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Building upon the recent findings regarding inverse phase transitions in the early Universe, we present

the first natural realization of this phenomenon within a supersymmetry-breaking sector. We demonstrate

that inverse hydrodynamics, which is characterized by the fluid being sucked by the bubble wall rather than

being pushed or dragged, is actually not limited to a phase of (re)heating but can also occur within the

standard cooling cosmology. Through a numerical analysis of the phase transition, we establish a simple

and generic criterion to determine its hydrodynamics based on the generalized pseudotrace. Our results

provide a proof of principle highlighting the need to account for these new fluid solutions when considering

cosmological phase transitions and their phenomenological implications.
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I. INTRODUCTION

Phase transitions (PTs) in the early Universe plasma,

usually called “cosmological” phase transitions, are fas-

cinating phenomena. First-order PTs (FOPTs) proceeding

via the nucleation and expansion of bubbles of the true

vacuum inside a sea of false vacuum are of particular

interest as they can be at the origin of the matter-antimatter

asymmetry of the Universe (baryogenesis) [1–14], lead to

the production of dark matter [15–27] and primordial black

holes [28–32], and can be a powerful source of primordial

gravitational waves (GWs) as well [33–37]. The broad

program to discover and investigate a possible background

of GWs by current experiments such as LIGO-Virgo-

KAGRA [38] and pulsar timing arrays [39], as well as

future detectors such as the Laser Interferometer Space

Antenna [40] and the Einstein Telescope [41], opens the

unique opportunity of probing the existence of FOPTs and

of new fundamental physics. Indeed, FOPTs appear

naturally in a large variety of scenarios beyond the

Standard Model (BSM) like composite Higgs [42–46],

extended Higgs sectors [47–54], axion models [55,56],

dark Yang-Mills sectors [57,58], B − L-breaking sectors

[59,60], and supersymmetry- (SUSY) breaking sectors

[61,62] and may also be catalyzed by impurities in the

early Universe, see, e.g., [63–75], as well as occur in the

late Universe in the core of neutron stars [69,76–78].

The dynamics of FOPTs involve a nontrivial interplay

between the bubble wall and the surrounding plasma,

which is pivotal in determining the phenomenology of

the PT including the GW emission. The hydrodynamical

modes describing the bulk fluid motion in the background

of an expanding bubble during a direct FOPT have been

classified a long time ago [79–82]: they consist of deto-

nations, hybrids, and deflagrations. For all these solutions,

the fluid is either dragged or pushed (or both) by the bubble

wall. The bulk fluid velocity is then always aligned with the

wall velocity in the plasma frame [83]. In the case of

the inverse PTs, the plasma is instead sucked inside the

expanding bubble and the fluid flows in the opposite

direction of the bubble wall motion [84,85] (see also

Ref. [86] for the case of droplet collapse). These solutions

have been so far studied in the context of a (re)heating PT

[84,85,87], where the temperature of the system increases

with time, and thus have been associated with superheated

bubbles, see also [88,89].

In this paper, we show that inverse hydrodynamics is

actually not limited to the heating scenario mentioned

above, but can instead take place during the standard

cooling of the Universe as well. Remarkably, we find

the emergence of this novel hydrodynamics during a

seemingly standard, symmetry-breaking phase transition.

This takes place within the context of dynamical SUSYand

R symmetry breaking, which represents the first explicit

example for this class of FOPTs. Our findings extend the
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current understanding of what types of cosmological phase

transitions can actually take place, thus opening up new

directions for studying the corresponding GW signatures

and other phenomenological aspects.

II. PTS IN A SUSY-BREAKING SECTOR

Supersymmetry is not a symmetry of the low-energy

theory. Therefore, if it is realized at high-energy scales, it

must be broken by a dedicated SUSY-breaking sector. A

broad class of perturbative SUSY-breaking mechanisms

can be described within the framework of an effective field

theory that encapsulates the dynamics of the so-called

“pseudomodulus.” This pseudomodulus corresponds to the

scalar component x of the chiral superfield X, which is

directly related to SUSY breaking

X ¼ x
ffiffiffi

2
p e2ia=fa þ

ffiffiffi

2

p
θG̃þ θ2F; ð1Þ

where we have used the standard superspace notation. In

our study, as a minimal benchmark model, we focus on the

O’Raifeartaigh model [90]. In addition to the pseudomo-

dulus, the SUSY-breaking sector contains four chiral

superfields ϕ1; ϕ̃1;ϕ2; ϕ̃2. The superpotential takes the

form

W ¼ −FX þ λXϕ1ϕ̃2 þmðϕ1ϕ̃1 þ ϕ2ϕ̃2Þ: ð2Þ

The model preserves a global Uð1Þ R symmetry, which

typically accompanies dynamical SUSY breaking [91,92]

and under which X has charge two, R½X� ¼ 2. The vacuum

expectation value (VEV) of x is the order parameter for

spontaneous R symmetry breaking, while the additional

scalar fields from ϕi and ϕ̃i will have vanishing VEV in all

phases. The tree-level vacuum energy is Vmin
tree ¼ jFj2 with x

being a flat direction, indicating that supersymmetry is

broken irrespective of hxi while R symmetry is preserved

only at the origin, hxi ¼ 0.

The pseudomodulus flat direction is, however, lifted at

the loop level, and the shape of the potential for x is

controlled by the mass spectrum of the theory. One can see

that this includes massive particles from the ϕi and ϕ̃i

superfields, with the scalar eigenstates split in pairs around

the fermion ones, as well as massless fields from the

superfield X corresponding to the pseudomodulus x, the R

axion a, and the Goldstino G̃. At one loop, the potential for
x acquires a global minimum at the origin, while remaining

remarkably flat at large field values as a reflection of the

underlying SUSY.

Finite-temperature effects, on the other hand, break

SUSY explicitly and have a strong impact on the pseudo-

modulus effective potential. The typical thermal history of

the minimal O’Raifeartaigh model considered here is then

as follows [62,93,94]: at very high temperatures, T ≳
ffiffiffiffi

F
p

,

the system has a single vacuum state, hxi ¼ 0, and R
symmetry is preserved. At lower temperatures, a new local

minimum of the effective potential appears at relatively

large field values, hxi=
ffiffiffiffi

F
p

≫ 1, which becomes the true

vacuum of the theory below a certain critical temperature

Tc. This vacuum with broken R symmetry will, however,

become metastable and eventually disappear at even lower

temperatures, given that the only minimum at zero temper-

ature is at hxi ¼ 0.

Overall, the system undergoes two phase transitions,

namely, (1) the breaking of the R symmetry at high

temperatures and (2) its restoration at low temperatures,

which turn out to be first order and governed by a thermal

barrier. More details on the standard derivation of the

effective potential for x and the associated thermal history

can be found in Supplemental Material, Sec. I [95] and

references therein [96–98], as well as in Ref. [62].

In this paper, we will focus on the first transition that will

take place in the expanding Universe, namely, the R
symmetry-breaking FOPT: hx ¼ 0i→ hx ≠ 0i. As it turns
out, this FOPT can actually proceed according to either the

direct or the inverse hydrodynamics (the latter presented in

Refs. [84,85]) depending on the microscopic coupling

constant λ entering the superpotential in Eq. (2), while

the second R symmetry-restoring FOPT will always be

direct.

III. THERMODYNAMICS ANDHYDRODYNAMICS

OF R SYMMETRY BREAKING

In the early Universe, FOPTs can be modeled as the

interplay between a scalar field ϕ, whose vacuum expect-

ation value represents the order parameter of the transition,

and the surrounding plasma, which is often well described

by a relativistic fluid. The energy-momentum tensor

of the system consists then of those two contributions,

Tμν ¼ T
μν
fluid þ T

μν
ϕ , with

T
μν
ϕ ¼ ∂

μϕ∂νϕ − gμν
�

1

2
ð∂ϕÞ2 − VðϕÞ

�

; ð3aÞ

T
μν
fluid ¼ ðeþ pÞuμuν − pgμν; ð3bÞ

where uμ is the four-velocity of the fluid, e is the energy

density, p is the pressure, and VðϕÞ is the scalar potential.
The pressure is related to the free energy as p ¼ −F , while

the energy and enthalpy density are given by

e ¼ T
dp

dT
− p; w ¼ eþ p ¼ T

dp

dT
: ð4Þ

In any particle physics model that can be solved

(even if only approximately, e.g., in a loop expansion),

the free energy F can be obtained directly from the

effective potential at finite temperature, V0 þ VT ≡ F .

Consequently, the knowledge of the free energy of a given
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theory allows us to compute all the thermodynamic

quantities of interest without introducing a simplified

equation of state (EOS) for the fluid, such as, for instance,

the bag EOS and its generalizations.

The conservation of the energy-momentum tensor

across the phase boundary, ∇μT
μν ¼ 0, gives the following

relations between the velocities, the energies, and the

pressures [99]:

vþv− ¼ pþ − p−

eþ − e−
;

vþ
v−

¼ e− þ pþ
eþ þ p−

; ð5Þ

where the subscript “�” denotes quantities in front of/

behind the phase boundary, so that, for instance, “−”

always represents the interior of the bubble.

We defined inverse PTs as transitions displaying negative

bulk velocities in the plasma frame: rather than being

pushed outward, the surrounding plasma is drawn inward,

effectively being sucked into the expanding bubble. Let us

now provide a sharper characterization, or criterion, of

inverse hydrodynamics which extends the intuitive one put

forward in Ref. [84], according to which inverse PTs are

found when the transition proceeds against the vacuum

energy (namely, the T ¼ 0 effective potential for the order

parameter). We find that a fully general characterization of

inverse hydrodynamics can be obtained by defining a

generalized pseudotrace αϑ, which indicates the strength

of the phase transition and extends the definition within the

bag EOS adopted in [84] as well as the pseudotrace αθ,

introduced in [100],

αϑ≡
4Dϑ

3wþðTþÞ
≡
4

�

DeðTþÞ− δe
δp
ðTþ;T−ÞDpðTþÞ

�

3wþðTþÞ
; ð6Þ

where the D and δ are defined as Df ¼ fþðTþÞ − f−ðTþÞ
and δf ¼ f−ðTþÞ − f−ðT−Þ. For given values of T�, they
can be related to v� via the matching conditions in (5), then,

inverse hydrodynamics takes place for αϑ < 0, while the

standard one is realized for αϑ > 0. In this way, we discover

that PTs proceeding against the vacuum energy can none-

theless display direct hydrodynamics.

Notice that for relatively weak PTs with Tþ ≃ T−,

δe=δp ≃ 1=c2s;−, with cs;− being the speed of sound in

the broken phase, Eq. (6) reduces to αθ as defined in

Ref. [100]. In the special case of a strictly constant speed of

sound, one can refer to the template μν model as introduced

in Ref. [101] to capture deviations from the relativistic fluid

with c2s ≠ 1=3. In this case, our definition further reduces to
αθ as derived within this template. Finally, when the speed

of sound is c2s ¼ 1=3 as for a relativistic gas, this definition

reduces to αþ as considered in Ref. [84].

One can show that FOPTs with αϑ ¼ 0 represent the

limit of weak hydrodynamics, where Δe ¼ 0 and Δp ¼ 0,

with Δf ¼ fþðTþÞ − f−ðT−Þ. By continuity, this is sup-

posed to separate inverse from direct FOPTs.

Let us now examine the possible hydrodynamics of the R
symmetry-breaking FOPT. The junction conditions above

can be solved numerically by referring to the pressure and

energy densities as evaluated directly from the free energy

within our particle physics model. The allowed values for

the ðv−; vþÞ pairs are shown in Fig. 1 for a representative

benchmark point. The matching conditions in Eq. (5) are

solved for v� in terms of the temperatures ahead and behind

the wall, T�. For consistency, we restrict Tþ to lie between

Tc and the temperature when the barrier disappears, as this

is the range for which the FOPT can actually take place. The

various v� trajectories in Fig. 1 are then shown together

with the corresponding temperature Tþ according to the

color code. Because of the consistency condition on Tþ and

the properties of our system free energy, the branches do not

populate the entire v� ∈ ð0; 1Þ parameter space. The regions

corresponding to inverse and direct hydrodynamics, accord-

ing to the sign of αϑ, are indicated by solid and dashed lines,

respectively. We find that these regions remain neatly

separated across the entire ðv−; vþÞ plane, except for a

small overlap in the regime of hybrid solutions (bottom right

corner). As a comparison, a similar discussion of the inverse

branches in the case of the simplified (template) μνmodel is

FIG. 1. Possible solutions to the fluid matching conditions for

ðv−; vþÞ for the R symmetry-breaking FOPT under considera-

tion, plotting the relevant branches for different values of Tþ
between Tc and the temperature where the barrier disappears.

Dashed lines correspond to direct phase transitions, while solid

lines indicate inverse transitions, as determined by the sign of αϑ.

The solid red line highlights the relevant branch at Tnuc. The red-

shaded area marks the region of strong (inverse) detonations and

strong (inverse) deflagrations. In the bottom right corner, an

enlarged view of the hybrid solution region reveals an overlap

between different branches (see Appendix B for more details).
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provided in Appendix A, where we find qualitative agree-

ment with the full numerical study of the SUSY model

presented here.

In the early Universe, bubbles are efficiently formed

when the nucleation rate catches up with the Hubble

expansion. This condition, presented in more detail in

Supplemental Material, Sec. II [95] and Refs. [102–107],

connects the onset of the FOPT with a certain nucleation

temperature Tnuc. If we then further specify the temperature

of the FOPT as Tnuc [108], we can select the bright red

branch as the relevant one for this specific benchmark point.

Notice that, as the matching conditions cannot uniquely

determine the bubble wall velocity, the actual value of v�
cannot be pinned down by the hydrodynamics only, and the

full red branch can, in principle, be realized. On the other

hand, when taking the wall velocity as an additional input,

the fluid profile can be fully determined. As we can see, the

FOPT within this benchmark point occurs in the inverse

hydrodynamic regime.

In Fig. 2, we perform a scan over the model parameter

space, by fixing m=
ffiffiffiffi

F
p

¼ 2 and varying the coupling

constant λ. The red line indicates the nucleation temper-

ature, which always happens to be very close to the

temperature where the barrier actually disappears. For

λ≲ 1.63, bubble nucleation occurs in the region where

the hydrodynamics will be the one based on the (direct)

detonation and deflagration types of solutions, while for

1.63≲ λ≲ 1.68 the hydrodynamics will be inverse. We can

also notice that the condition of vanishing αϑ actually

corresponds to the boundary between direct and inverse

regions, which are determined independently by solving the

fluid equations. As we can see, the approximate condition in

terms of the pseudotrace, αθ ¼ 0, reproduces this separation

fairly well. This can be traced back to the fact that the speed

of sound is not strongly temperature dependent in

this model.

IV. INVERSE FLUID SOLUTIONS

FOR R SYMMETRY BREAKING

The hydrodynamics of inverse PTs was presented for the

first time in Refs. [84,85] (see also [109]). There exist five

different possible expansion modes with negative bulk

velocities: (i) inverse detonations [weak and Chapman-

Jouguet (CJ)], (ii) inverse deflagrations (weak and CJ), and

(iii) inverse hybrids.

This classification of hydrodynamic solutions was

obtained within the (simplified) bag EOS.We have checked

that this picture remains qualitatively the same also when

considering the full form of the free energy (or effective

potential) as evaluated explicitly for the SUSYmodel under

consideration. In practice, we find only some quantitative

differences related to the actual value of the speed of sound,

which generally differs from c2s ¼ 1=3, and to the (mild)

temperature dependence of c2s , which requires solving the

coupled system of fluid equations for the pressure and the

energy density as discussed in Appendix B. An example of

the explicit profiles obtained by solving numerically the

fluid equations for the benchmark point with λ ¼ 1.67 and

m=
ffiffiffiffi

F
p

¼ 2 is shown in detail in Fig. 3 for an inverse

detonation, together with the free energy of the system at

the nucleation temperature showing the direction of the

phase transition and a sketch of the bubble with the

corresponding fluid profile.

Let us also mention that there is, in principle, the

possibility that the bubble wall never reaches any of the

steady states presented above and keeps accelerating until

bubbles collide, namely, it runs away. Employing the line of

reasoning presented in Ref. [84], we find that the bubble

never runs away in the model under consideration and

always reaches one of the steady states (see Supplemental

Material, Sec. III [95] and Refs. [110–112] for a deriva-

tion). Our hydrodynamic analysis, however, cannot deter-

mine which one of them, as mentioned above.

V. COUPLING TO THE STANDARD MODEL

THERMAL BATH

In the early Universe, the SUSY-breaking sector con-

sidered here is generally accompanied by additional spec-

tator fields [113] that are in thermal equilibrium with the

SUSY-breaking sector and constitute a radiation bath. To

assess the impact of these additional degrees of freedom,

we redefine the energy and pressure as

pðTÞ→pðTÞþ c̃2ãT4; eðTÞ→ eðTÞþ3c̃2ãT4; ð7Þ

where c̃2 ¼ 1=3, and ã controls the number of the relativ-

istic spectator degrees of freedom (d.o.f.), which is

FIG. 2. The nucleation temperature (red line) is obtained as a

function of λ by numerically solving the condition S3=T ¼ 140,

which corresponds to setting
ffiffiffiffi

F
p

∼ TeV for concreteness (see

Supplemental Material, Sec. II [95]). The blue-shaded (white)

region indicates the occurrence of the inverse (direct) FOPTs,

whose boundary is shown according to the criteria Dϑ ¼ 0 and

Dθ ¼ 0. For this figure, we fixed m=
ffiffiffiffi

F
p

¼ 2.
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expected to be ã ∼ 70 considering a supersymmetric

extension of the Standard Model.

The presence of these fields will mostly influence the

strength of the FOPT. In the limit ã ≫ 1, one has δp=δe ≃
1=3 as expected for a gas of relativistic particles, and the

generalized pseudotrace in this limit becomes

αϑ ≃
4ðDe − 3DpÞ
3wþðTþÞ

1

1þ x
; x ¼ 4c̃2ãT4

þ
wþðTþÞ

: ð8Þ

Thus, to a good approximation, the strength of the phase

transition exhibits an inverse scaling with ã, aligning with

physical intuition. From explicit calculations, we find that

the pseudotrace and generalized pseudotrace are always very

close to each other in the parameter space of interest, and that

the asymptotic behavior in Eq. (8) is well established for

ã≳ 50, leading to typical values of αϑ ≲ 10−2, while in the

absence of spectator fields, one would have αϑ ≲ 10−1.

In this regard, let us notice that there is, in fact, a

fundamental difference between the strength of a standard

(direct) FOPTand the case of an inverse FOPT. By referring

to the definition of αϑ in Eq. (6), we can see that the part

containing DpðTþÞ will always contribute with a positive

sign. This follows from the fact that the broken phase will

necessarily have a larger pressure than the symmetric phase

for the FOPT to take place and that δe=δp ≃ 1=c2s is a

positive quantity. Therefore, considering the case of neg-

ative αϑ, we can derive the following inequality:

3

4
jαϑj <

w−ðTþÞ − wþðTþÞ
wþðTþÞ

¼ ΔaeffðTþÞ
aeff;þðTþÞ

; ð9Þ

where aeff;þðTþÞ indicates the effective number of relativ-

istic d.o.f. in the symmetric phase at the temperature Tþ,
according to the parametrization 3wðTÞ=4T4 ≡ aeffðTÞ,
and ΔaeffðTþÞ is the change in d.o.f. in the broken phase

at the same temperature. This relation shows that an inverse

FOPT can be strong only when it involves a significant

change in d.o.f. between the two phases. This is a structural

property of the vacua of the theory under consideration, and

it should be contrasted with the case of standard FOPTs

whose strength is mostly controlled by the amount of

supercooling that can be achieved in the expanding

Universe. In particular, Eq. (9) indicates that an inverse

FOPT is not necessarily stronger when it becomes more

supercooled.

VI. CONCLUSION AND OUTLOOK

We presented a simple SUSY-breaking model displaying

a window of inverse FOPTs during the spontaneous

breaking of the R symmetry. This represents the first

explicit example of a BSM model leading to an inverse

FOPT in a cooling cosmology, as well as a proof of

principle for the relevance of this dynamics in the early

Universe.

We find that the sign of the generalized pseudotrace, αϑ
in Eq. (6), determines the “inverseness” of the transition. As

a comparison, we also show that the sign of the pseudotrace

introduced in Ref. [100] offers a fair estimate for the type of

the FOPT as well.

Our study motivates a broader investigation of inverse

FOPTs in explicit BSM models. This includes establishing

a deeper connection between the inverseness of a FOPTand

its fundamental properties and symmetries, exemplified

here within a model of spontaneous SUSY breaking, as

well as identifying possible non-SUSY realizations of this

dynamics.

Finally, FOPTs are powerful sources of gravitational

waves that can be detected at current and forthcoming GW

observatories. This work provides motivation to character-

ize the GW spectrum related to inverse FOPTs and to

determine to which extent this can be distinguished from

the one arising during direct FOPTs.
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APPENDIX A: INVERSE FOPTs

IN THE μν MODEL

In this appendix, we examine the emergence of inverse

phase transitions in the μν model [101], also referred to as

the ν model in Ref. [100] and the template model in

Refs. [110,114,115]. The μν model extends the standard

bag model by allowing the sound speed to deviate from the

relativistic value of 1=
ffiffiffi

3
p

, while remaining constant within

each phase. Explicitly, the EOS for the symmetric and

broken phases is given by

e�ðTÞ ¼ a�T
ν� þ ϵ�; p�ðTÞ ¼ c2s;þa�T

ν� − ϵ�;

ν� ¼ 1þ 1=c2s;�: ðA1Þ

In the following νþ ≡ ν and ν− ≡ μ, we consider μ > ν as

this mimics the thermal history of the R symmetry model,

presented in the main text. The velocity relations from the

matching conditions take the form

vþv− ¼ μ − μν − rνð3αθ − 1Þðμ − 1Þ
ðμ − μνþ rνð3αθ þ μ − 1ÞÞðμ − 1Þ ;

vþ
v−

¼ ðμ − 1Þðμ − μνþ rνð3αθ − 1ÞÞ
μ − μν − rνð3αθ þ μ − 1Þðμ − 1Þ ; ðA2aÞ

where we define the ratio r≡ aþT
ν
þ=a−T

μ
−. Additionally,

the strength parameter αθ, defined from the pseudotrace θ

as αθ ≡ 4Dθ=3wþ where θ ¼ e − p=c2s;−, within the μν

model evaluates to

αθ¼
ν−1

3ν

�

ν−μ

ν−1
þμαþ

�

; αþ≡
Δϵ

aþT
ν
þ
¼ ϵþ−ϵ−

aþT
ν
þ
: ðA3Þ

It is important to emphasize that αθ serves as the funda-

mental quantity determining the nature of the transition and

directly corresponds to the strength of the phase transition

computed via the pseudotrace.

Notably, in the case of the traditional bag EOS, where

μ ¼ ν ¼ 4, the pseudotrace coincides with the standard

definition of the phase transition strength, αθ ¼ αþ, thereby
recovering the standard velocity relations.

It is shown in Fig. 4 that, as soon as αθ < 0, the “inverse

branches” emerge. This confirms that, in the μν model,

a negative αθ implies an inverse phase transition.

Analogously, for the bag EOS, a negative αþ corresponds

to an inverse PT. This result aligns with the characteriza-

tion proposed in [84], where it was shown that, within the

bag EOS, Δϵ < 0 serves as a direct indicator of an inverse

phase transition.

APPENDIX B: SOLVING THE HYDRODYNAMIC

EQUATIONS FOR THE FLUID PROFILES

The conservation of the energy-momentum tensor for a

relativistic fluid, given by ∇μT
μν ¼ 0, yields two indepen-

dent hydrodynamic equations. These equations can be

rewritten in terms of the enthalpy density, w ¼ eþ p. We

consider a spherically symmetric and self-similar configu-

ration, where the fluid variables depend only on ξ≡ r=t,
the similarity variable. Using this variable, it can be shown

that the hydrodynamics equations, in terms of the fluid

velocity vðξÞ and the fluid temperature TðξÞ, take the

following form:

ðξ − vÞ ∂ξT
w

de

dT
¼ 2v

ξ
þ ½1 − γ2vðξ − vÞ�∂ξv;

∂ξT

T
¼ γ2μðξ; vÞ∂ξv; ðB1Þ

FIG. 4. Dashed (solid) lines represent direct (inverse) phase

transitions. The inverse branches emerge as soon as αθ < 0,

whereas this is not necessarily the case for αþ. The two strength

parameters of the phase transition, αþ and αθ, coincide in the bag

model when μ ¼ ν ¼ 4.
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where μðξ; vÞ ¼ ξ−v
1−ξv

. It is important to emphasize that the

thermodynamic quantities, such as p and e, must be

evaluated in the appropriate phase depending on the region

where the equation is being solved. In the remainder of this

appendix, we present the different types of expansion

modes for inverse PTs within this general framework.

1. Inverse deflagration

To fully specify the system of equations in Eq. (B1), we

must define the initial conditions for vðξÞ and TðξÞ. In the

case of an inverse deflagration, this translates to

ξw ¼ vþ; vðξwÞ ¼ μðvþ; v−Þ;
Tðξþw Þ ¼ Tþ; Tðξ−wÞ ¼ T−; ðB2Þ

where the þ phase corresponds to the false vacuum, while

the − phase corresponds to the true vacuum. Additionally,

we impose the condition for the formation of a shock wave,

which is given by μðξsh; vðξshÞÞξsh ¼ c2s;−ðTðξshÞÞ. These
initial conditions also apply to standard detonations,

provided that the pair ðvþ; v−Þ satisfies the condi-

tion vþ > v−.

2. Inverse detonations

For inverse detonations, the initial conditions across the

discontinuity translate into

ξw ¼ v−; vðξwÞ ¼ μðv−; vþÞ;
Tðξþw Þ ¼ Tþ; Tðξ−wÞ ¼ T−: ðB3Þ

It can be checked directly that the rarefaction wave

terminates at ξend ¼ cs;þðTðξendÞÞ. For a standard detona-

tion, the substitution cs;þ → cs;− must be applied, as the

rarefaction wave develops behind the reaction front, i.e., in

the new phase.

These initial conditions also apply to standard deflagra-

tions, provided that the pair ðvþ; v−Þ satisfies the appro-

priate conditions. In this case, the shock condition must be

modified by replacing cs;− with cs;þ, as the shock forms

ahead of the reaction front in the old phase.

Before discussing the last type of solution, it is important

to highlight the presence of strong solutions in Fig. 5,

where the red-shaded region indicates their domain. For

(inverse) detonations/deflagrations, the strong regime is

defined by the conditions ðvþ≷cs;þðTþÞÞv− ≶ cs;−ðT−Þ.
As previously discussed in [84], strong (inverse) detona-

tions cannot be consistently realized, while strong (inverse)

deflagrations, although they may initially form due to the

dynamics of the phase transition, are inherently unstable.

Over time, they will decay into (inverse) hybrid solutions.

3. Inverse hybrid

For inverse hybrid solutions, as in the standard case, to

make the profile stable, we must connect a strong inverse

deflagration to a Chapman-Jouguet inverse detonation,

which is defined as a detonation with vþ ¼ cs;þðTþÞ.
The initial conditions then translate into

vðξþw Þ ¼ μðξþw ; cs;þðTþÞÞ; vðξ−wÞ ¼ μðξ−w; v−Þ;
Tðξþw Þ ¼ Tþ; Tðξ−wÞ ¼ T−; ðB4Þ

where the four input parameters required to specify the

system are ðξw; v−; Tþ; T−Þ.
Additionally, the shock formation condition must be

imposed, and one can verify that the rarefaction wave of the

inverse detonation terminates again at ξend ¼ cs;þðTðξendÞÞ.
The maximal range of wall velocities for which an inverse

hybrid solution exists is given by c2s;− < ξw < cs;þ, where
the lower bound arises because the slowest possible inverse

hybrid is determined by the slowest possible shock.

For the case of a direct hybrid transition, a strong

deflagration must instead be connected to a CJ detonation,

where the latter is characterized by v− ¼ cs;−ðT−Þ. The
allowed range of wall velocities in this case is cs;− < ξw <

1 where the upper bound is simply the speed of light, as

there is no fundamental constraint on the maximum speed

of the shock front.

FIG. 5. Overlap of direct and inverse branches in the ðv−; vþÞ plane and corresponding fluid profiles. Left: the ðv−; vþÞ trajectories for
different values of Tþ. The inverse branch is shown in orange, while the direct branch is displayed in blue. The highlighted crossing

point indicates a case where both a direct and an inverse solution exist for the same ðv−; vþÞ pair. Middle: fluid profile corresponding to

the direct hybrid solution. Right: fluid profile for the inverse hybrid solution. The shaded regions indicate the interior of the bubble.
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4. Overlap in the hybrid corner

In our numerical analysis, we observe that, in the hybrid

transition regime, the branches in the ðv−; vþÞ plane exhibit
an overlap between direct and inverse transitions. This is

particularly evident when focusing in on the hybrid region,

as shown in Fig. 5 (left panel). There, we explicitly construct

two distinct solutions corresponding to the same pair of

values ðv−; vþÞ, demonstrating the existence of overlapping

branches, in the middle and right panels of Fig. 5.

This overlap arises due to the stability conditions

required for hybrid solutions. Specifically, for both direct

and inverse hybrids to remain stable, the fluid velocity just

behind (or in front of) the wall must match the local speed

of sound in the respective phase at the corresponding

temperature. That is, stability demands that for (inverse)

hybrid holds ðvþ ¼ cs;þðTþÞÞv− ¼ cs;−ðT−Þ. This condi-

tion provides additional flexibility in setting ξw ¼ v− for

direct hybrids and ξw ¼ vþ for inverse hybrids, thus

allowing both solutions to coexist.

Another key reason for this overlap is related to the

structure of the separatrices (black solid lines) in the

ðv−; vþÞ plane. Ideally, these separatrices would be given

by v− ¼ vþ and v−vþ ¼ c2s;−, however, since the speed of

sound varies along the branches due to temperature

dependence, the boundary between the direct and inverse

solutions is no longer sharply defined. Despite their overlap

in the ðv−; vþÞ plane, the two solutions can still be

distinguished physically. Each branch corresponds to a

different set of temperatures ðTþ; T−Þ, leading to a different
transition strength characterized by the generalized pseu-

dotrace αϑ, which will have, in fact, a different sign. Thus,

even though the solutions may appear degenerate in

velocity space, they remain distinct due to their thermo-

dynamic properties.
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