strain parametrized by θc. The optimal
statistic with a template hðθÞ can be defined as

ρ̂ ¼ ðsjhðθÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhðθÞjhðθÞÞp : ð23Þ

When the template matches with the true waveform, the
maximum signal-to-noise ratio is given by�

S
N

�
max

¼ max
θ

hρ̂i ¼ ðhðθtrueÞjhðθtrueÞÞ1=2: ð24Þ

When one chooses hðθÞ ¼ hðθvÞ which does not match the
signal exactly, the maximum signal-to-noise ratio is
reduced by

S
N

¼ max
θv

hρ̂i ¼
�
S
N

�
max

F : ð25Þ

The fitting factor F can therefore be understood as the
reduction of the maximum signal-to-noise ratio due to
mismodeling of the waveform [42].

V. DISCUSSION

A. Mixing with 3s

The mixing with spectator states (that do not participate
to the resonance) could be important for the evolution of the
system. A primary example is the mixing of j322i with
j300i. Due to its quantum numbers, the 3s state has a large
decay rate Γ300 ∝ μα5, and at the same time, it can mix

nonresonantly with the state j322i via the quadrupole
component of the perturbation V⋆. Its importance for
orbital dynamics is already hinted in the numerical results
presented in previous sections, e.g., Figs. 3 and 5. This
behavior was already observed in the work of Tong et al.
[43]. See also Refs. [44,45] for discussions on finite decay
width of states and its implication for orbital dynamics.
The mixing introduces a steady decay of the j322i state

into the black hole. Consider a two-level system, consisting
of fj1i; j3ig ¼ fj322i; j300ig. With a diagonal phase
rotation, one can show that the two-level Hamiltonian
(11) can be written as

iċ ¼
�
E1 − Δm13Ω=2 γ

γ E3 þ Δm13Ω=2þ iΓ

�
c; ð26Þ

where Ω ¼ ϕ̇⋆ðtÞ is the orbital frequency for the prograde
orbit, Δm13 ¼ m1 −m3, ΔE13 ¼ E1 − E3, and Γ is the
decay rate of the spectator state j3i. From this, the mixing
angle may be estimated as

θ ≃
γ

ΔE13 − Δm13Ω − iΓ
: ð27Þ

Even though the state initially begins with the nondecaying
j1i state, it finds itself in the decaying j3i state with a
probability of jθj2, causing a steady decay of the j1i state
throughout the evolution,

jc1j2 ∝ exp

�
−2
Z

t
dt0jθj2Γ

�
: ð28Þ

A more detailed derivation this expression will be given in
Appendix B.
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FIG. 7. Contours of mismatch satisfying δ ≥ 4D=2SNR2 for different choices of c, defined via fðt0Þ ¼ cðΩ0=πÞ. Left: the mismatch
for the hyperfine transition j322i ↔ j320i with q ¼ M2=M1 ¼ 0.05. The mismatch sharply drops as c drifts away from c ¼ 1,
suggesting that the ability to probe the existence of the cloud crucially depends on whether the gravitational waves emitted at the
resonance enter the detector during the observational campaign. Right: the mismatch for the fine transition j322i ↔ j31 − 1i with
q ¼ M2=M1 ¼ 0.02. The results for other combinations of ðc; qÞ are presented in Appendix C.
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This steady decay is already observed in Fig. 3. The
occupation number of the superradiance state steadily
decreases in the three-level approximation until it reaches
the resonance of j322i ↔ j320i. The decay induced by
mixing (28) reasonably agrees with the numerical result
when an additional numerical factor of 1.7 is introduced in
the exponent. This steady decay of the superradiance state
could limit the possibility of observing the ultralight cloud
through GWs, as it might exhaust the entire cloud well
before it reaches resonances [43,46].
Furthermore, the mixing-induced decay backreacts to the

orbit. The orbital evolution of a three-level system is
retarded compared to that of a two-level system, as shown
in Fig. 3. This can be explained as follows. The super-
radiance state dumps its energy into the black hole,
j322i → j300i → jBHi, through the mixing enabled by
the secondary object and the j300i decay. During this
process, the state transfers its angular momentum to the
secondary object’s orbit, causing the orbit in the three-level
system to float longer compared to the one in the two-level
system.
This mixing-induced backreaction causes a more

dramatic orbital behavior near the resonance j322i ↔
j31 − 1i. The right panel of Fig. 5 shows that the orbit
floats for a much longer period of time due to its mixing
with j300i. Contrary to the hyperfine case, the orbit gains a
large angular momentum from the mixing-induced cloud
evolution as much as it loses via gravitational wave
emission. The system then enters a quasiequilibrium state
where the angular momentum gain from the cloud
ðdΩ=dtÞcl balances the angular momentum loss due to
the GW emission ðdΩ=dtÞGW. This behavior continues
until the cloud is fully exhausted. In the case of the right
panel of Fig. 5, a small j322i population survives, enough
for the j322i ↔ j31 − 1i resonance to be triggered. This is
shown as an inset plot in the top panel.

B. Relativistic corrections

Throughout this work, we use the nonrelativistic
approximation, expected to be valid for α=l < 1. The
results in the previous section are shown up to α ¼ 0.6,
which is still smaller than unity, but not sufficiently. It is
therefore important to check if the conclusions of the
previous sections still hold at least qualitatively when
relativistic corrections are included.
Relativistic effects could modify the spectrum and wave

functions. The change in the real part of the spectrum could
affect the sequence of orbital resonances, including the
level crossing of j322i ↔ j320i, while the imaginary part
of the spectrum could affect the mixing-induced evolution
of the BH-cloud system. At the same time, the change in the
wave function could modify the matrix element of pertur-
bations, and thereby, affecting the resonant transitions. To
quantify these effects, we compute the fully relativistic
spectrum and wave function, following the procedure

outlined by Dolan [47] with a saturated spin parameter
a� ¼ 2α=ð1þ α2Þ for the j322i cloud (see Appendix D for
more details). For illustration, we consider a benchmark
with μ ¼ 10−13 eV.
The level crossing of j322i ↔ j320i remains the

same. This phenomenon occurs at a relatively small
α < 0.3 − 0.4, and thus is expected to be less affected
by relativistic effects. This is confirmed by the numerically
computed relativistic spectrum shown in the top panel of
Fig. 8; the level crossing still occurs around α ¼ 0.3 even
after including relativistic corrections to the spectrum.
The orbital resonance sequence remains mostly the

same. For fine transitions at small α, e.g., α < 0.3, the
orbit will still trigger the transition j322i ↔ j31 − 1i first
among the other fine transitions. This can be checked in the
bottom panel of Fig. 8. For hyperfine transitions, a
quasicircular orbit will trigger j322i ↔ j320i first among
all the others, except for a fine structure constant around
α ¼ 0.6 in which j322i ↔ j31 − 1imight be triggered first.

FIG. 8. Top: same as Fig. 4 but including relativistic correc-
tions. Bottom: resonant frequencies for the indicated transitions.
Thick lines include both self-gravity and relativistic corrections.
Solid opaque lines show the nonrelativistic limit with self-gravity,
while dashed lines show the same limit without self-gravity.
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The evolution due to the mixing with the spectator j300i
might be affected by relativistic corrections. First, the decay
rate of j300i changes by a factor of few compared to the
nonrelativistic approximation. Second, the level splitting
ΔE13 ¼ E322 − E300 differs from its nonrelativistic counter-
part by a factor of few and also changes its sign at α ≃ 0.37.
Third, the matrix element γ13 might change due to the
relativistic correction to the wave function. Combined
together, they could modify the exponent of (28).
To examine this, we compute θ2Γ near the fine reso-

nance, including relativistic corrections to the decay rate of
j300i, to the level splitting E322 − E300, and the matrix
element. The result is shown in Fig. 9. The relativistic result
(green solid) is larger than the nonrelativistic one (blue
dotted) by a factor of few for α ≲ 0.4. This is mainly due to
relativistic corrections to the energy spectrum: the orange
dashed line—computed with relativistic corrections to the
decay width and energy spectrum but using the non-
relativistic matrix element γ—almost reproduces the fully
relativistic result. At α≳ 0.4 the relativistic result is up to
one order of magnitude smaller than the nonrelativistic
result due to relativistic corrections of the matrix element
(see Fig. 16 in the Appendix).
The above arguments show that the level crossing

behavior as well as the orbital dynamics remains qualita-
tively the same even after including relativistic corrections.
The relativistic corrections considered in this section are
however restricted. We only consider relativistic correc-
tions to the energy spectrum and the wave function due to
an isolated black hole. There are other corrections we do
not include: perturbations nonlinear in the external matter
distribution, OðqnÞ (n ≥ 2), and perturbations of order
OðqαnÞ (n > 2). Here q stands for both q and qc. In the

following section, we will consider one of the ignored ones:
a perturbation ofOðqcα4Þ order. Another possible source of
error can come from a partial metric reconstruction when
the secondary approaches the primary in the presence of the
cloud: for the largest values of α considered in this work,
the used Kerr metric perturbed with the secondary (see
Appendix A 1 for details) may not be the proper metric to
describe the binary system in presence of the cloud. To
fully account for all these corrections, a dedicated numeri-
cal simulation is required.

C. Corrections from cloud angular momentum

The gravitational self-interaction introduces additional
corrections to the energy spectrum. Takahashi et al. [48]
showed that the angular momentum of the cloud affects the
spectrum at the order of the hyperfine splitting. As it is also
due to the gravitational self-interaction, it depends on the
occupation number of the cloud itself. In our analysis, we
have ignored this correction. We assess below the relative
importance of the self-gravity with other self-gravitational
corrections.
We begin with the nonrelativistic expansion of the scalar

action. With the Kerr metric, the scalar action (1) can be
expanded as

S ¼
Z

d4xðL2 þ L4 þ L5 þ � � �Þ; ð29Þ

where L2 is the leading order Lagrangian that gives rise to
the unperturbed Schrödinger equation (3) and L4 is the
Oðα4Þ correction corresponding to the fine splitting. The
hyperfine splitting arises from L5 term [30]

L5 ¼ −igtϕψ�
∂ϕψ ; ð30Þ

where gtϕ ≈ −2a�ðGM1Þ2=r3. The correction to the time-
space component of the metric from the cloud is obtained
assuming a flat background [48]

δgti ¼ 4G
Z

d3x0
Qtiðx0Þ
jx − x0j ; ð31Þ

where Qti ¼ i
2
ðψ�

cl∂iψ cl − ψ cl∂iψ
�
clÞ and ψ cl is the

cloud wave function. The Hamiltonian is corrected by
ΔH ¼ δgtϕði∂ϕÞ ¼ −δgtϕLz, and the energy correction due
to the angular momentum of the cloud is given by

ΔEnlm ¼ −mhnlmjδgtϕjnlmi: ð32Þ

For the j322i cloud, the level splitting between j322i and
j320i due to the cloud angular momentum is given by

ΔEang ¼
209

30240
μqcα4: ð33Þ

FIG. 9. The squared mixing angle multiplied with the decay
width. We show the nonrelativistic result (blue dotted), the
relativistic result (green), and the result with relativistic correction
to the spectrum but with nonrelativistically computed matrix
element (orange dashed). We choose μ ¼ 10−13 eV, q ¼ 0.05,
and Ω ¼ 0.2Ωj322i−j31−1i as a reference frequency. Self-gravity
corrections to the spectrum are also included.
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As it is already expected, this correction is order of
Oðα6Þ, while the self-gravity correction studied in
this work is Oðα4Þ. With the explicit result for the
self-gravity correction for the j322i and j320i states,
ΔEself ¼ −ð6851=967680Þμqcα2, which arises from the
correction δgtt, we find

ΔEang

ΔEself
≃ −α2: ð34Þ

The angular momentum correction remains at most at the
level of ∼30% for the entire range of fine structure constant,
where the hyperfine transition is phenomenologically
relevant.2

D. Off-diagonal self-gravity matrix element

We have neglected the off-diagonal self-gravity matrix
elements h1jVcj2i in the numerical evolution of the system.
In the following, we offer justifications for this simplified
treatment.
Consider the hyperfine splitting between j322i and

j320i. We assume that the initial cloud configuration is
jψi ∝ j322i. Before the secondary object is introduced, the
Hamiltonian of the system is diagonal due to the axisym-
metry of the system, i.e., h322jVcj320i ¼ 0. Only when the
secondary object is introduced the axisymmetry of the
system is explicitly broken and j322i begins to mix
possibly with j320i. Hence, we expect the size of the
off-diagonal element due to the self-gravity to be para-
metrically suppressed by the relative occupation number of
j320i to j322i state. For α < 0.3 − 0.4, resonant mixing is
not possible in the first place due to the crossing of levels,
and therefore we expect that the off-diagonal element
h322jVcj320i is irrelevant for the dynamical evolution
of the system across the hyperfine splitting. For
α > 0.3 − 0.4, resonant mixing is possible, which could
lead to a nonvanishing off-diagonal matrix element.
In Fig. 10, we numerically check the relative size of

h1jV⋆j2i and h1jVcj2i. We obtain the orbital evolution by
solving the system numerically without h1jVcj2i as before
and use the numerical results to compute the relative size of
h1jV⋆j2i and h1jVcj2i. For the hyperfine j322i ↔ j320i
transition, the off-diagonal element of Vc could be greater
than that of V⋆ in the region below the thick black line. This
region does not overlap much with the parameter space
where the mismatch is relevant for detectability

δ ¼ 1 − F > 0.16. For the fine transition, the off-diagonal
self-gravity is always smaller than that of secondary object
for the entire evolution. This results suggests that the off-
diagonal self-gravity does not play a significant role,
especially for the parameter space where the mismatch is
non-negligible. In Fig. 1 we show the small region of
parameter space where jh1jV⋆j2ij < jh1jVcj2ij with a
lighter blue shading.

E. Other effects

In this work, we neglect environmental effects such as
the presence of an accretion disk. An accretion disk can
significantly alter the formation history of the superra-
diance cloud, as the central BH changes its mass at a non-
negligible rate [49]. The main focus of our work is on BHs
with masses in the range 103–105M⊙, as evident from
Fig. 1. These objects, known as intermediate-mass black
holes, are particularly elusive. So far, there have been hints
of their role as ultraluminous x-ray (ULX) sources [50].
However, no consensus on the accretion properties of these
sources has been reached due to the lack of direct imaging
of the disks [50]. Moreover, the measurement of the BH
mass in ULXs depends on assumptions about the structure
of the accretion disk itself, further complicating the search.
Therefore, we leave the investigation of possible accretion
disk effects on our system to future work.
We neglect phenomena such as boson accretion by the

secondary and the dynamical friction experienced by the
secondary as it moves through the superradiance cloud.

FIG. 10. Same as Fig. 6, but we highlight the region where the
off-diagonal self-gravity matrix element is larger than the off-
diagonal matrix element of the perturbation due to the secondary.
Above the black line, we find jh1jVcj2ij < jh1jV⋆j2ij. We see
that, for the region where the mismatch is large, our treatment of
ignoring off-diagonal self-gravity can be justified. Note that
jh1jVcj2ij < jh1jV⋆j2ij during the entire period of the fine
resonance. The gray line shows the values of ðμ; αiÞ where level
crossing between j322i and j320i happens.

2This estimate should be considered as an approximate one.
The correction to the metric δgti, when expressed in the black
hole comoving coordinate, has no monopole and dipole con-
tributions, and hence (31) should be subtracted with 1=x0 þ x ·
x0=x03 in the same manner as in the case of V⋆ and Vc. This
reduces the estimate (34) by two orders of magnitude. At the
same time, δgti contains other terms that arise from the coordinate
transformation between the barycenter frame and the comoving
frame, whose effect is expected to be at the same order.
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The former effect causes small time-dependent variations in
the masses of both the secondary and the cloud, and is
subdominant compared to the latter [51]. The latter effect,
dynamical friction, is related to the ionization of the boson
cloud and has been studied in the literature [51,52].
Ionization is a dissipative effect, in the sense that it
contributes to the depletion of the cloud once the motion
of the secondary object excites bound-free transitions in the
cloud. However, ionization has no impact on the orbital
dynamics for the binary separations relevant to our work.
For the values of α and the resonances we consider, the
relevant orbital separations are always r⋆=rB > 100, i.e.,
much larger than the separations at which ionization is a
sizable effect r⋆=rB < 20 [51,52].

VI. CONCLUSION

We investigated the implications of the self-gravity of a
superradiance cloud for the orbital evolution of the binary
system. We showed that self-gravity changes the energy
spectrum of the cloud in a density-dependent way and that
it introduces a crossing of the j322i and j320i states. We
studied the implications of these findings for resonant
transitions of the cloud, concentrating on a quasicircular,
prograde, and equatorial orbit. Without level crossing, in
most cases the cloud is depleted entirely when the orbit
enters the resonance j322i ↔ j320i. In contrast, with level
crossing, this hyperfine resonance cannot be activated by
a prograde orbit in a significant region of parameter
space. As a result, the orbit can explore the inner part
of the system, potentially triggering the fine reso-
nance j322i ↔ j31 − 1i.
We also investigated the observational implications in the

context of the future space-borne interferometer LISA. We
identified two disjoint regions in the parameter space where
LISAcan directly probe aGWsignal fromabinary in a cloud
of ultralight bosons. These two disjoint regions are due to the
level crossing behavior induced by self-gravity. We found
that LISA could probe ultralight bosons in the unconstrained
mass range 10−15 eV–10−13 eV. Combined with other
proposals to probe dense wave dark matter environment
aroundblack holes, e.g., [53,54], LISA is expected to probe a
wide mass range of ultralight new physics. This is also
complementary to other proposed/existing searches, e.g.,
using black hole spin measurements [27], continuous gravi-
tational wave searches [24], and the motion of S2 stars and
their spectroscopy around Sgr A� [55,56].
While promising, our results are limited in several ways.

Our analysis remains at the nonrelativistic Newtonian level.
Although we have shown in a restricted fashion that the
relativistic corrections would not qualitatively change the
conclusion drawn in the work, a more careful numerical
simulationis required tofullydeterminethedetectabilityof the
cloud in LISA for a relatively largeα. In fact, a recentwork by
May et al. [57] investigated the effects of self-gravity on the
continuous gravitational wave emission from boson clouds

using numerical simulations. It would be interesting to
perform a numerical simulation of a binary system with a
cloud, andcheck if thenumerical resultswouldmatchwith the
nonrelativistic predictions presented in this work.
In addition, the fitting factor computation involves the

simplest vacuum waveform characterized by the chirp mass
and the reference frequency. We do not include any other
environmental effects, e.g., accretion disk, and post-
Newtonian corrections for hðθvÞ, which will enhance the
expressibility of the vacuum waveform, and hence decrease
the mismatch of the two waveforms. It would be interesting
to include the environmental effects such as those discussed
in Refs. [58,59] and at the same time post-Newtonian
corrections to repeat the fitting factor computation. We
leave this for future study.
Finally, we considered only a quasicircular, prograde,

equatorial orbit for simplicity. Recent works by Bošković
et al. [60] and Tomaselli et al. [61,62] investigated the
impact of orbits with nonvanishing eccentricity and incli-
nation. In particular, the authors of Refs. [60,62] found that
the existence of the cloud can leave an interesting signature
in the eccentricity distribution of black hole binaries.
Extending the present analysis to include eccentricity
and inclination as well as possibilities of retrograde orbits
could be another interesting future direction.
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APPENDIX A: EQUATIONS

We justify the set of equations we use to investigate the
binary system with a boson cloud. We first specify the
metric of a rotating black hole deformed by external matter
distribution (Appendix A 1), derive the equations governing
the internal dynamics of the cloud (Appendix A 2), and
obtain the angular momentum balance equation and the
evolution equations for the black hole and cloud mass
(Appendix A 3).

1. Deformed metric

We begin with the metric of an isolated rotating black
hole. The Kerr metric is given by

ds2 ¼ −
�
1 −

rsr̄
ρ̄2

�
dt̄2 −

2arsr̄sin2θ̄
ρ̄2

dt̄dϕ̄þ ρ̄2

Δ̄
dr̄2

þ ρ̄2dθ̄2 þ ðr̄2 þ a2Þ2 − a2Δsin2θ̄
ρ̄2

sin2θ̄dϕ̄2 ðA1Þ

in the Boyer-Lindquist coordinates x̄μ ¼ ðt̄; r̄; θ̄; ϕ̄Þ. Here
rs ¼ 2GM, Δ̄ ¼ r̄2 − rsr̄þ a2, ρ̄2 ¼ r̄2 þ a2 cos2 θ̄, a ¼
J=M and M are the black hole spin and mass, respectively.
Since we are interested in the dynamics after the cloud is
saturated, the dimensionless spin parameter is a� ¼
a=GM ¼ OðαÞ and therefore the metric might be expanded
to the linear order in the spin parameter assuming α < 1.
We find

ds2≈−fdt̄2þf−1dr̄2þ r̄2dΩ̄2−
2ars sin2θ

r̄
dt̄dϕ̄ ðA2Þ

where ρ̄ ¼ r̄, f ¼ 1 − rs=r̄, and dΩ̄2 ¼ dθ̄2 þ sin2 θ̄dϕ̄2.
The above metric is incomplete. It is valid for an isolated

black hole, while we consider a system where the black
hole is surrounded by another compact object and the
boson cloud. The external matter distribution deforms the
metric around the rotating black hole, and the resulting
metric deviates from the isolated one (A2).
Such a tidally deformed metric can be found by

following a few steps. First, we consider a deformed metric
around a fiducial worldline γ, along which a rotating black
hole is located. Its neighborhood is chosen such that it
includes no external matter.3 This region is denoted asN in
Fig. 11. The metric in this neighborhood is then described
by the symmetric and trace-free electric Eij ¼ R0i0j and
magnetic tidal tensors Bij ¼ 1

2
ϵkli R0jkl and their derivatives

evaluated on γ [63,64]. These tidal tensors are unspecified
at this level.

The tidal tensors are determined by a matching pro-
cedure. We perform a post-Newtonian expansion of the
metric in the region P, where gravity is sufficiently weak.
This region includes external matter. We assume that there
exists an overlap region O where the two metrics—the one
expanded in N and the other in P—are both valid. By
matching these two metric inO, one can determine the tidal
tensors and its derivative as a function of the external matter
distribution. In what follows, we sketch the matching
procedure at the Newtonian level. The matching at the
post-Newtonian level for nonrotating and slowly rotating
black hole is carried out in detail in Refs. [65,66]. See also
Ref. [67] for a pedagogical discussion.
The metric in the neighborhood N may be given by

[64,68]

g0̄ 0̄ ≈ −1þ rs
r̄h

−
X∞
l¼2

2

lðl − 1Þ elðrÞELx̄L þ � � � ðA3Þ

gī j̄ ≈ δī j̄ ðA4Þ

where x̄L ¼ x̄i1 x̄i2 � � � x̄il , EL ¼ Ei1i2���il , Ω
i ¼ ðsin θ cosϕ;

sin θ sinϕ; cos θÞi, and limr→∞ elðrÞ ¼ 1. The metric is
expanded at the Newtonian level. Only linear terms of the
tidal tensor are kept. In addition, the metric is expressed in
Cartesian harmonic coordinates,

x̄i ¼ ðr̄ −GMÞΩi ≡ r̄hΩi:

The above metric satisfies the harmonic gauge condition,
∂μð ffiffiffiffiffiffi−gp

gμνÞ ¼ 0. The metric in the harmonic gauge is
identical to (A2) at the Newtonian level. The difference
occurs at the post-Newtonian level.
This form of the metric is an interpolation between the

metric of an isolated black hole (A2) and a tidally deformed
metric around a fiducial worldline γ without a black hole,

FIG. 11. A schematic figure describing the matching process to
find a tidally deformed metric around the black hole. The region
N surrounds a rotating black hole, and it is assumed to be
vacuum. The region P denotes a region where the gravity is weak
such that one can perform a post-Newtonian expansion. The
boundaries of the region N and P are represented by solid blue
and red lines, respectively. We assume that there exists an overlap
regionOwhere the metric expanded inN and inP are both valid.
By matching these two metrics, the tidal tensors are determined as
a function of external matters.

3Note that for the largest values of α considered in this work,
part of the cloud could enter the N region. In this case a metric
reconstruction would be required, including also the cloud on top
of the perturbation given by the secondary.
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where the latter is obtained by Zhang [64]. With the
boundary condition limr→∞ elðrÞ ¼ 1, one recovers
Zhang’s metric in the asymptotic region. The detailed form
of elðrÞ is obtained in Refs. [66,68] for nonrotating and
rotating black holes by solving the vacuum field equation.
For our purpose, the detailed form of elðrÞ is unimportant.
The tidal tensors can be found by matching (A3)–(A4)

with the post-Newtonian expansion in the overlap region.
At the Newtonian level, one finds the metric in the region P
as

g00 ¼ −1þ 2Uðt; xÞ; ðA5Þ

gij ¼ δij: ðA6Þ

The potentials are given by

Uðt; xÞ ¼ GM
jx − zðtÞj þ Uextðt; xÞ; ðA7Þ

where ziðtÞ is the position of the black hole in this
coordinate system and Uextðt; xÞ is the potential due to
the external matter. We model the rotating black hole as an
object with a monopole mass distribution, which is justified
by the end result of the matching procedure [65,66]. The
coordinate system ðt; xiÞ in which this metric is obtained is
the barycenter coordinate system, which differs from the
BH comoving coordinate ðt̄; x̄iÞ. For the harmonic gauge
condition, one also requires ∂tU þ ∂jUj ¼ 0.
For the matching, we perform a coordinate transforma-

tion to convert the barycenter coordinate to the comoving
coordinate, while maintaining harmonic gauge condition
and post-Newtonian ordering. Such coordinate transforma-
tion is known [67,69]

t ¼ t̄þ αðt̄; x̄iÞ þ � � � ðA8Þ

xi ¼ x̄i þ ziðt̄Þ þ � � � ðA9Þ

where ellipsis denote post-Newtonian corrections. Here
[67]

αðt̄; x̄iÞ ¼ Aðt̄Þ þ viðt̄Þx̄i; ðA10Þ

with vi ¼ ṙi ¼ dzi=dt̄. The function Aðt̄Þ is arbitrary at this
point, and will be determined by the matching process.
Under this transformation, the metric is written as

g0̄ 0̄ ¼ −1þ 2Ūðt̄; x̄Þ; ðA11Þ

gī j̄ ¼ δij: ðA12Þ

Each potential is given by

Ūðt̄; x̄Þ ¼ Ûðt̄; x̄Þ − Ȧþ 1

2
v2 − aix̄i

¼ GM
r̄h

þ ðÛext − Ȧþ v2=2Þ

þ ð∂iÛext − aiÞ · x̄i þ
X∞
l¼2

x̄L

l!
∂LÛ

ext ðA13Þ

where Ûðt̂; x̄Þ ¼ Uðt̄; x̄þ zÞ and aiðt̄Þ ¼ v̇iðt̄Þ ¼
dviðt̄Þ=dt̄. The external potential is expanded around the
worldline of the rotating black hole x̄ ¼ 0.
Since the two metrics are given in the same coordinate

system in the same gauge, we can finally match them in the
overlap region. The matching of the 1=r̄h-term in g0̄ 0̄
justifies the treatment of the black hole as a monopole in
the Newtonian expansion of the metric. Furthermore, by
matching terms at each order of x̄L, we find

Ȧðt̄Þ ¼ Ûextðt̄; 0Þ þ v2=2; ðA14Þ

aiðt̄Þ ¼ ∂iÛ
extðt̄; 0Þ; ðA15Þ

ELðt̄Þ ¼ −
1

ðl − 2Þ! ∂LÛ
extðt̄; 0Þ: ðA16Þ

The second line is nothing but the Newtonian equation of
motion for the rotating black hole. This matching deter-
mines the function Aðt̄Þ as well as the tidal tensors EL. The
tidally deformed black hole metric in the comoving
coordinate system can be therefore summarized as

g0̄ 0̄ ≈ −1þ rs
r̄h

þ
X∞
l¼2

2

l!
x̄L∂LÛ

ext; ðA17Þ

gī j̄ ≈ δī j̄: ðA18Þ

In the time-time component of the metric, the term −1þ
rs=r̄h will provide a 1=r-potential for the gravitational
atom, while the rest will provide the Hamiltonian pertur-
bations V⋆ and Vc discussed in the main text. At the post-
Newtonian level, the tidal perturbation in the time-space
component gt̄ ī provides a correction to the energy spectrum
from the angular momentum of the cloud. From the power
counting, we can already expect that such corrections will
be ðv=cÞ2 ∼ α2 suppressed compared to the self-gravity
correction arising from g0̄ 0̄.

2. Cloud equation

We first derive the Schrödinger equation in the comoving
coordinates discussed in the previous section. We sketch
the detailed computations of matrix elements. We then
introduce a Bloch equation to solve the three-level system.
The resulting set of equations is used in the main text to
study the behavior of the system around resonances.
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a. Schrödinger equation

For the Schrödinger equation, we begin with the action
of a minimally coupled scalar (1),

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ −

1

2
μ2ϕ2

�
:

Expanding the scalar field in the nonrelativistic limit
ϕðt̄; x̄Þ ¼ ½e−iμt̄ψðt̄; x̄Þ þ H:c:�= ffiffiffiffiffi

2μ
p

and using the tidally
deformed metric in the harmonic coordinate (A17)–(A18),
we find the nonrelativistic action at the Newtonian level as

S ≈
Z

d4x̄ψ�
�
i∂t̄ þ

∇2

2μ
− V

�
ψ ; ðA19Þ

where V ¼ μð1þ g00Þ=2. We have assumed that
jV̇=Vj ≪ μ. Additionally, we have ignored terms like
ðV=μÞðiψ�

∂tψÞ and ðV=μÞj∇ψ j2=2μ as we remain at the
Newtonian level. The Schrödinger equation can be read
directly from the quadratic action.
The potential can be decomposed into the one due to the

rotating black hole V1 and the ones due to the external
matter distribution Vext,

V ¼ V1 þ Vext:

where V1 arises from −1þ rs=r̄h in (A17), and Vext arises
from the rest. Together with the kinetic term, the potential
V1ðrÞ constitutes the unperturbed Hamiltonian of the
system,

H0 ¼ −
∇2

2μ
−
α

r̄
;

where α ¼ GM1μ is the gravitational fine structure con-
stant. The system is practically identical to that of the
hydrogen atom.
The external potential consists of two terms: one from

the secondary object in the binary and the other from the
cloud of ultralight particles. To find the Hamiltonian
perturbation, we first note that Ûextðt; r̄Þ of each external
matter distribution can be written as

Ûextðt; r̄Þ ¼ GMext

Z
d3r̄0

ρextðt̄; r̄0Þ
jr̄ − r̄0j ; ðA20Þ

where ρextðr̄0Þ is the energy density in the comoving
coordinate, normalized as

R
d3r̄ρextðr̄Þ ¼ 1. For the secon-

dary object, ρextðr̄Þ ¼ δð3Þðr̄ − r̄⋆Þ with r̄⋆ ¼ r1 − r2 being
the separation between the rotating black hole and the
secondary object. For the cloud, ρðr̄Þ ¼ jψðr̄Þj2. From this,
the external potential can be found as

Vextðr̄Þ ¼ −μ
X∞
l¼2

x̄L

l!
∂LÛ

ext
c

¼ −GMextμ

Z
d3r̄0 ρextðr̄0Þ

�
1

jr̄ − r̄0j −
1

r̄0
−
r̄ · r̄0

r̄03

�
:

ðA21Þ

The last two terms in the parentheses cancel the monopole
and dipole terms in the multipole expansion of 1=jr̄ − r̄⋆j in
the limit r̄ ¼ 0. This justifies the equations we use in the
main text for the investigation of the internal dynamics of
the cloud.

b. Matrix element

We use time-dependent perturbation theory to solve
the system. In doing so, we compute the matrix
element of the perturbation. Note first that the spatial
part of the bound-state wave function can be written as
a product of the radial wave function and the spherical
harmonics

ψnlmðr̄Þ ¼ Rnlðr̄ÞYlmðr̂Þ;

where the radial wave function Rnlðr̄Þ is given by

Rnlðr̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

2

nrB

�
3 ðn − l − 1Þ!
2nðnþ lÞ!

s
e−r̄=nrB

×

�
2r̄
nrB

�
l
L2lþ1
n−l−1

�
2r̄
nrB

�
: ðA22Þ

Here rB ¼ 1=μα is the gravitational Bohr radius.
Denoting the eigenstate of the unperturbed Hamiltonian
as jii ¼ jnilimii, the matrix element can be
found as

hijVextðr̄Þjji ¼ −GMextμ

Z
d3r̄ψ�

i ðr̄Þψ jðr̄Þ

×
Z

d3r̄0ρextðr̄0Þ
�

1

jr̄ − r̄0j −
1

r̄0
−
r̄ · r̄0

r̄03

�
:

ðA23Þ

The integral can be decomposed into a radial and angular
integral. The quantity in the squared parentheses can be
expanded in the spherical harmonics basis,

1

jr̄ − r̄0j −
1

r̄0
−
r̄ · r̄0

r̄03

¼
X
lm

4π

2lþ 1

�
rl<
rlþ1
>

−
r̄l

r̄0lþ1
δl≤1

�
Y�
lmðr̂0ÞYlmðr̂Þ;

≡X
lm

4π

2lþ 1
Flðr̄; r̄0ÞY�

lmðr̂0ÞYlmðr̂Þ; ðA24Þ
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where r> ¼ maxðr̄; r̄0Þ and r< ¼ minðr̄; r̄0Þ. It is clear that
the monopole and dipole vanish in the expansion around
r̄ ¼ 0. The matrix element can be written as

hijVextðr̄Þjji¼−
GMextμ

rB

X
lm

4π

2lþ1
IrlmðijÞIΩlmðijÞ: ðA25Þ

We introduce the dimensionless integrals

IrlmðijÞ ¼ rB

Z
∞

0

dr̄ r̄2RiRj

Z
∞

0

dr̄0r̄02Flðr̄; r̄0Þρlmðr̄0Þ;

ðA26Þ

IΩlmðijÞ ¼
Z

dΩY�
limi

ðr̂ÞYlmðr̂ÞYljmj
ðr̂Þ; ðA27Þ

where ρextðr̄Þ ¼
P

lm ρlmðr̄ÞYlmðθ;ϕÞ and Ri ¼ Rniliðr̄Þ.
The angular integral encodes a set of selection rules, e.g.,
m ¼ mi −mj, jli − ljj ≤ l ≤ li þ lj, and li þ lþ lj ¼
2p with p∈Z [30].
We consider a pointlike particle of mass M2. In this

case, the normalized density is ρextðr̄Þ ¼ δð3Þðr̄ − r̄⋆Þ,
and its spherical harmonics coefficient is ρlmðr̄Þ ¼
r̄−2δðr̄ − r̄⋆ÞY�

lmðr̂⋆Þ. The radial integral becomes

Irlm ¼ Y�
lmðr̂⋆ÞrB

Z
∞

0

dr̄ r̄2Riðr̄ÞRjðr̄ÞFlðr̄; r̄⋆Þ; ðA28Þ

For a quasicircular equatorial orbit, the time-dependence
can be fully factorized as an exponential, Y�

lmðr̂⋆Þ ¼
Y�
lmðπ=2; 0Þe−imϕ⋆ðt̄Þ with the orbital phase ϕ⋆ðt̄Þ. In this

case, the matrix element can be written as

hijVextðr̄Þjji ¼ γije−iΔmijϕ⋆ðt̄Þ ðA29Þ

where Δmij ¼ mi −mj and

γij ¼ −
GM2μ

rB

X
l≥jmj

4π

2lþ 1
Y�
lmðπ=2; 0ÞIΩlmðijÞ

×

�
rB

Z
∞

0

dr̄ r̄2RiRjFlðr̄; r̄⋆Þ
�

ðA30Þ

Note that the angular integral IΩlmðijÞ selects m ¼ Δmij ¼
mi −mj via the selection rule. The remaining part of the
radial integral in (A28) is the same as Eqs. (3.7)–(3.9)
of Ref. [30].

c. Two-level system

Let us now consider a two-level system. We begin with
the Schrödinger equation

iψ̇ ¼ ðH0 þ V⋆ þ VcÞψ ;

where V⋆ is the perturbation due to the secondary object in
the binary, and Vc is due to the cloud itself. We consider
two states denoted as fj1i; j2ig, where j1i represents the
dominant cloud state and j2i represents the state that can be
resonantly excited from j1i via the perturber. A general
state will be written as

jψðt̄Þi ¼ c1ðt̄Þj1i þ c2ðt̄Þj2i:
We are interested in the evolution of the time-dependent
coefficients c1;2ðt̄Þ. We assumed a different magnetic
quantum number for each state, i.e., m1 ≠ m2 and a
quasicircular and equatorial orbit.
The Schrödinger equation can be written in a matrix form

iċi ¼ ½H0 þ V⋆ þ Vc�ijcj; ðA31Þ

where the matrix elements are given by

½H0�ij ¼ ðEi þ iΓiÞδij; ðA32Þ

½V⋆�ij ¼ γije−iΔmijϕ⋆ðtÞ: ðA33Þ

Weignore thediagonal termof ½V⋆�ij as it onlyprovides time-
independent correction to the energy level, which is para-
metrically smaller than the self-gravity corrections. In
addition, we ignore the off-diagonal matrix elements of
the self-gravity term (see Sec. V D). The Schrödinger
equation can be explicitly written as

iċ ¼
 
E1 þ ΔE1 þ iΓ1 γ12e−iΔm12ϕ⋆ðtÞ

γ12eþiΔm12ϕ⋆ðtÞ E2 þ ΔE2 þ iΓ2

!
c ðA34Þ

d. Three-level system

The equation of a two-level system can be generalized to
a three-level system. Consider now fj1i; j2i; j3ig with
an additional spectator state j3i with a large decay width.
We are primarily interested in j3i ¼ j300i. A generic
cloud state can then be written as jψi ¼ c1ðt̄Þj1i þ
c2ðt̄Þj2i þ c3ðt̄Þj3i. The matrix elements of unperturbed
Hamiltonian ½H0�ij and the perturbation due to the secon-
dary object ½V⋆�ij are given by the same form as already
given in (A32)–(A33). The resulting Hamiltonian takes the
same form as (A34).
This form of Hamiltonian is not particularly convenient

for numerical purposes. For the numerical computation, we
first eliminate the phases of ½V⋆�ij by performing a phase
rotation, ci → cieiθi , with

θi ¼ −miϕ⋆ðt̄Þ þ gðt̄Þ; ðA35Þ

where gðt̄Þ is an arbitrary function. By choosing 2ġ ¼
ðm1 þm2Þϕ̇� − ðE1 þ E2Þ, we find the Schrödinger
equation as
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iċ¼

0
BB@

Δ12

2
þ iΓ1 γ12 γ13

γ12 −Δ12

2
þ iΓ2 γ23

γ13 γ23 −Δ13þΔ23

2
þ iΓ3

1
CCAc: ðA36Þ

All phases are absorbed into the diagonal elements. Here
we introduced Δij ¼ ðEi þ ΔEiÞ − ðEj þ ΔEjÞ − ΔmijΩ
with the orbital frequency Ωðt̄Þ ¼ ϕ̇⋆ðt̄Þ. At the resonance
of fjii; jjig, Δij → 0.
Instead of solving for the complex vector c, we solve for

elements of the density matrix, i.e.,

ρij ¼ cic�j :

In particular, we define

u ¼ 2ðReρ23;Reρ31;Reρ12ÞT;
v ¼ 2ðIm ρ32; Im ρ13; Im ρ21ÞT;
w ¼

ffiffiffi
2

p
ðρ11; ρ22; ρ33ÞT: ðA37Þ

We find that the Schrödinger equation becomes

0
B@

u̇

v̇

ẇ

1
CA ¼ B

0
B@

u

v

w

1
CA; ðA38Þ

where the 9 × 9 antisymmetric matrix B is given by

B ¼

0
BBBBBBBBBBBBBBBBBB@

Γ23 0 0 −Δ23 γ12 −γ13 0 0 0

0 Γ13 0 −γ12 −Δ31 γ23 0 0 0

0 0 Γ12 γ13 −γ23 −Δ12 0 0 0

Δ23 γ12 −γ13 Γ23 0 0 0 −
ffiffiffi
2

p
γ23

ffiffiffi
2

p
γ23

−γ12 Δ31 γ23 0 Γ13 0
ffiffiffi
2

p
γ13 0 −

ffiffiffi
2

p
γ13

γ13 −γ23 Δ12 0 0 Γ12 −
ffiffiffi
2

p
γ12

ffiffiffi
2

p
γ12 0

0 0 0 0 −
ffiffiffi
2

p
γ13

ffiffiffi
2

p
γ12 2Γ1 0 0

0 0 0
ffiffiffi
2

p
γ23 0 −

ffiffiffi
2

p
γ12 0 2Γ2 0

0 0 0 −
ffiffiffi
2

p
γ23

ffiffiffi
2

p
γ13 0 0 0 2Γ3

1
CCCCCCCCCCCCCCCCCCA

; ðA39Þ

where Γij ¼ Γi þ Γj. This resembles an optical Bloch
equation. This equation is simultaneously solved with
the equations for the spin and mass of the black hole
and the orbital frequency, which will be discussed in the
next section.

3. Balance equation

We introduce a set of equations to investigate the
interaction between the cloud and the binary system. In
Appendix A 3 a, we review the angular momentum balance
equation, which is used in the main text to study the
backreaction of the cloud onto the binary system and the
evolution of the gravitational wave frequency. In
Appendix A 3 b, we review the evolution equations for
the black hole and the cloud mass.

a. Angular momentum

The angular momentum balance equation is given by

dJ
dt

¼ −T ; ðA40Þ

where J is the total angular momentum of the system and
T is the gravitational torque. We work in the barycenter

coordinate system ðt; xÞ and assume a quasicircular equa-
torial orbit. The spin of the black hole is aligned along the
þẑ direction. Furthermore, we assume that the center-of-
mass of the cloud coincides with the rotating black hole.4

Along the ẑ-direction, the torque is given by [67]

T z ¼ signðLoÞ
32

5

μ2r
M

�
GM
r�

�
7=2

; ðA41Þ

where M ¼ M1 þM2 þMc is the total mass and μr ¼
ðM1 þMcÞM2=M is the reduced mass between the sec-
ondary object and the black hole-cloud system. The total
angular momentum is given by

Jz ¼ Lo þ Jc þ JBH; ðA42Þ

4When the cloud is composed of a coherent superposition of
two states with different parity, the center-of-mass of the cloud in
the comoving frame might oscillate around the black hole.
Although this could happen in the case of a fine transition
fj322i; j31 − 1ig, we do not expect a large deviation of the
center-of-mass of the cloud from the center of the comoving
frame, as the relative occupation number of the j31 − 1i state
remains very small due to its decay.
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where JBH ¼ a�GM2
1 is the spin of the black hole, Jc ¼

ðMc=μÞ
P

i mijcij2 is the total angular momentum of the
cloud, and Lo ¼ �μr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GMr⋆

p
is the orbital angular

momentum. The sign of the orbital angular momentum
is determined by the orientation of the orbit; it takes the þ
(−) sign for a prograde (retrograde) orbit.
The angular momentum balance equation can be written

as an equation for the orbital frequency. As we assume a
quasicircular orbit, the orbital frequency is given by

Ω ¼
ffiffiffiffiffiffiffiffi
GM
r3⋆

s
: ðA43Þ

We find that the balance equation can be written as

Ω̇ ¼ 96

5

μr
M

ðGMÞ5=3Ω11=3

� 3Ω4=3

ðGMÞ2=3
Mc

μr

Xmi

μ

�
djcij2
dt

− 2Γijcij2
�
: ðA44Þ

In deriving the above equation, we use the following
angular momentum evolution equation [49,70]

J̇BH ≈ −2Mc

X
i

mi

μ
Γijcij2; ðA45Þ

which is obtained by computing the angular momentum
flux across the black hole horizon. The above equation is
only approximate. For multiple cloud modes, there exist
interference terms in the above expression. Such terms
oscillate much faster than the typical timescale at which
the black hole spin changes, and hence they can be
neglected [70].
We solve (A38) and (A44) altogether. However, they are

given in different coordinate systems; the Bloch equation is
given in the comoving coordinate ðt̄; x̄Þ, while the fre-
quency evolution equation is given in the barycenter
coordinate system ðt; xÞ. The transformation between the
barycenter time and the comoving time is given in (A8).
The difference of these two time coordinates will give rise
to additional terms multiplied by αðt̄; x̄iÞ=c2 in (A44). As
we remain at the Newtonian level, we will ignore such
terms and simply take t ¼ t̄ for the numerical computation.

b. Mass

For the discussion in the main text, we use the numeri-
cally obtained cloud mass fraction qc ¼ Mc=M1. We detail
how this is obtained in a similar way to the discussion
in [27].
We solve a set of equations governing the evolution of

the black hole mass, the cloud mass, and the spin of the
black hole. In particular, we solve

dM1

dt
¼ −

X
i

2ΓiMc
i ; ðA46Þ

dMc
i

dt
¼ 2½Γi − ðΓGW

i =μÞMc
i �Mc

i ; ðA47Þ

da�
dt

¼ −
X
i

�
mi

α
− 2a�

�
2Γi

Mc
i

M1

; ðA48Þ

where Mi
c is the mass of ith superradiance state, e.g.,

i ¼ j211i; j322i; � � �, and ΓGW
i is the annihilation rate of the

ith cloud state into gravitational waves. The annihilation
rates are given as [34]

ΓGW
211 =μ ¼ 10−2α13ðμ=M1Þ; ðA49Þ

ΓGW
322 =μ ¼ ð3 × 10−8Þα17ðμ=M1Þ: ðA50Þ

In Fig. 2, we show numerical results on the cloud mass
fraction at tsys ¼ 100 Myr in the parameter space ðα; μÞ.
For presentation, we choose to show only when qc > 10−5.
The maximum cloud mass fraction can be analytically

estimated. The superradiance instability extracts the angu-
lar momentum of the black hole by exponentially produc-
ing ultralight particles in a sequential manner. For example,
the extraction first takes place through the production of
j211i for a relatively small fine structure constant. The
j211i cloud saturates when

Γ ∝ ðmΩþ − μÞ ≈ 0: ðA51Þ

Here Ωþ ¼ a�=2rþ and r� ¼ GM1ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ. Even

after the j211i cloud saturates, further extraction can occur
via the production of j322i and states with higher angular
momentum.
Consider now a scenario where the kth dominant super-

radiant state saturates. The black hole mass at this moment

is denoted as MðkÞ
1 and the kth superradiant cloud mass is

FIG. 12. The time evolution of the cloud mass for the bench-
mark point ðαi; μÞ ¼ ð0.25; 10−14 eVÞ shown as a star in Fig. 2.
The initial spin is set to ai� ¼ 0.9. The blue line shows when the
cloud is in the j211i state, while the red line shows when it is in
the j322i state. The vertical line corresponds to the reference time
100 Myr at which the cloud is fully saturated.
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denoted as MðkÞ
c . Note that MðkÞ

1 ¼ Mðk−1Þ
1 −MðkÞ

c . The
dimensionless spin parameter at the saturation can be
obtained by solving (A51). We find

aðkÞ� ¼ 4αðkÞ=mk

1þ 4ðαðkÞ=mkÞ2
ðA52Þ

where αðkÞ is the fine structure constant at the point of the
saturation of the kth dominant cloud, and mk is the
magnetic quantum number of such cloud state.
Using the definition of the dimensionless spin parameter

a� ¼ J=GM2
1, we can write aðkÞ� as

aðkÞ� ¼ JðkÞ

G½MðkÞ
1 �2

¼ Jðk−1Þ þ ΔJ

GðMðk−1Þ
1 −MðkÞ

c Þ2

¼ aðk−1Þ�

�
1þMðkÞ

c

MðkÞ
1

�
2

−
mk

αðk−1Þ
MðkÞ

c

MðkÞ
1

�
1þMðkÞ

c

MðkÞ
1

�

ðA53Þ

where we use ΔJ ¼ −mkðMðkÞ
c =μÞ. Substituting (A52) into

the above equation, using αðkÞ ¼ αðk−1Þ=ð1þMðkÞ
c =MðkÞ

1 Þ,
and solving for qðkÞc ¼ MðkÞ

c =MðkÞ
1 , we find

qðkÞc ¼ −1þ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ðαðk−1Þmk

Þ2ð1 − aðk−1Þ� αðk−1Þ
mk

Þ2
q
2ð1 − aðk−1Þ� αðk−1Þ=mkÞ

ðA54Þ

This can be solved iteratively. When solving (A54) iter-
atively, one must carefully choose the dimensionless spin
parameter and the fine structure constant at each iteration.
When kth superradiant state begins to be produced, it renders
the (k − 1)th state unstable. The (k − 1)th state could
subsequently decay back to the black hole, spinning up
the black hole and increasing the black hole mass. For the
cases considered in this work, the (k − 1)th state annihilates
into gravitational waves before it can decay to the black hole,
and hence, the dimensionless spin parameter and fine
structure constant at each iteration are approximately given
by the saturated value (A52). For the maximum mass
fraction of the j211i state, the above estimation is identical
to the estimation given as (F11) in Ref. [34].

APPENDIX B: MIXING-INDUCED DECAY

The mixing between a superradiance state and a rapidly
decaying state can significantly change the dynamics of the
binary system. To demonstrate this, we consider a two-level
system without self-gravity. We consider fj1i; j3ig where
the spectator state j3i is assumed to have a large decay
width, e.g., j3i ¼ j300i.
The Schrödinger equation is

iċi ¼ ½H0 þ V⋆�ijcj:

For the discussion, we ignore the self-gravity correction to
the energy level and also the instability or decay width of
the states j1i. The unperturbed Hamiltonian is then
approximated as H0 ¼ diagðE1; E3 þ iΓÞ. The matrix
element for the perturbation is given by ½V⋆�ij ¼
γije−iΔmijϕ⋆ . By performing a diagonal phase rotation,
ci → e−iEitci, the Schrödinger equation can be written as

iċ ¼
�

0 γeiΔ

γe−iΔ iΓ

�
c: ðB1Þ

where Δ ¼ ðE1 − E3Þt − Δm13ϕ⋆ðtÞ and γ ¼ γ13. The
initial condition of the system is c1ð−∞Þ ¼ 1
and c3ð−∞Þ ¼ 0.
Solving the Schrödinger equation for c3 up to OðγÞ, we

find

c3ðtÞ ≈ −i
Z

t
dt0 γe−iΔðt0ÞeΓðt−t0Þ: ðB2Þ

Using the above result, we find the solution for c1 up to
Oðγ2Þ is

ċ1ðtÞ ≈ −γ2
Z

t
dt0 ei½ΔðtÞ−Δðt0Þ�eΓðt−t0Þ: ðB3Þ

Most of the contribution arises from t0 ≈ t as the phase
oscillates rapidly. Expanding Δðt0Þ ¼ ΔðtÞ þ Δ̇ðt0 − tÞ and
ignoring the slow time-dependence of γðtÞ, we find that the
real part of ċ1=c1 is

Re
ċ1
c1

≈
γ2Γ

½ðE1 − E3Þ − Δm13Ω�2 þ Γ2
: ðB4Þ

This reproduces (28). While this term arises only in the
second order perturbation theory, it can significantly
modify the orbital dynamics due to the large decay width
Γ of the spectator state.

APPENDIX C: CALCULATION OF THE
FITTING FACTOR

We consider a scenario in which the gravitational wave is
emitted from a binary system embedded in the cloud. We
use the fitting factor to estimate the detectability of the
cloud in LISA via gravitational waves observations. The
fitting factor is defined as

F ¼ maxθv
ðhðθtrueÞjhðθvÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhðθtrueÞjhðθtrueÞÞðhðθvÞjhðθvÞÞ

p ;

with the inner product given in Eq. (20). Here hðθÞ
represents the waveform of GWs emitted from the system
with the cloud. The inner product is maximized only over a
subset of parameters θv ¼ ff−;Mcg as discussed in the
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main text. The waveform hðθvÞ represents the GWs that
would have been emitted from the system without the cloud
of ultralight particles. The fitting factor hence measures the
degree of mismatch between two waveforms that represent
GWs emitted from the system with and without the cloud.
The extrinsic parameters are already maximized in the
above expression. The fitting factor takes a valueF ∈ ½0; 1�;
F ¼ 1 would indicate that two waveforms are indistin-
guishable. We detail below the computation of the fitting
factor.
We assume that the detector operates in the time interval

t∈ ½t−; tþ� with t� ¼ t0 � Tobs=2, where t0 is an arbitrary
reference time, and Tobs is the total observational time span.
The waveform is given by [71]

hðfÞ ¼ A
ðπfÞ2=3
ḟ1=2

eiΨðfÞΘðfþ − fÞΘðf − f−Þ: ðC1Þ

Here A is the frequency independent amplitude of the
strain, Ψ is the phase, and f� is the frequency of
gravitational wave at the beginning and end of the
observational campaign t�. The step functions ensure that
the strain vanishes when the GW frequency is not in the
band ½f−; fþ�. The phase can be written as [71]

ΨðfÞ ¼ 2πfðt� þ rÞ −Φðt�Þ − ϑ; ðC2Þ

where ϑ is a constant phase factor, r is the distance to the
source, and Φðt�Þ is the phase of gravitational wave at the
retarded time t� defined through 2πf ¼ Φ̇ðt�Þ. The time t�
can be interpreted as the time at the source frame when the
gravitational wave of frequency f is emitted. For the
following discussion, we rewrite the phase as

ΨðfÞ ¼ 2πft− þN ðfÞ − ϑ̃ ðC3Þ

where ϑ̃ is a constant phase, and N is defined as

N ðfÞ ¼ 2π

Z
f

f−

df0
ðf − f0Þ

ḟ0
: ðC4Þ

The main difference between two waveforms arises from
the difference in their phase evolution ḟ inside the integral
in N in Eq (C4).
When computing the fitting factor, we assume gravita-

tional waves emitted from the cloud-binary system as a true
signal. We also assume fðt0Þ ≃ ðΩ0=πÞ; the gravitational
waves emitted at the resonance enter the detector at the
middle of the observational campaign. The entry and exit
frequencies f� can be computed at each point in the
parameter space ðα; μ; qcÞ. We then repeat the computation
for different choices of GW frequencies that enter the
detector in the middle of the observational campaign
fðt0Þ ≃ cðΩ0=fÞ with c ≠ 1.

The inner product of the waveforms is

ðhðθvÞjhðθvÞÞ ¼ 4A2
v

Z
fvþ

fv−

df
ðπfÞ4=3
SnðfÞ

1

ḟv
; ðC5Þ

ðhðθtrueÞjhðθtrueÞÞ ¼ 4A2
true

Z
fcþ

fc−

df
ðπfÞ4=3
SnðfÞ

1

ḟc
; ðC6Þ

where ḟc and ḟv are the frequency evolution with and
without the cloud, and SnðfÞ is the noise power spectral
density in the strain unit. The inner product between the
two templates is

ðhðθtrueÞjhðθvÞÞ ¼ 4AtrueAvRe
Z

fþ

f−

df
ðπfÞ4=3
SnðfÞ

eiΔΨ

ðḟvḟcÞ1=2
ðC7Þ

where f− ¼ maxðfv−; fc−Þ, fþ ¼ minðfvþ; fcþÞ, and
ΔΨ ¼ ΨðθvÞ − ΨðθtrueÞ. The vacuum waveform is gov-
erned by two parameters θv ¼ ffv−;Mcg, while the other
parameters are taken as qc → 0, α → ∞, and μ → ∞. The
exit frequency fvþ is determined by the other two param-
eters, fvþ ¼ fvþðfv−;McÞ.
Combining these inner products, we find the fitting

factor as

F ¼ max
θv

��� R fþf−
df ðπfÞ4=3

SnðfÞ
eiΔN

ðḟvḟcÞ1=2
���hR fvþ

fv−
df ðπfÞ4=3

SnðfÞ
1
ḟv

i1
2

hR fcþ
fc−

df ðπfÞ4=3
SnðfÞ

1
ḟc

i1
2

: ðC8Þ

where N ¼ N ðθvÞ −N ðθtrueÞ. The absolute value of the
numerator appears after one maximizes the extrinsic
parameter Δϑ̃.
The integral in the numerator of (C8) is computed via a

fast Fourier transform. The number of frequency bins Nf is
decided based on the minimum value of the phase difference
found before a scan of the parameter space. For a meaningful
evaluation of the oscillating integrand, we require Nf > 2j
min½ΔN ðfc−;Mtrue

c Þ;ΔN ðfc−;M0
cÞ�j, with M0

c defined
such that ḟcðfðt0ÞÞ ¼ ḟvðfðt0ÞÞjMc¼M0

c
. The maximization

over θv is achieved via the Nelder-Mead algorithm in the
scipy.optimize library. The algorithm takes an initial
guess of θv as input. To search for the global maximum
efficiently, we run the algorithm from 103 different initial
points. The initial point for fv− is fixed to fc−, while the initial
point for Mc is sampled from the normal distribution
centered around either Mtrue

c or M0
c, depending on which

one provides the lowest ΔN . The standard deviation of the
normal distribution is varied a few times to ensure a good
coverage of the parameter space of θv.
We present some examples of the fitting factor calcu-

lation in Fig. 13. We show the behavior of frequency
evolution, phase difference, and other related quantities for
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FIG. 13. Examples of calculation of the fitting factor. Upper plots show hyperfine transitions aligned with the resonance frequency
c ¼ fðt0Þ=ðΩ0=πÞ ¼ 1.0, while lower plots show fine transitions with c ¼ 1.36. The other parameters are shown in the plot titles. Note
that f0 ¼ Ω0=π and t̄ ¼ ½Ω0ðdΩ=dtÞ−1jΩ¼Ω0

� are computed with true parameters θtrue at the beginning of numerical evaluation. For each
plot, each panel shows, from top to bottom, (i) the frequency evolution ḟ × t̄=fðt0Þ, (ii) the difference in the frequency evolution between
different hypotheses, (iii) the phase difference jΔΨj, and (iv) the real part of the integrand of the numerator the fitting factor in Eq. (C8).
The blue line presents the result obtained by fitting the vacuum waveform to the true signal, while the orange is the result without any
fitting procedure. From the bottom panel of each plot, the mismatch δ can be estimated by counting the fraction of the frequency range
where the integrand is rapidly oscillating.
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the vacuum waveform with the best-fit parameter θbest
obtained from the procedure described above and with θtrue
without any fitting procedure. The upper plots show
examples for the hyperfine transition with α ¼ 0.5, while
the lower plots show the examples of fine transitions with
α ¼ 0.3. Other parameters chosen for this numerical
analysis are shown in the plot title.

Both examples of the hyperfine transition exhibit a clear
sign of resonance behavior. While the frequency evolution
before and after the resonance is similar to the vacuum
evolution, the resonance introduces a sudden dephasing of
gravitational waves before or after the resonance. Even if
the parameters θv are chosen so that it fits the true signal
after (before) the resonance, such a vacuum waveform still

FIG. 14. The contours of mismatch satisfying the detectability criterion (21) at 2σ confidence. The fitting factor is computed with
different choices of the misalignment frequency factor c, defined via fðt0Þ ¼ cðΩ0=πÞ. We label these choices as 100ðc − 1Þ%. The
thick dashed black contours show the union of all the other contours. Top: the results for the hyperfine resonance. The value of c that
contributes to most of the sensitivity is c ≃ 1. For chosen values of q, LISA might be able to test the mass of ultralight particles down to
μ ≃ 10−15 eV with the best coverage obtained for large values of q ¼ 0.05, and 0.08. Bottom: the results for the fine resonance. The most
relevant value is c ≃ 1.36 but the precise value depends on q, μ, and αi. In this case LISA could probe the mass of ultralight particles
down to μ ≃ 10−14 eV, with best coverage of the parameter space for values of q smaller than in the hyperfine case, i.e., q ¼ 0.01 and
0.02, due a larger surviving cloud mass for lower mass ratios.
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leads to a large dephasing due to the mismatch of the
waveform before (after) the resonance, resulting in a
mismatch as large as δ ≃ 0.5.
The two examples of the fine transition show two

qualitatively different behaviors. The example on the left
shows a frequency evolution that can be fit well by a
vacuum waveform. This is because the gravitational waves
that enter the detector are emitted away from the resonance
for this particular choice of parameters. The mismatch
almost vanishes in this case. The example on the right
shows a scenario in which the observed gravitational waves
are emitted near the fine resonance. The vacuum waveform
is insufficient to fit the frequency evolution, resulting in a
large mismatch.
As already discussed in the main text, the mismatch

depends on whether the observed gravitational waves
are emitted near the resonance. In our analysis, this is
parametrized by the free parameter c defined by
fðt0Þ ¼ cðΩ0=πÞ. To assess the sensitivity of our results
to the precise value of c and also q, we compute the
mismatch for different values of ðc; qÞ in Fig. 14. The
contours show the region of the parameter space in which
the mismatch satisfies the detectability criterion (21) at 2σ.
Each colored contour assumes a distinct value of c. The
percentage denotes the deviation of c from c ¼ 1. The
hyperfine transition is sensitive to c; a small deviation away
from the resonance results in a large reduction in the
mismatch. The fine transitions are less sensitive to c. This
might be attributed to the stronger influence of the j300i
state during evolution.

APPENDIX D: RELATIVISTIC
CORRECTIONS

In the nonrelativistic limit, the wave function of the
gravitational atom is well approximated by a hydrogenic
wave function. However, at large α, the wave function
receives relativistic corrections. These effects could have an
impact on the self-gravity corrections and in general matrix
elements that couple different states. We investigate the
difference between the hydrogenic wave functions and the
ones obtained by solving the equation of motion for the
scalar field in Boyer-Lindquist coordinates on the Kerr
background. Our discussion closely follows Dolan [47].
The Klein-Gordon equation is

ð□ − μ2Þϕ ¼ 0: ðD1Þ

One can decompose the field ϕ as

ϕ ¼ 1ffiffiffiffiffi
2μ

p e−iωteimϕSlmðθÞRlmðrÞ þ H:c:: ðD2Þ

The equation of motion in spherical coordinates gets
decomposed as

0 ¼ d
dr

�
Δ
dRlm

dr

�
þ
�
ω2ðr2 þ a2Þ2 − 4mGMωarþm2a2

Δ

− ðω2a2 þ μ2r2 þ ΛlmÞ
�
Rlm ðD3Þ

0 ¼ 1

sin θ
d
dθ

�
sin θ

dSlm
dθ

�
þ
�
κ2cos2θ −

m2

sin2θ
þ Λlm

�
Slm

ðD4Þ

where κ2 ¼ a2ðω2 − μ2Þ is the degree of spheroidicity. The
energy and angular eigenvalues ðω;ΛlmÞ are unknown.
In the limit a → 0, the spheroidal harmonics reduce
to spherical harmonics Ylm and Λlm → lðlþ 1Þ to the
angular momentum eigenvalues in the hydrogen
atom. For values up to κ ∼ l, the expansion
Λlm ¼ lðlþ 1Þ þP6

j¼1 fjκ
2j, with appropriate coeffi-

cients fj tabulated by Seidel [72], is a good approximation.
With the expected behavior of radial and angular

functions at the boundary, we may look for a solution of
the following form:

RlmðrÞ ∝
ðr − rþÞ−iσ

ðr − r−Þ−iσ−χþ1
eQr
X∞
n¼0

aðrÞn

�
r − rþ
r − r−

�
n
; ðD5Þ

SlmðθÞ ¼ ð1 − uÞjmj=2ð1þ uÞjmj=2eκu
X∞
n¼0

aðθÞn ð1þ uÞn:

ðD6Þ

We define σ ¼ 2rgðω − ΩþÞrþ=ðrþ − r−Þ,Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
and χ ¼ rgðμ2 − 2ω2Þ=Q. Recall that Ωþ ¼ a�m=ð2rþÞ is
the angular velocity of the outer horizon

rþ ¼ rgð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ. The series coefficients an ≡

aðrÞ;ðθÞn satisfy

αnanþ1 þ βnan þ γnan−1 ¼ 0; ðD7Þ

α0a1 þ β0a0 ¼ 0 ðD8Þ

with expressions for fαn; βn; γng for both cases given in
[47,73]. One can rewrite these relations as a continued
fraction

β0 −
α0γ1

β1 −
α1γ2
β2−…

¼ 0: ðD9Þ

The above continued fraction, truncated at nmax∼
Oð102–103Þ, is solved simultaneously for the radial and
angular coefficients. The eigenvalues ðω;ΛlmÞ are
obtained, from which we get the relativistic spectrum of
the cloud.
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From the radial and angular coefficients, we
construct the radial function RlmðrÞ as well as angular
function SlmðθÞ. The wave function can be written
as ψnlmðxÞ ¼ eimϕRlmðrÞSlmðθÞ with normalization
1 ¼ R d3xjψnlmðxÞj2. These relativistic wave functions
are then used to compute the matrix elements.
We show the relativistic wave functions for the

fj322i; j320i; j300i; j31 − 1ig states in Fig. 15. For

small values of α, the wave functions match the
hydrogenic one. For larger α, the wave functions
become narrower, with the peak shifting closer to the
black hole. The relativistic corrections of the wave
functions associated with the hyperfine transitions are
mild and so are the corrections to the matrix elements.
This is confirmed by the explicit calculation shown
in Fig. 16.

FIG. 15. Relativistic wave functions evaluated on the equatorial plane at different radii for the fj322i; j320i; j300i; j31 − 1ig states.
The colors indicate different values of α. The thick dashed line shows the nonrelativistic wave functions.

FIG. 16. Comparison of matrix elements of interest computed at different resonance frequencies in the hydrogenic approximation
(thick dashed) and with relativistic wave functions (solid lines).

SELF-GRAVITY IN SUPERRADIANCE CLOUDS: … PHYS. REV. D 112, 104014 (2025)

104014-25



[1] R. D. Peccei and H. R. Quinn, CP conservation in the
presence of instantons, Phys. Rev. Lett. 38, 1440 (1977).

[2] R. D. Peccei and H. R. Quinn, Constraints imposed by CP
conservation in the presence of instantons, Phys. Rev. D 16,
1791 (1977).

[3] S. Weinberg, A new light boson?, Phys. Rev. Lett. 40, 223
(1978).

[4] F. Wilczek, Problem of strong P and T invariance in the
presence of instantons, Phys. Rev. Lett. 40, 279 (1978).

[5] J. E. Kim, Weak interaction singlet and strong CP invari-
ance, Phys. Rev. Lett. 43, 103 (1979).

[6] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Can
confinement ensure natural CP invariance of strong inter-
actions?, Nucl. Phys. B166, 493 (1980).

[7] A. R. Zhitnitsky, On Possible Suppression of the Axion
Hadron Interactions. (In Russian), Sov. J. Nucl. Phys. 31,
260 (1980).

[8] M. Dine, W. Fischler, and M. Srednicki, A simple solution
to the strong CP problem with a harmless axion, Phys. Lett.
B 104, 199 (1981).

[9] P. W. Graham, D. E. Kaplan, and S. Rajendran, Cosmologi-
cal relaxation of the electroweak scale, Phys. Rev. Lett. 115,
221801 (2015).

[10] A. Arvanitaki, S. Dimopoulos, V. Gorbenko, J. Huang, and
K. Van Tilburg, A small weak scale from a small cosmo-
logical constant, J. High Energy Phys. 05 (2017) 071.

[11] M. Geller, Y. Hochberg, and E. Kuflik, Inflating to the weak
scale, Phys. Rev. Lett. 122, 191802 (2019).

[12] N. Arkani-Hamed, R. T. D’Agnolo, and H. D. Kim, Weak
scale as a trigger, Phys. Rev. D 104, 095014 (2021).

[13] R. Tito D’Agnolo and D. Teresi, Sliding naturalness: New
solution to the strong-CP and electroweak-hierarchy prob-
lems, Phys. Rev. Lett. 128, 021803 (2022).

[14] R. Tito D’Agnolo and D. Teresi, Sliding naturalness:
Cosmological selection of the weak scale, J. High Energy
Phys. 02 (2022) 023.

[15] S. Chattopadhyay, D. S. Chattopadhyay, and R. S. Gupta,
Cosmological selection of a small weak scale from large
vacuum energy: A minimal approach, Phys. Rev. Lett. 134,
241803 (2025).

[16] A. Banerjee, H. Kim, and G. Perez, Coherent relaxion dark
matter, Phys. Rev. D 100, 115026 (2019).

[17] A. Banerjee, H. Kim, O. Matsedonskyi, G. Perez, and M. S.
Safronova, Probing the relaxed relaxion at the luminosity
and precision frontiers, J. High Energy Phys. 07 (2020) 153.

[18] A. Chatrchyan and G. Servant, Relaxion dark matter from
stochastic misalignment, J. Cosmol. Astropart. Phys. 06
(2023) 036.

[19] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,
and J. March-Russell, String axiverse, Phys. Rev. D 81,
123530 (2010).

[20] A. Arvanitaki and S. Dubovsky, Exploring the string
axiverse with precision black hole physics, Phys. Rev. D
83, 044026 (2011).

[21] A. Arvanitaki, M. Baryakhtar, and X. Huang, Discovering
the QCD axion with black holes and gravitational waves,
Phys. Rev. D 91, 084011 (2015).

[22] A. Arvanitaki, M. Baryakhtar, S. Dimopoulos, S. Dubovsky,
and R. Lasenby, Black hole mergers and the QCD axion at
Advanced LIGO, Phys. Rev. D 95, 043001 (2017).

[23] M. J. Stott and D. J. E. Marsh, Black hole spin constraints on
the mass spectrum and number of axionlike fields, Phys.
Rev. D 98, 083006 (2018).

[24] R. Abbott et al. (KAGRA, LIGO Scientific, and Virgo
Collaborations), Search for continuous gravitational wave
emission from the Milky Way center in O3 LIGO-Virgo
data, Phys. Rev. D 106, 042003 (2022).

[25] S. Hoof, D. J. E. Marsh, J. Sisk-Reynés, J. H. Matthews, and
C. Reynolds, Getting more out of black hole superradiance:
A statistically rigorous approach to ultralight boson con-
straints, arXiv:2406.10337.

[26] S. J. Witte and A. Mummery, Stepping up superradiance
constraints on axions, Phys. Rev. D 111, 083044 (2025).

[27] M. Khalaf, E. Kuflik, A. Lenoci, and N. C. Stone, Boson
cloud atlas: Direct observation of superradiance clouds,
arXiv:2408.16051.

[28] P. S. Aswathi, W. E. East, N. Siemonsen, L. Sun, and D.
Jones, Ultralight boson constraints from gravitational wave
observations of spinning binary black holes,
arXiv:2507.20979.

[29] A. Caputo, G. Franciolini, and S. J. Witte, Superradiance
constraints from GW231123, arXiv:2507.21788.

[30] D. Baumann, H. S. Chia, and R. A. Porto, Probing ultralight
bosons with binary black holes, Phys. Rev. D 99, 044001
(2019).

[31] D. Baumann, H. S. Chia, R. A. Porto, and J. Stout, Gravi-
tational collider physics, Phys. Rev. D 101, 083019 (2020).

[32] D. Baumann, H. S. Chia, J. Stout, and L. ter Haar, The
spectra of gravitational atoms, J. Cosmol. Astropart. Phys.
12 (2019) 006.

[33] S. L. Detweiler, Klein-Gordon equation and rotating black
holes, Phys. Rev. D 22, 2323 (1980).

[34] M. Baryakhtar, M. Galanis, R. Lasenby, and O. Simon,
Black hole superradiance of self-interacting scalar fields,
Phys. Rev. D 103, 095019 (2021).

[35] S. Babak, A. Petiteau, and M. Hewitson, LISA sensitivity
and SNR calculations, arXiv:2108.01167.

[36] N. Cornish and T. Robson, Galactic binary science with the
new LISA design, J. Phys. Conf. Ser. 840, 012024 (2017).

[37] E. E. Flanagan and S. A. Hughes, Measuring gravitational
waves from binary black hole coalescences: 2. The waves’
information and its extraction, with and without templates,
Phys. Rev. D 57, 4566 (1998).

[38] L. Lindblom, B. J. Owen, and D. A. Brown, Model wave-
form accuracy standards for gravitational wave data analy-
sis, Phys. Rev. D 78, 124020 (2008).

[39] S. T. McWilliams, B. J. Kelly, and J. G. Baker, Observing
mergers of non-spinning black-hole binaries, Phys. Rev. D
82, 024014 (2010).

[40] K. Chatziioannou, A. Klein, N. Yunes, and N. Cornish,
Constructing gravitational waves from generic spin-precess-
ing compact binary inspirals, Phys. Rev. D 95, 104004
(2017).

[41] M. Pürrer and C.-J. Haster, Gravitational waveform accu-
racy requirements for future ground-based detectors, Phys.
Rev. Res. 2, 023151 (2020).

[42] P. Ajith et al., A template bank for gravitational waveforms
from coalescing binary black holes. I. Non-spinning bina-
ries, Phys. Rev. D 77, 104017 (2008); 79, 129901(E)
(2009).

HYUNGJIN KIM and ALESSANDRO LENOCI PHYS. REV. D 112, 104014 (2025)

104014-26

https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1103/PhysRevLett.115.221801
https://doi.org/10.1103/PhysRevLett.115.221801
https://doi.org/10.1007/JHEP05(2017)071
https://doi.org/10.1103/PhysRevLett.122.191802
https://doi.org/10.1103/PhysRevD.104.095014
https://doi.org/10.1103/PhysRevLett.128.021803
https://doi.org/10.1007/JHEP02(2022)023
https://doi.org/10.1007/JHEP02(2022)023
https://doi.org/10.1103/x3fg-c5p2
https://doi.org/10.1103/x3fg-c5p2
https://doi.org/10.1103/PhysRevD.100.115026
https://doi.org/10.1007/JHEP07(2020)153
https://doi.org/10.1088/1475-7516/2023/06/036
https://doi.org/10.1088/1475-7516/2023/06/036
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1103/PhysRevD.91.084011
https://doi.org/10.1103/PhysRevD.95.043001
https://doi.org/10.1103/PhysRevD.98.083006
https://doi.org/10.1103/PhysRevD.98.083006
https://doi.org/10.1103/PhysRevD.106.042003
https://arXiv.org/abs/2406.10337
https://doi.org/10.1103/PhysRevD.111.083044
https://arXiv.org/abs/2408.16051
https://arXiv.org/abs/2507.20979
https://arXiv.org/abs/2507.21788
https://doi.org/10.1103/PhysRevD.99.044001
https://doi.org/10.1103/PhysRevD.99.044001
https://doi.org/10.1103/PhysRevD.101.083019
https://doi.org/10.1088/1475-7516/2019/12/006
https://doi.org/10.1088/1475-7516/2019/12/006
https://doi.org/10.1103/PhysRevD.22.2323
https://doi.org/10.1103/PhysRevD.103.095019
https://arXiv.org/abs/2108.01167
https://doi.org/10.1088/1742-6596/840/1/012024
https://doi.org/10.1103/PhysRevD.57.4566
https://doi.org/10.1103/PhysRevD.78.124020
https://doi.org/10.1103/PhysRevD.82.024014
https://doi.org/10.1103/PhysRevD.82.024014
https://doi.org/10.1103/PhysRevD.95.104004
https://doi.org/10.1103/PhysRevD.95.104004
https://doi.org/10.1103/PhysRevResearch.2.023151
https://doi.org/10.1103/PhysRevResearch.2.023151
https://doi.org/10.1103/PhysRevD.77.104017
https://doi.org/10.1103/PhysRevD.79.129901
https://doi.org/10.1103/PhysRevD.79.129901


[43] X. Tong, Y. Wang, and H.-Y. Zhu, Termination of super-
radiance from a binary companion, Phys. Rev. D 106,
043002 (2022).

[44] T. Takahashi, H. Omiya, and T. Tanaka, Evolution of binary
systems accompanying axion clouds in extreme mass ratio
inspirals, Phys. Rev. D 107, 103020 (2023).

[45] G.M. Tomaselli, Smooth binary evolution from wide reso-
nances in boson clouds, Phys. Rev. D 112, 063033 (2025).

[46] K. Fan, X. Tong, Y. Wang, and H.-Y. Zhu, Modulating
binary dynamics via the termination of black hole super-
radiance, Phys. Rev. D 109, 024059 (2024).

[47] S. R. Dolan, Instability of the massive Klein-Gordon field
on the Kerr spacetime, Phys. Rev. D 76, 084001 (2007).

[48] T. Takahashi, H. Omiya, and T. Tanaka, Axion cloud
evaporation during inspiral of black hole binaries: The
effects of backreaction and radiation, Prog. Theor. Exp.
Phys. 2022, 043E01 (2022).

[49] R. Brito, V. Cardoso, and P. Pani, Black holes as particle
detectors: Evolution of superradiant instabilities, Classical
Quantum Gravity 32, 134001 (2015).

[50] M. D. Caballero-Garcia, S. Fabrika, A. J. Castro-Tirado, M.
Bursa, M. Dovciak, A. Castellon, and V. Karas, On the
search of the elusive intermediate mass black-holes,
arXiv:1802.07149.

[51] D. Baumann, G. Bertone, J. Stout, and G. M. Tomaselli,
Ionization of gravitational atoms, Phys. Rev. D 105, 115036
(2022).

[52] G. M. Tomaselli, T. F. M. Spieksma, and G. Bertone,
Dynamical friction in gravitational atoms, J. Cosmol.
Astropart. Phys. 07 (2023) 070.

[53] H. Kim, A. Lenoci, I. Stomberg, and X. Xue, Adiabatically
compressed wave dark matter halo and intermediate-mass-
ratio inspirals, Phys. Rev. D 107, 083005 (2023).

[54] J. H. Kim and X.-Y. Yang, Gravitational wave duet by
resonating binary black holes with axion-like particles,
Phys. Rev. D 112, 083040 (2025).

[55] A. Foschi et al. (GRAVITY Collaboration), Using the
motion of S2 to constrain scalar clouds around Sgr A*,
Mon. Not. R. Astron. Soc. 524, 1075 (2023).

[56] Z. Bai, V. Cardoso, Y. Chen, T. Do, A. Hees, H. Xiao, and X.
Xue, Probing axions via spectroscopic measurements of S-
stars at the galactic center, arXiv:2507.07482.

[57] T. May, W. E. East, and N. Siemonsen, Self-Gravity effects
of ultralight boson clouds formed by black hole super-
radiance, Phys. Rev. D 111, 044062 (2025).

[58] P. S. Cole, G. Bertone, A. Coogan, D. Gaggero, T. Karydas,
B. J. Kavanagh, T. F. M. Spieksma, and G. M. Tomaselli,
Distinguishing environmental effects on binary black hole
gravitational waveforms, Nat. Astron. 7, 943 (2023).

[59] T. F. M. Spieksma, V. Cardoso, G. Carullo, M. Della Rocca,
and F. Duque, Black hole spectroscopy in environments:
Detectability prospects, Phys. Rev. Lett. 134, 081402
(2025).

[60] M. Bošković, M. Koschnitzke, and R. A. Porto, Signatures
of ultralight bosons in the orbital eccentricity of binary black
holes, Phys. Rev. Lett. 133, 121401 (2024).

[61] G. M. Tomaselli, T. F. M. Spieksma, and G. Bertone, Res-
onant history of gravitational atoms in black hole binaries,
Phys. Rev. D 110, 064048 (2024).

[62] G. M. Tomaselli, T. F. M. Spieksma, and G. Bertone, Legacy
of boson clouds on black hole binaries, Phys. Rev. Lett. 133,
121402 (2024).

[63] K. S. Thorne and J. B. Hartle, Laws of motion and pre-
cession for black holes and other bodies, Phys. Rev. D 31,
1815 (1984).

[64] X. H. Zhang, Multipole expansions of the general-relativ-
istic gravitational field of the external universe, Phys. Rev. D
34, 991 (1986).

[65] S. Taylor and E. Poisson, Nonrotating black hole in a post-
Newtonian tidal environment, Phys. Rev. D 78, 084016
(2008).

[66] E. Poisson, Tidal deformation of a slowly rotating black
hole, Phys. Rev. D 91, 044004 (2015).

[67] E. Poisson and C. M. Will, Gravity (2014).
[68] E. Poisson, Metric of a tidally distorted nonrotating black

hole, Phys. Rev. Lett. 94, 161103 (2005).
[69] E. Racine and E. E. Flanagan, Post-1-Newtonian equations

of motion for systems of arbitrarily structured bodies, Phys.
Rev. D 71, 044010 (2005); 88, 089903(E) (2013).

[70] L. Hui, Y. T. A. Law, L. Santoni, G. Sun, G. M. Tomaselli,
and E. Trincherini, Black hole superradiance with dark
matter accretion, Phys. Rev. D 107, 104018 (2023).

[71] M. Maggiore, Gravitational Waves. Vol. 1: Theory and
Experiments (Oxford University Press, New York, 2007).

[72] E. Seidel, A comment on the eigenvalues of spin weighted
spheroidal functions, Classical Quantum Gravity 6, 1057
(1989).

[73] E.W. Leaver, An analytic representation for the quasi
normal modes of Kerr black holes, Proc. R. Soc. A 402,
285 (1985).

SELF-GRAVITY IN SUPERRADIANCE CLOUDS: … PHYS. REV. D 112, 104014 (2025)

104014-27

https://doi.org/10.1103/PhysRevD.106.043002
https://doi.org/10.1103/PhysRevD.106.043002
https://doi.org/10.1103/PhysRevD.107.103020
https://doi.org/10.1103/h3fy-fyrx
https://doi.org/10.1103/PhysRevD.109.024059
https://doi.org/10.1103/PhysRevD.76.084001
https://doi.org/10.1093/ptep/ptac044
https://doi.org/10.1093/ptep/ptac044
https://doi.org/10.1088/0264-9381/32/13/134001
https://doi.org/10.1088/0264-9381/32/13/134001
https://arXiv.org/abs/1802.07149
https://doi.org/10.1103/PhysRevD.105.115036
https://doi.org/10.1103/PhysRevD.105.115036
https://doi.org/10.1088/1475-7516/2023/07/070
https://doi.org/10.1088/1475-7516/2023/07/070
https://doi.org/10.1103/PhysRevD.107.083005
https://doi.org/10.1103/ybtp-fzwl
https://doi.org/10.1093/mnras/stad1939
https://arXiv.org/abs/2507.07482
https://doi.org/10.1103/PhysRevD.111.044062
https://doi.org/10.1038/s41550-023-01990-2
https://doi.org/10.1103/PhysRevLett.134.081402
https://doi.org/10.1103/PhysRevLett.134.081402
https://doi.org/10.1103/PhysRevLett.133.121401
https://doi.org/10.1103/PhysRevD.110.064048
https://doi.org/10.1103/PhysRevLett.133.121402
https://doi.org/10.1103/PhysRevLett.133.121402
https://doi.org/10.1103/PhysRevD.31.1815
https://doi.org/10.1103/PhysRevD.31.1815
https://doi.org/10.1103/PhysRevD.34.991
https://doi.org/10.1103/PhysRevD.34.991
https://doi.org/10.1103/PhysRevD.78.084016
https://doi.org/10.1103/PhysRevD.78.084016
https://doi.org/10.1103/PhysRevD.91.044004
https://doi.org/10.1103/PhysRevLett.94.161103
https://doi.org/10.1103/PhysRevD.71.044010
https://doi.org/10.1103/PhysRevD.71.044010
https://doi.org/10.1103/PhysRevD.88.089903
https://doi.org/10.1103/PhysRevD.107.104018
https://doi.org/10.1088/0264-9381/6/7/012
https://doi.org/10.1088/0264-9381/6/7/012
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1098/rspa.1985.0119

	Self-gravity in superradiance clouds: Implications for binary dynamics and observational prospects
	I. INTRODUCTION
	II. REVIEW
	A. Superradiance
	B. Binary

	III. SELF-GRAVITY
	IV. OBSERVATIONAL TARGET
	V. DISCUSSION
	A. Mixing with 3s
	B. Relativistic corrections
	C. Corrections from cloud angular momentum
	D. Off-diagonal self-gravity matrix element
	E. Other effects

	VI. CONCLUSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	APPENDIX A: EQUATIONS
	1. Deformed metric
	2. Cloud equation
	a. Schrödinger equation
	b. Matrix element
	c. Two-level system
	d. Three-level system
	3. Balance equation
	a. Angular momentum
	b. Mass

	APPENDIX B: MIXING-INDUCED DECAY
	APPENDIX C: CALCULATION OF THE FITTING FACTOR
	APPENDIX D: RELATIVISTIC CORRECTIONS
	References


