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Building upon the recent findings regarding inverse phase transitions in the early Universe, we present
the first natural realization of this phenomenon within a supersymmetry-breaking sector. We demonstrate
that inverse hydrodynamics, which is characterized by the fluid being sucked by the bubble wall rather than
being pushed or dragged, is actually not limited to a phase of (re)heating but can also occur within the
standard cooling cosmology. Through a numerical analysis of the phase transition, we establish a simple

and generic criterion to determine its hydrodynamics based on the generalized pseudotrace. Our results
provide a proof of principle highlighting the need to account for these new fluid solutions when considering
cosmological phase transitions and their phenomenological implications.
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I. INTRODUCTION

Phase transitions (PTs) in the early Universe plasma,
usually called “cosmological” phase transitions, are fas-
cinating phenomena. First-order PTs (FOPTs) proceeding
via the nucleation and expansion of bubbles of the true
vacuum inside a sea of false vacuum are of particular
interest as they can be at the origin of the matter-antimatter
asymmetry of the Universe (baryogenesis) [1-14], lead to
the production of dark matter [ 15-27] and primordial black
holes [28-32], and can be a powerful source of primordial
gravitational waves (GWs) as well [33-37]. The broad
program to discover and investigate a possible background
of GWs by current experiments such as LIGO-Virgo-
KAGRA [38] and pulsar timing arrays [39], as well as
future detectors such as the Laser Interferometer Space
Antenna [40] and the Einstein Telescope [41], opens the
unique opportunity of probing the existence of FOPTs and
of new fundamental physics. Indeed, FOPTs appear
naturally in a large variety of scenarios beyond the
Standard Model (BSM) like composite Higgs [42-46],
extended Higgs sectors [47-54], axion models [55,56],
dark Yang-Mills sectors [57,58], B — L-breaking sectors
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[59,60], and supersymmetry- (SUSY) breaking sectors
[61,62] and may also be catalyzed by impurities in the
early Universe, see, e.g., [63—75], as well as occur in the
late Universe in the core of neutron stars [69,76-78].

The dynamics of FOPTs involve a nontrivial interplay
between the bubble wall and the surrounding plasma,
which is pivotal in determining the phenomenology of
the PT including the GW emission. The hydrodynamical
modes describing the bulk fluid motion in the background
of an expanding bubble during a direct FOPT have been
classified a long time ago [79-82]: they consist of deto-
nations, hybrids, and deflagrations. For all these solutions,
the fluid is either dragged or pushed (or both) by the bubble
wall. The bulk fluid velocity is then always aligned with the
wall velocity in the plasma frame [83]. In the case of
the inverse PTs, the plasma is instead sucked inside the
expanding bubble and the fluid flows in the opposite
direction of the bubble wall motion [84,85] (see also
Ref. [86] for the case of droplet collapse). These solutions
have been so far studied in the context of a (re)heating PT
[84,85,87], where the temperature of the system increases
with time, and thus have been associated with superheated
bubbles, see also [88,89].

In this paper, we show that inverse hydrodynamics is
actually not limited to the heating scenario mentioned
above, but can instead take place during the standard
cooling of the Universe as well. Remarkably, we find
the emergence of this novel hydrodynamics during a
seemingly standard, symmetry-breaking phase transition.
This takes place within the context of dynamical SUSY and
R symmetry breaking, which represents the first explicit
example for this class of FOPTs. Our findings extend the
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current understanding of what types of cosmological phase
transitions can actually take place, thus opening up new
directions for studying the corresponding GW signatures
and other phenomenological aspects.

II. PTS IN A SUSY-BREAKING SECTOR

Supersymmetry is not a symmetry of the low-energy
theory. Therefore, if it is realized at high-energy scales, it
must be broken by a dedicated SUSY-breaking sector. A
broad class of perturbative SUSY-breaking mechanisms
can be described within the framework of an effective field
theory that encapsulates the dynamics of the so-called
“pseudomodulus.” This pseudomodulus corresponds to the
scalar component x of the chiral superfield X, which is
directly related to SUSY breaking

X . ~
X = ——¢%a/fu 4 \/20G + 6*F, 1
7 (1)

where we have used the standard superspace notation. In
our study, as a minimal benchmark model, we focus on the
O’Raifeartaigh model [90]. In addition to the pseudomo-
dulus, the SUSY-breaking sector contains four chiral
superfields ¢, ¢, ¢p,.$,. The superpotential takes the
form

W = —FX +AX¢1dr + m(d1 ¢ + p2ths). (2)

The model preserves a global U(1) R symmetry, which
typically accompanies dynamical SUSY breaking [91,92]
and under which X has charge two, R[X| = 2. The vacuum
expectation value (VEV) of x is the order parameter for
spontaneous R symmetry breaking, while the additional
scalar fields from ¢; and ¢, will have vanishing VEV in all
phases. The tree-level vacuum energy is VIl = |F|? with x
being a flat direction, indicating that supersymmetry is
broken irrespective of (x) while R symmetry is preserved
only at the origin, (x) = 0.

The pseudomodulus flat direction is, however, lifted at
the loop level, and the shape of the potential for x is
controlled by the mass spectrum of the theory. One can see
that this includes massive particles from the ¢; and ¢,
superfields, with the scalar eigenstates split in pairs around
the fermion ones, as well as massless fields from the
superfield X corresponding to the pseudomodulus x, the R
axion a, and the Goldstino G. At one loop, the potential for
x acquires a global minimum at the origin, while remaining
remarkably flat at large field values as a reflection of the
underlying SUSY.

Finite-temperature effects, on the other hand, break
SUSY explicitly and have a strong impact on the pseudo-
modulus effective potential. The typical thermal history of
the minimal O’Raifeartaigh model considered here is then

as follows [62,93,94]: at very high temperatures, T 2 \/I_V s

the system has a single vacuum state, (x) =0, and R
symmetry is preserved. At lower temperatures, a new local
minimum of the effective potential appears at relatively
large field values, (x)/ V/F > 1, which becomes the true
vacuum of the theory below a certain critical temperature
T.. This vacuum with broken R symmetry will, however,
become metastable and eventually disappear at even lower
temperatures, given that the only minimum at zero temper-
ature is at (x) = 0.

Overall, the system undergoes two phase transitions,
namely, (1) the breaking of the R symmetry at high
temperatures and (2) its restoration at low temperatures,
which turn out to be first order and governed by a thermal
barrier. More details on the standard derivation of the
effective potential for x and the associated thermal history
can be found in Supplemental Material, Sec. I [95] and
references therein [96-98], as well as in Ref. [62].

In this paper, we will focus on the first transition that will
take place in the expanding Universe, namely, the R
symmetry-breaking FOPT: (x = 0) — (x # 0). As it turns
out, this FOPT can actually proceed according to either the
direct or the inverse hydrodynamics (the latter presented in
Refs. [84,85]) depending on the microscopic coupling
constant A entering the superpotential in Eq. (2), while
the second R symmetry-restoring FOPT will always be
direct.

III. THERMODYNAMICS AND HYDRODYNAMICS
OF R SYMMETRY BREAKING

In the early Universe, FOPTs can be modeled as the
interplay between a scalar field ¢, whose vacuum expect-
ation value represents the order parameter of the transition,
and the surrounding plasma, which is often well described
by a relativistic fluid. The energy-momentum tensor
of the system consists then of those two contributions,
TH = T + T, with

g = g0 o- g (Jr-v@). G

Thia = (e + p)utu” — pg", (3b)

where u* is the four-velocity of the fluid, e is the energy
density, p is the pressure, and V(¢) is the scalar potential.
The pressure is related to the free energy as p = —F, while
the energy and enthalpy density are given by

w=e+p=T—. (4)

In any particle physics model that can be solved
(even if only approximately, e.g., in a loop expansion),
the free energy JF can be obtained directly from the
effective potential at finite temperature, Vy+ V= F.
Consequently, the knowledge of the free energy of a given
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theory allows us to compute all the thermodynamic
quantities of interest without introducing a simplified
equation of state (EOS) for the fluid, such as, for instance,
the bag EOS and its generalizations.

The conservation of the energy-momentum tensor
across the phase boundary, V,T# = 0, gives the following
relations between the velocities, the energies, and the
pressures [99]:

voo =" P

e =)
€+ —é_

U__€++P_’

where the subscript “£” denotes quantities in front of/
behind the phase boundary, so that, for instance, “—”
always represents the interior of the bubble.

We defined inverse PTs as transitions displaying negative
bulk velocities in the plasma frame: rather than being
pushed outward, the surrounding plasma is drawn inward,
effectively being sucked into the expanding bubble. Let us
now provide a sharper characterization, or criterion, of
inverse hydrodynamics which extends the intuitive one put
forward in Ref. [84], according to which inverse PTs are
found when the transition proceeds against the vacuum
energy (namely, the 7 = 0O effective potential for the order
parameter). We find that a fully general characterization of
inverse hydrodynamics can be obtained by defining a
generalized pseudotrace ay, which indicates the strength
of the phase transition and extends the definition within the
bag EOS adopted in [84] as well as the pseudotrace ay,
introduced in [100],

upg A(De(r )= (T, T )Dp(T,))

R TR v (T) -

where the D and 6 are defined as Df = (T, ) — f_(T,)
and 8f = f_(T,) — f_(T_). For given values of T, they
can be related to v via the matching conditions in (5), then,
inverse hydrodynamics takes place for ay < 0, while the
standard one is realized for ayg > 0. In this way, we discover
that PTs proceeding against the vacuum energy can none-
theless display direct hydrodynamics.

Notice that for relatively weak PTs with 7, ~T_,
Se/dp ~1/c?_, with c,_ being the speed of sound in
the broken phase, Eq. (6) reduces to a, as defined in
Ref. [100]. In the special case of a strictly constant speed of
sound, one can refer to the template v model as introduced
in Ref. [101] to capture deviations from the relativistic fluid
with ¢2 # 1 /3. In this case, our definition further reduces to
a as derived within this template. Finally, when the speed
of sound is ¢2 = 1/3 as for a relativistic gas, this definition
reduces to a, as considered in Ref. [84].

One can show that FOPTs with ay = O represent the
limit of weak hydrodynamics, where Ae = 0 and Ap = 0,

A =1.67, m/VF =2
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FIG. 1. Possible solutions to the fluid matching conditions for

(v_,v,) for the R symmetry-breaking FOPT under considera-
tion, plotting the relevant branches for different values of 7',
between T, and the temperature where the barrier disappears.
Dashed lines correspond to direct phase transitions, while solid
lines indicate inverse transitions, as determined by the sign of ag.
The solid red line highlights the relevant branch at 7',.. The red-
shaded area marks the region of strong (inverse) detonations and
strong (inverse) deflagrations. In the bottom right corner, an
enlarged view of the hybrid solution region reveals an overlap
between different branches (see Appendix B for more details).

with Af = f.(T,) — f_(T_). By continuity, this is sup-
posed to separate inverse from direct FOPTs.

Let us now examine the possible hydrodynamics of the R
symmetry-breaking FOPT. The junction conditions above
can be solved numerically by referring to the pressure and
energy densities as evaluated directly from the free energy
within our particle physics model. The allowed values for
the (v_, v, ) pairs are shown in Fig. | for a representative
benchmark point. The matching conditions in Eq. (5) are
solved for v in terms of the temperatures ahead and behind
the wall, 7. For consistency, we restrict 7, to lie between
T, and the temperature when the barrier disappears, as this
is the range for which the FOPT can actually take place. The
various v, trajectories in Fig. 1 are then shown together
with the corresponding temperature 7, according to the
color code. Because of the consistency condition on 7', and
the properties of our system free energy, the branches do not
populate the entire v € (0, 1) parameter space. The regions
corresponding to inverse and direct hydrodynamics, accord-
ing to the sign of @y, are indicated by solid and dashed lines,
respectively. We find that these regions remain neatly
separated across the entire (v_,v,) plane, except for a
small overlap in the regime of hybrid solutions (bottom right
corner). As a comparison, a similar discussion of the inverse
branches in the case of the simplified (template) 4z model is
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FIG. 2. The nucleation temperature (red line) is obtained as a
function of A by numerically solving the condition S5/7 = 140,

which corresponds to setting v/F ~ TeV for concreteness (see
Supplemental Material, Sec. II [95]). The blue-shaded (white)
region indicates the occurrence of the inverse (direct) FOPTS,
whose boundary is shown according to the criteria DJ = 0 and
DO = 0. For this figure, we fixed m//F = 2.

provided in Appendix A, where we find qualitative agree-
ment with the full numerical study of the SUSY model
presented here.

In the early Universe, bubbles are efficiently formed
when the nucleation rate catches up with the Hubble
expansion. This condition, presented in more detail in
Supplemental Material, Sec. II [95] and Refs. [102—-107],
connects the onset of the FOPT with a certain nucleation
temperature 7',.. If we then further specify the temperature
of the FOPT as T, [108], we can select the bright red
branch as the relevant one for this specific benchmark point.
Notice that, as the matching conditions cannot uniquely
determine the bubble wall velocity, the actual value of v
cannot be pinned down by the hydrodynamics only, and the
full red branch can, in principle, be realized. On the other
hand, when taking the wall velocity as an additional input,
the fluid profile can be fully determined. As we can see, the
FOPT within this benchmark point occurs in the inverse
hydrodynamic regime.

In Fig. 2, we perform a scan over the model parameter
space, by fixing m/+/F =2 and varying the coupling
constant A. The red line indicates the nucleation temper-
ature, which always happens to be very close to the
temperature where the barrier actually disappears. For
A < 1.63, bubble nucleation occurs in the region where
the hydrodynamics will be the one based on the (direct)
detonation and deflagration types of solutions, while for
1.63 < 4 < 1.68 the hydrodynamics will be inverse. We can
also notice that the condition of vanishing ay actually
corresponds to the boundary between direct and inverse
regions, which are determined independently by solving the
fluid equations. As we can see, the approximate condition in
terms of the pseudotrace, ay = 0, reproduces this separation
fairly well. This can be traced back to the fact that the speed

of sound is not strongly temperature dependent in
this model.

IV. INVERSE FLUID SOLUTIONS
FOR R SYMMETRY BREAKING

The hydrodynamics of inverse PTs was presented for the
first time in Refs. [84,85] (see also [109]). There exist five
different possible expansion modes with negative bulk
velocities: (i) inverse detonations [weak and Chapman-
Jouguet (CJ)], (ii) inverse deflagrations (weak and CJ), and
(iii) inverse hybrids.

This classification of hydrodynamic solutions was
obtained within the (simplified) bag EOS. We have checked
that this picture remains qualitatively the same also when
considering the full form of the free energy (or effective
potential) as evaluated explicitly for the SUSY model under
consideration. In practice, we find only some quantitative
differences related to the actual value of the speed of sound,
which generally differs from ¢2 = 1/3, and to the (mild)
temperature dependence of ¢2, which requires solving the
coupled system of fluid equations for the pressure and the
energy density as discussed in Appendix B. An example of
the explicit profiles obtained by solving numerically the
fluid equations for the benchmark point with 4 = 1.67 and
m/\/F =2 is shown in detail in Fig. 3 for an inverse
detonation, together with the free energy of the system at
the nucleation temperature showing the direction of the
phase transition and a sketch of the bubble with the
corresponding fluid profile.

Let us also mention that there is, in principle, the
possibility that the bubble wall never reaches any of the
steady states presented above and keeps accelerating until
bubbles collide, namely, it runs away. Employing the line of
reasoning presented in Ref. [84], we find that the bubble
never runs away in the model under consideration and
always reaches one of the steady states (see Supplemental
Material, Sec. III [95] and Refs. [110-112] for a deriva-
tion). Our hydrodynamic analysis, however, cannot deter-
mine which one of them, as mentioned above.

V. COUPLING TO THE STANDARD MODEL
THERMAL BATH

In the early Universe, the SUSY-breaking sector con-
sidered here is generally accompanied by additional spec-
tator fields [113] that are in thermal equilibrium with the
SUSY-breaking sector and constitute a radiation bath. To
assess the impact of these additional degrees of freedom,
we redefine the energy and pressure as

p(T)— p(T)+&aT*, e(T)— e(T)+3%aT*, (7)
where & = 1/3, and & controls the number of the relativ-
istic spectator degrees of freedom (d.o.f.), which is
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Free energy of the system at finite temperature evaluated at one loop at the nucleation temperature, with the arrow indicating

the direction of the phase transition toward the minimum with a nonzero x (left), together with a sketch of the expanding bubble and its
velocity in red and the fluid profile in green (center) for a characteristic inverse detonation. The actual fluid profile in the plasma frame is
shown on the right. Because of its inverse nature, the fluid velocity is always negative. See main text and Appendix B for details.

expected to be a~70 considering a supersymmetric
extension of the Standard Model.

The presence of these fields will mostly influence the
strength of the FOPT. In the limit @ > 1, one has dp/de ~
1/3 as expected for a gas of relativistic particles, and the
generalized pseudotrace in this limit becomes

4(De —3Dp) 1 4z2aT
ag =~ : =——=.
T Bw (1) T+x

Thus, to a good approximation, the strength of the phase
transition exhibits an inverse scaling with a, aligning with
physical intuition. From explicit calculations, we find that
the pseudotrace and generalized pseudotrace are always very
close to each other in the parameter space of interest, and that
the asymptotic behavior in Eq. (8) is well established for
@ 2 50, leading to typical values of oy < 1072, while in the
absence of spectator fields, one would have ay < 107!

In this regard, let us notice that there is, in fact, a
fundamental difference between the strength of a standard
(direct) FOPT and the case of an inverse FOPT. By referring
to the definition of @y in Eq. (6), we can see that the part
containing Dp(T ) will always contribute with a positive
sign. This follows from the fact that the broken phase will
necessarily have a larger pressure than the symmetric phase
for the FOPT to take place and that de/dp ~1/c? is a
positive quantity. Therefore, considering the case of neg-
ative arg, we can derive the following inequality:

§|a9| < w_(Ty) —w(Ty) _ Aag(T)
47 wi(Ty) detr +(T+)

.09

where a. (T, ) indicates the effective number of relativ-
istic d.o.f. in the symmetric phase at the temperature 7',
according to the parametrization 3w(T)/4T* = a.q(T),
and Aagy (T, ) is the change in d.o.f. in the broken phase
at the same temperature. This relation shows that an inverse
FOPT can be strong only when it involves a significant
change in d.o.f. between the two phases. This is a structural

property of the vacua of the theory under consideration, and
it should be contrasted with the case of standard FOPTs
whose strength is mostly controlled by the amount of
supercooling that can be achieved in the expanding
Universe. In particular, Eq. (9) indicates that an inverse
FOPT is not necessarily stronger when it becomes more
supercooled.

VI. CONCLUSION AND OUTLOOK

We presented a simple SUSY-breaking model displaying
a window of inverse FOPTs during the spontaneous
breaking of the R symmetry. This represents the first
explicit example of a BSM model leading to an inverse
FOPT in a cooling cosmology, as well as a proof of
principle for the relevance of this dynamics in the early
Universe.

We find that the sign of the generalized pseudotrace, ay
in Eq. (6), determines the “inverseness” of the transition. As
a comparison, we also show that the sign of the pseudotrace
introduced in Ref. [100] offers a fair estimate for the type of
the FOPT as well.

Our study motivates a broader investigation of inverse
FOPTs in explicit BSM models. This includes establishing
a deeper connection between the inverseness of a FOPT and
its fundamental properties and symmetries, exemplified
here within a model of spontaneous SUSY breaking, as
well as identifying possible non-SUSY realizations of this
dynamics.

Finally, FOPTs are powerful sources of gravitational
waves that can be detected at current and forthcoming GW
observatories. This work provides motivation to character-
ize the GW spectrum related to inverse FOPTs and to
determine to which extent this can be distinguished from
the one arising during direct FOPTs.
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APPENDIX A: INVERSE FOPTs
IN THE pv MODEL

In this appendix, we examine the emergence of inverse
phase transitions in the yv model [101], also referred to as
the v model in Ref. [100] and the template model in
Refs. [110,114,115]. The purv model extends the standard
bag model by allowing the sound speed to deviate from the
relativistic value of 1/+/3, while remaining constant within
each phase. Explicitly, the EOS for the symmetric and
broken phases is given by

ei(T) = CI:EYWi + €4,
vy = 1 + I/Cii.

pe(T) =i a, T — ey,

(A1)

In the following v, = v and v_ = u, we consider u > v as
this mimics the thermal history of the R symmetry model,
presented in the main text. The velocity relations from the
matching conditions take the form

p—pv—rv(Bag—1)(u—1)
(u=—pv+rBag+p—1))(u=1)
ve (=D —p+rBa—1))
vo p—p—r@Bay+pu—1)p-1)

VU=

(A2a)

where we define the ratio r = a, T% /a_T". Additionally,
the strength parameter ay, defined from the pseudotrace 0
as ag =4D0/3w, where 0 = e — p/c3_, within the uv
model evaluates to

v—1 1/—/4+ Ae e, —e€_
ay=— | —+ua, |, a,= = .
O I S R e A G ]

(A3)

It is important to emphasize that a, serves as the funda-
mental quantity determining the nature of the transition and

1. T
0 "CJr:l/\/?:,c,:l/\/g///
2 7
2yl L
0.8F ag > 0 H
1.
0.5
0.67
+
= ag < 0. ag < 0 a 0 0. a
0.4f {1 B o
0.2F ap >0 -0.5 ~1.
0.0 . I ] r ~1.
0.0 0.2 0.4 0.6 0.8 1.0

v

FIG. 4. Dashed (solid) lines represent direct (inverse) phase
transitions. The inverse branches emerge as soon as ay < 0,
whereas this is not necessarily the case for ;. The two strength
parameters of the phase transition, a, and ay, coincide in the bag
model when y = v = 4.

directly corresponds to the strength of the phase transition
computed via the pseudotrace.

Notably, in the case of the traditional bag EOS, where
u =v =4, the pseudotrace coincides with the standard
definition of the phase transition strength, ay = a_, thereby
recovering the standard velocity relations.

It is shown in Fig. 4 that, as soon as ay < 0, the “inverse
branches” emerge. This confirms that, in the yr model,
a negative ay implies an inverse phase transition.
Analogously, for the bag EOS, a negative ar, corresponds
to an inverse PT. This result aligns with the characteriza-
tion proposed in [84], where it was shown that, within the
bag EOS, Ae < 0 serves as a direct indicator of an inverse
phase transition.

APPENDIX B: SOLVING THE HYDRODYNAMIC
EQUATIONS FOR THE FLUID PROFILES

The conservation of the energy-momentum tensor for a
relativistic fluid, given by V, 7 = 0, yields two indepen-
dent hydrodynamic equations. These equations can be
rewritten in terms of the enthalpy density, w = e + p. We
consider a spherically symmetric and self-similar configu-
ration, where the fluid variables depend only on & = r/1,
the similarity variable. Using this variable, it can be shown
that the hydrodynamics equations, in terms of the fluid
velocity (&) and the fluid temperature 7(&), take the
following form:

0:T d 2
(€= 0)" gp =" T 1 =7 vE= ),
o:T
7; = yzﬂ(f, 1})051), (Bl)
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Overlap of direct and inverse branches in the (v_, v, ) plane and corresponding fluid profiles. Left: the (v_, v, ) trajectories for

different values of T, . The inverse branch is shown in orange, while the direct branch is displayed in blue. The highlighted crossing
point indicates a case where both a direct and an inverse solution exist for the same (v_, v, ) pair. Middle: fluid profile corresponding to
the direct hybrid solution. Right: fluid profile for the inverse hybrid solution. The shaded regions indicate the interior of the bubble.

where u(&,v) = f_‘é;. It is important to emphasize that the
thermodynamic quantities, such as p and e, must be
evaluated in the appropriate phase depending on the region
where the equation is being solved. In the remainder of this
appendix, we present the different types of expansion

modes for inverse PTs within this general framework.

1. Inverse deflagration

To fully specify the system of equations in Eq. (B1), we
must define the initial conditions for v(£) and T'(&). In the
case of an inverse deflagration, this translates to

éw =0y,

v(&) = p(ve.vo),
T(&)) =T, r

T(&)=T_. (B2)

where the + phase corresponds to the false vacuum, while
the — phase corresponds to the true vacuum. Additionally,
we impose the condition for the formation of a shock wave,
which is given by /’l(ésh’ v(ésh))fsh = C%,—(T(ésh))' These
initial conditions also apply to standard detonations,
provided that the pair (v,,v_) satisfies the condi-
tion v, > v_.

2. Inverse detonations

For inverse detonations, the initial conditions across the
discontinuity translate into

v(&,) = u(v_, vy),
T(&) =T-.

gw =,

T(Ef) =T, (B3)
It can be checked directly that the rarefaction wave
terminates at qng = ¢, (T(Eeng)). For a standard detona-
tion, the substitution ¢, — ¢, _ must be applied, as the
rarefaction wave develops behind the reaction front, i.e., in
the new phase.

These initial conditions also apply to standard deflagra-
tions, provided that the pair (v, v_) satisfies the appro-
priate conditions. In this case, the shock condition must be

modified by replacing ¢, _ with ¢, as the shock forms
ahead of the reaction front in the old phase.

Before discussing the last type of solution, it is important
to highlight the presence of strong solutions in Fig. 5,
where the red-shaded region indicates their domain. For
(inverse) detonations/deflagrations, the strong regime is
defined by the conditions (v, Zc,  (Ty))v_ S ¢, _(T_).
As previously discussed in [84], strong (inverse) detona-
tions cannot be consistently realized, while strong (inverse)
deflagrations, although they may initially form due to the
dynamics of the phase transition, are inherently unstable.
Over time, they will decay into (inverse) hybrid solutions.

3. Inverse hybrid

For inverse hybrid solutions, as in the standard case, to
make the profile stable, we must connect a strong inverse
deflagration to a Chapman-Jouguet inverse detonation,
which is defined as a detonation with v, = ¢,  (T,).
The initial conditions then translate into

(&) = u(&h es .+ (T4)),
Ty =T T(E) =T,

v(&) = u(&. o),
(B4)

where the four input parameters required to specify the
system are (&, v_,T.,T_).

Additionally, the shock formation condition must be
imposed, and one can verify that the rarefaction wave of the
inverse detonation terminates again at &,y = ¢ 1 (T (Eena))-
The maximal range of wall velocities for which an inverse
hybrid solution exists is given by cf,_ <&, < ¢4, where
the lower bound arises because the slowest possible inverse
hybrid is determined by the slowest possible shock.

For the case of a direct hybrid transition, a strong
deflagration must instead be connected to a CJ detonation,
where the latter is characterized by v_ = ¢, _(T_). The
allowed range of wall velocities in this case is ¢, _ < &, <
1 where the upper bound is simply the speed of light, as
there is no fundamental constraint on the maximum speed
of the shock front.
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4. Overlap in the hybrid corner

In our numerical analysis, we observe that, in the hybrid
transition regime, the branches in the (v_, v, ) plane exhibit
an overlap between direct and inverse transitions. This is
particularly evident when focusing in on the hybrid region,
as shown in Fig. 5 (left panel). There, we explicitly construct
two distinct solutions corresponding to the same pair of
values (v_, v, ), demonstrating the existence of overlapping
branches, in the middle and right panels of Fig. 5.

This overlap arises due to the stability conditions
required for hybrid solutions. Specifically, for both direct
and inverse hybrids to remain stable, the fluid velocity just
behind (or in front of) the wall must match the local speed
of sound in the respective phase at the corresponding
temperature. That is, stability demands that for (inverse)
hybrid holds (v, = ¢, (T, ))v_ = c¢,_(T_). This condi-
tion provides additional flexibility in setting &, = v_ for

direct hybrids and &, = v, for inverse hybrids, thus
allowing both solutions to coexist.

Another key reason for this overlap is related to the
structure of the separatrices (black solid lines) in the
(v_, v,) plane. Ideally, these separatrices would be given
by v. =v, and v_v, = ci_, however, since the speed of
sound varies along the branches due to temperature
dependence, the boundary between the direct and inverse
solutions is no longer sharply defined. Despite their overlap
in the (v_,v,) plane, the two solutions can still be
distinguished physically. Each branch corresponds to a
different set of temperatures (7, 7_), leading to a different
transition strength characterized by the generalized pseu-
dotrace ay, which will have, in fact, a different sign. Thus,
even though the solutions may appear degenerate in
velocity space, they remain distinct due to their thermo-
dynamic properties.
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