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We study the Higgs branch moduli space of certain 6D (1, 0) superconformal field theories (SCFTs)

after gauging their Z2 Green-Schwarz automorphism. We explain how to read the flavor symmetry of

such SCFTs directly from the 6D construction, and we confirm the expectation by computing the

Coulomb branch Hilbert series of their Z2-wreathed 3d N ¼ 4 magnetic quiver. To perform the latter

computation, we explicitly introduce a methodology to determine such Hilbert series for Z2-wreathed

orthosymplectic quivers.
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I. INTRODUCTION

In recent years, there has been a proliferation of con-

structions and (attempted) classifications of higher-dimen-

sional superconformal field theories (SCFTs), typically

driven via geometric approaches.
1
Often, discretely gauged

SCFTs play a crucial role in testing the robustness of such

constructions and the techniques for extracting physical

properties. Consider T an SCFT with a discrete global

symmetry Γ, obtained from such a geometric or top-down

approach, and then consider the new theory T̃ obtained by

gauging Γ. Then, the theories T̃ can source novel properties

that are absent in their nondiscretely gauged cousins. For

example, in the world of 4D N ¼ 2 SCFTs, such discrete

gaugings are known [3–6] to violate the conjecture [7,8]

that the Coulomb branch chiral ring is freely generated,

which leads to a failure of the Shapere-Tachikawa [9]

formula for the central charges in terms of the Coulomb

branch operators. In this paper, we explore a similar

discrete-gauging operation on the 6D (1, 0) SCFTs obtained

via the geometric construction [10,11] in F theory. We focus

on the 1

2
-Bogomol'nyi-Prasad-Sommerfeld (BPS) operator

sector known as the Higgs branch chiral ring of particular

6D SCFTs, which realize a discrete global symmetry from a

Z2 Green-Schwarz (GS) automorphism [12], and analyze

the consequences of the gauging of such a symmetry.

The 6D (1, 0) SCFTs are generically strongly-coupled,

and thus it can be challenging to extract their properties.

More generally, let T denote an arbitrary eight-supercharge

theory in dimensions ≥ 3, for which we would like to

analyze the Higgs branch. For example, one might want to

study what the interacting fixed points along subloci inside

the Higgs branch are, or know what 1
2
-BPS operators belong

to the subsector of the theory known as the Higgs branch

chiral ring. Moreover, it is interesting to know if the Higgs

branch chiral ring is finitely generated and what its

generators and the relations among them are. One way

to make progress on such questions is to find a 3D N ¼ 4

Lagrangian theory, T M, such that the Coulomb branch of

T M is isomorphic to the Higgs branch of T , as follows
2
:

HB½T � ≅ CB½T M�: ð1:1Þ

Any such T M is known as a magnetic quiver for the Higgs

branch of T [13–15]. For many of the 6D (1, 0) SCFTs,

there are known T M, see, for example, Refs. [16–24].

Once a magnetic quiver is known, we can take advantage

of the Lagrangian description to study the Coulomb branch,

for which there are a variety of well-developed tools. For
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1
See Refs. [1,2] for recent reviews of some of the various

constructions of SCFTs in various dimensions.

2
More generally, the Higgs branch may be isomorphic to the

union of Coulomb branches of a collection of magnetic quivers,
but this situation will not arise in this paper.
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example, if we are interested in the spectrum of operators

belonging to the Coulomb branch chiral ring, as well as the

generators and relations, then we can use the monopole

formula [25] to determine the Coulomb branch Hilbert

series. Alternatively, if we are interested in the interacting

fixed points on the Coulomb branch, and the vacuum

expectation values (VEVs) that must be given to trigger the

corresponding renormalization group flows, we can use a

quiver subtraction algorithm [26] or the decay and fission

algorithm [23,27,28]. In this way, we learn detailed

information about the Higgs branch of (non-Lagrangian)

higher-dimensional SCFTs.

We now suppose that T denotes a 6D (1, 0) SCFT with

discrete global symmetry Γ, and with magnetic quiver for

the Higgs branch T M. Furthermore, we suppose that we can

gauge Γ,
3
leading to a new 6D (1, 0) SCFTwhich we denote

as T̃ . To understand the structure of the Higgs branch of

this discretely gauged theory, it would be useful to find a

magnetic quiver for the Higgs branch: T̃ M. In this paper,

building upon previous work in lower-dimensional field

theories [32–38], we propose that the magnetic quiver for

the Higgs branch of the discretely gauged theory is the

Γ wreathing of the magnetic quiver of the SCFT before

discrete gauging:

T̃ M ¼ T M ≀ Γ: ð1:2Þ

To define what it means for a quiver to admit a

wreathing, we must first define the group-theoretic notion

of the wreath product. In general, consider a reductive Lie

group G, and then the wreath product of G by Γ ⊆ Sk is

defined as

G ≀ Γ≡

�
Yk

i¼1

Gi

�

⋊ Γ; ð1:3Þ

where × is the Cartesian product of sets, and Gi with i ¼
1;…; k are k copies of the original group G. An element of

G ≀ Γ is denoted ðg; σÞ given by k elements gi ∈Gi and a

permutation σ ∈Γ. In this way, G ≀ Γ can be seen as the

direct product of k copies of G, which can be permuted by

Γ. Since in this paper we are interested in Z2 ≃ S2
wreathing, we explain briefly how it works for an S2 wrea-
thing of a groupG. One first considers the direct product of
two G groups, i.e.,

G2 ¼ G ×G; ð1:4Þ

and we consider the action

f∶ S2 → AutðG2Þ; ð1:5Þ

such that given an element gi ∈Gi, then f acts as

fðσÞðg1; g2Þ ¼ ðgσð1Þ; gσð2ÞÞ, where σ ∈ S2, for all elements

gi ∈G. We note that, if G is of order jGj, then G ≀ S2 is of

order 2jGj2. Now, consider a quiver gauge theory with

gauge group which contains two copies of a particular

subgroupGw,G ⊇ Gw ×Gw, and such that there exists aZ2

automorphism of the quiver that exchanges the two copies

of Gw. Then, we say that the quiver admits a Z2 wreathing,

and the wreathing replaces

Gw × Gw → Gw ≀ Z2: ð1:6Þ

SinceGw ≀ Z2 is a Lie group, it is a priori perfectly sensible

to consider the gauge theory associated with it. The

hypermultiplet spectrum remains unchanged under this

operation. To give a particularly relevant example: a

star-shaped quiver with k identical tails admits a wreathing

by any subgroup of Sk. In Fig. 1, we demonstrate an

example of a 3D N ¼ 4 quiver that admits a Z2 wreathing

and denote the resulting wreathed quiver.

A. Summary of the results

In this work, we focus specifically on 6D (1, 0) SCFTs,

T , with eight supercharges that arise on the worldvolume of

M5-branes probing an orbifold singularity, known as

conformal matter [39], which possess a Z2 discrete global

symmetry. When the Z2 is gauged leading to the theory T̃ ,

we can extract/conjecture properties of T̃ , such as the

continuous flavor symmetry, by studying the action of the

Z2 on the known Higgs branch chiral ring generators of T .

There are some subtleties in this analysis which we explain,

for example, under certain circumstances an soð2mÞ global
symmetry of T can be transformed into a uðmÞ global

symmetry of T̃ .

The main focus of this work is on, so-called, ðD;DÞ
conformal matter, where the magnetic quivers for the Higgs

branches are known to involve orthosymplectic gauge nodes.

We develop a procedure to compute the Coulomb branch

Hilbert series of general Z2-wreathed orthosymplectic

FIG. 1. In Fig. 1(a), we depict an example of a unitary quiver

that has two identical tails attached to the central node, and

thus has a Z2 quiver automorphism which can be wreathed. In

Fig. 1(b), we depict the wreathed quiver obtained by Z2

wreathing of the quiver in Fig. 1(a).

3
In particular, we are assuming that there are no discrete

anomalies for this Γ. Evaluating the 6D ’t Hooft anomalies for
discrete symmetries, perhaps along the lines of Ref. [29] in 4D, is
an interesting problem, but beyond the scope of this work. Note
that mixed anomalies between Γ and other global symmetries are
not a problem; gauging Γ then leads to a theory with noninvertible
symmetries as discussed in Refs. [30,31].
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quivers, and we apply this technique to the Z2-wreathing of

the magnetic quivers associated with the T . We see that the

flavor symmetry of T̃ predicted from the action of theZ2 on

the 6D Higgs branch operators is consistent with the

Coulomb symmetry of the wreathed magnetic quiver as

determined from the Hilbert series, and thus we find strong

evidence for Eq. (1.2) in this class of theories.

B. Structure of the paper

The structure of this paper is as follows: first, in Sec. II,

we briefly review the geometric construction of 6D (1, 0)

SCFTs, in particular for the conformal matter theories, and

explain how their Higgs branches are related to the

Coulomb branches of (wreathed) 3d N ¼ 4 quiver gauge

theories. In Sec. III, we discuss the discrete gauging of

conformal matter, which will serve as a reference for all the

examples discussed in this work. This is one of the novel

aspects of this work, and in Sec. III B we show how to

determine the flavor symmetry of the theory after discrete

gauging directly from the tensor branch analysis in 6D. In

Sec. IV, we explain how the discrete gauging is reflected in

the wreathing of the 3D magnetic quiver for the Higgs

branch, and Sec. IVA contains an explanation of how to

compute the Hilbert series for wreathed theories with

orthosymplectic groups. We test our proposal in Sec. V,

focusing on examples that admit both unitary and ortho-

symplectic quivers. More examples are discussed in

Sec. VI, in which we confirm the expected flavor symmetry

after discrete gauging, which we introduced in Sec. III B by

explicitly computing the Hilbert series of the Z2-wreathed

magnetic quivers. We discuss some implications and

directions for future study in Sec. VII. In the Appendix,

we review how to compute the classical contribution for the

Coulomb branch Hilbert series.

C. Conventions and notation

(1) In the following, we consider both unitary and

orthosymplectic quivers, and we follow the usual

language in which○ represents a gauge node and its

label is the rank of the unitary gauge group, while□

denotes a flavor node and its label denotes the

number of fundamentals. When the gauge or flavor

node is so, we will color the node in red, while we

will color the usp nodes in blue. The line connecting

two nodes represents a hypermultiplet in the bifun-

damental representation of the two groups. If the line

edge corresponds to multiple hypermultiplets, we

will specify this. A loop attached to a unitary gauge

node indicates an adjoint-valued hypermultiplet,

whereas a loop attached to a symplectic gauge node

refers to an antisymmetric hypermultiplet.

(2) We adopt the notions of excess number, balance,

underbalance, and overbalance as in Ref. [40].

For a UðNÞ gauge group with Nf hypermultiplets

transforming in the fundamental representation, the

excess number for such a gauge group is defined as

eUðNÞ ¼ Nf − 2N: ð1:7Þ

If, in a given quiver theory, all the excess numbers

are eUðNÞ ≥ 0, the theory is said to be good, because

all the monopole operators are above the unitarity

bound. If a gauge group has eUðNÞ ¼ 0, we call that

node balanced; while if eUðNÞ > 0, the gauge group

is said to be overbalanced. If eUðNÞ < 0, the gauge

group is said to be underbalanced. In particular, if

any of the gauge groups has eUðNÞ ¼ −1 the theory

is called ugly because there is a monopole operator

saturating the unitarity bound; otherwise, the theory

is bad, because it admits monopole operators below

the unitarity bound.
4
The excess number for SO and

USp gauge groups with Nf (full) hypermultiplets

transforming in the fundamental representation is

defined, respectively, as

eSOðNÞ ¼ Nf − N þ 1; eUSpð2NÞ ¼ Nf − 2N − 1:

ð1:8Þ

For orthosymplectic nodes, having any of the gauge

group with eSOðNÞ=USpð2NÞ ¼ −1 already signals that

the theory is bad.

II. REVIEW OF 6D CONFORMAL MATTER

In this section, we review the construction of 6D (1, 0)

SCFTs, known as conformal matter [39], which are theories

living on the worldvolume of M5-branes probing an

orbifold singularity. We discuss their realization from the

M theory and F theory perspectives, and how to determine

their flavor symmetries from their tensor branch effective

field theories. We also explain how to construct the

corresponding 3D N ¼ 4 magnetic quivers from their

Higgs branches.

A. The Higgs branch of conformal matter

Conformal matter refers to the class of 6D (1, 0) SCFTs

that live on the worldvolume of M5-branes probing an

orbifold singularity [39]. More specifically, rank N ðg; gÞ
conformal matter, where g is an ADE Lie algebra, lives on

the worldvolume of a stack of N M5-branes probing a

C2=Γ singularity, where Γ is the finite subgroup of SUð2Þ

4
In some cases, it may happen that monopoles valued in the

magnetic lattice of multiple gauge groups make an apparent good
theory bad. This is the case for some affine Dynkin-shaped
unitary quiver theories [41]. A similar discussion can be applied
to some orthosymplectic magnetic quivers, and recently an
adjustment to the balance notion for SO groups has been
proposed in Ref. [23].
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associated with g via the McKay correspondence [42]. We

denote these theories as

A
g
N−1: ð2:1Þ

Such theories have a flavor symmetry which is, at least,

g ⊕ g; ð2:2Þ

which we refer to as the left and right flavor factors. In fact,

the conformal matter theories are the parents of a whole

family of SCFTs obtained from Higgs branch renormali-

zation group flows. These flows are triggered via giving

nilpotent vacuum expectation values to the moment map

operators of the g ⊕ g flavor algebra. Let OL and OR

denote nilpotent orbits of g, then we can refer to the child

theories of this family as

A
g
N−1ðOL; ORÞ: ð2:3Þ

Now that we have defined a class of 6D (1, 0) SCFTs, we

would like to understand some of their physical properties.

In this paper, we are particularly interested in the structure

of the Higgs branch.
5
A magnetic quiver for the Higgs

branch of A
suðKÞ
N−1 ðOL; ORÞ, that is, where Γ ¼ ZK in the

M theory description, has been proposed in Ref. [20],

utilizing the magnetic phase of the brane description of the

6D (1, 0) SCFTs in Type IIA string theory. It is proposed

that

ð2:4Þ

where TO½suðKÞ� are the 3D N ¼ 4 theories introduced in Ref. [40]; these are, in fact, linear Lagrangian theories, as we

explain presently. Nilpotent orbits of suðKÞ are in one-to-one correspondence with integer partitions of K
6
; let

P ¼ ½p1; p2;…; pK� with
XK

i¼1

pi ¼ K; ð2:5Þ

written in weakly decreasing order and zero extended to be of length K, be the integer partition associated to the nilpotent

orbit O. Then, the Lagrangian theory TO½suðKÞ� is simply the linear quiver

ð2:6Þ

where the ni are specified by the choice of partition as

ni ¼
XK

j¼Kþ1−i

pj: ð2:7Þ

A similar proposal for the magnetic quiver of the Higgs branch of the ðD;DÞ conformal matter SCFTs, A
soð2KÞ
N−1 ðOL; ORÞ,

was also put forward in Refs. [20,48]. In the M theory construction, this is where Γ is the binary dihedral group. They

proposed that

ð2:8Þ

5
Various properties of the Higgs branches of conformal matter theories have been studied from diverse perspectives. For nilpotent

Higgsing of the moment map operators, see, for example, Refs. [20,22,43–51]. There are also Higgs branch renormalization group flows
which change g (such as those triggered by end-to-end operators [47,52–56]) and N.

6
See Ref. [57] for the canonical reference on nilpotent orbits of semisimple Lie algebras.
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via the engineering of the SCFTs in Type IIA string theory.
7

The brane analysis in Refs. [20,48] requires that the

partitions associated with OL and OR be special partitions;

this is in contrast to the geometric engineering approach

(see Sec. III A), where SCFTs are associated with all pairs

of D-partitions, as in Eq. (2.3) [58,59]. While we do not

have a derivation of Eq. (2.8) for nonspecial partitions, all

the obvious cross-checks are passed, and thus we assume

that Eq. (2.8) is valid in general. The TO½soð2KÞ� theories
again have a simple Lagrangian description. Each nilpotent

orbit of soð2KÞ can be associated with a D-partition of 2K8
;

however, this is not a unique association: each very even D-

partition is, in fact, associated with two distinct nilpotent

orbits. This particular subtlety is not well understood for the

TO½soð2KÞ� theories, and thus in this paper we will

perforce ignore this distinction.
9
Let

P ¼ ½p1; p2;…; p2K� with
X2K

i¼1

pi ¼ 2K; ð2:9Þ

be a D-partition of 2K, written in weakly decreasing order

and zero extended to be of length 2K. LetO be the nilpotent

orbit associated with the D-partition P, then TO½soð2KÞ�
has the following Lagrangian description as an alternating

sequence of orthosymplectic nodes:

ð2:10Þ

Here, the ni are specified by

ni ¼

8

>>><

>>>:

2

�
P

2K
j¼2Kþ1−i

pj

2

�

if i odd;

2⌈
P

2K
j¼2Kþ1−i

pj

2
⌉ if i even:

ð2:11Þ

Examining the magnetic quivers for Higgsed ðA; AÞ and
ðD;DÞ conformal matter in Eqs. (2.4) and (2.8), respec-

tively, we notice that when OL ¼ OR the magnetic quiver

exhibits a Z2 diagram automorphism. The physical mani-

festation of this Z2 in the 6D (1, 0) SCFTs is the subject of

Sec. III A.

B. Conformal matter from F theory

We have discussed the realization of the conformal

matter theories as living on the worldvolume of M5-branes,

that is, from an M theory perspective. We now turn to the

F theory perspective. We briefly review the construction of

the conformal matter theories via the atomic/geometric

perspective in F theory [10,11]. See Ref. [61] for a detailed

review of the atomic construction.

We begin with the ðA; AÞ conformal matter theories. Let

Ỹ be a noncompact elliptically fibered Calabi-Yau threefold

π∶ Ỹ → B̃ such that B̃ contains a linear chain of N − 1

pairwise intersecting smooth complex rational curves of

self-intersection (−2) and each supporting a split singular

fiber of Kodaira-Néron type IK at the generic point, and

such that the fibers are minimal over the intersection points

of the curves. We can denote such a Calabi-Yau threefold

via the shorthand notation

2

suðKÞ

� � � 2

suðKÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

N−1

; ð2:12Þ

where each 2 denotes a P1 ⊂ B̃ with self-intersection

number (−2) and a neighboring 2 indicates that the

corresponding complex curves intersect with intersection

number þ1; the suðKÞ over the 2 indicates that over the

generic point of that P1 there is supported a split singular

fiber of Kodaira type IK . We often refer to geometries

denoted as in Eq. (2.12) as a “curve configuration” or, for

reasons we will see anon, as a “tensor branch geometry.”

There exists a contraction map,

ρ∶ Ỹ → Y; ð2:13Þ

which simultaneously shrinks the volume of all compact

curves in B̃ to zero [62]. We see that the base of the

elliptic fibration Y is simply C2=ZN. Compactification

of F theory on Y yields the ðA; AÞ conformal matter theory

A
suðKÞ
N−1 .

We can similarly ask about the result of the compacti-

fication of F theory on Ỹ. Instead of an SCFT, this yields an
SQFT, which is known as the effective field theory on the

tensor branch of the SCFT associated with Y. This consists
of vector multiplets (associated with each gauge algebra g

supported over a compact curve), hypermultiplets (asso-

ciated with the intersections of compact and (non)compact

curves), and tensor multiplets (one associated with each

compact curve) where the scalar in the tensor multiplet is

given a vacuum expectation value proportional to the

volume of the associated curve. Each tensor multiplet

contains an anti-self-dual 2-form, which couples to a

tensionful string of the 6D theory: tuning the VEVs of

the scalars to be zero causes these strings to become

7
Note: there is an important choice of global structure that

must be made here; we return to this point in Sec. II D.
8
A D-partition of 2K is an integer partition of 2K such that

every even element appears with even multiplicity. A D-partition
which is very even has only even elements.

9
Recent work in four and six dimensions has emphasized the

importance of and determined the physical distinction between
the nilpotent orbits associated to the same very even D-partition
[51,60].
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tensionless, and their nontrivial dynamics generates the

SCFT [63,64]. As an supersymmetric quantum field theory

(SQFT), it is possible to compute a variety of the physical

properties of the effective field theory at the generic point of

the tensor branch; a part of the power of this geometric

construction of 6D (1, 0) SCFTs is the ability to compute

quantities at the generic point of the tensor branch which

can be tracked to the superconformal field theory at the

origin of the tensor branch. Such quantities are typically

related to global symmetries, as discussed in Secs. III A and

II C, or anomalies.

Next, we turn to understanding how the Higgsed theories

are constructed in F theory. Write the partitions of K asso-

ciated with nilpotent orbits of suðKÞ, OL and OR,

respectively, in multiplicative form as

½KmK ;…; 2m2 ; 1m1 � and ½Km0
K ;…; 2m

0
2 ; 1m

0
1 �: ð2:14Þ

Then, the tensor branch geometry Ỹ associated with the

SCFT A
suðKÞ
N−1 ðOL; ORÞ is

2

suðk1Þ

½m1�
2

suðk2Þ

½m2�
� � � 2

suðkKÞ

½mK �
2

suðKÞ

� � � 2

suðKÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

N−2K−1

2

suðk0
K
Þ

½m0
K
�
� � � 2

suðk0
2
Þ

½m0
2
�

2

suðk0
1
Þ

½m0
1
�
:

ð2:15Þ

The ki and k0i are fixed by gauge-anomaly cancellation,

which necessitates that

2ki − ki−1 − kiþ1 −mi ¼ 0; ð2:16Þ

where we have defined k0 ¼ 0 and kKþ1 ¼ K for conven-

ience, and analogously for k0i in terms of m0
i. In this paper,

we are interested in theories A
suðKÞ
N−1 ðO;OÞ, where we have

set OL ¼ OR ¼ O, and satisfying

N − 2l ≥ 0; ð2:17Þ

where l is the largest integer such that ml in the partition

corresponding to O is nonzero.
10

A similar method to construct the Ỹ such that, after

applying the contraction map ρ∶ Ỹ → Y, F theory com-

pactified on Y engineers the ðD;DÞ conformal matter

SCFTs A
soð2KÞ
N−1 ðOL; ORÞ is known. The Ỹ generically

consists of an alternating chain of pairwise intersecting

(−1)- and (−4)-curves with nonsplit I2K−8 fibers supported
over former and split I�K−4 over the latter. Let the nilpotent

orbits OL, OR of soð2KÞ be associated with the following

D-partitions of 2K, written in multiplicative form

½ð2KÞm2K ;…; 2m2 ; 1m1 � and ½ð2KÞm
0
2K ;…; 2m

0
2 ; 1m

0
1 �;

ð2:18Þ

respectively.
11

Then, the curve configuration is

1

uspð2k1Þ

½m1�
4

soðk2Þ

½m2�
1

uspð2k3Þ

½m3�
4

soðk4Þ

½m4�
� � � 1

uspð2k2K−1Þ

½m2K−1�
4

soð2KÞ

1

uspð2K−8Þ

� � � 4

soð2KÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðN−2Kþ1Þð−4Þ−curves

1

uspð2k0
2K−1

Þ

½m0
2K−1

�
� � � 4

soðk0
4
Þ

½m0
4
�

1

uspð2k0
3
Þ

½m0
3
�

4

soðk0
2
Þ

½m0
2
�

1

uspð2k0
1
Þ

½m0
1
�

: ð2:19Þ

The ki, k
0
i are again fixed by anomaly cancellation; this imposes that

4ki þ 16 − kiþ1 − ki−1 −mi ¼ 0 if i odd;

ki − 8 − ki−1 − kiþ1 −
mi

2
¼ 0 if i even; ð2:20Þ

and similarly for the k0i in terms of them0
i. In writing these conditions, we made the following convenient definitions: k0 ¼ 0

and k2K ¼ 2K. Sometimes, solving the anomaly cancellation conditions in Eq. (2.20), yields some ki which are

negative; when this happens, we need to apply the following replacement rules to determine the correct tensor branch

geometry:

10
When Eq. (2.17) is not satisfied, the Higgsing is “bad”; see Refs. [65–67] for discussions of such cases.

11
As we have already emphasized, certain D-partitions are in fact associated with two distinct nilpotent orbits. The difference

in the tensor branch geometries between two such nilpotent orbits is related to θ-angles, which we suppress in the following.
See Ref. [51] for a careful analysis of the curve configuration when Higgsing by nilpotent orbits associated with very even D-partitions.
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1

uspð−6Þ

4

soð3Þ

1

uspð−4Þ

4

soð5Þ

1

uspð−2Þ

4

soð7Þ

� � � ⟶ 2 2

suð2Þ

3

g2
� � � ;

1

uspð−6Þ

4

soð4Þ

1

uspð−2Þ

4

soð7Þ

� � � ⟶ 2

suð2Þ

3

g2
� � � ;

1

uspð−6Þ

4

soð4Þ

1

uspð−2Þ

4

soð8Þ

� � � ⟶ 2

suð2Þ

3

soð7Þ

� � � ;

1

uspð−4Þ

4

soð5Þ

1

uspð−2Þ

4

soð7Þ

� � � ⟶ 2

suð2Þ

3

soð7Þ

� � � ;

1

uspð−4Þ

4

soð6Þ

� � � ⟶ 3

suð3Þ

� � � ;

1

uspð−4Þ

4

soð7Þ

� � � ⟶ 3

g2
� � � ;

1

uspð−4Þ

4

soð8Þ

� � � ⟶ 3

soð7Þ

� � � ;

1

uspð−2Þ

4

g

� � � ⟶ 3

g

� � � ; ð2:21Þ

where the final row is a catch-all replacement for any such

special orthogonal g that appears when solving Eq. (2.20).

Similarly to the ðA; AÞ conformal matter case, in this paper

we are only interested in ðD;DÞ theories which are Higgsed
by the same nilpotent orbit and are not bad, which means

that Eq. (2.17) must also be satisfied for the A
soð2KÞ
N−1 ðO;OÞ

that we consider.

Another object of interest is known as the “partial tensor

branch theory.” This is the SQFT obtained by taking the

curve configuration at the generic point of the tensor branch

for some conformal matter, and taking the volumes of all

(−1)-curves to zero, until there are no (−1)-curves remain-

ing.
12

This theory consists of a collection of vector

multiplets coupled to strongly coupled SCFT sectors

associated with the collapsed curves. The torus-compacti-

fication of the partial tensor branch SQFT is known to have

an alternative realization [43,49,50] via a punctured sphere

in class S [68,69]. Therefore, the analysis of Ref. [70]

provides the magnetic quiver for the Higgs branch of this

partial tensor branch theory in 6D. We have

ð2:22Þ

and

ð2:23Þ

where we have written PTB½T � to denote the partial tensor

branch SQFT associated with the conformal matter SCFT

T . We can see that the magnetic quiver for the Higgs

branch of the partial tensor branch theory has a SN diagram

automorphism, which permutes the N either uð1Þ or

uspð2Þ nodes, and when OL ¼ OR there also exists a

Z2 diagram automorphism that swaps the two horizontal

tails. Note that the magnetic quiver for the Higgs branch of

the SCFTs, as given in Eqs. (2.4) and (2.8), is obtained by

wreathing the SN automorphism of the PTB Higgs

branches, following the proposal in Ref. [20].

C. Flavor symmetry of conformal matter

As we have explained, a noncompact elliptically fibered

Calabi-Yau threefold satisfying the appropriate conditions,

for which the relevant details are captured by the tensor

branch curve configuration, gives rise to a 6D (1, 0) SCFT

via F theory geometric engineering. For the purposes of this

paper, we are interested in both the discrete global

symmetries and the continuous global symmetries; in this

section, we review how the latter are determined from the

tensor branch curve configuration. The algorithm is

explained for non-Abelian symmetries in Ref. [43] and

for Abelian symmetries in Refs. [71,72]; we review only

the details relevant for conformal matter theories here.

We begin with a discussion of the non-Abelian flavor

symmetries. Cancellation of gauge anomalies implies that

when the Lie algebra g is supported over a compact curve

12
For ðA; AÞ conformal matter, there are no (−1)-curves, and

thus the partial tensor branch theory is the same as the theory at
the generic point of the tensor branch.
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of self-intersection (−n), then the number and representa-

tions under g of the hypermultiplets in the effective field

theory are completely fixed by the pair ðg; nÞ.13 Consider a
curve configuration involving a singular fiber associated

with the Lie algebra g over a (−n)-curve. Assume that

gauge-anomaly cancellation implies that there must be m
hypermultiplets in the irreducible representation R of g,

14

and furthermore assume that m0 ≤ m of these hypermul-

tiplets are not trapped at intersections of the (−n)-curve
with other compact curves. Then, there is the following

non-Abelian flavor symmetry factor
15
:

f ¼

8

><

>:

suðm0Þ if R is complex;

uspð2m0Þ if R is real;

soð2m0Þ if R is pseudoreal:

ð2:24Þ

Recall that in the presence of an odd number of half-

hypermultiplets, which exist only when R is pseudoreal,

then m0 can be half-odd-integer. An exception to this

general rule in Eq. (2.24) occurs when considering a

configuration involving suð2Þ supported on a (−2)-curve,

see Refs. [10,43,50,73]. For example, for such configura-

tions, we may need to know the following special rules:

2m0 ¼ 8 ⇒ f ¼ soð7Þ;

2m0 ¼ 7 ⇒ f ¼ g2;

2m0 ¼ 6 ⇒ f ¼ suð3Þ: ð2:25Þ

These non-Abelian flavor factors we have just described

can be considered as “classical” flavor symmetries that

rotate a number of hypermultiplets in the same representa-

tion. The second interesting class of non-Abelian flavor

symmetries was referred to as “E-string flavor” in Ref. [43].

This arises as follows; consider a tensor branch curve

configuration of the form

� � � nL
gL
1nR
gR

� � � : ð2:26Þ

The rules for constructing Calabi-Yau threefolds associated

with SCFTs impose that

gL ⊕ gR ⊆ e8; ð2:27Þ

and that a (−1)-curve can intersect at most two compact

curves. Let f be the non-Abelian part of the commutant of

the embedding of gL ⊕ gR inside e8:

f ¼ Commutantðe8; gL ⊕ gRÞ: ð2:28Þ

Then, f is a factor in the non-Abelian global symmetry of

the associated SCFT. Most of the relevant commutants for

determining the E-string flavor were listed in Ref. [43].

For Abelian global symmetries, the situation is more

complicated. A priori, whenever there is a hypermultiplet in

a complex representation, including bifundamental hyper-

multiplets, there is a classical uð1Þ symmetry that rotates

that hypermultiplet. However, these symmetries often

suffer from Adler-Bell-Jackiw (ABJ) anomalies [71,72].

A systematic analysis of which particular linear combina-

tions of classical uð1Þ symmetries survive these ABJ

anomalies, in terms of the tensor branch curve configura-

tion, has appeared in Ref. [71]. However, we are interested

in the total rank of the surviving Abelian factors, and this

requires knowledge of only a few simple rules from

Ref. [71]. Consider a curve configuration of the form

2

suðk1Þ

½m1�
2

suðk2Þ

½m2�
� � � 2

suðkN−2Þ

½mN−2�
2

suðkN−1Þ

½mN−1�
; ð2:29Þ

where mi denotes the number of dangling hypermultiplets

associated with each gauge algebra. We assume that all

ki ≥ 2 and that at least one ki ≥ 3. Let l denote the number

of mi such that mi ≥ 1; then, after taking into account the

ABJ anomalies, the Abelian part of the global symmetry of

the configuration is

f ¼ uð1Þl−1: ð2:30Þ

There are two other ways that uð1Þ symmetries may arise

that we have to consider in this paper. We may have a

uspð2KÞ algebra supported over a (−1)-curve, such that

there are m0 ¼ 1 dangling hypermultiplets in the funda-

mental representation of the uspð2KÞ; then there is a

classical soð2Þ ≅ uð1Þ global symmetry, which does not

suffer from an ABJ anomaly. Similarly, we may have an

undecorated (−1)-curve such that the commutant in

Eq. (2.28) contains Abelian factors. As there are only

some configurations with E-string flavor that we consider

in this paper, we list them here:

13
In some instances, the pair ðg; nÞ does not uniquely fix the

matter spectrum, however this does not occur in the conformal
matter theories that we discuss in this paper.

14
Anomaly cancellation may require matter in multiple distinct

irreducible representations of g, in which case there may be a
contribution of a product of simple Lie algebras to the global
symmetry.

15
We note that these flavor symmetry factors arise when R is an

irreducible representation of the gauge group, not just the gauge
algebra. As an example of where this is not the case: let g ¼
suð3Þ and G ¼ SUð3Þ ⋉ Z2, i.e., a semidirect product of the
simply connected SUð3Þ and its Z2 outer automorphism; the 3

and 3̄ are not irreducible representations of G, but the 3 ⊕ 3̄ is.
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� � � 3

suð3Þ

1 3

suð3Þ

� � � ⇒ f ¼ suð3Þ ⊕ suð3Þ;

� � � 3
g2
13

g2
� � � ⇒ f ¼ suð2Þ;

� � � 3

soð7Þ

1 3

soð7Þ

� � � ⇒ f ¼ uð1Þ;

� � � 3

suð3Þ

1 4

soð9Þ

� � � ⇒ f ¼ uð1Þ;

� � � 3
g2
1 4

soð9Þ

� � � ⇒ f ¼ ∅;

� � � 3

soð7Þ

1 4

soð9Þ

� � � ⇒ f ¼ ∅: ð2:31Þ

Each such uð1Þ persists to a global symmetry of the

quantum theory.

D. Comment on higher-form symmetries

We would like to briefly comment on the arising of

1-form symmetries when considering the 3D magnetic

quivers for the Higgs branches of 6D conformal matter. We

have explained that such magnetic quivers are given as in

Eqs. (2.8) and (2.23). In fact, there is a slight ambiguity in

these descriptions that we clarify here. More generally,

in Refs. [70,74], the 3D mirror for class S [68,75] theories

of types A and D were given as a diagonal gauging of a

collection of the 3D TO½g� theories where a similar subtlety

arises when g is a D-type algebra.

An important observation that was made in Ref. [74] is

that if one wants to match the Higgs branch Hilbert series/

Hall-Littlewood index of the 4D theory,
16

for the class

S theories of type D, with the Coulomb branch Hilbert

series of the proposed magnetic quiver, then it is necessary

that the global form of the central node of the magnetic

quiver is G=Z2. The gauging of a Z2 1-form symmetry in

3D creates a dual 0-form symmetry, which affects the local

operator spectrum, and thus the Hilbert series.

In the computation of the Hilbert series, we will explicitly

refine by theZ2 fugacityω for theZ
½0�
2
0-form symmetry that

the 3D mirror theories have. This is a possible refinement,

and allows us to visualize both the choices of global form for

the central node of the quivers. Either choice of ω is sensible

when purely considering a 3D orthosymplectic quiver and its

wreathing, however, the Hilbert series associated to the

Higgs branch of the 4D class S theory corresponds to

unrefining the Hilbert series by setting ω ¼ 1. We expect

that the same choice of global form for the central node is the

relevant choice for the magnetic quiver of the Higgs branch

of 6D conformal matter.

III. DISCRETE GAUGING OF

CONFORMAL MATTER

Now that we have introduced the 6D (1, 0) SCFTs of

interest in this work, we explain when they have discrete

global symmetries, associated with so-called Green-

Schwarz automorphisms. Then, using the tensor branch

description, we conjecture the continuous flavor symmetry

of the new 6D (1, 0) SCFTs obtained by gauging these

discrete global symmetries. The predictions of the flavor

symmetry obtained in Sec. III B will then be confirmed

from the computation of the Hilbert series of the

Z2-wreathed magnetic quivers in Secs. V and VI.

A. Discrete symmetries and

Green-Schwarz automorphisms

We have discussed how the continuous global sym-

metries of the 6D (1, 0) SCFTs can be determined from the

tensor branch curve configuration associated to the Calabi-

Yau geometry engineering the SCFT in F theory. Discrete

global symmetries of the SCFTs can also be obtained from

the tensor branch description, as explained in Ref. [12].

The tensor branch of 6D (1, 0) SCFTs is given by a

collection ofN ¼ 1 tensor multiplets. The bosonic sector of

these multiplets is formed by a scalar and an anti-self-dual

2-form. The conformal fixed point corresponds to taking the

expectation values of all the scalars to zero simultaneously,

which in turn corresponds to making the strings charged

under the anti-self-dual 2-form tensionless. The metric on

the tensor branch moduli space parametrized by the scalars

in the tensor multiplets is obtained by considering the Dirac

pairing A of all the string charges, defined as

A∶ Λ → Λ; ð3:1Þ

where Λ is the lattice of string charges. In order to uniquely

determine the geometry of the tensor branch moduli space,

one needs to find what is the group of transformations that

leaves the Dirac pairing invariant. This group is also known

as the automorphism group AutðΛÞ which receives two

source contributions [12]:

AutðΛÞ ¼ AutðΛendÞ × Autðuspð2QÞÞ; ð3:2Þ

where

AutðΛendÞ ¼ Oend ⋉ Wend; ð3:3Þ

with Λend being the charge lattice of the endpoint configu-

ration of curves (also known as the partial tensor branch

description in Sec. II), while Q is the number of blowdowns

of (−1)-curves which must be performed to go from the

generic point of the tensor branch to the endpoint curve

configuration. Oend represents the candidate global discrete

symmetry, while Wend is the maximal normal subgroup of

AutðΛendÞ. For each family of 6D (1, 0) SCFTs that exist in

16
Here, we will assume that all punctures in the class S des-

cription are untwisted. When twisted punctures are incorporated
the Hall-Littlewood index and the Higgs branch Hilbert series are
generically not the same [76], and magnetic quivers for the Higgs
branches have been proposed in Refs. [76,77].
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the geometric construction via F theory, Oend was deter-

mined from the C2=Γ singularity of the base in Ref. [12], in

particular, if Γ is a finite ADE group then

Oend ¼ OutðgΓÞ; ð3:4Þ

that is, the group of outer automorphisms of the ADE Lie

algebra gΓ associated to Γ via the McKay correspondence.

As explained in Ref. [12], the singular F theory base

C2=Γ, where Γ is one of the appropriate finite subgroups of

Uð2Þ, enjoys Oend as an isometry. The fact that Oend is an

isometry of the base of the Calabi-Yau (both the base at the

generic point of the tensor branch, and at the origin of the

tensor branch) means that Oend is a candidate global

symmetry of the associated SCFT. Of course, an isometry

of the base of the compactification space does not neces-

sarily uplift to an isometry of the full compactification

space; the latter depends on the compatibility of the elliptic

fibration.

To explore the uplift of the isometry to the Calabi-Yau

threefold, we explore a pertinent example for this work.

Consider the curve configuration

½suðKÞ� 2

suðKÞ

� � � 2

suðKÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

N−1

½suðKÞ�; ð3:5Þ

associated to rank N ðsuðKÞ; suðKÞÞ conformal matter,

where we have written the classical flavor symmetries

arising on the left and the right, and where we assume that

N > 2. As the base geometry is simply C2=ZN, we know

from Ref. [12] that

Oend ¼ OutðsuðNÞÞ ¼ Z2: ð3:6Þ

The action of the Z2 acts on the (−2)-curves in the

configuration exactly as the outer automorphism acts on

the Dynkin diagram of the suðNÞ algebra: that is, by

simultaneously swapping the kth curve from the left with

the kth curve from the right. It is clear that this is

compatible with the structure of the elliptic fibration,

since the singular fibers supported over the exchanged

(−2)-curves are identical. Similarly, the singular fibers

supported over the noncompact curves, which contribute

the suðKÞ ⊕ suðKÞ continuous global symmetry, are

permuted. Since the action of Oend uplifts on an isometry

of the full Calabi-Yau threefold, we have identified a

discrete global symmetry of the corresponding SCFT.

Further, we note that there can be isometries of the

Calabi-Yau threefold that act as a trivial isometry on the

base, but act in a nontrivial way only on the fiber. A good

example of this phenomenon is the curve configuration

2

suðKÞ

; ð3:7Þ

where Oend ¼ 1 as it is the group of outer automorphisms

of the suð2ÞDynkin diagram. Nevertheless, if we group the

fundamental hypermultiplets required by anomaly cancel-

lation together in the following way:

½suðKÞ� 2

suðKÞ

½suðKÞ�; ð3:8Þ

which is the natural restriction to N ¼ 2 of the configu-

ration in Eq. (3.5), then we can observe a Z2 that acts only

in the fiber by exchanging the left and right flavor algebras.

In fact, the flavor symmetry is enhanced, as follows:

suðKÞ ⊕ suðKÞ→ suð2KÞ; ð3:9Þ

and this Z2 discrete symmetry simply becomes a part of the

enhanced continuous symmetry.

B. Flavor symmetry of discretely gauged

conformal matter

We have now discussed when a 6D (1, 0) SCFT is

expected to evince a discrete global symmetry by studying

the effective description at the generic point of the tensor

branch. If we assume that this discrete symmetry can be

gauged, then wewould like to determine some properties of

these purported discretely gauged 6D (1, 0) SCFTs. Here,

we will focus on the flavor symmetry after discrete

gauging; in particular, we will conjecture the flavor

symmetry after discrete gauging by studying the tensor

branch configuration, similarly to what we did in Sec. II C

for the SCFTs before discrete gauging.

Before returning to the 6D SCFTs themselves, let us first

briefly discuss the representation theory of some of the

disconnected gauge groups that we are interested in. Let us

suppose that we have an algebra

g ¼ suðKÞ ⊕ suðKÞ: ð3:10Þ

We wish to consider the global form of the gauge group

to be

SUðKÞ × SUðKÞ ⋉ Z2; ð3:11Þ

where the Z2 acts as the automorphism that swaps the two

SUðNÞ factors. We are interested in the representation

theory of this global form; in particular the (anti-)funda-

mental representation of one of the factors does not uplift to

a representation of the group as the Z2 acts as

Z2∶ ðK; 1Þ → ð1;KÞ: ð3:12Þ

Instead, we can see that

ðK; 1Þ ⊕ ð1; K̄Þ; ð3:13Þ

form (complex) irreducible representation of the group in

Eq. (3.11). To see how this analysis can reveal the flavor
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symmetry, we consider a 4D N ¼ 2 conformal gauge

theory with gauge algebra as in Eq. (3.10) and hyper-

multiplets in the following representations:

K × ðK̄; 1Þ; 1 × ðK; K̄Þ; K × ð1;KÞ: ð3:14Þ

If the global form of the gauge group is taken as in

Eq. (3.11), then we expect that there exists an suðKÞ global
symmetry rotating the ðK̄; 1Þ ⊕ ð1;KÞ irreducible repre-

sentation of the group. This is in contradistinction to the

suðKÞ × suðKÞ non-Abelian flavor symmetry that arises

where the global form of the gauge group is sim-

ply SUðKÞ × SUðKÞ.
Let us first explore the tensor branches associated

with (Higgsed) ðA; AÞ conformal matter. We consider first

the case where the number of M5-branes engineering the

Higgsed conformal matter theory is odd, in which case the

tensor branch curve configuration takes the following form:

2

suðk1Þ

½m1�
2

suðk2Þ

½m2�
� � � 2

suðkqÞ

½mq�
2

suðkqÞ

½mq�
� � � 2

suðk2Þ

½m2�
2

suðk1Þ

½m1�
: ð3:15Þ

We can see that this configuration admits a Z2 GS auto-

morphism. After the discrete gauging, the hypermultiplet

spectrum indicates that the non-Abelian part of the flavor

symmetry is

⨁
q

i¼1

suðmiÞ: ð3:16Þ

The Abelian global symmetries again require more care

about the existence of ABJ anomalies. As in Sec. II C, we

assume that all ki ≥ 2, and that at least one ki ≥ 3. If an

ABJ-anomaly-free uð1Þ is localized entirely on one side of

the tensor branch configuration, then we expect that it is

identified with its mirror on the other side of the configu-

ration due to the Z2 automorphism collecting together the

hypermultiplet representations on the left and right. There

also exists an anomaly-free uð1Þ in the nondiscretely

gauged theory which involves the generator of the uð1Þ

which rotates the ðkq; kqÞ bifundamental; as such, this

anomaly-free uð1Þ is not identified with any other uð1Þ
after the discrete gauging. Therefore, if we let l denote the

number of mi with mi ≥ 1, then the total Abelian flavor

symmetry is expected to be

uð1Þl: ð3:17Þ

Next, we consider the tensor branches that can be

associated with Higgsed ðA; AÞ conformal matter, where

the total number of M5-branes is even. We can write the

tensor branch curve configuration as

2

suðk1Þ

½m1�
2

suðk2Þ

½m2�
� � � 2

suðkqÞ

½mq�
2

suðkqþ1Þ

½mqþ1�
2

suðkqÞ

½mq�
� � � 2

suðk2Þ

½m2�
2

suðk1Þ

½m1�
: ð3:18Þ

The only difference from the N odd case is that the central

(−2)-curve acts as a pivot for the Green-Schwarz auto-

morphism. To determine the classical flavor symmetry

attached to that central curve, after discrete gauging of the

Z2, we look at the hypermultiplet spectrum. First, we note

that mqþ1 must be even:

mqþ1 ¼ 2kqþ1 − 2kq ¼ 2p: ð3:19Þ

We can consider this as p dangling hypermultiplets in the

fundamental representation of suðkqþ1Þ and p in the

antifundamental representation. Since the fundamental

and antifundamental transform nontrivially under the Z2,

we observe that we have p hypermultiplets in the irreduc-

ible representation

kqþ1 ⊕ kqþ1; ð3:20Þ

of the SUðkqþ1Þ ⋉ Z2 gauge group. Since this is a real

representation, we expect the hypermultiplets to be rotated

by a classical symplectic symmetry.

Putting everything together, the hypermultiplet spectrum

indicates that the non-Abelian part of the flavor symmetry

after discrete gauging of the theory in Eq. (3.18) is

uspðmqþ1Þ ⊕ ⨁
q

i¼1

suðmiÞ: ð3:21Þ

A similar analysis of the Abelian symmetries applies as in

the case where the number of M5-branes is odd. Again, let

l be the number ofmi such thatmi ≥ 1 for i ≤ q. Due to the
hypermultiplet spectrum, we expect that the total number of

ABJ-anomaly-free Abelian symmetries in the discretely

gauged theory is

uð1Þl: ð3:22Þ

In this analysis, we have determined the presence of a

uspðmqþ1Þ global symmetry arising from the central curve

after discrete gauging by studying the hypermultiplet

spectrum. In more complicated cases, such as with E-string

flavor, we may not have access to a classical spectrum, and

thus we would like to be able to understand the discretely

gauged flavor symmetry directly by thinking about the

Higgs branch chiral ring operators of the nondiscretely

gauged theory. In particular, note that the suðmqþ1Þ

symmetry on the central node of a Higgsed conformal

matter theory actually arises via the enhancement

su

�
mqþ1

2

�

⊕ su

�
mqþ1

2

�

→ suðmqþ1Þ: ð3:23Þ
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The Z2 GS automorphism acts as follows. Consider the

abstract theory
17
:

A
suðKÞ
N ð½KnK ;…; 2n2 ; 1n1 �; ½KnK ;…; 2n2 ; 1n1 �Þ: ð3:24Þ

The GS automorphism identifies the moment maps of the

suðniÞ global symmetry arising from the left partition, with

the same global symmetry arising from the right partition.

When there is an enhancement, such as in Eq. (3.23), we

also need to take care of the effect of the discrete gauging

on the extra moment maps. In this case, we have

suðmqþ1Þ→ su

�
mqþ1

2

�

⊕ su

�
mqþ1

2

�

adj→ ðadj;1Þ⊕ ð1;adjÞ⊕ ð1;1Þ

⊕

�
mqþ1

2
;
mqþ1

2

�

⊕

�
mqþ1

2
;
mqþ1

2

�

: ð3:25Þ

The identification of the moment maps leaves behind a

single suð
mqþ1

2
Þ flavor symmetry, and we find that the

matter content is obtained via the taking of the symmetric

projection under theZ2 that swaps the flavor factors.
18
That

is, the additional moment maps become

Sym2

�
mqþ1

2
;
mqþ1

2

�

Z2

⊕ Sym2

�
mqþ1

2
;
mqþ1

2

�

Z2

⊕ 1;

ð3:26Þ

where the final 1 is the flavor singlet. That is, in the

discretely gauged theory we have moment maps charged

under the following representations of suð
mqþ1

2
Þ:

adj ⊕ Sym2 ⊕ Sym2 ⊕ 1: ð3:27Þ

Since this is simply the branching rule of the adjoint

representation under

uspðmqþ1Þ→ su

�
mqþ1

2

�

; ð3:28Þ

we observe an enhancement to a uspðmqþ1Þ flavor

symmetry. We note that this derivation did not involve

the hypermultiplet spectrum on the tensor branch, only the

data of how the Z2 GS automorphism acts on the moment

maps of the (non-Abelian) flavor symmetries.

We emphasize that, thus far, we have discussed the

classical global symmetry arising from the analysis of the

gauge theories living at the generic point of the tensor

branch of the SCFTs under study. We propose that if the

classical flavor symmetry at the generic point of the tensor

branch ascends to a flavor symmetry of the SCFT in the

nondiscretely gauged case, then it also ascends to a flavor

symmetry of the SCFT in the discretely gauged case.

Now that we have discussed the case of Higgsed ðA; AÞ
conformal matter, we turn to the Higgsed ðD;DÞ conformal

matter. We consider a generic tensor branch curve con-

figuration, for a conformal matter theory of odd rank,

which takes the following abstract form:

1

uspð2k1Þ

½m1�
4

soðk2Þ

½m2�
1

uspð2k3Þ

½m3�
� � � 4

soðkq−1Þ

½mq−1�
1

uspð2kqÞ

½mq�
4

soðk0
q−1

Þ

½mq−1�
� � � 1

uspð2k3Þ

½m3�
4

soðk2Þ

½m2�
1

uspð2k1Þ

½m1�
; ð3:29Þ

where mi and ki are related such that the anomaly

cancellation conditions are all satisfied. We can see from

this tensor branch that there exists a Z2 GS automorphism

that extends to a discrete symmetry of the 6D SCFT at the

origin of the tensor branch.

When considering the Higgsed ðD;DÞ conformal matter,

each simple flavor symmetry factor as described in

Sec. II C can be considered as localized on a single curve

in the tensor branch configuration. This is in contrast to

ðA; AÞ conformal matter, where the ABJ-anomaly-free uð1Þ
symmetries can be a linear combination of uð1Þs distrib-

uted over a chain of curves. Since the Z2 discrete symmetry

arising from the GS automorphism swaps the tensor

multiplets and gauge algebras associated to the curves

on the left and the right, it is clear that the gauging modifies

the flavor symmetries as follows:

⨁
q−1

i¼1

fiðmiÞ
⊕2
→⨁

q−1

i¼1

fiðmiÞ; ð3:30Þ

where

17
Which we assume is good, in the sense of Ref. [67].

18
Here we have chosen a very specific Z2 action. In particular,

different choices of Z2 action lead to a different projection, for
example, conjugating the Z2 action that leads to Eq. (3.26) by an
element of suðmqþ1Þ can break the flavor symmetry to different

real subgroups, like soðmqþ1Þ. In this work, we considered the

projection to uspðmqþ1Þ because it is the one that more naturally

matches with the wreathing of those magnetic quivers that admit
both a unitary and orthosymplectic realizations. The way in
which we realized the wreathing in unitary magnetic quivers
gives the branching rule in Eq. (3.28), and we found the
equivalent realization on orthosymplectic quivers. The aim of
this work is to propose a procedure to wreath orthosymplectic
magnetic quivers and give an explanation at the level of discretely
gauged conformal matter, but we are not claiming that we have
exhausted all allowed discrete gaugings.
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fiðmiÞ ¼

�
soðmiÞ if i odd;

uspðmiÞ if i even:
ð3:31Þ

We note that in Eq. (3.29), we can have a configuration

where we need to apply the replacement rules in Eq. (2.21)

to observe the true tensor branch configuration. Regardless,

our conclusion holds that the Z2 discrete gauging identifies

the flavor symmetries that are localized on the curves to the

left and to the right of the central (−1)-curve.

For the central (−1)-curve, we use the same derivation

involving the moment maps that we used for the central

(−2)-curve in the ðA; AÞ conformal matter case. We first

assume that kq ≥ 0, so that we are considering a classical

flavor symmetry as opposed to a flavor symmetry arising

from the E-string. The flavor symmetry attached to the

central (−1)-curve is enhanced as follows:

so

�
mq

2

�

⊕ so

�
mq

2

�

→ soðmqÞ; ð3:32Þ

where theZ2 GS automorphism acts to identify the moment

maps of the two factors on the left. Under the associated

decomposition, the branching rule of the adjoint represen-

tation is as follows:

soðmqþ1Þ → so

�
mq

2

�

⊕ so

�
mq

2

�

adj → ðadj; 1Þ ⊕ ð1; adjÞ ⊕

�
mq

2
;
mq

2

�

: ð3:33Þ

The Z2 then projects onto the symmetric subspace of the

additional matter in the bifundamental representation,

leading to additional moment maps in the representations

Sym2

�
mq

2
;
mq

2

�

Z2

⊕ 1: ð3:34Þ

In short, after discrete gauging, we find an soð
mq

2
Þ global

symmetry with moment maps in the representation

adj ⊕ Sym2 ⊕ 1: ð3:35Þ

This is nothing other than the branching rule of the adjoint

representation under

u

�
mq

2

�

→ so

�
mq

2

�

; ð3:36Þ

and thus we would expect such an enhancement of the

global symmetry.

Even if we will not consider Higgsed ðD;DÞ conformal

matter theories where the rank is even, in which case the

central curve is a (−4)-curve rather than a (−1)-curve, we

can nevertheless comment on their flavor symmetries.

Again, it seems apparent that the flavor symmetries on

the left and right of the (−4)-curve are identified under the

Z2 discrete gauging, so, it seems straightforward to extend

the analysis identifying the moment maps for the central

(−4)-curve as we did both for the central (−2)- and

(−1)-curves. Since we will not study examples of magnetic

quivers for the Higgs branch of such theories, we will

refrain from commenting further.

Thus, we have determined the putative flavor symmetry

for the Z2 discrete gauging of almost all examples of

Higgsed ðA; AÞ and ðD;DÞ conformal matter that admit

such a Z2 symmetry. There are only a small, finite handful

of SCFTs where the flavor symmetry after discrete gauging

is unclear; these occur when performing Z2 discrete

gauging on certain theories where the central (−1)-curve

is undecorated and, thus, there exists E-string flavor

attached to it. To discuss these special cases, we begin

by reminding the reader that the generators of the Higgs

branch chiral ring of the rank one ðD;DÞ conformal matter

theory, with tensor branch

1

uspð2pÞ

; ð3:37Þ

are [13,19,51], under the soð4pþ 16Þ ⊕ suð2ÞR global

symmetry,

μ∶ ðadj; 3Þ; μþ∶ ðSþ; pþ 3Þ: ð3:38Þ

The latter is an extra generator in the spinor representation

of the classical flavor symmetry.
19
Typically, when gauging

on the left and the right, there will be a gauge-invariant

remnant of the moment map μ, which will contribute a

moment map of the gauged theory. However, we can

formally consider an “analytic continuation” to p ≤ 0.

For p ¼ 0, we see that the μþ is itself a moment map

operator, and provides the enhancement

soð16Þ → e8: ð3:39Þ

After gauging, the μþ will not typically leave behind a

gauge-invariant moment map operator, and attempting to

construct a gauge-invariant operator out of μþ generally

leads to operators with large R-charge. However, when

p ¼ −2, which is formally allowed by the replacement

19
A priori, there is the freedom in whether to choose the

positive or negative chirality spinor representation as the addi-
tional generator. In this case, the two choices are related via an
outer automorphism of the soð4pþ 16Þ global symmetry, and
thus give rise to equivalent theories. However, when considering
tensor branch configuration for more general Higgsed ðD;DÞ
conformal matter, it is important to keep track of these choices, as
they may not all be equivalent. See Ref. [51] for a detailed
discussion.
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rules in Eq. (2.21), the μþ operator has trivial R-charge, and

thus can be combined with the μþ of the central curve with

p ¼ 0 to form gauge-invariant operators transforming in

the 3 of the suð2ÞR. When this situation occurs, we need to

understand how the Z2 GS automorphism acts on this

sector of the 1

2
-BPS operator spectrum. The only three

6D (1, 0) SCFTs that come from ðD;DÞ conformal matter

and admit a Z2 GS automorphism that have this feature are

associated to the tensor branch configurations

2

suð2Þ

3

g2
13

g2
2

suð2Þ

; 3

g2
13

g2
; 3

suð3Þ

1 3

suð3Þ

: ð3:40Þ

Since these are rather exceptional cases we only briefly

discuss one of them here.

As mentioned, these configurations have an enhanced

flavor symmetry from that we might expect when we think

of the theory naively as a Higgsing of a ðD;DÞ conformal

matter theory. To see this explicitly, we now delve into the

latter theory more deeply. We consider the following

conformal matter theory with its associated tensor branch

curve configuration:

A
soð8Þ
2

ð½32; 12�; ½32; 12�Þ∶ 3

suð3Þ

1 3

suð3Þ

: ð3:41Þ

As described in Sec. II C, this SCFT has an suð3Þ ⊕ suð3Þ
flavor symmetry which can be determined by looking at the

commutant of the suð3Þ ⊕ suð3Þ gauge group inside the

e8 flavor symmetry associated with the single (−1)-curve.

In fact, we can reproduce this flavor symmetry from the

conformal matter perspective. Naively, before applying the

replacement rules in Eq. (2.21), the tensor branch configu-

ration corresponding to this SCFT is

1

uspð−4Þ

½2�
4

soð6Þ

1
½4�

4

soð6Þ

1

uspð−4Þ

½2�
: ð3:42Þ

We have chosen to write the number of additional half-

hypermultiplets directly, rather than the classical flavor

symmetries rotating them. This theory has a sequence of

two enhancements of the flavor symmetries:

soð2Þ ⊕ soð2Þ ⊕ soð2Þ ⊕ soð2Þ

→ soð2Þ ⊕ soð4Þ ⊕ soð2Þ → suð3Þ ⊕ suð3Þ; ð3:43Þ

where we have first written the manifest global symmetries

from the nilpotent orbits, the enhanced symmetry due to the

shortness of the tensor branch configuration, and finally the

enhancement arising from the nonperturbative nature of the

E-string. We now attempt to understand these enhance-

ments, in particular the last one, in the nondiscretely

gauged theory.

Let us now try to write down gauge-invariant opera-

tors of the theory with tensor branch as in Eq. (3.42)

transforming in the 3 of the R-symmetry and built out of

these operators. We obtain the following moment map

operators:

Operator soð2Þ suð2Þ suð2Þ soð2Þ

μL 10 1 1 10

μR 10 1 1 10

μC 10 3 1 10

μC 10 1 3 10

μþL ⊗ μþC ⊗ μþR 11 2 1 11

μþL ⊗ μþC ⊗ μþR 1−1 2 1 1−1

μþL ⊗ μþC ⊗ μþR 11 1 2 1−1

μþL ⊗ μþC ⊗ μþR 1−1 1 2 11

:

ð3:44Þ

Here, we have written the soð4Þ attached to the central

curve as suð2Þ ⊕ suð2Þ, and we have used subscripts L,
R, and C to denote the operators coming from the Higgs

branch generators of the left, right, and central (−1)-

curves, respectively. That is, we observe eight extra

moment map operators coming from combinations of

the spinor representations, and it is easy to see from the

charges, up to a linear redefinition of the uð1Þs, that these
come from the standard regular maximal embedding of

suð2Þ ⊕ uð1Þ inside suð3Þ. Therefore, we have observed,
from this slightly unusual perspective with negative-rank

gauge algebras on the tensor branch, the reproduction

of the expected global symmetry of the associated

SCFT: suð3Þ ⊕ suð3Þ.
Now we can discuss what happens to these operators

under the Z2 discrete gauging. For the nonspinorial oper-

ators, the story is the same as for the central (−1)-curve in the

case where the flavor symmetry is classical: the soð2Þ ⊕
soð4Þ ⊕ soð2Þ becomes soð2Þ ⊕ uð2Þ. It is less obvious

from first principles what happens to the operators coming

from the gauge-invariant combinations of μþL ⊗ μþC ⊗ μþR ;

indeed, we shall return to this point when we discuss the

wreathed 3D magnetic quiver for this discretely gauged

theory.

We now have a proposal for the expected flavor

symmetry of the Z2 discretely gauged versions of 6D

(1, 0) (Higgsed) conformal matter theories of type ðA; AÞ
and ðD;DÞ. We test this proposal by considering the

magnetic quivers for the Higgs branch of certain conformal

matter theories and wreathing by the Z2 quiver auto-

morphism, which we believe to be the dual of the Z2 dis-

crete symmetry. From the wreathed magnetic quiver, we

can determine the Coulomb branch Hilbert series, and thus

extract the number of moment map operators of the

discretely gauged 6D SCFT.
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For computational tractability, we are interested in cases

where the total rank of the gauge algebra in the magnetic

quiver is not too large. Furthermore, since we will use the

wreathed analog of the monopole formula to determine

the Coulomb branch Hilbert series, we require that all the

gauge nodes of the (unwreathed) magnetic quiver be good

in the sense of Ref. [40]. Due to these constraints, we

consider a small set of explicit examples of 6D SCFTs,

which we list in Table I, together with their predicted flavor

symmetries before and after discrete gauging.

IV. COULOMB BRANCH OF

WREATHED QUIVERS

In this section, we review the wreathing procedure in

the context of 3D N ¼ 4 quiver gauge theories. Intro-

duced in Ref. [34], it has been shown in a series of works

[20,34–38,78,79] that quivers wreathed by a discrete group

Γ are magnetic quivers for the Higgs branches of certain 4D

N ¼ 2 SCFTs discretely gauged by Γ.

Let us first review the definition of the Coulomb branch

Hilbert series. Consider a 3D N ¼ 4 quiver gauge theory

X with (reductive) gauge group G connected by a set of

edges associated with bifundamental hypermultiplets. The

Coulomb branch Hilbert series is given by [25]

HS½CB of X �ðtÞ ¼
1

jWj

X

m

X

γ ∈WðmÞ

t2ΔðmÞ

detð1 − t2γÞ
; ð4:1Þ

where W is the Weyl group of G, and ΔðmÞ is the

dimension of the monopole operator with magnetic flux

m, generically given by [25,40]

ΔðmÞ ¼ −
X

α∈Δþ

jαðmÞj þ
1

2

X
Nf

i¼1

X

ρi ∈Ri

jρiðmÞj; ð4:2Þ

where α∈Δþ are the positive roots of the gauge group

G and ρi are the weights of the irreducible matter field

representation Ri under the gauge group. Respectively,

they represent the vector multiplet and hypermultiplet

contributions to the dimension of the monopole operators.

The summation of the magnetic fluxes depends on the

TABLE I. We list the curve configuration at the generic point of the tensor branch of each SCFT as well as the conjectural flavor

symmetry before (f) and after (fZ2
) discrete gauging. We write a red question mark for fZ2

in two rows where there are exceptional

moment maps which obscure the expected flavor symmetry; these are predicted later from the wreathed magnetic quivers.

# Conformal matter Tensor branch f fZ2

1 A
soð6Þ
3

ð½3; 13�; ½3; 13�Þ
2

suð2Þ

2

suð4Þ

2

suð2Þ suð4Þ uspð4Þ

2 A
soð6Þ
1

ð½16�; ½16�Þ
2

suð4Þ suð8Þ uspð8Þ

3 A
soð6Þ
5

ð½32�; ½32�Þ
2

suð2Þ

2

suð3Þ

2

suð4Þ

2

suð3Þ

2

suð2Þ suð2Þ ⊕ uð1Þ⊕2 suð2Þ ⊕ uð1Þ

4 A
soð8Þ
2

ð½32; 12�; ½32; 12�Þ
3

suð3Þ

1 3

suð3Þ suð3Þ⊕2 ?

5 A
soð8Þ
4

ð½5; 13�; ½5; 13�Þ
2

suð2Þ

3

soð7Þ

1 3

soð7Þ

2

suð2Þ suð2Þ⊕2 ⊕ uð1Þ suð2Þ ⊕ uð1Þ

6 A
soð8Þ
4

ð½5; 3�; ½5; 3�Þ
2

suð2Þ

3

g2
13

g2
2

suð2Þ suð2Þ ?

7 A
soð8Þ
3

ð½4; 2; 12�; ½4; 2; 12�Þ
3

suð3Þ

1 4

soð8Þ

1 3

suð3Þ soð2Þ⊕4 soð2Þ⊕2

8 A
soð10Þ
2

ð½33; 1�; ½33; 1�Þ
3

g2
1

suð2Þ

3

g2 soð6Þ uð3Þ

9 A
soð10Þ
4

ð½5; 3; 12�; ½5; 3; 12�Þ
3

suð3Þ

1 4

soð9Þ

1

suð2Þ

4

soð9Þ

1 3

suð3Þ uð1Þ⊕3 uð1Þ⊕2

10 A
soð10Þ
4

ð½52�; ½52�Þ
2

suð2Þ

3

soð7Þ

1

suð2Þ

3

soð7Þ

2

suð2Þ soð4Þ uð2Þ

11 A
soð10Þ
3

ð½4; 3; 2; 1�; ½4; 3; 2; 1�Þ
3

g2
1

suð2Þ

4

soð10Þ

1

suð2Þ

3

g2 suð2Þ⊕2 suð2Þ

12 A
soð10Þ
5

ð½52�; ½52�Þ
2

suð2Þ

3

soð7Þ

1

suð2Þ

4

soð10Þ

1

suð2Þ

3

soð7Þ

2

suð2Þ soð2Þ⊕2 soð2Þ

13 A
soð10Þ
6

ð½7; 13�; ½7; 13�Þ
2

suð2Þ

3

soð7Þ

1 4

soð9Þ

1

suð2Þ

4

soð9Þ

1 3

soð7Þ

2

suð2Þ suð2Þ⊕2 ⊕ uð1Þ suð2Þ ⊕ uð1Þ

14 A
soð10Þ
6

ð½7; 3�; ½7; 3�Þ
2

suð2Þ

3

g2
1 4

soð9Þ

1

suð2Þ

4

soð9Þ

13

g2
2

suð2Þ uð1Þ uð1Þ

15 A
suð3Þ
1

ð½13�; ½13�Þ
2

suð3Þ suð6Þ uspð6Þ

16 A
suð3Þ
3

ð½2; 1�; ½2; 1�Þ
2

suð2Þ

2

suð3Þ

2

suð2Þ suð2Þ ⊕ uð1Þ⊕2 suð2Þ ⊕ uð1Þ

17 A
suð4Þ
3

ð½2; 12�; ½2; 12�Þ
2

suð3Þ

2

suð4Þ

2

suð3Þ suð2Þ⊕3 ⊕ uð1Þ⊕2 suð2Þ⊕2 ⊕ uð1Þ
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gauge group G, e.g., for a quiver with only unitary gauge

nodes, the summation is overm∈Zr, with r being the rank
of the gauge group. In this work, we will consider only

certain representations for unitary and orthosymplectic

groups, which we list in Table II, together with the

corresponding contributions to the conformal dimension

of the monopole operators [25,80].

The prefactor

PGðt;mÞ ¼
1

jWj

X

γ ∈WðmÞ

1

detð1 − t2γÞ
; ð4:3Þ

is a classical contribution that counts the gauge invariant

operators of the residual gauge group unbroken by the

magnetic flux m. The computation of this contribution is

reviewed in the Appendix, while in Sec. IVA, we will

discuss how this is modified when a Z2 wreathing is

considered.

The action of the wreathing can be implemented at the

level of the Coulomb branch Hilbert series of a 3D N ¼ 4

SCFT by acting with Γ on the Weyl group W of the gauge

group of the quiver, and on the summations over the

magnetic fluxes. Suppose that such a quiver possesses a

diagram automorphism by the finite group Γ, i.e., Γ leaves

ΔðmÞ invariant. Then it is possible to consider the

wreathing by Γ of the quiver, obtaining the wreathed

quiver, which we refer to as X̃ . The general expression

for the Hilbert series is

HS½CBof X̃ �ðtÞ ¼
1

jWΓj

X

n

X

γ ∈WΓðnÞ

t2ΔðnÞ

detð1 − t2γÞ
; ð4:4Þ

where we have denotedWΓ ¼ W ≀ Γ. It is also important to

note that the summation over n and the prefactors

associated to the residual gauge symmetry may differ after

wreathing. In fact, if the quiver has topological symmetries,

the wreathing by Γ acts on a subset of the gauge nodes of

the quiver, breaking the symmetry to its diagonal subgroup.

The topological symmetry is a subset of the original

symmetry.

For our purposes, one computes the wreathing of the

total residual Weyl group WΓðmÞ for a given choice of

fluxesm. In practice,WΓðmÞ is given by all the matrices in

W ≀ Γ that leavem invariant. In the case of unitary quivers,

W is usually a product of SN factors, that being the Weyl

group for a UðNÞ gauge group. This way of computing the

Coulomb branch Hilbert series for wreathed unitary quivers

has been explored in recent works [34–36,81], while in this

paper we are interested in applying such techniques to

orthosymplectic quivers.

A. Prefactors for Hilbert series of Z2-wreathed quivers

In the Appendix, we have summarized the method for

computing the prefactor in the Hilbert series for a standard

unwreathed quiver. In this section, we extend the discus-

sion in the Appendix to determine the prefactor contribu-

tions to the Hilbert series for a Z2-wreathed quiver. The

procedure is easily generalized to more sophisticated

wreathing; however we postpone a systematic discussion

to future work.

Let us consider how the classical prefactor is modified

when we consider the wreathing of a gauge group G by

some discrete group Γ. As it has been explained in Sec. IV,

Γ must be a symmetry of the quiver, i.e., it leaves ΔðmÞ
invariant. This means that the resulting theory must have a

Hilbert series, in which we have to sum over only those

operators that are invariant under the action of Γ. This must

be also reflected at the level of the classical prefactor, which

generally will be of the following form:

TABLE II. Contributions to the conformal dimension ΔðmÞ in the monopole formula [25,80], for magnetic fluxes

m ¼ ðm1;…; mNÞ and n ¼ ðn1;…; nMÞ. The subscripts on the groups denote the magnetic fluxes in the lattice

associated to that group.

Group −
P

α∈Δþ
jαðmÞj

UðNÞm −
P

N
i<j jmi −mjj

SOð2NÞm −
P

N
i<j ðjmi þmjj þ jmi −mjjÞ

USpð2NÞm −
P

N
i<j ðjmi þmjj þ jmi −mjjÞ − 2

P
N
i¼1

jmij

(a) Vector multiplet contribution.

Representation 1

2

PNf

i¼1

P

ρi ∈Ri
jρiðmÞj

Bifundamental of UðNÞm × UðMÞn
1

2

P
N
i¼1

P
M
j¼1

jni −mjj

Bifundamental of SOð2NÞm × USpð2MÞn
1

2

P
N
i¼1

P
M
j¼1

ðjni þmjj þ jni −mjjÞ

Adjoint of UðNÞm
P

N
i<j jmi −mjj

Antisymmetric Λ
2 of USpð2NÞm

P
N
i<j ðjmi þmjj þ jmi −mjjÞ

(b) Hypermultiplet contribution.
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PG≀Γðt;nÞ ¼
1

jWΓðnÞj

X

γ ∈WΓðnÞ

1

det ð1 − t2γÞ
; ð4:5Þ

whereWΓðnÞ is the wreathedWeyl group ofG left invariant

by the choice of fluxes.

One way to determine the prefactor is to generate the full

resulting group WΓ obtained by wreathing the Weyl group

of G, and select for each choice of fluxes n the elements

that leave the fluxes invariant. However, this operation is

computationally intensive, and one must be aware that

leaving the lattice n as it is originally for a given quiver,

generically results in overcounting. It is then more efficient

trying to subdivide the summation in various contributions,

referred to as chambers, depending on the choice of fluxes.

Determining the minimal set of contributions that gives the

correct result without overcounting is generally difficult,

and it depends both on Γ and the group G involved in the

wreathing. In the following, we limit ourselves to discuss

the chambers for Γ ≃ Z2, explaining how the prefactor is

obtained for UðNÞ, USpð2NÞ and SOð2NÞ groups.20

Since we consider Z2 wreathing, we start from a quiver

that contains two gauge nodes G, respectively, with

magnetic fluxes m ¼ ðm1;…; mNÞ and n ¼ ðn1;…; nNÞ,
which are identified under the action of the Z2. The Z2

wreathing acts on the magnetic fluxes by exchanging

mi ↔ ni: ð4:6Þ

As we discuss in the Appendix, for any group G being

UðNÞ, USpð2NÞ and SOð2NÞ, one can restrict the compu-

tation to a Weyl chamber where the magnetic fluxes are

ordered, e.g., for UðNÞ as m1 ≥ … ≥ mN . The only differ-

ence between the groups is the domain of the fluxes. To

avoid overcounting, for the Z2 wreathing of these groups,

one can divide the summations by imposing pairwise

ordering on the magnetic fluxes of the two groups.

Let us first explain via an example of taking a Z2

wreathing of two Uð2Þ groups. We define m ¼ ðm1; m2Þ
and n ¼ ðn1; n2Þ as the fugacities associated to the two

Uð2Þs subjected to the conditions that m1 ≥ m2 and

n1 ≥ n2, as explained in the Appendix. As explained in

Ref. [ [34], page 29], we need to define under which

conditions ðm1; m2Þ ≥ ðn1; n2Þ. This is obtained by a

lexicographic order such that

ðn1; n2Þ ≤ ðm1; m2Þ ⇔ n2 < m2

or ðn2 ¼ m2 and n1 ≤ m1Þ: ð4:7Þ

The full Hilbert series can then be obtained by restricting

the fluxes to the following four chambers:

Restriction

n2 < m2; m2 ≤ m1; n2 ≤ n1
n2 ¼ m2; n1 < m1; m2 ≤ m1; n2 ≤ n1

m2 ¼ n2; m1 ¼ n1; n2 < n1

m2 ¼ n2; m1 ¼ n1; n2 ¼ n1

:

ð4:8Þ

One can see that, in this way, the whole lattice invariant

under the Z2 wreathing is covered, but isolating the first

two chambers guarantees that WΓðm;nÞ is the same as

Wðm;nÞ, without any further constraints coming from the

wreathing. On the other hand, the last two contributions

generate further cyclic groups among the fugacities that

modify the prefactor. In particular, the prefactor reduces to

the one generated by the product of the Weyl group S2 of a
single Uð2Þ with two distinct S2 actions that exchange the
fluxes. We can call (12) the points of the S2 symmetric

group associated to the fugacities ðm1; m2Þ and (34) the

points for ðn1; n2Þ, so, for the example at hand, the

prefactors for the various contributions are generated by

the group elements in

Restriction Cyclic groups

n2 < m2; m2 ≤ m1; n2 ≤ n1 ×iS
12

λiðmÞ ××jS
34

λjðnÞ

n2 ¼ m2; n1 < m1; m2 ≤ m1; n2 ≤ n1 ×iS
12

λiðmÞ ××jS
34

λjðnÞ

m2 ¼ n2; m1 ¼ n1; n2 < n1 S13
2
× S24

2
× S3

1
× S4

1

m2 ¼ n2; m1 ¼ n1; n2 ¼ n1 S13
2
× S24

2
× S34

2

; ð4:9Þ

where, as in the Appendix, we have introduced λðmÞ as the partition that encodes how many fluxesmi are equal, and λiðmÞ
are the components of such partition. The generalization to UðNÞ groups is straightforward by listing all possible pairwise

identifications among the fluxes, while keeping the ordering of the fluxes for the single UðNÞ groups. The prefactor can be
read directly from the restrictions on the fluxes by generating the group obtained by the cyclic permutation of the identified

fluxes and the Weyl group of a single UðNÞ group.

20
The prefactors for SUðNÞ and SOð2N þ 1Þ can be obtained trivially from UðNÞ and USpð2NÞ, respectively.
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The discussion is not much different for the USpð2NÞ
and SOð2NÞ groups, because the restriction on the fluxes is
the same as for the UðNÞ case, and the prefactors are again

those obtained by generating the group obtained by the

cyclic permutation of the identified fluxes, and the sym-

metric groups associated to the residual Weyl symmetry of

a single USpð2NÞ or SOð2NÞ group. As in the Appendix,

we can introduce a matrix T2 to correctly count the

Casimirs for the USpð2NÞ or SOð2NÞ groups, with entries

equal to t4 or t2λ0ðmÞ whenever necessary. For these reasons,

it is convenient to divide the summation, distinguishing

between fluxes being zero or not. Consider, for instance,

the Z2 wreathing of two USpð4Þ groups with fluxes m and

n. The restriction is

Restriction

n2 < m2; m2 ≤ m1; n2 ≤ n1
n2 ¼ m2; n1 < m1; m2 ≤ m1; n2 ≤ n1

m2 ¼ n2; m1 ¼ n1; 0 ≠ n2 < n1

m2 ¼ n2; m1 ¼ n1; 0 ¼ n2 < n1

m2 ¼ n2; m1 ¼ n1; 0 ≠ n2 ¼ n1

m2 ¼ n2; m1 ¼ n1; 0 ¼ n2 ¼ n1

:

ð4:10Þ

In this way, even if not strictly necessary, one can easily

read the group generating the prefactor from each restricted

choice of fluxes.

V. UTILIZING THE A3 ≅ D3 ISOMORPHISM

Now that we have explained how to determine the

prefactor for the Z2 wreathing of orthosymplectic magnetic

quivers, we want to test it in 3D N ¼ 4 theories for which

we have unitary and orthosymplectic quiver descriptions.

There are a variety of known constructions that lead to

quivers with unitary and orthosymplectic descriptions (see,

for example, Refs. [82–84]). In this paper, we engineer such

pairs by considering the magnetic quivers for the Higgs

branches of 6D (1, 0) conformal matter theories of type

ðsuð4Þ; suð4ÞÞ and ðsoð6Þ; soð6ÞÞ. In particular, the mag-

netic quivers take the forms in Eqs. (2.4) and (2.8), and the

Lie algebra isomorphism suð4Þ ≅ soð6Þ implies an iso-

morphism between the nilpotent orbits, which is summa-

rized in Table III. Moreover, we note that we are computing

the Hilbert series of the Coulomb branch using the

dimension formula for the monopole operators introduced

in Ref. [25]. Thus, we must restrict ourselves to quivers

where each node is individually good in the sense of

Ref. [40]; this means that we avoid TO½soð6Þ� theories
where any symplectic node is bad. We will consider the

same restriction when we move to higher-rank orthosym-

plectic quivers in Sec. VI.

In this section, hence, we consider the magnetic quivers

for the Higgs branches and theZ2 wreathing of the Higgsed

conformal matter theories

A
suð4Þ
3

ð½22�; ½22�Þ ≃ A
soð6Þ
3

ð½3; 13�; ½3; 13�Þ;

A
suð4Þ
1

ð½14�; ½14�Þ ≃ A
soð6Þ
1

ð½16�; ½16�Þ;

A
suð4Þ
5

ð½3; 1�; ½3; 1�Þ ≃ A
soð6Þ
5

ð½32�; ½32�Þ: ð5:1Þ

These tests are important for understanding the restrictions

on the fluxes and the prefactors in the case of orthosym-

plectic quivers and, following these cross-checks, we

discuss the Z2 wreathing of orthosymplectic quivers that

do not admit a unitary description in Sec. VI.

A. Theory 1: A
suð4Þ
3 ð½22�;½22�Þ and A

soð6Þ
3 ð½3;13�;½3;13�Þ

From the discussion in Sec. II C and the flavor sym-

metries reported in Table I, we know that A
suð4Þ
3

ð½22�; ½22�Þ
has an suð4Þ flavor symmetry. This can be confirmed

by considering the magnetic quiver for the Higgs branch

and computing the refined Hilbert series. The magnetic

quiver is

TABLE III. How the nilpotent orbits ofsuð4Þ and soð6Þ are related across the Lie algebra isomorphism.We have also

written the unitary and orthosymplectic Lagrangian quivers associated with the TO½g� theories for each nilpotent orbit.

OA3
TOA3

½suð4Þ� OD3
TOD3

½soð6Þ�

½14� ½16�

½2; 12� ½22; 12�

½22� ½3; 13�

[3, 1] ½32�

½4� [5, 1]
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ð5:2Þ

where, by =Uð1Þ, we mean that there is an overall Uð1Þ
under which none of the matter spectrum is charged, and

which must be decoupled. Let us call z1, z2 the topological
fugacities for the two Uð2Þ nodes respectively, while z3 is

the topological fugacity of the centralUð4Þ node, and z4 the
one for the Uð4Þ node with the adjoint field. These

fugacities must satisfy

z1z2z
2

3
z2
4
¼ 1; ð5:3Þ

due to the decoupling of the overall Uð1Þ. We can, then,

write the Hilbert series for this example as

HSðt; ziÞ ¼ ð1 − t2Þ
X

a1≥a2≥−∞

X

b1≥b2≥b3≥b4≥−∞

X

c1≥c2≥−∞

X

d1≥d2≥d3≥d4−∞

PUð2Þðt; aÞ

PUð4Þðt;bÞPUð2Þðt; cÞPUð4Þðt;dÞt
2Δz

a1þa2
1

z
b1þb2þb3þb4
3

z
c1þc2
2

z
d1þd2þd3þd4
4

; ð5:4Þ

where the conformal dimension of the monopole operators are given by

Δ ¼ −ja1 − a2j −
X4

i¼1

jbi − biþ1j − jc1 − c2j þ
1

2

X2

i¼1

X4

j¼1

ðjai − bjj þ jbj − cijÞ þ
1

2

X4

i¼1

X4

j¼1

jbi − djj; ð5:5Þ

and while the prefactors are computed as explained in the Appendix A 1. At the first relevant order, the Hilbert series reads
21

HSðt; ziÞ ¼ PE

�

t2
�

z
1=2
1

z
1=2
2

z4
þ z

1=2
1

z
1=2
2

z4 þ
z
1=2
1

z
1=2
2

z4
þ

z
1=2
2

z
1=2
1

z4
þ
z
1=2
2

z4

z
1=2
1

þ
1

z
1=2
1

z
1=2
2

z4

þ
z
1=2
1

z4

z
1=2
2

þ
z4

z
1=2
1

z
1=2
2

þ z1 þ
1

z1
þ z2 þ

1

z2
þ 3

�

þOðt4Þ

	

; ð5:6Þ

where we have defined

z3 ¼
1

z
1=2
1

z
1=2
2

z4
; ð5:7Þ

in order to satisfy Eq. (5.3).

We now rewrite the three remaining fugacities in terms of three new fugacities, x, y, and z, defined as follows:

z1 ¼ x2; z2 ¼ y−2; z4 ¼ z2: ð5:8Þ

Then, we can rewrite the Hilbert series as

HSðt; x; y; zÞ ¼ PE

�

t2
�

1þ χ
suð2Þ
½2� ðxÞ þ χ

suð2Þ
½2� ðyÞ þ

�

z2 þ
1

z2

�

χ
suð2Þ
½1� ðxÞχ

suð2Þ
½1� ðyÞ

�

þOðt4Þ

	

; ð5:9Þ

where χ
g

½����ð·Þ denotes the character of the irreducible representation of suð2Þ with highest weight ½� � �� written in terms of

the fugacities given in the parentheses. In fact, the coefficient of t2 is nothing other than the character of the adjoint

21
The plethystic exponential (PE) of a multivariate function fðt1;…tkÞ (vanishing at the origin) is defined as

PE½fðt1;…tkÞ� ¼ exp

�
X∞

n¼1

1

n
fðtn

1
;…; tnkÞ

�

:
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representation of suð4Þ, using the branching

suð4Þ → suð2Þx ⊕ suð2Þy ⊕ uð1Þz;

15→ ð2; 2Þ
2
⊕ ð3; 1Þ

0
⊕ ð1; 3Þ

0
⊕ ð1; 1Þ

0
⊕ ð2; 2Þ−2;

ð5:10Þ

where we havewritten the associated fugacity as a subscript

on the algebras. As expected, this signals the enhanced

global symmetry.
22

We can also confirm the prediction for the Z2 discretely

gauged flavor symmetry in Table I, by considering a

Z2 wreathing of Eq. (5.2), by following the procedure

described in Ref. [33]. In particular, the range of summa-

tions over the magnetic fluxes needs to be restricted and the

prefactors are modified as explained in the previous

section, according to which a cyclic group is generated.

We make the identification z1 ¼ z2. Explicitly, the range of
summations is restricted as follows

Restriction

a2 < b2
a2 ¼ b2; a1 < b1

a2 ¼ b2; a1 ¼ b1; a2 < a1

a2 ¼ b2; a1 ¼ b1; a2 ¼ a1

; ð5:11Þ

with the cyclic groups generated as in Eq. (4.9). The

prefactors for the two Uð4Þ groups are the same as in the

unwreathed case. As discussed in Sec. IVA, the division of

the summation is done to be able to easily read off the

prefactors, since it makes more explicit the group generated

by the choice of fluxes, when we use the expression of the

prefactor as in Ref, [34].

Once again, the decoupling of the overall Uð1Þ allows us
to define

z3 ¼
1

z1z4
; ð5:12Þ

and we obtain the Hilbert series for theZ2-wreathed quiver:

HS≀Z2
ðt;x;zÞ¼PE

�

t2
�

1þχ
suð2Þ
½2� ðxÞ

þ

�

z2þ
1

z2

�

χ
suð2Þ
½2� ðxÞ

�

þOðt4Þ

	

: ð5:13Þ

Here we have replaced the fugacities z1 and z4 as in

Eq. (5.8), and collected the t2 coefficient into characters.

We can see that the t2 coefficient is nothing other than the

character of the adjoint representation of uspð4Þ under the
decomposition

uspð4Þ→ suð2Þ ⊕ uð1Þ;

10→ 32 ⊕ 3−2 ⊕ 30 ⊕ 10: ð5:14Þ

Thus, the Coulomb branch Hilbert series indicates that the

Coulomb symmetry after wreathing is uspð4Þ, which is

exactly what we would expect for the flavor symmetry of

the 6D SCFT after discrete gauging, as discussed in

Sec. III B.

One perspective on thisZ2 wreathing is that we start with

the suð2Þx ⊕ suð2Þy ⊕ uð1Þz in the unwreathed case, and

the wreathing identifies the fundamental representation of

suð2Þx with the antifundamental representation of suð2Þy.

In this case, the distinction between fundamental and

antifundamental is immaterial, but when considering

higher-rank unitary quivers, the identification between

the fundamental and antifundamental has consequences

in the matter content of the theory after wreathing or

discrete gauging.

We can now repeat this analysis for the orthosymplectic

quiver realization of the same Coulomb branch, and extract

the same information about the Coulomb symmetries

before and after wreathing. Consider the orthosymplectic

realization of the magnetic quiver of the Higgs branch of

A
soð6Þ
3

ð½3; 13�; ½3; 13�Þ:

ð5:15Þ

This quiver has an overall Z2 that acts trivially on the

matter fields; this can be considered as the center of the

SOð6Þ group that is not screened by the bifundamental

fields. This gives rise to a Z
½1�
2

1-form symmetry. This

symmetry can be gauged or not, as discussed in Sec. II D.

The gauging of such a symmetry gives rise to a Z
½0�
2

0-form

symmetry in the 3D quiver, and vice versa. We call ω the

fugacity associated to the Z
½0�
2

0-form symmetry, obtained

by gauging the Z
½1�
1

1-form symmetry in 3D. As explained

in Sec. II D, we will generally keep the fugacity ω explicit

in the Hilbert series that we write.

The Hilbert series of the unwreathed quiver again takes

the form of a sum over each of the gauge nodes:

22
For this example, we could have defined z2 ¼ y2, and the

result would have been the same. This is because y is the fugacity
associated to an suð2Þ flavor symmetry, and there is no difference
between the fundamental and antifundamental representations for
this algebra. However, as we will see in the next unitary example,
and we comment below, the choice of fugacity we use here is the
one that generalizes when we consider wreathing of theories with
higher-rank flavor symmetries.
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HSðt;ωÞ ¼
X

ϵ∈ f0;1g

X

a∈Zþ1

2
ϵ

X

b≥1

2
ϵ

X

c1≥c2≥jc3j;c3 ∈Zþ1

2
ϵ

X

d≥1

2
ϵ

X

e∈Zþ1

2
ϵ

X

f1≥f2≥f3≥f4≥
1

2
ϵ

PSOð2Þðt; aÞ

PUSpð2Þðt; bÞPSOð6Þðt; cÞPUSpð2Þðt; dÞPSOð2Þðt; eÞPUSpð8Þðt; fÞt
2Δωϵ; ð5:16Þ

where

Δ ¼ −2jbj −
X3

i¼1

X3

j¼iþ1

ðjci þ cjj þ jci − cjjÞ − 2jdj − 2

X4

i¼1

jfij þ jaþ bj þ ja − bj

þ
X3

i¼1

ðjbþ cij þ jb − cijÞ þ
X3

i¼1

ðjdþ cij þ jd − cijÞ þ jeþ dj þ je − dj þ
X3

i¼1

X4

j¼1

ðjci − fjj þ jci þ fjjÞ: ð5:17Þ

The prefactors are computed as explained in Sec. IVA. In

this case, we are computing the unrefined Hilbert series,

where we have not included the fugacities for the Coulomb

symmetries. Up to the first relevant order, the Hilbert series

reads

HSðt;ωÞ ¼ PE½t2ð7þ 8ωÞ þ t4ð13þ 16ωÞ þOðt6Þ�:

ð5:18Þ

We can see that the Hilbert series coincide with the

unrefined Hilbert series in Eq. (5.9) provided the identi-

fication of the fugacity ω ¼ z2 ¼ z−2. In fact, one can see

the Z
½0�
2

0-form symmetry in the unitary quiver as a

Z2 subgroup of the uð1Þ symmetry.

For completeness, we also consider the theory

obtained from the gauging of the Z
½0�
2

0-form sym-

metry by summing over the elements of Z2

23
:

1

2

X

ω∈ f1;−1g

HSðt;ωÞ ¼ PE½7t2 þ 49t4 þOðt6Þ�; ð5:19Þ

which corresponds to the theory with a global Z
½1�
2

1-form

symmetry. This theory is not associated to the 3D mirror of

A
soð6Þ
3

ð½3; 13�; ½3; 13�Þ, but it still exists as an 3D N ¼ 4

quiver.

We can now consider the Z2 wreathing of the ortho-

symplectic quiver in Eq. (5.15). The wreathing proceeds

with the identification of the various contributions to the

prefactor as explained above. We can call a and e the

magnetic fluxes associated to the two soð2Þs while b and d
are the magnetic fluxes associated to the uspð2Þ algebras

involved in the wreathing. To be able to compute the

prefactors from the value of the fluxes, we restrict the

computation of the Hilbert series as follows:

Restriction

a < e
a ¼ e; b < d

a ¼ e; b ¼ d

: ð5:20Þ

Once again, the division in the various contributions is only

done to be able to read the prefactors explicitly from the

choice of fluxes. The wreathing of such a quiver gives

HS≀Z2
ðtÞ ¼ PE½t2ð4þ 6ωÞ þ t4ð19þ 18ωÞ þOðt6Þ�;

ð5:21Þ

which is compatible with the results obtained from the

unitary version of the quiver, signaling the identification of

the suð2Þ flavor symmetries inside the suð4Þ unwreathed
flavor, leading to a uspð4Þ enhanced global symmetry.

B. Theory 2: A
suð4Þ
1 ð½14�;½14�Þ and A

soð6Þ
1 ð½16�;½16�Þ

Another theory that admits both a unitary and ortho-

symplectic realization is the magnetic quiver for the Higgs

branch of A
suð4Þ
1

ð½14�; ½14�Þ, associated to Theory 2 in

Table I. This time, the 6D theory predicts a flavor symmetry

of suð8Þ, which can be confirmed by computing the Hilbert

series of the following magnetic quiver:

ð5:22Þ

The Hilbert series, with the appropriate fugacities obtained

similarly as in the previous section, reads

23
A one-dimensional irreducible representation of the group

Zn is given by the map ρ∶ Zn → C× with ρðmÞ ¼ e
2πim
n . The

fugacity ω signal states charged under the Z2 group, and gauging
a finite group is equivalent to sum over all elements of the group
(divided by the dimension of the group), that, in our case, are
f1; eπig.
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HSðt;x;y; zÞ ¼ PE½t2ð1þ χ
suð4Þ
½1;0;1�ðxÞþ χ

suð4Þ
½1;0;1�ðyÞ

þ z−2χ
suð4Þ
½1;0;0�ðxÞχ

suð4Þ
½0;0;1�ðyÞ

þ z2χ
suð4Þ
½0;0;1�ðxÞχ

suð4Þ
½1;0;0�ðyÞÞþOðt4Þ�; ð5:23Þ

compatible with the branching rule of suð8Þ into suð4Þx ⊕

suð4Þy ⊕ uð1Þz as

63 ¼ ð1; 1Þ
0
þ ð15; 1Þ

0
þ ð1; 15Þ

0
þ ð4; 4̄Þ−2 þ ð4̄; 4Þ

2
:

ð5:24Þ

Therefore, we see the expected suð8Þ global symmetry

predicted by the F theory construction.

We can perform a Z2 wreathing of the two horizontal

tails, computing the prefactors as explained above. The

resulting Hilbert series is

HS≀Z2
ðt;x; zÞ ¼ PE½t2ð1þ χ

suð4Þ
½1;0;1�ðxÞ þ z−2χ

suð4Þ
½2;0;0�ðxÞ

þ z2χ
suð4Þ
½0;0;2�ðxÞÞ þOðt4Þ�; ð5:25Þ

which is compatible with identifying the fundamental

representation of suð4Þx with the antifundamental repre-

sentation of suð4Þy . This is precisely the expected iden-

tification from the discrete gauging perspective on the 6D

(1, 0) SCFT. This result shows that the wreathing projects

suð8Þ down to uspð8Þ, decomposed as suð4Þx ⊕ uð1Þz,
corresponding to the branching

36 ¼ 10 þ 150 þ 10−2 þ 102; ð5:26Þ

confirming the expectation in Table I.

The same theory, in its guise as A
soð6Þ
1

ð½16�; ½16�Þ con-

formal matter, admits also an orthosymplectic quiver,

which is

ð5:27Þ

The computation of the Hilbert series leads to

HSðt;ωÞ ¼ PE½t2ð31þ 32ωÞ þOðt4Þ�; ð5:28Þ

which is compatible with the unrefined Hilbert series of the

unitary quiver by choosing to refine only for a Zω
2
⊂ Uð1Þz.

TheZ2 wreathing proceeds by dividing the computations in

contributions as described in the section above, computing

for each restricted choice of fluxes the corresponding

prefactor. The division in chambers for the soð2Þ and

uspð2Þ factors is similar to the previous section, while the

chambers for uspð4Þ are given in Eq. (4.10), from which

one can also extract the chambers for the soð4Þ nodes

(keeping in mind the modification of the T2 matrix as

explained in Appendix A 3). The result is

HS≀Z2
ðt;ωÞ ¼ PE½t2ð16þ 20ωÞ þOðt4Þ�; ð5:29Þ

which is precisely the expected result: there are 36

operators generating the Coulomb symmetry after wreath-

ing, compatible with the anticipated uspð8Þ flavor

symmetry.

C. Theory 3: A
suð4Þ
5 ð½3;1�;½3;1�Þ and A

soð6Þ
5 ð½32�;½32�Þ

We can briefly discuss Theory 3, since it is not signi-

ficantly different from the two previous theories. In

Sec. II C, we reviewed the way to read off the flavor

symmetry at a generic point in the tensor branch for a 6D

SCFT. For this specific configuration, as listed in Table I,

the theory has an suð2Þ ⊕ uð1Þ ⊕ uð1Þ flavor symmetry

before the wreathing. This can also be confirmed by

computing the Hilbert series of the unitary realization of

such a theory corresponding to A
suð4Þ
5

ð½3; 1�; ½3; 1�Þ con-

formal matter whose magnetic quiver is

ð5:30Þ

The Hilbert series at the first leading orders is

HSðtÞ ¼ PE½5t2 þ 16t4 þOðt5Þ�; ð5:31Þ

confirming the flavor symmetry. By performing the wreath-

ing of such a quiver, the two uð1Þ are identified, while the
suð2Þ ≃ uspð2Þ remains untouched. At the level of the

Hilbert series computation for the wreathed quiver above,

we can precisely see this effect obtaining

HS≀Z2
ðtÞ ¼ PE½4t2 þ 13t4 þOðt5Þ�: ð5:32Þ

The computation of the Hilbert series for Theory 3 in its

orthosymplectic formulation is used to further confirm the

proposed procedure to compute wreathing of orthosym-

plectic quivers. We obtain

HSðt;ωÞ ¼ PE½t2ð3þ 2ωÞ þ t4ð8þ 8ωÞ þOðt5Þ�;

HS≀Z2
ðt;ωÞ ¼ PE½t2ð2þ 2ωÞ þ t4ð7þ 6ωÞ þOðt5Þ�;

ð5:33Þ

where, after unrefining the Hilbert series, we find perfect

agreement with the unitary counterpart.
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VI. HILBERT SERIES FOR Z2-WREATHED

QUIVERS

In this section, we provide further evidence of how the

flavor symmetry is changed by the Z2 wreathing, confirm-

ing the expectations described in Sec. III B. We first discuss

all the theories in Table IV, which are those that have good

orthosymplectic quiver realizations. Theories from 1 to 3 in

Table IV have been extensively discussed in Sec. V. Their

flavor symmetries match the expectation in Table I, both

from the unitary and the orthosymplectic quiver perspective

and they have been used as a benchmark for our proposal of

wreathing of orthosymplectic quivers. Some additional

unitary theories are shown in Table V. The computation

of the Hilbert series of the unitary quiver confirms the

expectation on the flavor symmetry of the theory, matching

the last three entries of Table I.

A. Theory 4: A
soð8Þ
2 ð½32;12�;½32;12�Þ

Theory 4 is the first theory that we discuss that does not

admit a unitary quiver. However, as we discussed in

Sec. III B, it also represents one of the handful of theories

where the flavor symmetry after the discrete gauging is

unclear. The reason is that the central (−1)-curve is

undecorated, and there exists E-string flavor attached to

it. When performing the Z2 discrete gauging, we expect an

enhanced flavor symmetry. We will use the Hilbert series to

confirm such an expectation, completing the discussion we

started in Sec. III B.

Let us first consider the unwreathed theory, which we

know from Sec. II C and Table I has an suð3Þ ⊕ suð3Þ
flavor symmetry, obtained by the relations in Eq. (2.31). We

can confirm such an expectation from the computation of

the Hilbert series, i.e.,

HSðt;ωÞ¼PE½t2ð8ωþ8Þþ t4ð32ωþ32ÞþOðt5Þ�; ð6:1Þ

after unrefining it. After wreathing, the Hilbert series

computation gives

HS≀Z2
ðt;ωÞ ¼ PE½t2ð6ωþ 5Þ þ t4ð26ωþ 29Þ þOðt5Þ�:

ð6:2Þ

Unrefining the Hilbert series, we see that the dimension of

the flavor symmetry algebra is 11. From Sec. III B, this

theory is one of those where one needs to understand the

action of the Z2 GS automorphism on the 1

2
-BPS operator

spectrum. In particular, it is not clear what happens to the

operators coming from the gauge-invariant combina-

tions of μþL ⊗ μþC ⊗ μþR in Eq. (3.44). We would expect

that the flavor symmetry is either suð2Þ ⊕ suð3Þ or

uspð4Þ ⊕ uð1Þ, but we leave the precise identification

of the flavor symmetry algebra, which would require the

full refinement of the Hilbert series, to future work.

B. Theory 5: A
soð8Þ
4 ð½5;13�;½5;13�Þ

More straightforward is the analysis of Theory 5. The

flavor symmetry for this theory, before the wreathing, is

suð2Þ ⊕ suð2Þ ⊕ uð1Þ, which is confirmed by the com-

putation of the Hilbert series of the magnetic quiver, i.e.,

HSðt;ωÞ ¼ PE½7t2 þ t4ð8ωþ 5Þ þOðt5Þ�: ð6:3Þ

Even though we expect an E-string flavor, this time we do

not have an enhancement of the symmetry, so the expect-

ation is that the wreathing identifies the two suð2Þ as we
have already seen in Sec. VA, while leaving the uð1Þ
untouched via soð2Þ → uð1Þ. The computation of the

wreathed Hilbert series leads to

HS≀Z2
ðt;ωÞ ¼ PE½4t2 þ t4ð6ωþ 11Þ þOðt5Þ�; ð6:4Þ

which confirms the expectation of a four-dimensional

Coulomb symmetry.

C. Theory 6: A
soð8Þ
4 ð½5;3�;½5;3�Þ

Theory 6, instead, should be discussed similarly to

Theory 4. The 6D theory has a flavor symmetry of

suð2Þ, and, as expected, the Hilbert series reads

HSðt;ωÞ ¼ PE½t2ð2ωþ 1Þ þ t4ð8ωþ 11Þ þOðt5Þ�: ð6:5Þ

From the 6D perspective, this suð2Þ arises from the fact

that some of the gauge-invariant combinations involving

spinorial generators of the rank one ðD;DÞ conformal

matter building blocks contribute moment maps after

gauging. This is similar to Theory 4; as such, we do not

have an a priori proposal for the global symmetry after

discrete gauging. The computation of the wreathed Hilbert

series leads to

HS≀Z2
ðt;ωÞ ¼ PE½t2ð2ωþ 1Þ þ t4ð6ωþ 8Þ þOðt5Þ�;

ð6:6Þ

which indicates that the wreathing did not affect the flavor

symmetry of the theory. Nevertheless, we can see that the

higher-order operator spectrum has been modified.

D. Theory 7: A
soð8Þ
3 ð½4;2;12�;½4;2;12�Þ

From now on, all the flavor symmetries of the wreathed

theories follow from the discussion in Sec. III B. For

instance, Theory 7 has four soð2Þ factors as the flavor

symmetry, which is reflected in the computation of the

Hilbert series

HSðt;ωÞ ¼ PE½4t2 þ t4ð19þ 8ωÞ þOðt5Þ�: ð6:7Þ

After wreathing, as explained in Sec. III B, the four

soð2Þs are identified in pairs, leading to effectively an
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TABLE IV. Orthosymplectic magnetic quivers of the theories in Table I.

# Conformal matter Tensor branch Magnetic quiver

1 A
soð6Þ
3

ð½3; 13�; ½3; 13�Þ
2

suð2Þ

2

suð4Þ

2

suð2Þ

2 A
soð6Þ
1

ð½16�; ½16�Þ
2

suð4Þ

3 A
soð6Þ
5

ð½32�; ½32�Þ
2

suð2Þ

2

suð3Þ

2

suð4Þ

2

suð3Þ

2

suð2Þ

4 A
soð8Þ
2

ð½32; 12�; ½32; 12�Þ
3

suð3Þ

1 3

suð3Þ

5 A
soð8Þ
4

ð½5; 13�; ½5; 13�Þ
2

suð2Þ

3

soð7Þ

1 3

soð7Þ

2

suð2Þ

6 A
soð8Þ
4

ð½5; 3�; ½5; 3�Þ
2

suð2Þ

3

g2
13

g2
2

suð2Þ

7 A
soð8Þ
3

ð½4; 2; 12�; ½4; 2; 12�Þ
3

suð3Þ

1 4

soð8Þ

1 3

soð3Þ

8 A
soð10Þ
2

ð½33; 1�; ½33; 1�Þ
3

g2
1

suð2Þ

3

g2

9 A
soð10Þ
4

ð½5; 3; 12�; ½5; 3; 12�Þ
3

suð3Þ

1 4

soð9Þ

1

suð2Þ

4

soð9Þ

1 3

suð3Þ

10 A
soð10Þ
4

ð½52�; ½52�Þ
2

suð2Þ

3

soð7Þ

1

suð2Þ

3

soð7Þ

2

suð2Þ

11 A
soð10Þ
3

ð½4; 3; 2; 1�; ½4; 3; 2; 1�Þ
3

g2
1

suð2Þ

4

soð10Þ

1

suð2Þ

3

g2

12 A
soð10Þ
5

ð½52�; ½52�Þ
2

suð2Þ

3

soð7Þ

1

suð2Þ

4

soð10Þ

1

suð2Þ

3

soð7Þ

2

suð2Þ

(Table continued)
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soð2Þ ⊕ soð2Þ flavor symmetry, confirmed by the compu-

tation of the Hilbert series of the wreathed quiver, as

follows:

HS≀Z2
ðt;ωÞ ¼ PE½2t2 þ t4ð15þ 6ωÞ þOðt5Þ�: ð6:8Þ

E. Theory 8: A
soð10Þ
2 ð½33;1�;½33;1�Þ

In Table I, we have that Theory 8 has an soð6Þ flavor

symmetry. This is confirmed also by the computation of the

Hilbert series at leading order, as follows:

HSðt;ωÞ ¼ PE½15t2 þ 8ωt3 þ 33t4 þOðt5Þ�: ð6:9Þ

The wreathed Hilbert series is

HS≀Z2
ðt;ωÞ ¼ PE½9t2 þ 6ωt3 þ 40t4 þOðt5Þ�: ð6:10Þ

The flavor symmetry soð6Þ is coming only from the central

(−1)-curve. As we explained in Sec. III B, under discrete

gauging, such symmetry is projected to uð3Þ, which is also
confirmed by the computation of the Hilbert series above.

F. Theory 9: A
soð10Þ
4 ð½5;3;12�;½5;3;12�Þ

Theory 9 has a flavor symmetry of uð1Þ ⊕ uð1Þ ⊕
uð1Þ, confirmed by the computation of its Hilbert series:

HSðt;ωÞ ¼ PE½3t2 þ 13t4 þOðt5Þ�: ð6:11Þ

The expectation is that the flavor symmetry after the Z2

wreathing becomes uð1Þ ⊕ uð1Þ, with the identification of
two of the uð1Þs. This is confirmed also by the computation

of the corresponding wreathed Hilbert series, i.e.,

HS≀Z2
ðt;ωÞ ¼ PE½2t2 þ 9t4 þOðt5Þ�: ð6:12Þ

G. Theory 10: A
soð10Þ
4 ð½52�;½52�Þ

The flavor symmetry for Theory 10 is soð4Þ, once again,
attached to the (−1)-curve of the central node. The flavor

symmetry is confirmed by the computation of the Hilbert

series of the 3D magnetic quiver theory, i.e.,

HSðt;ωÞ ¼ PE½6t2 þ 2ωt3 þ 10t4 þOðt5Þ�: ð6:13Þ

According to Sec. III B, this flavor symmetry is projected to

uð2Þ after discrete gauging, and this is reflected also at the

level of Hilbert series of the wreathed quiver:

HS≀Z2
ðt;ωÞ ¼ PE½4t2 þ 2ωt3 þ 10t4 þOðt5Þ�: ð6:14Þ

H. Theory 11: A
soð10Þ
3 ð½4;3;2;1�;½4;3;2;1�Þ

A similar conclusion can be drawn for Theory 11, that

has suð2Þ ⊕ suð2Þ flavor symmetry, as confirmed at the

level of Hilbert series

HSðt;ωÞ ¼ PE½6t2 þ 27t4 þOðt5Þ�; ð6:15Þ

that after wreathing gets identified into a single suð2Þ,
leading to the Hilbert series of the wreathed quiver starting

from

HS≀Z2
ðt;ωÞ ¼ PE½3t2 þ 22t4 þOðt5Þ�: ð6:16Þ

I. Theory 12: A
soð10Þ
5 ð½52�;½52�Þ

Theory 12 has an soð2Þ ⊕ soð2Þ flavor symmetry, as

confirmed at the level of Hilbert series

HSðt;ωÞ ¼ PE½2t2 þ 10t4 þOðt5Þ�; ð6:17Þ

and after discrete gauging has been identified into a single

soð2Þ, consistent with the Hilbert series of the wreathed

quiver which starts from

HS≀Z2
ðt;ωÞ ¼ PE½t2 þ 8t4 þOðt5Þ�: ð6:18Þ

J. Theory 13: A
soð10Þ
6 ð½7;13�;½7;13�Þ

Theory 13 instead has a flavor symmetry of

suð2Þ ⊕ suð2Þ ⊕ uð1Þ, and its Hilbert series also reflect

such a flavor symmetry, giving

HSðt;ωÞ ¼ PE½7t2 þ 3t4 þOðt5Þ�: ð6:19Þ

TABLE IV. (Continued)

# Conformal matter Tensor branch Magnetic quiver

13 A
soð10Þ
6

ð½7; 13�; ½7; 13�Þ
2

suð2Þ

3

soð7Þ

1 4

soð9Þ

1

suð2Þ

4

soð9Þ

1 3

soð7Þ

2

suð2Þ

14 A
soð10Þ
6

ð½7; 3�; ½7; 3�Þ
2

suð2Þ

3

g2
1 4

soð9Þ

1

suð2Þ

4

soð9Þ

13

g2
2

suð2Þ
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We can confirm that the flavor symmetry for the wreathed

theory is consistent with suð2Þ ⊕ uð1Þ by computing the

corresponding wreathed Hilbert series:

HS≀Z2
ðt;ωÞ ¼ PE½4t2 þ 9t4 þOðt5Þ�: ð6:20Þ

K. Theory 14: A
soð10Þ
6 ð½7;3�;½7;3�Þ

Finally, Theory 14 has a single uð1Þ as flavor symmetry.

The Hilbert series for this theory is simply

HSðt;ωÞ ¼ PE½t2 þ 5t4 þOðt5Þ�; ð6:21Þ

and the uð1Þ is preserved after the wreathing. We obtain a

Hilbert series which is given by

HS≀Z2
ðt;ωÞ ¼ PE½t2 þ 4t4 þOðt5Þ�: ð6:22Þ

Once again, we see that, even though the flavor symmetry

remains unchanged, the higher-order operator content

reorganizes.

L. Theories 15, 16 and 17

While the principal focus in this section has been on

orthosymplectic quivers and their wreathing, we now

briefly include some examples for which we do not have

(good) orthosymplectic descriptions, but only unitary des-

criptions. These examples again demonstrate that the

Coulomb symmetry as determined by the Hilbert series

of the wreathed quiver matches the expectations from the

6D tensor branch analysis in Sec. III B. We have written the

6D SCFTs and the magnetic quivers for their Higgs

branches in Table V.

Theory 15 is expected to have an suð6Þ global symmetry

before Z2 discrete gauging and a uspð6Þ global symmetry

after the gauging. This is replicated in the Hilbert series of

the Coulomb branch of the respective magnetic quivers:

HSðtÞ ¼ PE½35t2 þ 20t3 − 35t4 þOðt5Þ�;

HS≀Z2
ðtÞ ¼ PE½21t2 þ 20t3 þ 105t4 þOðt5Þ�: ð6:23Þ

Theory 16 has a non-Abelian suð2Þ global symmetry

attached to the central (−2)-curve in the tensor branch

configuration, as well as Abelian symmetries localized

on the left and the right of the configuration. We expect that

the suð2Þ → uspð2Þ and the two uð1Þs are identified under
the discrete gauging; we see this also from the Coulomb

branch Hilbert series:

HSðtÞ ¼ PE½5t2 þ 12t3 þ 12t4 þOðt5Þ�;

HS≀Z2
ðtÞ ¼ PE½4t2 þ 8t3 þ 11t4 þOðt5Þ�: ð6:24Þ

Finally, we come to Theory 17. This theory has a reali-

zation as Higgsed ðsuð4Þ; suð4ÞÞ conformal matter, and

thus it does have a orthosymplectic description for the

Higgs branch; however, this quiver contains symplectic

gauge nodes which are not good, and thus the application of

the monopole formula fails. Regardless, we can determine

the Coulomb branch Hilbert series of the unitary magnetic

quiver, before and after wreathing:

HSðtÞ ¼ PE½11t2 þ 16t3 þOðt4Þ�;

HS≀Z2
ðtÞ ¼ PE½7t2 þ 6t3 þOðt4Þ�: ð6:25Þ

We find, as expected, that the change in the number of

R-charge 2 operators is consistent with the modification of

the global symmetry as follows:

suð2Þ⊕3 ⊕ uð1Þ⊕2
→ suð2Þ⊕2 ⊕ uð1Þ: ð6:26Þ

TABLE V. The unitary magnetic quivers for the theories in Table I which do not admit (good) orthosymplectic

magnetic quivers.

# Conformal matter Tensor branch Magnetic quiver

15 A
suð3Þ
1

ð½13�; ½13�Þ
2

suð3Þ

16 A
suð3Þ
3

ð½2; 1�; ½2; 1�Þ
2

suð2Þ

2

suð3Þ

2

suð2Þ

17 A
suð4Þ
3

ð½2; 12�; ½2; 12�Þ
2

suð3Þ

2

suð4Þ

2

suð3Þ
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VII. DISCUSSION

In this work, we focused on 6D (1, 0) SCFTs that have a

Z2 Green-Schwarz automorphism, and we studied the

Higgs branch of such theories after the gauging of this

discrete symmetry. This study has been developed first at

the level of the tensor branch in 6D of the theory, and

confirmed by computing the Coulomb branch Hilbert series

of the wreathed magnetic quivers for their Higgs branches.

While the matching between the Z2 discrete gauging and

theZ2 wreathing is remarkable, we have only just started to

scratch the surface of the study of discrete symmetries and

their gauging in the landscape of 6D (1, 0) SCFTs.

A. Refinement and the 6D flavor symmetry

The 6D proposal for the continuous flavor symmetry of

the discretely gauged theory is almost completely clear

from the discussion in Sec. III B. However, whenever there

is a central undecorated (−1)-curve (meaning that an

E-string flavor symmetry is attached to it), the resulting

flavor symmetry is not always easily determined. The

computation of the Hilbert series gives the expected

dimension of the flavor symmetry algebra, however, this

is coarse information and the precise identification of the

algebra is lacking. One way out is to compute the refined

Hilbert series, by using a different prescription for the

computation of the Hilbert series, such as proposed in

Ref. [85]. In Ref. [86], this approach is being explored, with

an expanded investigation of the wreathing procedure,

extending the prescription proposed in Ref. [36]. This

analysis will lay the groundwork for a broader generali-

zation, enabling the wreathing of unitary and orthosym-

plectic quivers beyond Z2.

B. Geometric realization

As we have discussed, the geometric construction of 6D

(1, 0) SCFTs [10,11] is based on the compactification of

F theory on singular elliptically fibered Calabi-Yau three-

folds that satisfy specific properties. The strength of this

approach lies in its ability to systematically construct a

sufficiently nonsingular elliptically fibered Calabi-Yau

manifold, which encodes the tensor branch effective field

theory; this manifold can then be contracted to a singular

Calabi-Yau that engineers the corresponding superconformal

theory. Moreover, this framework provides an algorithm to

classify all possible tensor branch Calabi-Yau manifolds.

Consequently, it has been proposed that this geometric

construction is not just a method for engineering 6D

(1, 0) SCFTs but also serves as a classification—suggesting

that every such SCFT arises from an F theory compactifi-

cation on a Calabi-Yau threefold. The discretely gauged 6D

(1, 0) SCFTs that we have proposed in this paper constitute a

challenge to this proposal; we must ask what are the

elliptically fibered Calabi-Yau threefolds that engineer these

novel SCFTs in F theory? We expect that it is, in fact, the

same Calabi-Yau as for the nondiscretely gauged SCFT,

paired with the action of a geometric automorphism that

implements the gauging of the (geometric) Z2 Green-

Schwarz automorphism. We expect to tackle this geometric

question in future work.

C. Hasse diagrams for wreathed quivers

The Higgs branch of an eight-supercharge SCFT is

expected to have the structure of a symplectic singularity

[87,88]. A symplectic singularity, X, admits a finite

stratification into symplectic leaves, with partial ordering

via inclusion X0 ⊂ X1 ⊂ � � � ⊂ X, and the transverse slice

between each leaf and the total space X corresponds to the

Higgs branch of an SCFT which can be obtained via

Higgsing of the original SCFT [89]. The stratification can

be captured concisely in a Hasse diagram. To understand

the pattern of Higgsing in a given theory, it is necessary to

understand the stratification of the Higgs branch as a

symplectic singularity. In particular, we can ask when

there exists a Higgs branch renormalization group flow

from the discretely gauged theory T̃ to another 6D (1, 0)

SCFT T 0, which may or may not be discretely gauged. For

example, it seems reasonable to expect that there exist

flows between

Ã
g
N−1ðO;OÞ → Ã

g
N−1ðO

0; O0Þ; ð7:1Þ

wheneverO0 < O in the partial ordering on nilpotent orbits

of g. Here, as usual, the tilde indicates the discrete gauging

of the Z2 Green-Schwarz automorphism. Algorithms have

been developed [17,22,23,26–28] to determine the strati-

fication structure of 3D N ¼ 4 Lagrangian quivers satisfy-

ing certain restrictive properties; the extension of these

algorithms to wreathed quivers would allow us to extract

the stratification of the Higgs branch of the discretely

gauged conformal matter theories, and thus determine

which theories are related by Higgs branch renormalization

group flows. Alternatively, the geometric expectations from

the six-dimensional perspective, such as in Eq. (7.1), may

guide in the development of such algorithms, similarly to

the approach in Ref. [23].

D. Stiefel-Whitney twists and 4d N = 2 SCFTs

Here, we have considered the Higgs branches of dis-

cretely gauged 6D (1, 0) SCFTs. For theories in four, five,

or six dimensions with eight supercharges, when they are

compactified on a circle the Higgs branch is not modified

[90]; therefore, we have equally studied the Higgs branch

of circle compactifications of the 6D (1, 0) SCFTs in

question. Let us focus on 4D N ¼ 2 SCFTs obtained via

a T2 compactification of 6D (1, 0); it is sometimes possible

to turn on a discrete Zl, for l ¼ 2;…; 6, Stiefel-Whitney
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twist along the torus. The resulting theories have been

discussed in Refs. [91–98], and generally they give rise to

novel classes of 4d N ¼ 2 SCFTs.
24
Magnetic quivers for

the Higgs branches of such Stiefel-Whitney twisted SCFTs

have been generally proposed in Ref. [95]; these quivers,

perhaps after mass deformations (i.e., Fayet-Iliopoulos

deformations in the magnetic quiver), often have discrete

diagram automorphisms, and thus it is natural to consider

the wreathing of the magnetic quivers, and to speculate that

these will be magnetic quivers for certain discretely gauged

versions of the Stiefel-Whitney twisted 4D N ¼ 2 SCFTs.

We leave the thorough exploration of this proposal for the

future.

E. Noninvertible symmetries

It is well known that the gauging of discrete 0-form

symmetries, such as the Z2 Green-Schwarz automorphisms

that we discuss in this article, can lead to noninvertible

symmetries, a form of generalized global symmetry [100],

in the discretely gauged theory [101]. This phenomenon

has been explored in 4D gauge theories, where the gauging

of the outer automorphism of the gauge algebra leads to

a 1-form symmetry becoming noninvertible [33,102]; this

is straightforward to see using the technology that was

developed in Refs. [103,104], and which is intimately

related to the anomalies of the outer automorphisms [105].

To give a few more examples: mixed anomalies between

0-form and 1-form symmetries for Argyres-Douglas the-

ories have been explored in Ref. [106] and for a wide class

of N ¼ 1 Lagrangian theories in Ref. [107]; the discrete

gauging of the 0-form symmetry is then again expected to

give rise to a noninvertible 1-form symmetry in the

discretely gauged theory.

In the 6D (1, 0) SCFTs in which we are interested,

a 2-form global symmetry, if it exists and has a mixed

anomaly with the Z
½0�
2

0-form symmetry, would be

expected to become noninvertible under the discrete

gauging. Before it makes sense to discuss the 2-form

symmetry of a 6D SCFT, it is necessary to select a

polarization of the intermediate defect group, which

can be determined from the tensor branch [108], of the

theory; this is a necessary data to have a well-defined

quantum field theory (as opposed to a relative quantum

field theory [109]). Unlike four dimensions, the Dirac

pairing in six dimensions is symmetric which means that

the intermediate defect group does not always admit a

polarization; the process of determining polarizations for

6D SCFTs has been studied in detail in Refs. [31,110].
25

To give a simple example, the Higgsed conformal matter

theory which we have called Theory 1, i.e.,

A
suð4Þ
3

ð½22�; ½22�Þ; ð7:2Þ

has a Z2 Green-Schwarz automorphism and admits a

polarization of the intermediate defect group that leads to

a Z2 2-form symmetry. As such, we would expect that the

discretely gauged theory, whose magnetic quiver was

given in Eq. (5.2), has a noninvertible 2-form symmetry.

It would be interesting to explore the reflection of such

generalized symmetries in the associated magnetic

quiver.
26
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24
Recent results in Ref. [99] have demonstrated that all class

S theories of A-type with regular untwisted punctures arise
through torus-compactification, without Stiefel-Whitney twist,
and further mass deformation of certain 6D (1, 0) SCFTs.
Incorporating the Stiefel-Whitney twist into such an analysis
would appear to thus be a powerful approach for the study of the
landscape of 4D N ¼ 2 SCFTs.

25
The discussion here should not be confused with that of

Ref. [31]; in that reference, the authors construct noninvertible
0-form symmetries out of the Green-Schwarz automorphisms of
certain 6D (1, 0) SCFTs by gauging instead the 2-form symmetry,
following the duality defect construction of Refs. [111–113].

26
Connections between generalized symmetries in higher-

dimensional theories and the magnetic quivers for their Higgs
branches have been explored, for example, in Refs. [114–116].
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APPENDIX: PREFACTORS FOR COULOMB

BRANCH HILBERT SERIES

In this section, we review how to compute the contri-

bution to the Hilbert series given by the residual gauge

group, which is left unbroken by a given choice of magnetic

fluxes. This will serve as a starting point to explain how the

procedure is modified in case of Z2 wreathing that we have

explained in Sec. IVA.

1. UðNÞ prefactor

Let us start from the unitary group UðNÞ and review the

discussion in Ref. [ [25], Appendix A]. For a given choice

of fluxes, m∈ZN , with m1 ≥ … ≥ mN , it is possible to

define a partition λðmÞ that encodes how many fluxes

mi are equal. Hence, λðmÞ is a partition of N associated to

the magnetic fluxm, extended with zeros to be of length N.

Let us call λiðmÞ the components of λðmÞ, satisfying
P

i λiðmÞ ¼ N. The commutant of the monopole flux that

gives the residual gauge group is then given by
Q

N
i¼1

UðλiðmÞÞ. The classical Casimir contribution is

PUðNÞðt;mÞ ¼
YN

j¼1

ZU
λjðmÞ;

with ZU
l ¼

�Q
l
i¼1

1

1−t2i
l ≥ 1;

1 l ¼ 0:
ðA1Þ

It is possible to rewrite the classical Casimir contribution in

a way that is better suitable for wreathing as follows: one

can consider the Weyl group of UðNÞ, i.e., SN , and

construct the N × N matrix representation of the group.

The commutant of the monopole flux m is given by

WðmÞ ¼ fg∈ SN jg ·m ¼ mg; ðA2Þ

so that for a given choice of fluxes, the prefactor is given by

PUðNÞðt;mÞ ¼
1

jWðmÞj

X

γ ∈WðmÞ

1

det ð1 − t2γÞ
: ðA3Þ

The advantage of the first description for the classical

contribution is that it makes explicit that for a given UðNÞ
gauge groups, the choice of fluxes breaks the gauge group

into smaller UðMÞ factors, and the prefactor can then be

computed recursively. The second description, instead,

makes a clearer connection with the Weyl group and its

elements, with WðmÞ selecting those matrices of SN that

admit an eigenvector m with unitary eigenvalue. However,

the two prescriptions together allow us to see WðmÞ as the
group given by the product of SλjðmÞ symmetric groups.

In Ref. [ [25], Appendix A], the authors used the

definition of the prefactor for UðNÞ also to construct the

prefactors for USp and SO groups. Our aim is then to

express the prefactors using Eq. (A3).

2. USpð2NÞ prefactor

For USpð2NÞ (and analogously SOð2N þ 1Þ), one

defines the flux vector m, such that m1 ≥ … ≥ mN ≥ 0.

The relevant part is that the choice of flux will break the

residual gauge group USpð2NÞ to products of UðMÞ and

USpð2MÞ factors, depending on which fluxes are vanishing
or not. As in Ref. [25], let us call λ0ðmÞ the number of

vanishing magnetic fluxes, and let us collect all the other

fluxes into a partition λðmÞ counting how many fluxes are

equal, but nonvanishing.
27

By construction, we have

λ0ðmÞ þ
P

i λiðmÞ ¼ N. The residual gauge group is then
Q

N
i¼1

UðλiðmÞÞ × USpð2λ0ðmÞÞ. The classical prefactor is

PUSpð2NÞðt;mÞ ¼ Z
USp

λ0ðmÞ

YN

j¼1

ZU
λjðmÞ;

with Z
USp
l ¼

�Q
l
i¼1

1

1−t4i
l ≥ 1;

1 l ¼ 0:
ðA4Þ

In rewriting this contribution using Eq. (A3), one can still

consider the full Weyl group of USpð2NÞ, i.e., SN ⋉ Z
N
2
,

and consider the matrix elements that are left invariant by

a given choice of matrices. However, the observation in

Ref. [25] is that we can generate that group by considering

a product of SλjðmÞ and Sλ0ðmÞ groups but with the Casimirs

in Sλ0ðmÞ with double the charge. This means that one can

consider the N × N matrix realization of the group ele-

ments inWðmÞ ¼×jSλjðmÞ × Sλ0ðmÞ and replace Eq. (A3)

with

PUSpð2NÞðt;mÞ ¼
1

jWðmÞj

X

γ ∈WðmÞ

1

det ð1 − T2 · γÞ
; ðA5Þ

where

T2 ¼ diagðt2;…; t2
|fflfflfflffl{zfflfflfflffl}
P

j
λjðmÞ

; t4;…; t4
|fflfflfflffl{zfflfflfflffl}

λ0ðmÞ

Þ: ðA6Þ

As already mentioned, the prefactor for SOð2N þ 1Þ is
the same as for USpð2NÞ, so we can now discuss SOð2NÞ.

3. SOð2NÞ prefactor

The magnetic fluxes m for SOð2NÞ groups are now

restricted to be m1 ≥ … ≥ mN−1 ≥ jmN j, so one defines a

vector n ¼ ðm1;…; mN−1; jmN jÞ, which depends on the

magnetic fluxes m, and we can proceed as in

Appendix A 2. We call λ0ðnÞ the number of vanishing

n fluxes, and λðnÞ the partition counting how many fluxes

are equal, but nonvanishing. The residual gauge group is
Q

N
i¼1

UðλiðnÞÞ × SOð2λ0ðnÞÞ, giving the prefactor

27
Once again, the partition is extended with zeros so that it has

length N.
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PSOð2NÞðt;nÞ ¼ ZSO
λ0ðnÞ

YN

j¼1

ZU
λjðnÞ

;

with ZSO
l ¼

�
1

1−t2l

Q
l−1
i¼1

1

1−t4i
l ≥ 1;

1 l ¼ 0:
ðA7Þ

Once again, one can construct the Weyl group of

SOð2NÞ, i.e., SN ⋉ ZN−1
2

, or by analogy to the USp case

above, we can consider WðnÞ ¼×jSλjðnÞ × Sλ0ðnÞ−1 × S1,

leading to

PSOð2NÞðt;nÞ ¼
1

jWðnÞj

X

γ ∈WðnÞ

1

det ð1 − T2 · γÞ
; ðA8Þ

where

T2 ¼ diagðt2;…; t2
|fflfflfflffl{zfflfflfflffl}
P

j
λjðnÞ

; t4;…; t4
|fflfflfflffl{zfflfflfflffl}

λ0ðnÞ−1

; t2λ0ðnÞÞ: ðA9Þ
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