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We study the Higgs branch moduli space of certain 6D (1, 0) superconformal field theories (SCFTs)
after gauging their Z, Green-Schwarz automorphism. We explain how to read the flavor symmetry of
such SCFTs directly from the 6D construction, and we confirm the expectation by computing the
Coulomb branch Hilbert series of their Z,-wreathed 3d A = 4 magnetic quiver. To perform the latter
computation, we explicitly introduce a methodology to determine such Hilbert series for Z,-wreathed

orthosymplectic quivers.
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I. INTRODUCTION

In recent years, there has been a proliferation of con-
structions and (attempted) classifications of higher-dimen-
sional superconformal field theories (SCFTs), typically
driven via geometric approaches.1 Often, discretely gauged
SCFTs play a crucial role in testing the robustness of such
constructions and the techniques for extracting physical
properties. Consider 7 an SCFT with a discrete global
symmetry I, obtained from such a geometric or top-down

approach, and then consider the new theory 7 obtained by

gauging I'. Then, the theories 7T can source novel properties
that are absent in their nondiscretely gauged cousins. For
example, in the world of 4D N = 2 SCFTs, such discrete
gaugings are known [3-6] to violate the conjecture [7,8]
that the Coulomb branch chiral ring is freely generated,
which leads to a failure of the Shapere-Tachikawa [9]
formula for the central charges in terms of the Coulomb
branch operators. In this paper, we explore a similar
discrete-gauging operation on the 6D (1, 0) SCFTs obtained
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via the geometric construction [10,11] in F theory. We focus
on the %—Bogomol‘nyi-Prasad—Sommerfeld (BPS) operator
sector known as the Higgs branch chiral ring of particular
6D SCFTs, which realize a discrete global symmetry from a
Z, Green-Schwarz (GS) automorphism [12], and analyze
the consequences of the gauging of such a symmetry.

The 6D (1, 0) SCFTs are generically strongly-coupled,
and thus it can be challenging to extract their properties.
More generally, let 7 denote an arbitrary eight-supercharge
theory in dimensions > 3, for which we would like to
analyze the Higgs branch. For example, one might want to
study what the interacting fixed points along subloci inside
the Higgs branch are, or know what 3-BPS operators belong
to the subsector of the theory known as the Higgs branch
chiral ring. Moreover, it is interesting to know if the Higgs
branch chiral ring is finitely generated and what its
generators and the relations among them are. One way
to make progress on such questions is to find a 3D V' = 4
Lagrangian theory, 7 ,;, such that the Coulomb branch of
T, is isomorphic to the Higgs branch of 7, as follows®:

(1.1)

Any such 7, is known as a magnetic quiver for the Higgs
branch of 7 [13-15]. For many of the 6D (1, 0) SCFTs,
there are known 7, see, for example, Refs. [16-24].
Once a magnetic quiver is known, we can take advantage
of the Lagrangian description to study the Coulomb branch,
for which there are a variety of well-developed tools. For

HB[7] = CB[T ).

*More generally, the Higgs branch may be isomorphic to the
union of Coulomb branches of a collection of magnetic quivers,
but this situation will not arise in this paper.
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example, if we are interested in the spectrum of operators
belonging to the Coulomb branch chiral ring, as well as the
generators and relations, then we can use the monopole
formula [25] to determine the Coulomb branch Hilbert
series. Alternatively, if we are interested in the interacting
fixed points on the Coulomb branch, and the vacuum
expectation values (VEVs) that must be given to trigger the
corresponding renormalization group flows, we can use a
quiver subtraction algorithm [26] or the decay and fission
algorithm [23,27,28]. In this way, we learn detailed
information about the Higgs branch of (non-Lagrangian)
higher-dimensional SCFTs.

We now suppose that 7 denotes a 6D (1, 0) SCFT with
discrete global symmetry I', and with magnetic quiver for
the Higgs branch 7 ;. Furthermore, we suppose that we can
gauge r’ leading to a new 6D (1, 0) SCFT which we denote

as 7. To understand the structure of the Higgs branch of
this discretely gauged theory, it would be useful to find a
magnetic quiver for the Higgs branch: ’Z~'M. In this paper,
building upon previous work in lower-dimensional field
theories [32-38], we propose that the magnetic quiver for
the Higgs branch of the discretely gauged theory is the
I wreathing of the magnetic quiver of the SCFT before
discrete gauging:
Ty =Tyl (1.2)
To define what it means for a quiver to admit a
wreathing, we must first define the group-theoretic notion
of the wreath product. In general, consider a reductive Lie
group G, and then the wreath product of G by I' C S is
defined as

(1.3)

k
G1I'= (HG,) xT,
i=1

where X is the Cartesian product of sets, and G; with i =
1, ..., k are k copies of the original group G. An element of
G T is denoted (g,0) given by k elements g; € G; and a
permutation ¢ €I. In this way, G I" can be seen as the
direct product of k copies of G, which can be permuted by
I'. Since in this paper we are interested in Z, ~ S,
wreathing, we explain briefly how it works for an S, wrea-
thing of a group G. One first considers the direct product of
two G groups, i.e.,

G? =G %G, (1.4)

’In particular, we are assuming that there are no discrete
anomalies for this I'. Evaluating the 6D ’t Hooft anomalies for
discrete symmetries, perhaps along the lines of Ref. [29] in 4D, is
an interesting problem, but beyond the scope of this work. Note
that mixed anomalies between I" and other global symmetries are
not a problem; gauging I" then leads to a theory with noninvertible
symmetries as discussed in Refs. [30,31].

FIG. 1. In Fig. 1(a), we depict an example of a unitary quiver
that has two identical tails attached to the central node, and
thus has a Z, quiver automorphism which can be wreathed. In
Fig. 1(b), we depict the wreathed quiver obtained by Z,
wreathing of the quiver in Fig. 1(a).

and we consider the action

fi 8, = Aut(G?), (1.5)
such that given an element g;€G;, then f acts as
f(0)(91.92) = (95(1)- 9o(2))> Where 6 € S,, for all elements
g; € G. We note that, if G is of order |G|, then G 2 S, is of
order 2|G|%. Now, consider a quiver gauge theory with
gauge group which contains two copies of a particular
subgroup G,,, G 2 G,, x G,,, and such that there exists a Z,
automorphism of the quiver that exchanges the two copies
of G,,. Then, we say that the quiver admits a Z, wreathing,
and the wreathing replaces

G, xG, > G,1Z,. (1.6)
Since G,, ? Z, is a Lie group, it is a priori perfectly sensible
to consider the gauge theory associated with it. The
hypermultiplet spectrum remains unchanged under this
operation. To give a particularly relevant example: a
star-shaped quiver with k identical tails admits a wreathing
by any subgroup of S,. In Fig. 1, we demonstrate an
example of a 3D N = 4 quiver that admits a Z, wreathing
and denote the resulting wreathed quiver.

A. Summary of the results

In this work, we focus specifically on 6D (1, 0) SCFTs,
T, with eight supercharges that arise on the worldvolume of
MS5-branes probing an orbifold singularity, known as
conformal matter [39], which possess a Z, discrete global
symmetry. When the Z, is gauged leading to the theory 7,
we can extract/conjecture properties of T, such as the
continuous flavor symmetry, by studying the action of the
Z, on the known Higgs branch chiral ring generators of 7.
There are some subtleties in this analysis which we explain,
for example, under certain circumstances an 80(2m) global
symmetry of 7 can be transformed into a wu(m) global
symmetry of 7.

The main focus of this work is on, so-called, (D, D)
conformal matter, where the magnetic quivers for the Higgs
branches are known to involve orthosymplectic gauge nodes.
We develop a procedure to compute the Coulomb branch
Hilbert series of general Z,-wreathed orthosymplectic
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quivers, and we apply this technique to the Z,-wreathing of
the magnetic quivers associated with the 7. We see that the
flavor symmetry of T predicted from the action of the Z, on
the 6D Higgs branch operators is consistent with the
Coulomb symmetry of the wreathed magnetic quiver as
determined from the Hilbert series, and thus we find strong
evidence for Eq. (1.2) in this class of theories.

B. Structure of the paper

The structure of this paper is as follows: first, in Sec. II,
we briefly review the geometric construction of 6D (1, 0)
SCFTs, in particular for the conformal matter theories, and
explain how their Higgs branches are related to the
Coulomb branches of (wreathed) 3d N' = 4 quiver gauge
theories. In Sec. III, we discuss the discrete gauging of
conformal matter, which will serve as a reference for all the
examples discussed in this work. This is one of the novel
aspects of this work, and in Sec. [l B we show how to
determine the flavor symmetry of the theory after discrete
gauging directly from the tensor branch analysis in 6D. In
Sec. IV, we explain how the discrete gauging is reflected in
the wreathing of the 3D magnetic quiver for the Higgs
branch, and Sec. IVA contains an explanation of how to
compute the Hilbert series for wreathed theories with
orthosymplectic groups. We test our proposal in Sec. V,
focusing on examples that admit both unitary and ortho-
symplectic quivers. More examples are discussed in
Sec. VI, in which we confirm the expected flavor symmetry
after discrete gauging, which we introduced in Sec. III B by
explicitly computing the Hilbert series of the Z,-wreathed
magnetic quivers. We discuss some implications and
directions for future study in Sec. VII. In the Appendix,
we review how to compute the classical contribution for the
Coulomb branch Hilbert series.

C. Conventions and notation

(1) In the following, we consider both unitary and
orthosymplectic quivers, and we follow the usual
language in which O represents a gauge node and its
label is the rank of the unitary gauge group, while [
denotes a flavor node and its label denotes the
number of fundamentals. When the gauge or flavor
node is 8o, we will color the node in red, while we
will color the udp nodes in blue. The line connecting
two nodes represents a hypermultiplet in the bifun-
damental representation of the two groups. If the line
edge corresponds to multiple hypermultiplets, we
will specify this. A loop attached to a unitary gauge
node indicates an adjoint-valued hypermultiplet,
whereas a loop attached to a symplectic gauge node
refers to an antisymmetric hypermultiplet.

(2) We adopt the notions of excess number, balance,
underbalance, and overbalance as in Ref. [40].
For a U(N) gauge group with N, hypermultiplets

transforming in the fundamental representation, the
excess number for such a gauge group is defined as

eu() :Nf—2N. (17)
If, in a given quiver theory, all the excess numbers
are ey(y) = 0, the theory is said to be good, because
all the monopole operators are above the unitarity
bound. If a gauge group has eyy) = 0, we call that
node balanced; while if ey(y) > 0, the gauge group
is said to be overbalanced. If ey(y) < 0, the gauge
group is said to be underbalanced. In particular, if
any of the gauge groups has eyy) = —1 the theory
is called ugly because there is a monopole operator
saturating the unitarity bound; otherwise, the theory
is bad, because it admits monopole operators below
the unitarity bound.* The excess number for SO and
USp gauge groups with N, (full) hypermultiplets
transforming in the fundamental representation is
defined, respectively, as

eSO(N):Nf_N+l, eUSp(ZN):Nf_ZN_l-

(1.8)
For orthosymplectic nodes, having any of the gauge
group with ego(y)/uspianv) = —1 already signals that

the theory is bad.

II. REVIEW OF 6D CONFORMAL MATTER

In this section, we review the construction of 6D (1, 0)
SCFTs, known as conformal matter [39], which are theories
living on the worldvolume of MS5-branes probing an
orbifold singularity. We discuss their realization from the
M theory and F theory perspectives, and how to determine
their flavor symmetries from their tensor branch effective
field theories. We also explain how to construct the
corresponding 3D A =4 magnetic quivers from their
Higgs branches.

A. The Higgs branch of conformal matter

Conformal matter refers to the class of 6D (1, 0) SCFTs
that live on the worldvolume of MS5-branes probing an
orbifold singularity [39]. More specifically, rank N (g, g)
conformal matter, where g is an ADE Lie algebra, lives on
the worldvolume of a stack of N M5-branes probing a
C?/T singularity, where I is the finite subgroup of SU(2)

“In some cases, it may happen that monopoles valued in the
magnetic lattice of multiple gauge groups make an apparent good
theory bad. This is the case for some affine Dynkin-shaped
unitary quiver theories [41]. A similar discussion can be applied
to some orthosymplectic magnetic quivers, and recently an
adjustment to the balance notion for SO groups has been
proposed in Ref. [23].
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associated with g via the McKay correspondence [42]. We
denote these theories as

A% (2.1)

Such theories have a flavor symmetry which is, at least,

3P g, (2.2)
which we refer to as the left and right flavor factors. In fact,
the conformal matter theories are the parents of a whole
family of SCFTs obtained from Higgs branch renormali-
zation group flows. These flows are triggered via giving
nilpotent vacuum expectation values to the moment map

operators of the g @ g flavor algebra. Let O; and Op
|

HB | A3 (0n,00)] = CB

To, [su(K)]

denote nilpotent orbits of g, then we can refer to the child
theories of this family as

AN-1(01. Og). (2.3)

Now that we have defined a class of 6D (1, 0) SCFTs, we
would like to understand some of their physical properties.
In this paper, we are particularly interested in the structure
of the Higgs branch.” A magnetic quiver for the Higgs
branch of A5 (0,,0p), that is, where T = Zy in the
M theory description, has been proposed in Ref. [20],
utilizing the magnetic phase of the brane description of the
6D (1, 0) SCFTs in Type IIA string theory. It is proposed
that

2.4
Tog[su(K)] =
K

where T[8u(K)] are the 3D N = 4 theories introduced in Ref. [40]; these are, in fact, linear Lagrangian theories, as we
explain presently. Nilpotent orbits of 81(K) are in one-to-one correspondence with integer partitions of K®; let

P = [pl’pZ»“"pK]

with

(2.5)

K
pi=K,

i=1

written in weakly decreasing order and zero extended to be of length K, be the integer partition associated to the nilpotent
orbit O. Then, the Lagrangian theory T[81(K)] is simply the linear quiver

o o o o—{]
ny 12 nNKg—2 NKk—1 g’ (2.6)
where the n; are specified by the choice of partition as
n; = Z pj (27)

A similar proposal for the magnetic quiver of the Higgs branch of the (D, D) conformal matter SCFTs, Ai,"_(%l() (O, Og),
was also put forward in Refs. [20,48]. In the M theory construction, this is where I" is the binary dihedral group. They

proposed that

B [43%0(0,0p)] = CB

To, [50(2K)]

2N

(2.8)
Togp[s0(2K))

2K

>Various properties of the Higgs branches of conformal matter theories have been studied from diverse perspectives. For nilpotent
Higgsing of the moment map operators, see, for example, Refs. [20,22,43-51]. There are also Higgs branch renormalization group flows
which change g (such as those triggered by end-to-end operators [47,52-56]) and N.

%See Ref. [57] for the canonical reference on nilpotent orbits of semisimple Lie algebras.
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via the engineering of the SCFTs in Type IIA string theory.7
The brane analysis in Refs. [20,48] requires that the
partitions associated with O; and Oy be special partitions;
this is in contrast to the geometric engineering approach
(see Sec. IIT A), where SCFTs are associated with all pairs
of D-partitions, as in Eq. (2.3) [58,59]. While we do not
have a derivation of Eq. (2.8) for nonspecial partitions, all
the obvious cross-checks are passed, and thus we assume
that Eq. (2.8) is valid in general. The T»[80(2K)] theories
again have a simple Lagrangian description. Each nilpotent
orbit of 80(2K) can be associated with a D-partition of 2K*;
however, this is not a unique association: each very even D-
partition is, in fact, associated with two distinct nilpotent
orbits. This particular subtlety is not well understood for the
To[80(2K)] theories, and thus in this paper we will
perforce ignore this distinction.” Let

2K
P=pi.py-pag] with Y p;=2K,  (29)
i=1

be a D-partition of 2K, written in weakly decreasing order
and zero extended to be of length 2K. Let O be the nilpotent
orbit associated with the D-partition P, then 7T [30(2K)]
has the following Lagrangian description as an alternating
sequence of orthosymplectic nodes:

ny N2 NoK—2 N2K—-1 9K (2.10)
Here, the n; are specified by
2{ 2K Kl %J if i odd,
n; = (2.11)

2K pj .
20> k-7 if i even.

Examining the magnetic quivers for Higgsed (A, A) and
(D, D) conformal matter in Egs. (2.4) and (2.8), respec-
tively, we notice that when O; = Oy the magnetic quiver
exhibits a Z, diagram automorphism. The physical mani-
festation of this Z, in the 6D (1, 0) SCFTs is the subject of
Sec. IT A.

"Note: there is an important choice of global structure that
must be made here; we return to this point in Sec. II D.

¥A D-partition of 2K is an integer partition of 2K such that
every even element appears with even multiplicity. A D-partition
which is very even has only even elements.

Recent work in four and six dimensions has emphasized the
importance of and determined the physical distinction between
the nilpotent orbits associated to the same very even D-partition
[51,60].

B. Conformal matter from F theory

We have discussed the realization of the conformal
matter theories as living on the worldvolume of M5-branes,
that is, from an M theory perspective. We now turn to the
F theory perspective. We briefly review the construction of
the conformal matter theories via the atomic/geometric
perspective in F theory [10,11]. See Ref. [61] for a detailed
review of the atomic construction.

We begin with the (A, A) conformal matter theories. Let
Y be a noncompact elliptically fibered Calabi-Yau threefold
7. Y — B such that B contains a linear chain of N —1
pairwise intersecting smooth complex rational curves of
self-intersection (—2) and each supporting a split singular
fiber of Kodaira-Néron type [ at the generic point, and
such that the fibers are minimal over the intersection points
of the curves. We can denote such a Calabi-Yau threefold
via the shorthand notation

, (2.12)

where each 2 denotes a P' c B with self-intersection
number (—2) and a neighboring 2 indicates that the
corresponding complex curves intersect with intersection
number +1; the 8u(K) over the 2 indicates that over the
generic point of that P! there is supported a split singular
fiber of Kodaira type Ix. We often refer to geometries
denoted as in Eq. (2.12) as a “curve configuration” or, for
reasons we will see anon, as a “tensor branch geometry.”
There exists a contraction map,

prY Y, (2.13)

which simultaneously shrinks the volume of all compact
curves in B to zero [62]. We see that the base of the
elliptic fibration Y is simply C?/Z,. Compactification
of F theory on Y yields the (A, A) conformal matter theory
Aéu(K)

N-1 -

We can similarly ask about the result of the compacti-
fication of F theory on Y. Instead of an SCFT, this yields an
SQFT, which is known as the effective field theory on the
tensor branch of the SCFT associated with Y. This consists
of vector multiplets (associated with each gauge algebra g
supported over a compact curve), hypermultiplets (asso-
ciated with the intersections of compact and (non)compact
curves), and tensor multiplets (one associated with each
compact curve) where the scalar in the tensor multiplet is
given a vacuum expectation value proportional to the
volume of the associated curve. Each tensor multiplet
contains an anti-self-dual 2-form, which couples to a
tensionful string of the 6D theory: tuning the VEVs of
the scalars to be zero causes these strings to become
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tensionless, and their nontrivial dynamics generates the
SCFT [63,64]. As an supersymmetric quantum field theory
(SQFT), it is possible to compute a variety of the physical
properties of the effective field theory at the generic point of
the tensor branch; a part of the power of this geometric
construction of 6D (1, 0) SCFTs is the ability to compute
quantities at the generic point of the tensor branch which
can be tracked to the superconformal field theory at the
origin of the tensor branch. Such quantities are typically
related to global symmetries, as discussed in Secs. III A and
II C, or anomalies.

Next, we turn to understanding how the Higgsed theories
are constructed in F theory. Write the partitions of K asso-
ciated with nilpotent orbits of 8u(K), O; and Ok,
respectively, in multiplicative form as

[K™&,...,2" 1™] and [K"%,...,2",1"]. (2.14)

Then, the tensor branch geometry ¥ associated with the
SCFT A28 (0, 0p) is
su(k;) su(ky)

3u(kg) 8u(K) su(K) su(kj)

Zkl’ - ki—l - ki+1 —m; = 0, (216)

where we have defined k) = 0 and kg.; = K for conven-

ience, and analogously for &} in terms of m/. In this paper,

we are interested in theories Ai,"_(lK ) (0, O), where we have

set O; = Op = O, and satisfying

N=2¢>0, (2.17)

where 7 is the largest integer such that m, in the partition
corresponding to O is nonzero."’

A similar method to construct the ¥ such that, after
applying the contraction map p: ¥ — Y, F theory com-

pactified on Y engineers the (D,D) conformal matter

SCFTs Af’vo_(iK)(OL,OR) is known. The Y generically

consists of an alternating chain of pairwise intersecting
(—1)- and (—4)-curves with nonsplit /,x_g fibers supported
over former and split /3 _, over the latter. Let the nilpotent
orbits Oy, Oy of 80(2K) be associated with the following
D-partitions of 2K, written in multiplicative form

LI S, S S SR, S, S
] [mo] ] W ] (3] [m)] ) L
T [(2K)™mx, ..., 2m2 1™] and  [(2K)™x, ..., 2™, 1™],
(2.15)
(2.18)
The k; and k! are fixed by gauge-anomaly cancellation,
which necessitates that respectively.11 Then, the curve configuration is
|
u8p(2k;) 8o(ky) udp(2ks) 8o(ky)  udp(2kyx_;) 80(2K) u8p(2K—8)  80(2K) usp(2kl,_ ) 8o(K,) usp(2k,) 8o(k}) usp(2k,)
1 4 1 4 ... 1 4 1 - 4 1 e 4 1 4 1 (2.19)
] o] [ms]  my] [mog—1] (V2K 1)) —curves [m_y) (][] [my] )
The k;, k! are again fixed by anomaly cancellation; this imposes that
4ki —+ 16 - ki+1 - ki—l —m; = 0 if 1 Odd,
ki =8 — ki — kg — % —0 if i even, (2.20)

and similarly for the &/ in terms of the m]. In writing these conditions, we made the following convenient definitions: ky = 0
and k,x = 2K. Sometimes, solving the anomaly cancellation conditions in Eq. (2.20), yields some k; which are
negative; when this happens, we need to apply the following replacement rules to determine the correct tensor branch

geometry:

"When Eq. (2.17) is not satisfied, the Higgsing is “bad”; see Refs. [65-67] for discussions of such cases.

"As we have already emphasized, certain D-partitions are in fact associated with two distinct nilpotent orbits. The difference
in the tensor branch geometries between two such nilpotent orbits is related to @-angles, which we suppress in the following.
See Ref. [51] for a careful analysis of the curve configuration when Higgsing by nilpotent orbits associated with very even D-partitions.

026035-6



DISCRETE GAUGING OF 6D SCFTS AND WREATHED 3D ...

PHYS. REV. D 112, 026035 (2025)

1 4 1 4 — 2 3.,
udp(—6) 30(4) udp(-2) 30(8) 3u(2) 80(7)
1 4 1 4 — 2 3 ,
u3p(—4) 30(5) usp(-2) 80(7) su(2) 80(7)
1 1 4 ...— 2 3 ,
usp(—4) 30(6) 3u(3)
1 4 -— 3 ,
usp(—4) 80(7) %
1 4 3.
usp(—4) 80(8) 30(7)
1 -— 3 ,
usp(-2) g g
14— 3., (2.21)

where the final row is a catch-all replacement for any such
special orthogonal g that appears when solving Eq. (2.20).
|

HB [PTB [Aj@‘ﬂf?(oL,OR)H ~

and

CB

12

HB [PTB [A?&?f)(OL,OR)H

where we have written PTB[7] to denote the partial tensor
branch SQFT associated with the conformal matter SCFT
T. We can see that the magnetic quiver for the Higgs
branch of the partial tensor branch theory has a Sy diagram
automorphism, which permutes the N either u(1) or
u8p(2) nodes, and when O; = Oy there also exists a
Z, diagram automorphism that swaps the two horizontal
tails. Note that the magnetic quiver for the Higgs branch of
the SCFTs, as given in Egs. (2.4) and (2.8), is obtained by
wreathing the Sy automorphism of the PTB Higgs
branches, following the proposal in Ref. [20].

C. Flavor symmetry of conformal matter

As we have explained, a noncompact elliptically fibered
Calabi-Yau threefold satisfying the appropriate conditions,
for which the relevant details are captured by the tensor

Similarly to the (A, A) conformal matter case, in this paper
we are only interested in (D, D) theories which are Higgsed
by the same nilpotent orbit and are not bad, which means

that Eq. (2.17) must also be satisfied for the Af\,n_(%K) (0,0)
that we consider.

Another object of interest is known as the “partial tensor
branch theory.” This is the SQFT obtained by taking the
curve configuration at the generic point of the tensor branch
for some conformal matter, and taking the volumes of all
(—=1)-curves to zero, until there are no (—1)-curves remain-
ing.'”” This theory consists of a collection of vector
multiplets coupled to strongly coupled SCFT sectors
associated with the collapsed curves. The torus-compacti-
fication of the partial tensor branch SQFT is known to have
an alternative realization [43,49,50] via a punctured sphere
in class S [68,69]. Therefore, the analysis of Ref. [70]
provides the magnetic quiver for the Higgs branch of this
partial tensor branch theory in 6D. We have

N
/_M

9 9
To, [s0(2K)] M To,ls0(2K)]

2K

(2.23)

I
branch curve configuration, gives rise to a 6D (1, 0) SCFT
via F theory geometric engineering. For the purposes of this
paper, we are interested in both the discrete global
symmetries and the continuous global symmetries; in this
section, we review how the latter are determined from the
tensor branch curve configuration. The algorithm is
explained for non-Abelian symmetries in Ref. [43] and
for Abelian symmetries in Refs. [71,72]; we review only
the details relevant for conformal matter theories here.
We begin with a discussion of the non-Abelian flavor
symmetries. Cancellation of gauge anomalies implies that
when the Lie algebra g is supported over a compact curve

2For (A, A) conformal matter, there are no (—1)-curves, and
thus the partial tensor branch theory is the same as the theory at
the generic point of the tensor branch.
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of self-intersection (—n), then the number and representa-
tions under g of the hypermultiplets in the effective field
theory are completely fixed by the pair (g, n).13 Consider a
curve configuration involving a singular fiber associated
with the Lie algebra g over a (—n)-curve. Assume that
gauge-anomaly cancellation implies that there must be m
hypermultiplets in the irreducible representation R of g,14
and furthermore assume that m’ < m of these hypermul-
tiplets are not trapped at intersections of the (—n)-curve
with other compact curves. Then, there is the following
non-Abelian flavor symmetry factor'”:

3u(m’) if Ris complex,
f=< udp(2m’) if Ris real, (2.24)
8o0(2m')  if Ris pseudoreal.

Recall that in the presence of an odd number of half-
hypermultiplets, which exist only when R is pseudoreal,
then m’ can be half-odd-integer. An exception to this
general rule in Eq. (2.24) occurs when considering a
configuration involving 81(2) supported on a (—2)-curve,
see Refs. [10,43,50,73]. For example, for such configura-
tions, we may need to know the following special rules:

2m' =8 = f = 30(7),
2m’:7$f=g2,

2m' =6 = | = 8u(3). (2.25)

These non-Abelian flavor factors we have just described
can be considered as ‘“classical” flavor symmetries that
rotate a number of hypermultiplets in the same representa-
tion. The second interesting class of non-Abelian flavor
symmetries was referred to as “E-string flavor” in Ref. [43].
This arises as follows; consider a tensor branch curve
configuration of the form

qr . Gr
...nLlnRo.-‘

(2.26)

The rules for constructing Calabi-Yau threefolds associated
with SCFTs impose that

“In some instances, the pair (g,n) does not uniquely fix the
matter spectrum, however this does not occur in the conformal
matter theories that we discuss in this paper.

14Anomaly cancellation may require matter in multiple distinct
irreducible representations of g, in which case there may be a
contribution of a product of simple Lie algebras to the global
symmetry.

We note that these flavor symmetry factors arise when R is an
irreducible representation of the gauge group, not just the gauge
algebra. As an example of where this is not the case: let g =
311(3) and G = SU(3) X Z,, i.e., a semidirect product of the
simply connected SU(3) and its Z, outer automorphism; the 3
and 3 are not irreducible representations of G, but the 3 @ 3 is.

g, D gr Ceg. (2.27)

and that a (—1)-curve can intersect at most two compact
curves. Let { be the non-Abelian part of the commutant of
the embedding of g; @ gy inside eg:

f = Commutant(eg, g; D gg)- (2.28)

Then, f is a factor in the non-Abelian global symmetry of
the associated SCFT. Most of the relevant commutants for
determining the E-string flavor were listed in Ref. [43].
For Abelian global symmetries, the situation is more
complicated. A priori, whenever there is a hypermultiplet in
a complex representation, including bifundamental hyper-
multiplets, there is a classical u(1) symmetry that rotates
that hypermultiplet. However, these symmetries often
suffer from Adler-Bell-Jackiw (ABJ) anomalies [71,72].
A systematic analysis of which particular linear combina-
tions of classical u(1) symmetries survive these ABJ
anomalies, in terms of the tensor branch curve configura-
tion, has appeared in Ref. [71]. However, we are interested
in the total rank of the surviving Abelian factors, and this
requires knowledge of only a few simple rules from
Ref. [71]. Consider a curve configuration of the form

Su(ky_p) su(ky_;)
2 2 -2 2,

[my-a]  [mya]

(2.29)

where m; denotes the number of dangling hypermultiplets
associated with each gauge algebra. We assume that all
k; > 2 and that at least one k; > 3. Let £ denote the number
of m; such that m; > 1; then, after taking into account the
ABJ anomalies, the Abelian part of the global symmetry of
the configuration is

f=u(1)"" (2.30)

There are two other ways that 1 (1) symmetries may arise
that we have to consider in this paper. We may have a
udp(2K) algebra supported over a (—1)-curve, such that
there are m’ = 1 dangling hypermultiplets in the funda-
mental representation of the u8p(2K); then there is a
classical 80(2) = u(1) global symmetry, which does not
suffer from an ABJ anomaly. Similarly, we may have an
undecorated (—1)-curve such that the commutant in
Eq. (2.28) contains Abelian factors. As there are only
some configurations with E-string flavor that we consider
in this paper, we list them here:
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3u(3) su(3)
313 ---=f=38u(3)®3u(3),
% &
313 = f=su(2),
30(7) 80(7)
313 = f=u(l),
3u(3) 380(9)
314 = f=u(l),
g 80(9)
314 ---=f=0@,
30(7) 30(9)
314 -.si=0. (2.31)

Each such u(1) persists to a global symmetry of the
quantum theory.

D. Comment on higher-form symmetries

We would like to briefly comment on the arising of
1-form symmetries when considering the 3D magnetic
quivers for the Higgs branches of 6D conformal matter. We
have explained that such magnetic quivers are given as in
Egs. (2.8) and (2.23). In fact, there is a slight ambiguity in
these descriptions that we clarify here. More generally,
in Refs. [70,74], the 3D mirror for class S [68,75] theories
of types A and D were given as a diagonal gauging of a
collection of the 3D T ,[g] theories where a similar subtlety
arises when g is a D-type algebra.

An important observation that was made in Ref. [74] is
that if one wants to match the Higgs branch Hilbert series/
Hall-Littlewood index of the 4D theory,16 for the class
S theories of type D, with the Coulomb branch Hilbert
series of the proposed magnetic quiver, then it is necessary
that the global form of the central node of the magnetic
quiver is G/Z,. The gauging of a Z, 1-form symmetry in
3D creates a dual O-form symmetry, which affects the local
operator spectrum, and thus the Hilbert series.

In the computation of the Hilbert series, we will explicitly
refine by the Z, fugacity w for the Z[zo] O-form symmetry that
the 3D mirror theories have. This is a possible refinement,
and allows us to visualize both the choices of global form for
the central node of the quivers. Either choice of w is sensible
when purely considering a 3D orthosymplectic quiver and its
wreathing, however, the Hilbert series associated to the
Higgs branch of the 4D class S theory corresponds to
unrefining the Hilbert series by setting @ = 1. We expect
that the same choice of global form for the central node is the
relevant choice for the magnetic quiver of the Higgs branch
of 6D conformal matter.

lﬁHere, we will assume that all punctures in the class S des-
cription are untwisted. When twisted punctures are incorporated
the Hall-Littlewood index and the Higgs branch Hilbert series are
generically not the same [76], and magnetic quivers for the Higgs
branches have been proposed in Refs. [76,77].

III. DISCRETE GAUGING OF
CONFORMAL MATTER

Now that we have introduced the 6D (1, 0) SCFTs of
interest in this work, we explain when they have discrete
global symmetries, associated with so-called Green-
Schwarz automorphisms. Then, using the tensor branch
description, we conjecture the continuous flavor symmetry
of the new 6D (1, 0) SCFTs obtained by gauging these
discrete global symmetries. The predictions of the flavor
symmetry obtained in Sec. III B will then be confirmed
from the computation of the Hilbert series of the
Z,-wreathed magnetic quivers in Secs. V and VI.

A. Discrete symmetries and
Green-Schwarz automorphisms

We have discussed how the continuous global sym-
metries of the 6D (1, 0) SCFTs can be determined from the
tensor branch curve configuration associated to the Calabi-
Yau geometry engineering the SCFT in F theory. Discrete
global symmetries of the SCFTs can also be obtained from
the tensor branch description, as explained in Ref. [12].

The tensor branch of 6D (1, 0) SCFTs is given by a
collection of A/ = 1 tensor multiplets. The bosonic sector of
these multiplets is formed by a scalar and an anti-self-dual
2-form. The conformal fixed point corresponds to taking the
expectation values of all the scalars to zero simultaneously,
which in turn corresponds to making the strings charged
under the anti-self-dual 2-form tensionless. The metric on
the tensor branch moduli space parametrized by the scalars
in the tensor multiplets is obtained by considering the Dirac
pairing A of all the string charges, defined as

A A= A, (3.1)
where A is the lattice of string charges. In order to uniquely
determine the geometry of the tensor branch moduli space,
one needs to find what is the group of transformations that
leaves the Dirac pairing invariant. This group is also known
as the automorphism group Aut(A) which receives two
source contributions [12]:

Aut(A) = Aut(Agg) x Aut(usp(20)),  (3.2)

where

Aut(Aend) = Oend X Wend’ (33)

with A being the charge lattice of the endpoint configu-
ration of curves (also known as the partial tensor branch
description in Sec. II), while Q is the number of blowdowns
of (—1)-curves which must be performed to go from the
generic point of the tensor branch to the endpoint curve
configuration. Q.4 represents the candidate global discrete
symmetry, while W4 is the maximal normal subgroup of
Aut(Ayq)- For each family of 6D (1, 0) SCFTs that exist in
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the geometric construction via F theory, O.,q was deter-
mined from the C?/T" singularity of the base in Ref. [12], in
particular, if I" is a finite ADE group then

Oend = OUt(gl")v (34)

that is, the group of outer automorphisms of the ADE Lie
algebra g associated to I'" via the McKay correspondence.

As explained in Ref. [12], the singular F theory base
C? /T, where I is one of the appropriate finite subgroups of
U(2), enjoys Ogpq as an isometry. The fact that O is an
isometry of the base of the Calabi-Yau (both the base at the
generic point of the tensor branch, and at the origin of the
tensor branch) means that O,y is a candidate global
symmetry of the associated SCFT. Of course, an isometry
of the base of the compactification space does not neces-
sarily uplift to an isometry of the full compactification
space; the latter depends on the compatibility of the elliptic
fibration.

To explore the uplift of the isometry to the Calabi-Yau
threefold, we explore a pertinent example for this work.
Consider the curve configuration

3u(K) 3u(K)
Bu(K) 2 --- 2 [8u(K)],
N-1

(3.5)

associated to rank N (8u(K),8u(K)) conformal matter,
where we have written the classical flavor symmetries
arising on the left and the right, and where we assume that
N > 2. As the base geometry is simply C?/Zy, we know
from Ref. [12] that
Oeng = Out(81(N)) = Z,. (3.6)

The action of the Z, acts on the (—2)-curves in the
configuration exactly as the outer automorphism acts on
the Dynkin diagram of the 3u(N) algebra: that is, by
simultaneously swapping the kth curve from the left with
the kth curve from the right. It is clear that this is
compatible with the structure of the elliptic fibration,
since the singular fibers supported over the exchanged
(—2)-curves are identical. Similarly, the singular fibers
supported over the noncompact curves, which contribute
the 8u(K) @ 8u(K) continuous global symmetry, are
permuted. Since the action of O,y uplifts on an isometry
of the full Calabi-Yau threefold, we have identified a
discrete global symmetry of the corresponding SCFT.

Further, we note that there can be isometries of the
Calabi-Yau threefold that act as a trivial isometry on the
base, but act in a nontrivial way only on the fiber. A good
example of this phenomenon is the curve configuration

3u(K)
2, (3.7)

where O,y = 1 as it is the group of outer automorphisms
of the 81 (2) Dynkin diagram. Nevertheless, if we group the

fundamental hypermultiplets required by anomaly cancel-
lation together in the following way:

3u(K)

[Bu(K)] 2 [8u(K)], (3.8)
which is the natural restriction to N = 2 of the configu-
ration in Eq. (3.5), then we can observe a Z, that acts only
in the fiber by exchanging the left and right flavor algebras.
In fact, the flavor symmetry is enhanced, as follows:

3u(K) @ 3u(K) - 3u(2K), (3.9)
and this Z, discrete symmetry simply becomes a part of the
enhanced continuous symmetry.

B. Flavor symmetry of discretely gauged
conformal matter

We have now discussed when a 6D (1, 0) SCFT is
expected to evince a discrete global symmetry by studying
the effective description at the generic point of the tensor
branch. If we assume that this discrete symmetry can be
gauged, then we would like to determine some properties of
these purported discretely gauged 6D (1, 0) SCFTs. Here,
we will focus on the flavor symmetry after discrete
gauging; in particular, we will conjecture the flavor
symmetry after discrete gauging by studying the tensor
branch configuration, similarly to what we did in Sec. II C
for the SCFTs before discrete gauging.

Before returning to the 6D SCFTs themselves, let us first
briefly discuss the representation theory of some of the
disconnected gauge groups that we are interested in. Let us
suppose that we have an algebra

g = su(K) ® su(K). (3.10)
We wish to consider the global form of the gauge group
to be

SU(K) x SU(K) X Z,, (3.11)
where the Z, acts as the automorphism that swaps the two
SU(N) factors. We are interested in the representation
theory of this global form; in particular the (anti-)funda-
mental representation of one of the factors does not uplift to
a representation of the group as the Z, acts as

Z,: (K,1) - (1,1_{). (3.12)
Instead, we can see that
(K, 1) ® (1,1_(), (3.13)

form (complex) irreducible representation of the group in
Eq. (3.11). To see how this analysis can reveal the flavor
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symmetry, we consider a 4D A =2 conformal gauge
theory with gauge algebra as in Eq. (3.10) and hyper-
multiplets in the following representations:

K x (K, 1), 1 x (K.K), K x (1,K). (3.14)

If the global form of the gauge group is taken as in
Eq. (3.11), then we expect that there exists an 8u(K) global
symmetry rotating the (K,1) @ (1,K) irreducible repre-
sentation of the group. This is in contradistinction to the
8u(K) x 3u(K) non-Abelian flavor symmetry that arises
where the global form of the gauge group is sim-
ply SU(K) x SU(K).

Let us first explore the tensor branches associated
with (Higgsed) (A, A) conformal matter. We consider first
the case where the number of M5-branes engineering the
Higgsed conformal matter theory is odd, in which case the
tensor branch curve configuration takes the following form:

3u(ky) su(ky) su(k,) su(k,) su(ky) su(k,)
2 2 - 2 2 -2 2 (3.15)
(] [mo] [mg]  [my] [ma] ]

We can see that this configuration admits a Z, GS auto-
morphism. After the discrete gauging, the hypermultiplet
spectrum indicates that the non-Abelian part of the flavor
symmetry is

D=

su(m,). (3.16)

i=1

The Abelian global symmetries again require more care
about the existence of ABJ anomalies. As in Sec. II C, we
assume that all k; > 2, and that at least one k; > 3. If an
ABJ-anomaly-free 1 (1) is localized entirely on one side of
the tensor branch configuration, then we expect that it is
identified with its mirror on the other side of the configu-
ration due to the Z, automorphism collecting together the
hypermultiplet representations on the left and right. There
also exists an anomaly-free u(1) in the nondiscretely
gauged theory which involves the generator of the (1)
which rotates the (kq,k_q) bifundamental; as such, this
anomaly-free 1(1) is not identified with any other u(1)
after the discrete gauging. Therefore, if we let £ denote the
number of m; with m; > 1, then the total Abelian flavor
symmetry is expected to be

u(1)”. (3.17)
Next, we consider the tensor branches that can be
associated with Higgsed (A, A) conformal matter, where

the total number of M5-branes is even. We can write the
tensor branch curve configuration as

su(k;) su(ky) su(k,) su(k,. ) su(k,) su(ky) 8u(k;)
2 2 .02 2 2 -2 2 (3.18)
] [mo] [mg]  [mgal  [my] [ma] [

The only difference from the N odd case is that the central
(—2)-curve acts as a pivot for the Green-Schwarz auto-
morphism. To determine the classical flavor symmetry
attached to that central curve, after discrete gauging of the
Z,, we look at the hypermultiplet spectrum. First, we note
that m,,; must be even:
Mgy = 2ky iy — 2k, = 2p. (3.19)
We can consider this as p dangling hypermultiplets in the
fundamental representation of 8u(k,,,) and p in the
antifundamental representation. Since the fundamental
and antifundamental transform nontrivially under the Z,,
we observe that we have p hypermultiplets in the irreduc-
ible representation
kq+1 2] kq+1v (3'20)
of the SU(k,) X Z, gauge group. Since this is a real
representation, we expect the hypermultiplets to be rotated
by a classical symplectic symmetry.
Putting everything together, the hypermultiplet spectrum
indicates that the non-Abelian part of the flavor symmetry
after discrete gauging of the theory in Eq. (3.18) is

usp(m,,) @ é%u(mi). (3.21)

A similar analysis of the Abelian symmetries applies as in
the case where the number of M5-branes is odd. Again, let
¢ be the number of m; such that m; > 1 fori < g. Due to the
hypermultiplet spectrum, we expect that the total number of
ABJ-anomaly-free Abelian symmetries in the discretely
gauged theory is
u(1)7. (3.22)
In this analysis, we have determined the presence of a
ugp(m,, ) global symmetry arising from the central curve
after discrete gauging by studying the hypermultiplet
spectrum. In more complicated cases, such as with E-string
flavor, we may not have access to a classical spectrum, and
thus we would like to be able to understand the discretely
gauged flavor symmetry directly by thinking about the
Higgs branch chiral ring operators of the nondiscretely
gauged theory. In particular, note that the 8u(m,)
symmetry on the central node of a Higgsed conformal
matter theory actually arises via the enhancement

81 <%) @ su <%) Sau(my,). (323
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The Z, GS automorphism acts as follows. Consider the
abstract theory”:

3u

ASE (ke om 1m) [Kx L 2m 1)), (3.24)
The GS automorphism identifies the moment maps of the
31u(n;) global symmetry arising from the left partition, with
the same global symmetry arising from the right partition.
When there is an enhancement, such as in Eq. (3.23), we
also need to take care of the effect of the discrete gauging

on the extra moment maps. In this case, we have

8u(m,, ) — su (%) @ su (%)
adj— (adj, 1)@ (1,adj) & (1,1)

my 1 My myq My
o (M MT) o (M) (s

The identification of the moment maps leaves behind a
single 8u(“4") flavor symmetry, and we find that the
matter content is obtained via the taking of the symmetric
projection under the Z, that swaps the flavor factors.'® That

is, the additional moment maps become

m m m m
S 2 q+1 , q+1 S 2 q+1 ’ q+1 1’
ym ( 2 2 ), ® Sym 2 2 /2 ®

(3.26)
|

u8p(2k,)80(ky) usp(2ks)  80(ky-1) usp(2k
1 . 1
] [mo]  [ms] [mg—i]  [my)

where m; and k; are related such that the anomaly
cancellation conditions are all satisfied. We can see from
this tensor branch that there exists a Z, GS automorphism

""Which we assume is good, in the sense of Ref. [67].

"®Here we have chosen a very specific Z, action. In particular,
different choices of Z, action lead to a different projection, for
example, conjugating the Z, action that leads to Eq. (3.26) by an
element of 8u(m, ) can break the flavor symmetry to different
real subgroups, like 8o(n,, ). In this work, we considered the
projection to ugp(m, ) because it is the one that more naturally
matches with the wreathing of those magnetic quivers that admit
both a unitary and orthosymplectic realizations. The way in
which we realized the wreathing in unitary magnetic quivers
gives the branching rule in Eq. (3.28), and we found the
equivalent realization on orthosymplectic quivers. The aim of
this work is to propose a procedure to wreath orthosymplectic
magnetic quivers and give an explanation at the level of discretely
gauged conformal matter, but we are not claiming that we have
exhausted all allowed discrete gaugings.

where the final 1 is the flavor singlet. That is, in the
discretely gauged theory we have moment maps charged
under the following representations of 81 (=4™):

adj @ Sym> @ Sym? @ 1. (3.27)

Since this is simply the branching rule of the adjoint
representation under

u8p(m,.;) — su <%) (3.28)

we observe an enhancement to a ugp(m,,) flavor
symmetry. We note that this derivation did not involve
the hypermultiplet spectrum on the tensor branch, only the
data of how the Z, GS automorphism acts on the moment
maps of the (non-Abelian) flavor symmetries.

We emphasize that, thus far, we have discussed the
classical global symmetry arising from the analysis of the
gauge theories living at the generic point of the tensor
branch of the SCFTs under study. We propose that if the
classical flavor symmetry at the generic point of the tensor
branch ascends to a flavor symmetry of the SCFT in the
nondiscretely gauged case, then it also ascends to a flavor
symmetry of the SCFT in the discretely gauged case.

Now that we have discussed the case of Higgsed (A, A)
conformal matter, we turn to the Higgsed (D, D) conformal
matter. We consider a generic tensor branch curve con-
figuration, for a conformal matter theory of odd rank,
which takes the following abstract form:

)89k _)  usp(2ks) so(k,) usp(2k;)
et (3.29)

|
that extends to a discrete symmetry of the 6D SCFT at the
origin of the tensor branch.

When considering the Higgsed (D, D) conformal matter,
each simple flavor symmetry factor as described in
Sec. II C can be considered as localized on a single curve
in the tensor branch configuration. This is in contrast to
(A, A) conformal matter, where the ABJ-anomaly-free 1 (1)
symmetries can be a linear combination of 1(1)s distrib-
uted over a chain of curves. Since the Z, discrete symmetry
arising from the GS automorphism swaps the tensor
multiplets and gauge algebras associated to the curves
on the left and the right, it is clear that the gauging modifies
the flavor symmetries as follows:

g—1 q—1
. fi(m;)®* — 6_91 fi(m),

i=1

(3.30)

where
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if 7odd,

if ieven.

fi(m;) = {@o(m,-) (3.31)

usp(m;)

We note that in Eq. (3.29), we can have a configuration
where we need to apply the replacement rules in Eq. (2.21)
to observe the true tensor branch configuration. Regardless,
our conclusion holds that the Z, discrete gauging identifies
the flavor symmetries that are localized on the curves to the
left and to the right of the central (—1)-curve.

For the central (—1)-curve, we use the same derivation
involving the moment maps that we used for the central
(—=2)-curve in the (A,A) conformal matter case. We first
assume that k, > 0, so that we are considering a classical
flavor symmetry as opposed to a flavor symmetry arising
from the E-string. The flavor symmetry attached to the
central (—1)-curve is enhanced as follows:

30 <";"> @ 30 <”;") = 8o(m,).

where the Z, GS automorphism acts to identify the moment
maps of the two factors on the left. Under the associated
decomposition, the branching rule of the adjoint represen-
tation is as follows:

m m
80(m, ) — 80 (7"> ® 30 <7">

adj — (adj,1) ® (1, adj) @ <m" m”). (3.33)

(3.32)

22

The Z, then projects onto the symmetric subspace of the
additional matter in the bifundamental representation,
leading to additional moment maps in the representations

Sym? (m" mq) o1 (3.34)
Z,

22

In short, after discrete gauging, we find an §o(%) global

symmetry with moment maps in the representation

adj @ Sym> @ 1. (3.35)
This is nothing other than the branching rule of the adjoint
representation under

(3)-+(3)

and thus we would expect such an enhancement of the
global symmetry.

Even if we will not consider Higgsed (D, D) conformal
matter theories where the rank is even, in which case the
central curve is a (—4)-curve rather than a (—1)-curve, we

(3.36)

can nevertheless comment on their flavor symmetries.
Again, it seems apparent that the flavor symmetries on
the left and right of the (—4)-curve are identified under the
Z, discrete gauging, so, it seems straightforward to extend
the analysis identifying the moment maps for the central
(—=4)-curve as we did both for the central (—2)- and
(—1)-curves. Since we will not study examples of magnetic
quivers for the Higgs branch of such theories, we will
refrain from commenting further.

Thus, we have determined the putative flavor symmetry
for the Z, discrete gauging of almost all examples of
Higgsed (A,A) and (D, D) conformal matter that admit
such a Z, symmetry. There are only a small, finite handful
of SCFTs where the flavor symmetry after discrete gauging
is unclear; these occur when performing Z, discrete
gauging on certain theories where the central (—1)-curve
is undecorated and, thus, there exists E-string flavor
attached to it. To discuss these special cases, we begin
by reminding the reader that the generators of the Higgs
branch chiral ring of the rank one (D, D) conformal matter
theory, with tensor branch

usp(2p)
1, (3.37)

are [13,19,51], under the 8o0(4p + 16) @ 8u(2), global
symmetry,

u: (adj,3), uto (ST.p+3). (3.38)
The latter is an extra generator in the spinor representation
of the classical flavor symmetry.'® Typically, when gauging
on the left and the right, there will be a gauge-invariant
remnant of the moment map y, which will contribute a
moment map of the gauged theory. However, we can
formally consider an ‘“‘analytic continuation” to p < 0.
For p =0, we see that the y™ is itself a moment map
operator, and provides the enhancement

80(16) — eg. (3.39)
After gauging, the u™ will not typically leave behind a
gauge-invariant moment map operator, and attempting to
construct a gauge-invariant operator out of u™ generally
leads to operators with large R-charge. However, when
p = —2, which is formally allowed by the replacement

A priori, there is the freedom in whether to choose the
positive or negative chirality spinor representation as the addi-
tional generator. In this case, the two choices are related via an
outer automorphism of the 8o0(4p + 16) global symmetry, and
thus give rise to equivalent theories. However, when considering
tensor branch configuration for more general Higgsed (D, D)
conformal matter, it is important to keep track of these choices, as
they may not all be equivalent. See Ref. [51] for a detailed
discussion.

026035-13



LAWRIE, LEPPER, and MININNO

PHYS. REV. D 112, 026035 (2025)

rules in Eq. (2.21), the 4™ operator has trivial R-charge, and
thus can be combined with the x™ of the central curve with
p =0 to form gauge-invariant operators transforming in
the 3 of the 811(2),. When this situation occurs, we need to
understand how the Z, GS automorphism acts on this
sector of the %—BPS operator spectrum. The only three
6D (1, 0) SCFTs that come from (D, D) conformal matter
and admit a Z, GS automorphism that have this feature are

associated to the tensor branch configurations

su(2) g, g %u(2)
2 313 2,

% %@ su(3) su(3)
313, 313.

(3.40)
Since these are rather exceptional cases we only briefly
discuss one of them here.

As mentioned, these configurations have an enhanced
flavor symmetry from that we might expect when we think
of the theory naively as a Higgsing of a (D, D) conformal
matter theory. To see this explicitly, we now delve into the
latter theory more deeply. We consider the following
conformal matter theory with its associated tensor branch
curve configuration:

AP®([32,12], 132, 17)): (3.41)
As described in Sec. I C, this SCFT has an 81(3) @ 811(3)
flavor symmetry which can be determined by looking at the
commutant of the 3u(3) @ 8u(3) gauge group inside the
eg flavor symmetry associated with the single (—1)-curve.
In fact, we can reproduce this flavor symmetry from the
conformal matter perspective. Naively, before applying the
replacement rules in Eq. (2.21), the tensor branch configu-
ration corresponding to this SCFT is

usp(—4) 30(6)  30(6) usp(-4)

1 1 4 1 . (3.42)
2l [ 2l

We have chosen to write the number of additional half-
hypermultiplets directly, rather than the classical flavor
symmetries rotating them. This theory has a sequence of
two enhancements of the flavor symmetries:

30(2) @ 30(2) @ 30(2) @ 30(2)

— 30(2) @ 30(4) @ 30(2) — 3u(3) @ 3u(3), (3.43)
where we have first written the manifest global symmetries
from the nilpotent orbits, the enhanced symmetry due to the
shortness of the tensor branch configuration, and finally the
enhancement arising from the nonperturbative nature of the
E-string. We now attempt to understand these enhance-
ments, in particular the last one, in the nondiscretely
gauged theory.

Let us now try to write down gauge-invariant opera-
tors of the theory with tensor branch as in Eq. (3.42)

transforming in the 3 of the R-symmetry and built out of
these operators. We obtain the following moment map
operators:

Operator 30(2) su(2) 3u(2) 8o(2)
u , 11 1
sk 1, 1 1 1,
Hc 1o 3 1 1o
He 1o 1 3 1o
HE ® ué @ ug 1, 2 1 1,
1y ® pé @ Hy 1, 2 1 1
Hi @ pé ® up 1, 1 2 1
HE ® ué ® g 1, 1 2 1,

(3.44)

Here, we have written the 80(4) attached to the central
curve as 8u(2) @ 3u(2), and we have used subscripts L,
R, and C to denote the operators coming from the Higgs
branch generators of the left, right, and central (—1)-
curves, respectively. That is, we observe eight extra
moment map operators coming from combinations of
the spinor representations, and it is easy to see from the
charges, up to a linear redefinition of the u(1)s, that these
come from the standard regular maximal embedding of
81(2) @ u(1) inside 31(3). Therefore, we have observed,
from this slightly unusual perspective with negative-rank
gauge algebras on the tensor branch, the reproduction
of the expected global symmetry of the associated
SCFT: 8u(3) & 3u(3).

Now we can discuss what happens to these operators
under the Z, discrete gauging. For the nonspinorial oper-
ators, the story is the same as for the central (—1)-curve in the
case where the flavor symmetry is classical: the $0(2) @
30(4) @ 30(2) becomes 80(2) @ 1(2). It is less obvious
from first principles what happens to the operators coming
from the gauge-invariant combinations of y; ® ut ® uj;
indeed, we shall return to this point when we discuss the
wreathed 3D magnetic quiver for this discretely gauged
theory.

We now have a proposal for the expected flavor
symmetry of the Z, discretely gauged versions of 6D
(1, 0) (Higgsed) conformal matter theories of type (A, A)
and (D,D). We test this proposal by considering the
magnetic quivers for the Higgs branch of certain conformal
matter theories and wreathing by the Z, quiver auto-
morphism, which we believe to be the dual of the Z, dis-
crete symmetry. From the wreathed magnetic quiver, we
can determine the Coulomb branch Hilbert series, and thus
extract the number of moment map operators of the
discretely gauged 6D SCFT.
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TABLE 1.

We list the curve configuration at the generic point of the tensor branch of each SCFT as well as the conjectural flavor
symmetry before (f) and after (fz,) discrete gauging. We write a red question mark for f;, in two rows where there are exceptional
moment maps which obscure the expected flavor symmetry; these are predicted later from the wreathed magnetic quivers.

# Conformal matter Tensor branch f fz,

1 Aio(ﬁ)([& 13), 3, 1%)) ,e,uz(z) gu2(4) §u2(2) 3u(4) udp(4)

2 A?ﬂ(@(“s]’ 1) 6u2(4) 3u(8) usp(8)

3 3 (6)([32]’ 32)) §u2(2) §u2(3) §u2(4) §u2(3) §u2(2) su(2) @ u(1)®? 31(2) ® u(1)
4 A§°(8)([32, 12,32, 12]) Qvu3(3)1§u3(3) 311(3)®2 ?

5 ) (15,13), 5,1%]) ) (1) su() 8102 31u(2)® @ u(l) 3u(2) ® u(l)
6 Aﬁo(B)([S’ 31,15.3)) §112(2) g32 1g32 .e,uz(z) 3u(2) ?

7 AP®)([4,2,12),4,2,12)) Bu) solf) ) 30(2)% 30(2)®

8 go 10) ([33 1,135 1)) %Zgul(z) o 30(6) u(3)

9 AL 53,12, 55,19 R VO u()® w()®
10 éo 10) ([52] 52) 3112(2) 303(7) .e,ul(z) .9,03(7) 3112(2) 30(4) 1(2)

1 A§°<‘°><[4 3.2.1, [4.3,2,1)) ) 0 g su(2)® su(2)

12 §o 10) ([52] 15) §u2(2) §0:§7) §u1(2) 6020) §u1(2) 30(7) 3112(2) 30(2)®? 30(2)

13 A§o(10) (7, 13,17, 13)) §u2(2) go3(7) lgoé(lg) gul(z) §0X)) 1s03<7) 3u(2) au(2)® @ u(l) 3u(2) @ u(l)
14 én (1917,3],[7,3]) é’;u(2)%2 1604(19) §u1(2) 6045-9) 1%25?,1;2(2) u(1) u(1)

15 : (3)([13]’ (1)) ?:u2(3) 3u(6) usp(6)

1o AT (2] 2. 1)) Bu(2) ) 312 su(2) @ u(1)®? su(2) @ u(1)
17 A;»u(él)([z’ 12,2, 12]) §u2(3) §u2(4) §u2(3) 31(2)® @ u(1)® 311(2)®2 @ u(1)

For computational tractability, we are interested in cases
where the total rank of the gauge algebra in the magnetic
quiver is not too large. Furthermore, since we will use the
wreathed analog of the monopole formula to determine
the Coulomb branch Hilbert series, we require that all the
gauge nodes of the (unwreathed) magnetic quiver be good
in the sense of Ref. [40]. Due to these constraints, we
consider a small set of explicit examples of 6D SCFTs,
which we list in Table I, together with their predicted flavor
symmetries before and after discrete gauging.

IV. COULOMB BRANCH OF
WREATHED QUIVERS

In this section, we review the wreathing procedure in
the context of 3D AN =4 quiver gauge theories. Intro-
duced in Ref. [34], it has been shown in a series of works
[20,34-38,78,79] that quivers wreathed by a discrete group
I are magnetic quivers for the Higgs branches of certain 4D
N =2 SCFTs discretely gauged by T

Let us first review the definition of the Coulomb branch
Hilbert series. Consider a 3D N = 4 quiver gauge theory

X with (reductive) gauge group G connected by a set of
edges associated with bifundamental hypermultiplets. The
Coulomb branch Hilbert series is given by [25]

|W|Z Z dett (4.1)

HS[CB of X(t

where W is the Weyl group of G, and A(m) is the
dimension of the monopole operator with magnetic flux
m, generically given by [25,40]

== |a(m)|+ ZZ |p;(m

a€A, i=1 p,eR,;

(4.2)

where a € A are the positive roots of the gauge group
G and p; are the weights of the irreducible matter field
representation R; under the gauge group. Respectively,
they represent the vector multiplet and hypermultiplet
contributions to the dimension of the monopole operators.
The summation of the magnetic fluxes depends on the
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TABLE II.
m = (my,...,my) and n = (n,...,ny
associated to that group.

Contributions to the conformal dimension A(m
). The subscripts on the groups denote the magnetic fluxes in the lattice

) in the monopole formula [25,80], for magnetic fluxes

Group = aea, |a(m)]
U(N)m _Zl<j |m j‘

SO(2N) X (mi =+ my| + [m; —my))
Usp(zN)m - l<] (‘m +ml‘+|m /|) ZZ{V:I |m1|
(a) Vector multiplet contribution.

. N
Representation %Zi:f] Zp,-eR, lpi(m)]

Bifundamental of U(N),, x U(M),
Bifundamental of SO(2N),, x USp(2M),,
Adjoint of U(N),,

Antisymmetric A> of USp(2N),,

%vazl ﬁ-”'zl \n,-—mj\
320 200 (ni o+ my + |y = my)
Zz<1 |m J|

2 (Imi + my| =+ |mi = mj)

(b) Hypermultiplet contribution.

gauge group G, e.g., for a quiver with only unitary gauge
nodes, the summation is over m € Z’, with r being the rank
of the gauge group. In this work, we will consider only
certain representations for unitary and orthosymplectic
groups, which we list in Table II, together with the
corresponding contributions to the conformal dimension
of the monopole operators [25,80].
The prefactor

Ps(t,m) = (4.3)

1 1
|W| Z )det(ﬂ —%y)’

is a classical contribution that counts the gauge invariant
operators of the residual gauge group unbroken by the
magnetic flux m. The computation of this contribution is
reviewed in the Appendix, while in Sec. IVA, we will
discuss how this is modified when a Z, wreathing is
considered.

The action of the wreathing can be implemented at the
level of the Coulomb branch Hilbert series of a 3D N = 4
SCFT by acting with I" on the Weyl group W of the gauge
group of the quiver, and on the summations over the
magnetic fluxes. Suppose that such a quiver possesses a
diagram automorphism by the finite group I', i.e., I" leaves
A(m) invariant. Then it is possible to consider the
wreathing by I' of the quiver, obtaining the wreathed
quiver, which we refer to as X. The general expression
for the Hilbert series is

HS[CB of X (4.4)

PINDY
Z Z det det(1 — 2y)

n yeWwr(

where we have denoted W = W : I. It is also important to
note that the summation over n and the prefactors

associated to the residual gauge symmetry may differ after
wreathing. In fact, if the quiver has topological symmetries,
the wreathing by I" acts on a subset of the gauge nodes of
the quiver, breaking the symmetry to its diagonal subgroup.
The topological symmetry is a subset of the original
symmetry.

For our purposes, one computes the wreathing of the
total residual Weyl group Wr(m) for a given choice of
fluxes m. In practice, Wi-(m) is given by all the matrices in
W T that leave m invariant. In the case of unitary quivers,
W is usually a product of Sy factors, that being the Weyl
group for a U(N) gauge group. This way of computing the
Coulomb branch Hilbert series for wreathed unitary quivers
has been explored in recent works [34-36,81], while in this
paper we are interested in applying such techniques to
orthosymplectic quivers.

A. Prefactors for Hilbert series of Z,-wreathed quivers

In the Appendix, we have summarized the method for
computing the prefactor in the Hilbert series for a standard
unwreathed quiver. In this section, we extend the discus-
sion in the Appendix to determine the prefactor contribu-
tions to the Hilbert series for a Z,-wreathed quiver. The
procedure is easily generalized to more sophisticated
wreathing; however we postpone a systematic discussion
to future work.

Let us consider how the classical prefactor is modified
when we consider the wreathing of a gauge group G by
some discrete group I'. As it has been explained in Sec. IV,
I' must be a symmetry of the quiver, i.e., it leaves A(m)
invariant. This means that the resulting theory must have a
Hilbert series, in which we have to sum over only those
operators that are invariant under the action of I'. This must
be also reflected at the level of the classical prefactor, which
generally will be of the following form:
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Pgr(t,n) = | (4.5)

1 1
Wl o Bt (1= 77
where Wp-(n) is the wreathed Weyl group of G left invariant
by the choice of fluxes.

One way to determine the prefactor is to generate the full
resulting group Wt obtained by wreathing the Weyl group
of G, and select for each choice of fluxes n the elements
that leave the fluxes invariant. However, this operation is
computationally intensive, and one must be aware that
leaving the lattice n as it is originally for a given quiver,
generically results in overcounting. It is then more efficient
trying to subdivide the summation in various contributions,
referred to as chambers, depending on the choice of fluxes.
Determining the minimal set of contributions that gives the
correct result without overcounting is generally difficult,
and it depends both on I" and the group G involved in the
wreathing. In the following, we limit ourselves to discuss
the chambers for I ~ Z,, explaining how the prefactor is
obtained for U(N), USp(2N) and SO(2N) groups.”

Since we consider Z, wreathing, we start from a quiver
that contains two gauge nodes G, respectively, with
magnetic fluxes m = (my, ...,my) and n = (ny, ..., ny),
which are identified under the action of the Z,. The Z,
wreathing acts on the magnetic fluxes by exchanging

m; <> n;. (4.6)
As we discuss in the Appendix, for any group G being
U(N), USp(2N) and SO(2N), one can restrict the compu-
tation to a Weyl chamber where the magnetic fluxes are
ordered, e.g., for U(N) as m; > ... > my. The only differ-
ence between the groups is the domain of the fluxes. To
avoid overcounting, for the Z, wreathing of these groups,
one can divide the summations by imposing pairwise
ordering on the magnetic fluxes of the two groups.

Let us first explain via an example of taking a Z,
wreathing of two U(2) groups. We define m = (m,, m,)
and n = (ny,n,) as the fugacities associated to the two
U(2)s subjected to the conditions that m; > m, and
n; > ny, as explained in the Appendix. As explained in
Ref. [[34], page 29], we need to define under which
conditions (m;,m,) > (n;,n,). This is obtained by a
lexicographic order such that

(ny.ny) < (my,my) & ny < my

or (I”lz = ny andnl S m1>. (47)

The full Hilbert series can then be obtained by restricting
the fluxes to the following four chambers:

Restriction
ny, < my, my, < my, n, < ny
N, = my, n; < my, my < my, ny <ny
my = ny, mp = ny, ny < ny
m, = n,, m; = ny, ny = Ny

(4.8)

One can see that, in this way, the whole lattice invariant
under the Z, wreathing is covered, but isolating the first
two chambers guarantees that W-(m,n) is the same as
W(m, n), without any further constraints coming from the
wreathing. On the other hand, the last two contributions
generate further cyclic groups among the fugacities that
modify the prefactor. In particular, the prefactor reduces to
the one generated by the product of the Weyl group S, of a
single U(2) with two distinct S, actions that exchange the
fluxes. We can call (12) the points of the S, symmetric
group associated to the fugacities (m;,m,) and (34) the
points for (ny,n,), so, for the example at hand, the
prefactors for the various contributions are generated by
the group elements in

Restriction Cyclic groups
12 34
ny < My, my < my, ny < ny XiS,ll.(m) X XjS,lj(n)
— 12 34
ny = my, ny < my, nmy < my, ny < ny XiSﬂ,-(m) X XjSij(n) P (49)
my = n,, my =ny, n, < ny S13 x 8§34 x §3 x St
my = nyp, my = ny, ny, = ny S{S X S%4 X S34

where, as in the Appendix, we have introduced A(m) as the partition that encodes how many fluxes m; are equal, and A;(m)
are the components of such partition. The generalization to U(N) groups is straightforward by listing all possible pairwise
identifications among the fluxes, while keeping the ordering of the fluxes for the single U(N) groups. The prefactor can be
read directly from the restrictions on the fluxes by generating the group obtained by the cyclic permutation of the identified

fluxes and the Weyl group of a single U(N) group.

*The prefactors for SU(N) and SO(2N + 1) can be obtained trivially from U(N) and USp(2N), respectively.
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The discussion is not much different for the USp(2N)
and SO(2N) groups, because the restriction on the fluxes is
the same as for the U(N) case, and the prefactors are again
those obtained by generating the group obtained by the
cyclic permutation of the identified fluxes, and the sym-
metric groups associated to the residual Weyl symmetry of
a single USp(2N) or SO(2N) group. As in the Appendix,
we can introduce a matrix T? to correctly count the
Casimirs for the USp(2N) or SO(2N)) groups, with entries
equal to 7* or 1%(™) whenever necessary. For these reasons,
it is convenient to divide the summation, distinguishing
between fluxes being zero or not. Consider, for instance,
the Z, wreathing of two USp(4) groups with fluxes m and
n. The restriction is

Restriction
n, < my, my, < my, n, < ny
n, = my, n; <mp, my, < my, n, < ny
My = Ny, my; = ny, 0#n, <m
My, = Ny, my; = ny, 0=n, <m
My = Ny, m; = ny, 0#n, =mn
my, = Ny, m; = ny, 0=n,=mn

(4.10)

In this way, even if not strictly necessary, one can easily
read the group generating the prefactor from each restricted
choice of fluxes.

V. UTILIZING THE A; = D; ISOMORPHISM

Now that we have explained how to determine the
prefactor for the Z, wreathing of orthosymplectic magnetic
quivers, we want to test it in 3D N = 4 theories for which
we have unitary and orthosymplectic quiver descriptions.
There are a variety of known constructions that lead to
quivers with unitary and orthosymplectic descriptions (see,
for example, Refs. [82—84]). In this paper, we engineer such

TABLE III.

pairs by considering the magnetic quivers for the Higgs
branches of 6D (1, 0) conformal matter theories of type
(8u(4),81(4)) and (80(6), 80(6)). In particular, the mag-
netic quivers take the forms in Egs. (2.4) and (2.8), and the
Lie algebra isomorphism 8u(4) = 80(6) implies an iso-
morphism between the nilpotent orbits, which is summa-
rized in Table III. Moreover, we note that we are computing
the Hilbert series of the Coulomb branch using the
dimension formula for the monopole operators introduced
in Ref. [25]. Thus, we must restrict ourselves to quivers
where each node is individually good in the sense of
Ref. [40]; this means that we avoid T[30(6)] theories
where any symplectic node is bad. We will consider the
same restriction when we move to higher-rank orthosym-
plectic quivers in Sec. VL.

In this section, hence, we consider the magnetic quivers
for the Higgs branches and the Z, wreathing of the Higgsed
conformal matter theories

(5.1)

These tests are important for understanding the restrictions
on the fluxes and the prefactors in the case of orthosym-
plectic quivers and, following these cross-checks, we
discuss the Z, wreathing of orthosymplectic quivers that
do not admit a unitary description in Sec. VI.

A. Theory 1: A3**([22),22)) and A5 ((3.13].3.13)

From the discussion in Sec. IIC and the flavor sym-
metries reported in Table I, we know that A§"(4)([22], [22])
has an 8u(4) flavor symmetry. This can be confirmed
by considering the magnetic quiver for the Higgs branch
and computing the refined Hilbert series. The magnetic
quiver is

How the nilpotent orbits of 311 (4) and 80(6) are related across the Lie algebra isomorphism. We have also

written the unitary and orthosymplectic Lagrangian quivers associated with the 7', [g] theories for each nilpotent orbit.

Oy, To, [8u(4)] Op, To,, [80(6)]
[14] ¢! O O O [1°] e ® @ ® |
1 2 3 4 2 2 4 4 6
2,17] o—o—1 [22,12] o—o—1
1 2 4 2 4 6
[22] o—[ [3,1%] o—eo—H
2 4 2 2 6
3, 1] o—{1 3%] o—1
1 4 2 6
[4] O [5, 1] ]
4 6
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the topological fugacity of the central U(4) node, and z4 the
one for the U(4) node with the adjoint field. These
fugacities must satisfy

21207325 = 1, (5.3)

where, by /U(1), we mean that there is an overall U(1)
under which none of the matter spectrum is charged, and
which must be decoupled. Let us call z;, z, the topological
fugacities for the two U(2) nodes respectively, while z3 is

HS(t.z)=(1-7) > > > >

A1 20,2—00 by 2by>b3>by>—00 €122 2—00 d >dr>d3>dy—00

due to the decoupling of the overall U(1). We can, then,
write the Hilbert series for this example as

Py (t,a)

Py (a) (1. D) P (1. €) Py (1, )2z 2z ot beggrrea gt bnds, (5.4)
where the conformal dimension of the monopole operators are given by
4 [P
A =—a _a2|_Z|bi bipi| —ler — el +5 ZZ(W bl +|b; — ¢ +§ZZ|bi_dj|’ (5.5)
i=1 i=1 j= i=1 j=1

and while the prefactors are computed as explained in the Appendix A 1. At the first relevant order, the Hilbert series reads”

zl/ z§/2+ zé/z _l_z%/zz n 1
z}/zz i/z 1/2Z5/2Z

12
HS(1,2;) = PE{ﬂ(l/z +21%5 22 +
2y 24 24

12

2,7z Z 1 1
+ 11/244—41/241/2—’-21+—+Z2+—+3>+O(l‘4)], (5.6)
2y 21 2y 71 22
where we have defined
1
L=, (5.7)
Z] Z2 Z4

in order to satisfy Eq. (5.3).
We now rewrite the three remaining fugacities in terms of three new fugacities, x, y, and z, defined as follows:

1 = xz, Iy = y‘z, 4 = Zz. (5.8)

Then, we can rewrite the Hilbert series as

1
B (x.2) = PE| 2 (1425700 + 25700+ (24 2200 v o). 69

where ;(‘f] (-) denotes the character of the irreducible representation of 3u(2) with highest weight [- - -] written in terms of

the fugacities given in the parentheses. In fact, the coefficient of ¢*> is nothing other than the character of the adjoint

“'The plethystic exponential (PE) of a multivariate function f(z,, ...

o1=en (10,

1) (vanishing at the origin) is defined as

PE[f (1. ...
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representation of 81(4), using the branching

3u(4) - su(2), & 611(2)VV @ u(l),,
15-(2,2), 8 (3,1),® (1,3),® (1,1), & (2,2)_,,
(5.10)

where we have written the associated fugacity as a subscript
on the algebras. As expected, this signals the enhanced
global symmetry.22

We can also confirm the prediction for the Z, discretely
gauged flavor symmetry in Table I, by considering a
Z, wreathing of Eq. (5.2), by following the procedure
described in Ref. [33]. In particular, the range of summa-
tions over the magnetic fluxes needs to be restricted and the
prefactors are modified as explained in the previous
section, according to which a cyclic group is generated.
We make the identification z; = z,. Explicitly, the range of
summations is restricted as follows

Restriction
a, < b2
a, = bz, a; < bl , (511)
a = b, ay = by, ay < a;
a, = by, a, = by, a, = a

with the cyclic groups generated as in Eq. (4.9). The
prefactors for the two U(4) groups are the same as in the
unwreathed case. As discussed in Sec. IV A, the division of
the summation is done to be able to easily read off the
prefactors, since it makes more explicit the group generated
by the choice of fluxes, when we use the expression of the
prefactor as in Ref, [34].

Once again, the decoupling of the overall U(1) allows us
to define

1
z=—), 5.12
= (5.12)

and we obtain the Hilbert series for the Z,-wreathed quiver:
HS,z, (1.%.2) = PE [,2 (1 5 ()

+ (z%%) ;(f;‘]‘@’ (x)) +(9(t4)} . (5.13)

For this example, we could have defined z, = y?, and the
result would have been the same. This is because y is the fugacity
associated to an 811(2) flavor symmetry, and there is no difference
between the fundamental and antifundamental representations for
this algebra. However, as we will see in the next unitary example,
and we comment below, the choice of fugacity we use here is the
one that generalizes when we consider wreathing of theories with
higher-rank flavor symmetries.

Here we have replaced the fugacities z; and z4 as in
Eq. (5.8), and collected the > coefficient into characters.
We can see that the > coefficient is nothing other than the
character of the adjoint representation of 18p(4) under the
decomposition

usp(4) - 3u(2) ® u(l),

10—>32 @3_2 @30@ 10. (514)

Thus, the Coulomb branch Hilbert series indicates that the
Coulomb symmetry after wreathing is u8p(4), which is
exactly what we would expect for the flavor symmetry of
the 6D SCFT after discrete gauging, as discussed in
Sec. III B.

One perspective on this Z, wreathing is that we start with
the 8u(2), @ 8u(2), @ u(l), in the unwreathed case, and
the wreathing identifies the fundamental representation of
3u(2), with the antifundamental representation of 81t(2),.
In this case, the distinction between fundamental and
antifundamental is immaterial, but when considering
higher-rank unitary quivers, the identification between
the fundamental and antifundamental has consequences
in the matter content of the theory after wreathing or
discrete gauging.

We can now repeat this analysis for the orthosymplectic
quiver realization of the same Coulomb branch, and extract
the same information about the Coulomb symmetries
before and after wreathing. Consider the orthosymplectic
realization of the magnetic quiver of the Higgs branch of

AFO(3.17). 3, 1)):

?8
o—e o—o (/Zs) -
2 2

6 2 2

(5.15)

This quiver has an overall Z, that acts trivially on the
matter fields; this can be considered as the center of the
SO(6) group that is not screened by the bifundamental
fields. This gives rise to a 2[21] I-form symmetry. This
symmetry can be gauged or not, as discussed in Sec. II D.

The gauging of such a symmetry gives rise to a Z[ZO] 0-form

symmetry in the 3D quiver, and vice versa. We call @ the

fugacity associated to the Z[zo]

by gauging the Z[ll] 1-form symmetry in 3D. As explained

in Sec. I D, we will generally keep the fugacity w explicit
in the Hilbert series that we write.

The Hilbert series of the unwreathed quiver again takes
the form of a sum over each of the gauge nodes:

0-form symmetry, obtained
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BS(ro)= >, >, >, )

2.2 2

Pso(z)(t, a)

e€{0,1} aeZ+e b>le c1 202> [c3].0c5 € Z+e d>ke e € Z+ie f12 2232 f4>1e

PUSp(2)<ta b)Pso(s)(L C)Pusp(z)(l‘, d)Pso(z)(f, e)PUSp(S)(tv f)rrhof,

where

(5.16)

3003 4
A==21b1 =YY (lei+cjl+lei—cil) =20d] = 2> |fil + la + b| + |a — b]
i—1

i=1 j=it1
3 3

+D_(b+el+b-c)+d (d+el+ld=cil)+let+d +le—d+Y > (lei=fjl+lei+fi]). (517)

i=1 i=1

The prefactors are computed as explained in Sec. IVA. In
this case, we are computing the unrefined Hilbert series,
where we have not included the fugacities for the Coulomb
symmetries. Up to the first relevant order, the Hilbert series
reads

HS(t,w) = PE[*(7 + 8w) + t*(13 + 16w) + O(%)].
(5.18)

We can see that the Hilbert series coincide with the
unrefined Hilbert series in Eq. (5.9) provided the identi-
fication of the fugacity @ = z> = z72. In fact, one can see

the Z[ZO ) 0-form symmetry in the unitary quiver as a
Z, subgroup of the 1(1) symmetry.

For completeness, we also consider the theory
obtained from the gauging of the Z[zo] 0-form sym-
metry by summing over the elements of 2223:

L ST HS(re) = PRI + 494 + O()],  (5.19)

we{l—1}

which corresponds to the theory with a global Z[zl] 1-form
symmetry. This theory is not associated to the 3D mirror of

AZO)([3,13], 3. 13]), but it still exists as an 3D N =4
quiver.

We can now consider the Z, wreathing of the ortho-
symplectic quiver in Eq. (5.15). The wreathing proceeds
with the identification of the various contributions to the
prefactor as explained above. We can call a and e the
magnetic fluxes associated to the two 80(2)s while b and d
are the magnetic fluxes associated to the ugp(2) algebras

23 . . . . .
A one-dimensional irreducible representation of the group
2zim

Z, is given by the map p: Z, - C* with p(m) = ¢ . The
fugacity w signal states charged under the Z, group, and gauging
a finite group is equivalent to sum over all elements of the group
(divided by the dimension of the group), that, in our case, are

{1, e"}.

4

i=1 j=1

|
involved in the wreathing. To be able to compute the
prefactors from the value of the fluxes, we restrict the
computation of the Hilbert series as follows:

Restriction
a:e,a<eb<d- (5.20)
a=e, b=d

Once again, the division in the various contributions is only
done to be able to read the prefactors explicitly from the
choice of fluxes. The wreathing of such a quiver gives

HS,z, (1) = PE[(4 + 6w) + t*(19 + 18w) + O(1°)].
(5.21)

which is compatible with the results obtained from the
unitary version of the quiver, signaling the identification of
the 81(2) flavor symmetries inside the 3u(4) unwreathed
flavor, leading to a u8p(4) enhanced global symmetry.

B. Theory 2: A" ([14].[14]) and A" ([16].[19))

Another theory that admits both a unitary and ortho-
symplectic realization is the magnetic quiver for the Higgs
branch of A% ([14],[14]), associated to Theory 2 in
Table I. This time, the 6D theory predicts a flavor symmetry
of 81t(8), which can be confirmed by computing the Hilbert
series of the following magnetic quiver:

2
5.22
o—o—o—g—o—o—o /U(l)-()
1 2 3 4 3 2 1

The Hilbert series, with the appropriate fugacities obtained
similarly as in the previous section, reads
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HS(7.x.y.z) = PE[*(1 + 1u(()4 (x) +1101](Y)

_ (4
+ 22 s (e ()

+ oo (o () +OE)],  (5.23)

compatible with the branching rule of 81(8) into 3u(4), @
su(4), ® u(l), as

63 = (1,1), + (15, 1), + (1,15), + (4,4)_, + (4,4),.

(5.24)

Therefore, we see the expected 81(8) global symmetry
predicted by the F theory construction.

We can perform a Z, wreathing of the two horizontal
tails, computing the prefactors as explained above. The
resulting Hilbert series is

31 (4) — u
= PE[(1 +)(1(§ (x)+z zxfzé(}](x)

Xooz](x)) + ( )}

Hszzz ([, X, Z)

(5.25)

which is compatible with identifying the fundamental
representation of 81(4), with the antifundamental repre-
sentation of 3u(4),. This is precisely the expected iden-
tification from the discrete gauging perspective on the 6D
(1, 0) SCFT. This result shows that the wreathing projects
81u(8) down to udp(8), decomposed as 8u(4), @ u(l),,
corresponding to the branching
36 =1, + 15, +10_, + 10,, (5.26)
confirming the expectation in Table I.
The same theory, in its guise as A} o6 )([16], [16]) con-

formal matter, admits also an orthosymplectic quiver,
which is

The computation of the Hilbert series leads to

HS(t,w) = PE[#(31 + 32w) + O(1*)],  (5.28)
which is compatible with the unrefined Hilbert series of the
unitary quiver by choosing to refine only fora 7§ c U(1)..
The Z, wreathing proceeds by dividing the computations in
contributions as described in the section above, computing
for each restricted choice of fluxes the corresponding
prefactor. The division in chambers for the 80(2) and

udp(2) factors is similar to the previous section, while the

chambers for udp(4) are given in Eq. (4.10), from which
one can also extract the chambers for the 80(4) nodes
(keeping in mind the modification of the T? matrix as
explained in Appendix A 3). The result is

HS,z (1. @) = PE[*(16 + 20w) + O(*)], (5.29)
which is precisely the expected result: there are 36
operators generating the Coulomb symmetry after wreath-
ing, compatible with the anticipated 1u3p(8) flavor
symmetry.

C. Theory 3: A2 ((3.1].3.1]) and A2°® (32],[3%))

We can briefly discuss Theory 3, since it is not signi-
ficantly different from the two previous theories. In
Sec. IIC, we reviewed the way to read off the flavor
symmetry at a generic point in the tensor branch for a 6D
SCFT. For this specific configuration, as listed in Table I,
the theory has an 8u(2) @ u(1) & u(1) flavor symmetry
before the wreathing. This can also be confirmed by
computing the Hilbert series of the unitary realization of

such a theory corresponding to A?u(4)([3, 1],[3,1]) con-
formal matter whose magnetic quiver is

o—gﬁ—o
/U() -

(5.30)
1 4 1
The Hilbert series at the first leading orders is
HS(#) = PE[57% + 16¢* + O(1)], (5.31)

confirming the flavor symmetry. By performing the wreath-
ing of such a quiver, the two 1(1) are identified, while the
81 (2) ~ udp(2) remains untouched. At the level of the
Hilbert series computation for the wreathed quiver above,
we can precisely see this effect obtaining

HS,z, (1) =PE[4 + 13t + O(P)].  (5.32)
The computation of the Hilbert series for Theory 3 in its
orthosymplectic formulation is used to further confirm the
proposed procedure to compute wreathing of orthosym-
plectic quivers. We obtain

HS(t, ) = PE[2(3 + 2w) + t*
HSz, (1.) = PE[(2 + 2w) + 1*

(8 +8w)
(7 + 6w)

+0(r)],
+0(P)],
(5.33)

where, after unrefining the Hilbert series, we find perfect
agreement with the unitary counterpart.
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VL. HILBERT SERIES FOR Z,-WREATHED
QUIVERS

In this section, we provide further evidence of how the
flavor symmetry is changed by the Z, wreathing, confirm-
ing the expectations described in Sec. III B. We first discuss
all the theories in Table IV, which are those that have good
orthosymplectic quiver realizations. Theories from 1 to 3 in
Table IV have been extensively discussed in Sec. V. Their
flavor symmetries match the expectation in Table I, both
from the unitary and the orthosymplectic quiver perspective
and they have been used as a benchmark for our proposal of
wreathing of orthosymplectic quivers. Some additional
unitary theories are shown in Table V. The computation
of the Hilbert series of the unitary quiver confirms the
expectation on the flavor symmetry of the theory, matching
the last three entries of Table I.

A. Theory 4: A5°® ([32,12],[32.1])

Theory 4 is the first theory that we discuss that does not
admit a unitary quiver. However, as we discussed in
Sec. III B, it also represents one of the handful of theories
where the flavor symmetry after the discrete gauging is
unclear. The reason is that the central (—1)-curve is
undecorated, and there exists E-string flavor attached to
it. When performing the Z, discrete gauging, we expect an
enhanced flavor symmetry. We will use the Hilbert series to
confirm such an expectation, completing the discussion we
started in Sec. III B.

Let us first consider the unwreathed theory, which we
know from Sec. IIC and Table I has an 8u(3) @ 3u(3)
flavor symmetry, obtained by the relations in Eq. (2.31). We
can confirm such an expectation from the computation of
the Hilbert series, i.e.,

HS(t,0) =PE[*(80+8) + 4 (320 +32) + O(*)],  (6.1)
after unrefining it. After wreathing, the Hilbert series
computation gives

HS,z (1. ®) = PE[*(6w + 5) + t*(26w + 29) + O(£°)].
(6.2)

Unrefining the Hilbert series, we see that the dimension of
the flavor symmetry algebra is 11. From Sec. III B, this
theory is one of those where one needs to understand the
action of the Z, GS automorphism on the %—BPS operator
spectrum. In particular, it is not clear what happens to the
operators coming from the gauge-invariant combina-
tions of u ® ul @ ui in Eq. (3.44). We would expect
that the flavor symmetry is either 8u(2) @ 3u(3) or
udp(4) ® u(l), but we leave the precise identification
of the flavor symmetry algebra, which would require the
full refinement of the Hilbert series, to future work.

B. Theory 5: A>°®)((5.13].[5.13))

More straightforward is the analysis of Theory 5. The
flavor symmetry for this theory, before the wreathing, is
31(2) @ 3u(2) @ (1), which is confirmed by the com-
putation of the Hilbert series of the magnetic quiver, i.e.,

HS(t,w) = PE[7¢> + t*(8w + 5) + O()].  (6.3)
Even though we expect an E-string flavor, this time we do
not have an enhancement of the symmetry, so the expect-
ation is that the wreathing identifies the two 8u(2) as we
have already seen in Sec. VA, while leaving the 1(1)
untouched via 80(2) — u(l). The computation of the
wreathed Hilbert series leads to

HS,z,(t,w) = PE[4> 4+ t*(6w + 11) + O()],  (6.4)
which confirms the expectation of a four-dimensional
Coulomb symmetry.

C. Theory 6: A>"®([5.3],[5.3])

Theory 6, instead, should be discussed similarly to
Theory 4. The 6D theory has a flavor symmetry of
3u(2), and, as expected, the Hilbert series reads
HS(t,w) =PE[*2w + 1) + *(8w + 11) + O(*)].  (6.5)
From the 6D perspective, this 81(2) arises from the fact
that some of the gauge-invariant combinations involving
spinorial generators of the rank one (D, D) conformal
matter building blocks contribute moment maps after
gauging. This is similar to Theory 4; as such, we do not
have an a priori proposal for the global symmetry after
discrete gauging. The computation of the wreathed Hilbert
series leads to

HS,z (.®) = PE[*(2w + 1) + t*(6w + 8) + O(£°)].
(6.6)

which indicates that the wreathing did not affect the flavor
symmetry of the theory. Nevertheless, we can see that the
higher-order operator spectrum has been modified.

D. Theory 7: AT® ([4.2,12).[4.2.12))

From now on, all the flavor symmetries of the wreathed
theories follow from the discussion in Sec. III B. For
instance, Theory 7 has four 80(2) factors as the flavor
symmetry, which is reflected in the computation of the
Hilbert series

HS(t, w) = PE[41> + t*(19 + 8w) + O(*)].  (6.7)
After wreathing, as explained in Sec. IIIB, the four
80(2)s are identified in pairs, leading to effectively an
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TABLE IV. Orthosymplectic magnetic quivers of the theories in Table I.

# Conformal matter Tensor branch Magnetic quiver
6 1 1 1
1 A§O( )([37 13]’ 3, 13]) ‘32(2)‘32<4)‘32(2> ?8
(< @ @ @
2 2 6 2 2
0(6 1
2 A? ( )([16]’ [16]) «32(4) ?4
@ @ (] @ @ @ @ @
2 2 4 4 6 4 4 2 2
30(6 u u(3) 8u u(3) 8u
3 Af ( )([32]7 [32]) 52(2)32<3>g2(4>g2(3>32(2) 812
2 6 2
8 1 3
4 Ago( )([32’ 12]7 [327 12]) 3 :?53)123113(%) ?6
(< @ @ @
2 4 8 4 2
30(8 u 0 30 3u
5 APV ((5. 1) [5.1%) e ey ?m
(< @ @ @
2 2 8 2 2
30(8 u H gy S
0 APV ((5,30,05.3) TN i 10
2 8 2
30(8 u 30 $0(3
7 A3 ( )([4’2’ 12], [4,2’ 12]) §3(3)1§i8)15?§’%) ?8
(] @ @ @
2 4 8 4 2
o(10 u >
8 Ai (1 )([33’1]’[3371]) ,332-31(2)133. ?6
(< @ @ @
4 6 10 6 4
9 80(10) 2 2 31u(3) 80(9) 8u(2) 80(9) 38u(3)
A7 (531,531 304 1 413 ?10
@ @ @ @
2 4 10 4 2
30(10 1 u
10 A4°( >([52H52D 3;2(2) so3<7)91(2> go3(7> §u2(2) ilo
4 10 4
30(10 H 81t 0 u 5
o aP9(@,3,2,1,[4,3,2,1]) e e .
@ @ @ @
4 6 10 6 4
30(10 1 0
12 Af ( )([52]7 [52]) guz(z) Qvo?()7) 6u1(2) «3020) §11(2)§3(7) e,uz(z)

e

N
—_
(@)
.
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TABLE 1V. (Continued)

# Conformal matter Tensor branch Magnetic quiver
30(10
13 AGO( )([77 13]7 [7’ 13]) §u2(2) §o?()7) 1€»rﬁ9) 3111(2) éoi9) 1§o§7) §u2(2) ? u
o—©@ o—0
2 2 10 2 2
14 Azo(IO) ([77 3]7 [7’ 3]) 3112(2) q32 1§oi9) 3111(2) éui9) %2 §u2(2) (@D u
2 10 2

30(2) @ 80(2) flavor symmetry, confirmed by the compu-
tation of the Hilbert series of the wreathed quiver, as
follows:

HS,z,(t,w) = PE22 + *(15 + 6w) + O(£)].  (6.8)

E. Theory 8: Aio(lo)([33,1],[33,1})

In Table I, we have that Theory 8 has an 80(6) flavor
symmetry. This is confirmed also by the computation of the
Hilbert series at leading order, as follows:

HS(t, w) = PE[157* 4+ 8wr® 4+ 33t* + O(£)].  (6.9)
The wreathed Hilbert series is
HS,z, (1, ) = PE[97* + 6wr + 401* + O(£°)].  (6.10)

The flavor symmetry 80(6) is coming only from the central
(—1)-curve. As we explained in Sec. III B, under discrete
gauging, such symmetry is projected to 1(3), which is also
confirmed by the computation of the Hilbert series above.

F. Theory 9: A5""([5,3.12],[5.3.1%))

Theory 9 has a flavor symmetry of (1) @ u(1) @&
(1), confirmed by the computation of its Hilbert series:
HS(t, w) = PE[37* 4+ 131* + O(r)]. (6.11)
The expectation is that the flavor symmetry after the Z,
wreathing becomes 1 (1) @ u(1), with the identification of
two of the 1t(1)s. This is confirmed also by the computation
of the corresponding wreathed Hilbert series, i.e.,
HS,z

L(t,w) =PE22 +9t* + O()].  (6.12)

G. Theory 10: A5 ([52],(5%])

The flavor symmetry for Theory 10 is 80(4), once again,
attached to the (—1)-curve of the central node. The flavor
symmetry is confirmed by the computation of the Hilbert
series of the 3D magnetic quiver theory, i.e.,

HS(t, w) = PE[6/* 4+ 207 + 10¢* + O(£°)].  (6.13)
According to Sec. III B, this flavor symmetry is projected to
u(2) after discrete gauging, and this is reflected also at the
level of Hilbert series of the wreathed quiver:

HSz, (1. ) = PE[41* + 20’ + 10¢* + O(£)].  (6.14)

H. Theory 11: A7 ([4.3.2.1].[4.3.2.1))

A similar conclusion can be drawn for Theory 11, that
has 8u(2) @ 3u(2) flavor symmetry, as confirmed at the
level of Hilbert series

HS(1, w) = PE[61*> + 27t* + O(P)],  (6.15)
that after wreathing gets identified into a single 8u(2),
leading to the Hilbert series of the wreathed quiver starting
from

HS,z,(t,w) = PE[32 + 221* + O(°)].  (6.16)

I. Theory 12: A>""([52] [5%))
Theory 12 has an 80(2) @ 30(2) flavor symmetry, as
confirmed at the level of Hilbert series
HS(7,w) = PE[2* + 10t* + O(P)],  (6.17)
and after discrete gauging has been identified into a single

80(2), consistent with the Hilbert series of the wreathed
quiver which starts from

HSz,(1.w) = PE[ + 8t + O()].  (6.18)

J. Theory 13: A= (17.13],[7.13))
Theory 13 instead has a flavor symmetry of
3u(2) @ 3u(2) @ u(1), and its Hilbert series also reflect
such a flavor symmetry, giving

HS(t, w) = PE[7#* + 3t* + O(£)]. (6.19)
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We can confirm that the flavor symmetry for the wreathed
theory is consistent with 8u(2) @ u(1) by computing the
corresponding wreathed Hilbert series:

HS,z,(t.w) = PE[4> +9* + O(r)].  (6.20)

K. Theory 14: A>""([7.3].17.3))
Finally, Theory 14 has a single 1(1) as flavor symmetry.
The Hilbert series for this theory is simply
HS(t, w) = PE[f? + 5¢* + O(°)], (6.21)
and the u(1) is preserved after the wreathing. We obtain a
Hilbert series which is given by
HSz,(t,w) = PE[ +4r* + O(P)].  (6.22)
Once again, we see that, even though the flavor symmetry

remains unchanged, the higher-order operator content
reorganizes.

L. Theories 15, 16 and 17

While the principal focus in this section has been on
orthosymplectic quivers and their wreathing, we now
briefly include some examples for which we do not have
(good) orthosymplectic descriptions, but only unitary des-
criptions. These examples again demonstrate that the
Coulomb symmetry as determined by the Hilbert series
of the wreathed quiver matches the expectations from the
6D tensor branch analysis in Sec. III B. We have written the
6D SCFTs and the magnetic quivers for their Higgs
branches in Table V.

Theory 15 is expected to have an 81(6) global symmetry
before Z, discrete gauging and a u8p(6) global symmetry
after the gauging. This is replicated in the Hilbert series of
the Coulomb branch of the respective magnetic quivers:

HS(¢) = PE[35¢/* + 20 — 35¢* + O(#°)],

HSz, (1) = PE[2172 + 207 + 105¢* + O(°)].  (6.23)

Theory 16 has a non-Abelian 81(2) global symmetry
attached to the central (—2)-curve in the tensor branch
configuration, as well as Abelian symmetries localized
on the left and the right of the configuration. We expect that
the 81(2) — udp(2) and the two u(1)s are identified under
the discrete gauging; we see this also from the Coulomb
branch Hilbert series:

HS() = PE[572 + 127° + 12¢* + O(P)],

HS,7, (1) = PE[4* 4+ 87 + 111* + O(F)]. (6.24)

Finally, we come to Theory 17. This theory has a reali-
zation as Higgsed (811(4),81(4)) conformal matter, and
thus it does have a orthosymplectic description for the
Higgs branch; however, this quiver contains symplectic
gauge nodes which are not good, and thus the application of
the monopole formula fails. Regardless, we can determine
the Coulomb branch Hilbert series of the unitary magnetic
quiver, before and after wreathing:

HS(t) = PE[11#% + 16¢° + O(1*)],
HS,z, (1) = PE[7* 4 67 + O(*)].

(6.25)

We find, as expected, that the change in the number of
R-charge 2 operators is consistent with the modification of
the global symmetry as follows:

3u(2)® @ u(1)® - su(2)® @ u(l).  (6.26)

TABLE V. The unitary magnetic quivers for the theories in Table I which do not admit (good) orthosymplectic

magnetic quivers.

# Conformal matter Tensor branch Magnetic quiver
15 A?"(%)([p]’ [13}) 3112(3) )
1 2 3 2 1
16 Aiu(')‘)([z’ 1]’ [27 ID 3u(2) 3112(3) 51152) A
1 3 1
17 A§u<4)([27 12]7 2, IZD 3u(3) su(4) su(3)
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VII. DISCUSSION

In this work, we focused on 6D (1, 0) SCFTs that have a
Z, Green-Schwarz automorphism, and we studied the
Higgs branch of such theories after the gauging of this
discrete symmetry. This study has been developed first at
the level of the tensor branch in 6D of the theory, and
confirmed by computing the Coulomb branch Hilbert series
of the wreathed magnetic quivers for their Higgs branches.
While the matching between the Z, discrete gauging and
the Z, wreathing is remarkable, we have only just started to
scratch the surface of the study of discrete symmetries and
their gauging in the landscape of 6D (1, 0) SCFTs.

A. Refinement and the 6D flavor symmetry

The 6D proposal for the continuous flavor symmetry of
the discretely gauged theory is almost completely clear
from the discussion in Sec. III B. However, whenever there
is a central undecorated (—1)-curve (meaning that an
E-string flavor symmetry is attached to it), the resulting
flavor symmetry is not always easily determined. The
computation of the Hilbert series gives the expected
dimension of the flavor symmetry algebra, however, this
is coarse information and the precise identification of the
algebra is lacking. One way out is to compute the refined
Hilbert series, by using a different prescription for the
computation of the Hilbert series, such as proposed in
Ref. [85]. In Ref. [86], this approach is being explored, with
an expanded investigation of the wreathing procedure,
extending the prescription proposed in Ref. [36]. This
analysis will lay the groundwork for a broader generali-
zation, enabling the wreathing of unitary and orthosym-
plectic quivers beyond Z,.

B. Geometric realization

As we have discussed, the geometric construction of 6D
(1, 0) SCFTs [10,11] is based on the compactification of
F theory on singular elliptically fibered Calabi-Yau three-
folds that satisfy specific properties. The strength of this
approach lies in its ability to systematically construct a
sufficiently nonsingular elliptically fibered Calabi-Yau
manifold, which encodes the tensor branch effective field
theory; this manifold can then be contracted to a singular
Calabi-Yau that engineers the corresponding superconformal
theory. Moreover, this framework provides an algorithm to
classify all possible tensor branch Calabi-Yau manifolds.
Consequently, it has been proposed that this geometric
construction is not just a method for engineering 6D
(1, 0) SCFTs but also serves as a classification—suggesting
that every such SCFT arises from an F theory compactifi-
cation on a Calabi-Yau threefold. The discretely gauged 6D
(1, 0) SCFTs that we have proposed in this paper constitute a
challenge to this proposal; we must ask what are the
elliptically fibered Calabi-Yau threefolds that engineer these

novel SCFTs in F theory? We expect that it is, in fact, the
same Calabi-Yau as for the nondiscretely gauged SCFT,
paired with the action of a geometric automorphism that
implements the gauging of the (geometric) Z, Green-
Schwarz automorphism. We expect to tackle this geometric
question in future work.

C. Hasse diagrams for wreathed quivers

The Higgs branch of an eight-supercharge SCFT is
expected to have the structure of a symplectic singularity
[87,88]. A symplectic singularity, X, admits a finite
stratification into symplectic leaves, with partial ordering
via inclusion X, C X; C --- C X, and the transverse slice
between each leaf and the total space X corresponds to the
Higgs branch of an SCFT which can be obtained via
Higgsing of the original SCFT [89]. The stratification can
be captured concisely in a Hasse diagram. To understand
the pattern of Higgsing in a given theory, it is necessary to
understand the stratification of the Higgs branch as a
symplectic singularity. In particular, we can ask when
there exists a Higgs branch renormalization group flow
from the discretely gauged theory 7 to another 6D (1, 0)
SCFT 77, which may or may not be discretely gauged. For
example, it seems reasonable to expect that there exist
flows between

A% (0,0) = AS_ (0,0, (7.1)
whenever O’ < O in the partial ordering on nilpotent orbits
of g. Here, as usual, the tilde indicates the discrete gauging
of the Z, Green-Schwarz automorphism. Algorithms have
been developed [17,22,23,26-28] to determine the strati-
fication structure of 3D N = 4 Lagrangian quivers satisfy-
ing certain restrictive properties; the extension of these
algorithms to wreathed quivers would allow us to extract
the stratification of the Higgs branch of the discretely
gauged conformal matter theories, and thus determine
which theories are related by Higgs branch renormalization
group flows. Alternatively, the geometric expectations from
the six-dimensional perspective, such as in Eq. (7.1), may
guide in the development of such algorithms, similarly to
the approach in Ref. [23].

D. Stiefel-Whitney twists and 4d A" =2 SCFTs

Here, we have considered the Higgs branches of dis-
cretely gauged 6D (1, 0) SCFTs. For theories in four, five,
or six dimensions with eight supercharges, when they are
compactified on a circle the Higgs branch is not modified
[90]; therefore, we have equally studied the Higgs branch
of circle compactifications of the 6D (1, 0) SCFTs in
question. Let us focus on 4D N = 2 SCFTs obtained via
aT? compactification of 6D (1, 0); it is sometimes possible
to turn on a discrete Z,, for £ = 2, ..., 6, Stiefel-Whitney
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twist along the torus. The resulting theories have been
discussed in Refs. [91-98], and generally they give rise to
novel classes of 4d N = 2 SCFTs.* Magnetic quivers for
the Higgs branches of such Stiefel-Whitney twisted SCFTs
have been generally proposed in Ref. [95]; these quivers,
perhaps after mass deformations (i.e., Fayet-Iliopoulos
deformations in the magnetic quiver), often have discrete
diagram automorphisms, and thus it is natural to consider
the wreathing of the magnetic quivers, and to speculate that
these will be magnetic quivers for certain discretely gauged
versions of the Stiefel-Whitney twisted 4D N/ = 2 SCFTs.
We leave the thorough exploration of this proposal for the
future.

E. Noninvertible symmetries

It is well known that the gauging of discrete O-form
symmetries, such as the Z, Green-Schwarz automorphisms
that we discuss in this article, can lead to noninvertible
symmetries, a form of generalized global symmetry [100],
in the discretely gauged theory [101]. This phenomenon
has been explored in 4D gauge theories, where the gauging
of the outer automorphism of the gauge algebra leads to
a 1-form symmetry becoming noninvertible [33,102]; this
is straightforward to see using the technology that was
developed in Refs. [103,104], and which is intimately
related to the anomalies of the outer automorphisms [105].
To give a few more examples: mixed anomalies between
O-form and 1-form symmetries for Argyres-Douglas the-
ories have been explored in Ref. [106] and for a wide class
of /' =1 Lagrangian theories in Ref. [107]; the discrete
gauging of the O-form symmetry is then again expected to
give rise to a noninvertible 1-form symmetry in the
discretely gauged theory.

In the 6D (1, 0) SCFTs in which we are interested,
a 2-form global symmetry, if it exists and has a mixed
anomaly with the Z;" O-form symmetry, would be
expected to become noninvertible under the discrete
gauging. Before it makes sense to discuss the 2-form
symmetry of a 6D SCFT, it is necessary to select a
polarization of the intermediate defect group, which
can be determined from the tensor branch [108], of the
theory; this is a necessary data to have a well-defined
quantum field theory (as opposed to a relative quantum
field theory [109]). Unlike four dimensions, the Dirac
pairing in six dimensions is symmetric which means that
the intermediate defect group does not always admit a
polarization; the process of determining polarizations for

2*Recent results in Ref. [99] have demonstrated that all class
S theories of A-type with regular untwisted punctures arise
through torus-compactification, without Stiefel-Whitney twist,
and further mass deformation of certain 6D (1, 0) SCFTs.
Incorporating the Stiefel-Whitney twist into such an analysis
would appear to thus be a powerful approach for the study of the
landscape of 4D N = 2 SCFTs.

6D SCFTs has been studied in detail in Refs. [31,110].25
To give a simple example, the Higgsed conformal matter
theory which we have called Theory 1, i.e.,

A2, 122)). (7.2)

has a Z, Green-Schwarz automorphism and admits a
polarization of the intermediate defect group that leads to
a Z, 2-form symmetry. As such, we would expect that the
discretely gauged theory, whose magnetic quiver was
given in Eq. (5.2), has a noninvertible 2-form symmetry.
It would be interesting to explore the reflection of such
generalized symmetries in the associated magnetic
quiver.26
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dimensional theories and the magnetic quivers for their Higgs
branches have been explored, for example, in Refs. [114-116].
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APPENDIX: PREFACTORS FOR COULOMB
BRANCH HILBERT SERIES

In this section, we review how to compute the contri-
bution to the Hilbert series given by the residual gauge
group, which is left unbroken by a given choice of magnetic
fluxes. This will serve as a starting point to explain how the
procedure is modified in case of Z, wreathing that we have
explained in Sec. IVA.

1. U(N) prefactor

Let us start from the unitary group U(N) and review the
discussion in Ref. [ [25], Appendix A]. For a given choice
of fluxes, m € ZV, with m; > ... > my, it is possible to
define a partition A(m) that encodes how many fluxes
m; are equal. Hence, A(m) is a partition of N associated to
the magnetic flux m, extended with zeros to be of length N.
Let us call 4;(m) the components of A(m), satisfying
>~ A:(m) = N. The commutant of the monopole flux that
gives the residual gauge group is then given by

N, U(2;(m)). The classical Casimir contribution is

N
PU(N)(f,m) = HZE(m),
Jj=1

o 1>,
with  ZV = {111—1'—# = (A1)

[=0

It is possible to rewrite the classical Casimir contribution in
a way that is better suitable for wreathing as follows: one
can consider the Weyl group of U(N), ie., Sy, and
construct the N x N matrix representation of the group.
The commutant of the monopole flux m is given by

W(m) = {g€Sylg-m = m}, (A2)

so that for a given choice of fluxes, the prefactor is given by

1 1

P tLm) =——— —_—. A3

om(tm) =Ty 20 Gaioay A9
The advantage of the first description for the classical
contribution is that it makes explicit that for a given U(N)
gauge groups, the choice of fluxes breaks the gauge group
into smaller U(M) factors, and the prefactor can then be
computed recursively. The second description, instead,
makes a clearer connection with the Weyl group and its
elements, with W(m) selecting those matrices of Sy that
admit an eigenvector m with unitary eigenvalue. However,
the two prescriptions together allow us to see W(m) as the
group given by the product of S, ) symmetric groups.

In Ref. [[25], Appendix A], the authors used the
definition of the prefactor for U(N) also to construct the
prefactors for USp and SO groups. Our aim is then to
express the prefactors using Eq. (A3).

2. USp(2N) prefactor

For USp(2N) (and analogously SO(2N + 1)), one
defines the flux vector m, such that m; > ... > my > 0.
The relevant part is that the choice of flux will break the
residual gauge group USp(2N) to products of U(M) and
USp(2M) factors, depending on which fluxes are vanishing
or not. As in Ref. [25], let us call Ay(m) the number of
vanishing magnetic fluxes, and let us collect all the other
fluxes into a partition ﬂ(mg counting how many fluxes are
equal, but nonvanishing.”’ By construction, we have
Ao(m) + >, 4;(m) = N. The residual gauge group is then

N, U(2;(m)) x USp(24¢(m)). The classical prefactor is

N
Us

Pyspon)(t, m) = Zgo(ﬁl) sz(m)’

=

v 2 {1Hl T (A

=0

In rewriting this contribution using Eq. (A3), one can still
consider the full Weyl group of USp(2N), i.e., Sy X Z5,
and consider the matrix elements that are left invariant by
a given choice of matrices. However, the observation in
Ref. [25] is that we can generate that group by considering
a product of § 4, (m) and S, (m) groups but with the Casimirs
in §; (m) With double the charge. This means that one can
consider the N x N matrix realization of the group ele-
ments in W(m) = X(,»S 4,(m) X Sj,(m) and replace Eq. (A3)
with

1 1
Pyspon (1, m) = Z > . (AS)
Wm)| 4 det(i—12-)
where
T? = diag(£%, ... 2, t*, ..., 1*). (A6)

> Am)  Ao(m)
As already mentioned, the prefactor for SO(2N + 1) is
the same as for USp(2N), so we can now discuss SO(2N).

3. SO(2N) prefactor

The magnetic fluxes m for SO(2N) groups are now
restricted to be m| > ... > my_; > |my/|, so one defines a
vector m = (my, ...,my_y, |myl|), which depends on the
magnetic fluxes m, and we can proceed as in
Appendix A 2. We call Ay(n) the number of vanishing
n fluxes, and A(n) the partition counting how many fluxes
are equal, but nonvanishing. The residual gauge group is

N, U(2;(n)) x SO(24¢(n)), giving the prefactor

“TOnce again, the partition is extended with zeros so that it has
length N.

026035-29



LAWRIE, LEPPER, and MININNO

PHYS. REV. D 112, 026035 (2025)

N
Pso(zN)(ﬁ n) = Zign) H ZE(H)’
Jj=1

L l':l 14i [>1,
with ZISO — { 11_[2’ Hz—l 1-1 = 0 (A7)

Once again, one can construct the Weyl group of
SO(2N), i.e., Sy X ZY~1, or by analogy to the USp case
above, we can consider W(n) = XjSﬂj(n) X 8 (m)=1 X St
leading to

1 1
Psoan) () = Y e (A8)
(Wn)| S5, det(1 =T -7)
where
T? = diag(¢%, ... 2. 4, ... t*, Po), (A9)
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