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Abstract

In this thesis, we study different aspects of heavy-quark effects in factorization and resummation

using the methods of effective field theories. As the quark masses are much lighter than the

hard scale of processes at the LHC, they are considered subleading and usually neglected.

However, with high-precision measurements from the experiments at the LHC more precise

theory predictions are needed and quark-mass effects can no longer be ignored. In this thesis we

study two different aspects of heavy-quark effects.

One part of this thesis focuses on quark-mass effects in the Higgs transverse momentum spectrum.

This kinematic distribution is of particular interest as its shape can be used extract the quark

Yukawa couplings appearing in Higgs production processes. We present a new state-of-the-art

prediction for quark initiated Higgs production where we consider bottom, charm and strange

quarks in the initial state. We provide results at three-loop order in resummed perturbation

theory and match this prediction to an approximate next-to-next-to-next-to-leading order pre-

diction. Moreover, we study the resummation of transverse variables in the Monte Carlo event

generator GENEVA using one-jettiness, T1, and the transverse momentum, qT , as resolution

variables. This presents a first step towards an NNLO prediction matched to a parton shower

for this process. Further, we study bottom-mass effects in the transverse momentum spectrum

for the gluon fusion process. In gluon fusion, the dominant contribution comes from a massive

top-quark loop, with contributions from other quarks often neglected. However, to fully exploit

high-precision measurements at the LHC, it becomes essential to account for subleading effects.

In particular, the contribution from the bottom quark can no longer be ignored. The interference

between the top- and bottom-quark contributions plays a significant role and is crucial for

measuring the bottom-Yukawa coupling in Higgs production. So far these effects have only been

studied for the form factor where we have two scales, the Higgs mass and the bottom-quark

mass. The measurement of the transverse momentum introduces a third scale to the problem

which makes the factorization much more subtle: the bottom and the Higgs mass of course still

have the same scaling as in the form factor calculation but the transverse can have different

scalings. Hence, we have to consider different kinematic regimes and write down a factorization

theorem for each of them.

In the second part, we consider transverse momentum dependent (TMD) fragmentation functions

(FFs) for heavy quarks. The heavy-quark mass provides a perturbative scale in the otherwise

nonperturbative dynamics of the fragmentation process. We demonstrate that applying boosted

Heavy-Quark Effective Theory to TMD FFs gives rise to novel, universal matrix elements

describing the nonperturbative transverse dynamics of light QCD degrees of freedom in the

presence of a heavy quark. We further calculate all TMD parton distribution functions for the

production of heavy quarks from polarized gluons within the nucleon. We use these results to

make phenomenological predictions for cross sections in e+e− collisions and semi-inclusive deep

inelastic scattering, which are relevant for existing B-factories and the future EIC, respectively.

Additionally we calculate all TMD FFs involving heavy quarks and the associated TMD matrix

element in heavy-quark effective theory to next-to-leading order in the strong coupling.



Zusammenfassung

In dieser Arbeit werden verschiedene Aspekte von Quarkmasseneffekten in Faktorisierung und

Resummierung unter Verwendung von effektiven Feldtheorien untersucht. Da Quarkmassen

deutlich leichter sind als die typischen Energieskalen am LHC, gelten sie als unterdrückt und

werden normalerweise vernachlässigt. Mit den Hochpräzisionsmessungen am LHC werden jedoch

immer genauere Theorievorhersagen benötigt und Quarkmasseneffekte werden relevant. Diese

Arbeit beschäftigt sich mit zwei unterschiedlichen Aspekten von Quarkmasseneffekten.

Ein Teil dieser Arbeit konzentriert sich auf Quarkmasseneffekte im Transversalimpulsspektrum

des Higgs-Bosons. Diese kinematische Verteilung ist wichtig, da sich aus ihrer Form die Quark-

Yukawa-Kopplungen extrahieren lassen, die in Higgs-Produktionsprozessen auftreten. Diese

Arbeit enthält eine neue, hochpräzise Vorhersage für Higgs-Produktion durch Quarkannihilation,

bei der Bottom-, Charm- oder Strange-Quarks als Anfangszustände betrachtet werden. Die

Präzision der Vorhersage für dieses Spektrum wird bis zur dritten Ordnung in der starken Kop-

plung in resummierter Störungstheorie berechnet. Diese Vorhersage wird mit einer genäherten

Vorhersage der nächst-zu-nächst-zu-nächst-zu führenden Ordnung kombiniert. Darüber hin-

aus wird die Resumierung von transversalen Variablen mit dem Monte-Carlo-Eventgenerator

GENEVA untersucht. Hier werden die 1-Jettiness-Variable, T1, und der Transversalimpulse, qT ,

als Auflösungsvariablen genutzt. Dies ist ein erster Schritt in Richtung einer NNLO Vorhersage

für diesen Prozess, die mit einem Partonenschauer kombiniert ist. Darüber hinaus werden

Bottom-Quark-Masseneffekte im transversalen Impulsspektrum für den Gluonenfusionsprozess

untersucht. Der dominante Beitrag im Gluonfusionsprozess kommt von einer schweren Top-

Quark-Schleife. Hierbei werden die Beiträge von anderen Quarks meistens vernachlässigt. Um

jedoch die Hochpräzisionsmessungen am LHC voll ausschöpfen zu können, ist es wichtig auch

unterdrückte Effekte zu berücksichtigen. Insbesondere der Beitrag des Bottom-Quarks sollte

in Zukunft miteinbezogen werden. Die Interferenz zwischen den Beiträgen des Top- und des

Bottom-Quarks spielt eine wichtige Rolle und hat einen nicht zu vernachlässigenden Beitrag

für die Messung der Bottom-Yukawa-Kopplung in Higgs-Produktionsprozessen. Bisher wurden

diese Effekte nur für den Formfaktor untersucht, bei dem zwei Skalen relevant sind: die Higgs-

Masse und die Bottom-Quark-Masse. Die Messung des transversalen Impulses fügt eine dritte

Skala hinzu, die die Faktorisierung wesentlich komplizierter macht: Die Bottom-Quark und die

Higgs-Masse haben immer noch das gleiche Verhältnis wie in der Formfaktorberechnung, aber

der Transversalimpuls kann unterschiedliche Skalierungen haben. Daher müssen verschiedene

kinematische Regime betrachtet werden, welche je ein Faktorisierungtheorem benötigen.

Der zweite Teil beschäftigt sich mit transversalimpulsabhängigen (TMD) Fragmentierungs-

funktionen (FFs) für massive Quarks. Die Masse der Quarks fungiert als perturbative Skala

im sonst nicht-perturbativen Fragmentierungsprozess. Die Anwendung von boosted Heavy-

Quark Effective Theory auf TMD FFs führt zu neuen, universellen Matrixelementen, die die

nicht-perturbative Dynamik von leichten Freiheitsgraden in Anwesenheit eines massiven Quarks

beschreiben. Außerdem werden alle TMD-Partondichtefunktionen für die Produktion massiver

Quarks aus einem polarisierten Gluon im Nukleon berechnet. Diese Ergebnisse werden verwendet

um phenomenologische Vorhersagen für Wirkungsquerschnitte in e+e−-Kollisionen und in semi-

inklusiver tiefinelastischer Streuung. Diese können für B-Fabriken sowie den zukünftigen EIC

genutzt werden. Darüber hinaus werden alle TMD FFs massiver Quarks sowie die entsprechenden

TMD Matrixelemente zur nächst führenden Ordnung in der starken Kopplung berechnet.
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Chapter 1

Introduction

The Standard Model of particle physics (SM) [7–10] is the current theory describing all known

elementary particles as well as their interactions. With the discovery of the Higgs boson in

2012 the by the ATLAS and CMS experiments [11, 12] at the Large Hadron Collider (LHC)

the last missing piece of the Standard Model was found. This marks a major success in

theoretical and experimental particle physics as the Higgs boson was postulated 50 years before

its discovery [13–18]. Remarkably, the Higgs discovery completed the SM after so many years

and is celebrated as one of the greatest successes of particle physics but, on the other hand, a

non-discovery of the Higgs boson could have meant the end of the Standard Model: In the SM

contributions of the Higgs boson are needed in order to cancel divergences in W boson scattering

in order to guarantee the unitarity of the theory which makes the Higgs boson such a crucial

component.

After the Higgs discovery, there are still many open questions which cannot be addressed within

the Standard Model, such as the existence and origin of Dark Matter (DM). As far as we know,

DM particles do not share any interaction (besides gravitational) with SM particles. Therefore,

DM particles are invisible or “dark” for SM particles. From astrophysical observables, we know

that ordinary matter only makes up for a minor contribution of the total matter density of the

universe whereas the majority (84.4%) comes from DM [19]. There exist multiple Dark Matter

candidates and even alternative approaches to explain the overwhelming empirical evidence of

Dark Matter. However, as of today none of the searches for DM particles have been successful and

its origin remains unknown. Also, the Standard Model neither includes a quantum description

of gravity nor masses for neutrinos which both clearly exist. It might be less apparent for the

neutrino masses, but their masses are required to explain neutrino oscillation [20,21]. The SM

also fails to explain the matter-antimatter asymmetry which is for the reason for our whole

existence.

To tackle these issues, we need New Physics or physics beyond the Standard Model (BSM). For

a long time supersymmetry [22] was a promising candidate as it does not just provide us with

whole set of possible DM particles but also offers an elegant solution to some of the aesthetic

problems of the SM such as the hierarchy problem. However, sadly or maybe even shockingly

for some in the physics community, no supersymmtric particles were found at the LHC. Not

only were no new particles found, the SM also seems to pass every test. Neither the experiments

at the LHC nor other experiments have been able to find any significant deviations from the SM

predictions to this day. Given this lack of direct evidence for new particles, a promising avenue

to discover BSM physics is to compare experimental measurements and theoretical predictions

and look for even the tiniest deviations from the SM expectations. This requires equally precise

1



Chapter 1 – Introduction

∫
L dt

[fb−1]
Reference

t̄tt̄t
WWZ
WWW

t̄tZ

t̄tW

ts−chan

ZZ

WZ

WW

H

Wt

tt−chan

t̄t

Z

W

pp

σ = 22.5 + 4.7 − 3.4 + 6.6 − 5.5 fb (data)
NLO QCD + EW (theory) 140 EPJC 83 (2023) 496

σ = 0.55 ± 0.14 + 0.15 − 0.13 pb (data)
Sherpa 2.2.2 (theory) 79.8 PLB 798 (2019) 134913

σ = 0.82 ± 0.01 ± 0.08 pb (data)
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Figure 1.1: Summary plot of Standard Model cross section measurements compared to the

corresponding theory uncertainty. The right panel shows the comparison to the corresponding

theory uncertainties. The theory uncertainties are shown by gray whereas the experimental

uncertainties are shown in different colors corresponding to different center of mass energies
√
s.

Figure taken from ref. [25]

experimental measurements and theoretical calculations. As the experiments provide more

precise measurements and have been successful in reducing their uncertainties, it is paramount

to likewise increase the precision of theoretical calculations to fully exploit the experimental

data. Indeed fully-differential calculations at fixed-order in perturbation theory have reached

N3LO accuracy for simple processes [23,24].

In figure 1.1, various measurements of Standard Model cross section by the ATLAS collaboration

are shown. The cross sections in the lower part of the plot correspond to rather complicated

processes. They are not only difficult to calculate but also hard to measure. Thus, both, theory

and experimental uncertainties are rather large. In order to make sense of a measurement both

uncertainties should be of a similar size. Otherwise it is impossible to tell whether there is a

deviation from the SM prediction or the measurement is just not precise enough. In the upper

half of the plot, some of the processes are measured to extremely high precision such that there

is no visible uncertainty. The theory prediction, on the hand, is still visible and more precise

predictions are needed.

Coming back to the Higgs boson as the youngest SM particle, precise measurements of its

properties are essential to establish its role in the SM. So far the four main production mechanisms
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– gluon fusion, vector boson fusion, Higgsstrahlung, and top-quark pair associated production –

have been observed experimentally [11, 12, 26–28] and the Higgs boson mass has been measured

to high precision [29]

mH = 125.20± 0.11GeV.

The couplings of the Higgs boson to other particles are precisely predicted in the SM and are

proportional to the particle mass. Figure 1.2 shows the status of the Higgs coupling measurements

by the ATLAS collaboration [30]. In this figure, we can see that all coupling measurements are

consistent with the SM prediction within the uncertainties. However, some of the couplings have

not been measured yet or have large uncertainties.

In the SM, the couplings of the Higgs boson to fermions, i.e. the Yukawa couplings, yF , are

given by ySMF ≡ mF /v, where v denotes the Higgs vacuum expectation value. This implies

that the measurement of the Yukawa couplings to the heavy fermions is within the reach of

the LHC. In fact, the couplings for the top quark, bottom quark, and τ lepton have already

been measured [30, 31] and are also shown in figure 1.2. The bottom-quark Yukawa coupling yb
is particularly interesting as some BSM models, such as the two Higgs doublet model or the

minimally supersymmetric SM, predict an enhanced bottom-Yukawa coupling relative to its SM

value [32,33].
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Chapter 1 – Introduction

Higgs Production via Quark Annihilation

The bottom Yukawa coupling has been measured in H → bb̄ decays [26,34], which is challenging

as the identification of the b-quarks requires b-tagging. Here a specific property of b-quarks is

exploited: b-quarks have a relatively long lifetime and travel within in the detector before they

decay. This produces a secondary vertex which is displaced from the vertex of the actual collision

and can be reconstructed. This method combined with multivariate analysis techniques allows

for efficient b-jet identification. However, processes featuring b-jets – or really any color-charged

final state – often come with multiple jets and the measurement is still very challenging. First

measurements of the charm Yukawa yc in H → cc̄ decays have also been achieved [35, 36]

but present an even greater challenge [37]. Therefore an alternative approach to measure the

heavy-quark Yukawa couplings is of great interest.

Of course, the Higgs boson can also be produced via quark Yukawa interactions where the

corresponding Yukawa coupling could – in principle – also be measured. However, a direct

measurement of Higgs production in association with a bb̄ pair seems hopeless [38]. An alternative

approach is to study the Higgs transverse momentum spectrum for quark initiated Higgs

production (qq̄ → H). This allows for a discrimination of gluon and quark induced channels in

the initial state [39] as the radiation pattern for different initial states yield different shapes for

the transverse momentum spectrum of the recoiling Higgs boson. Moreover, the different quark

channels also exhibit different shapes due to the underlying quark parton distribution functions

(PDFs)1. The shape of the spectrum is thus sensitive to the quark-channel which can be used to

fit the quark Yukawa couplings from the initial state [40, 41]. With sufficient statistics, it might

even be possible to obtain constraints on the strange Yukawa coupling.

In refs. [42,43], ATLAS and CMS have demonstrated that it is already possible with existing

data to obtain meaningful constraints on yc and yb from just the shape of the Higgs qT spectrum.

The corresponding illustration from the ATLAS collaboration is given in figure 1.3. To fully

exploit this possibility, precise predictions of the qT spectrum for both gluon fusion and quark

annihilation are essential. At small qT ≪ mH , logarithms of qT /mH grow large and spoil the

convergence of the perturbative series. These logarithms need to be resummed to all orders to

arrive at a sensible prediction. Currently, a N3LL′+N3LO resummed prediction exists for the

Higgs qT spectrum in gluon fusion [44], which was used in ref. [42], and predictions of similar

accuracy also exist for the Drell-Yan process [45–49]. However, no prediction of similar accuracy

exists for qq̄ → H, which so far has only been resummed to NNLL+NNLO accuracy [50, 51].

Parts of this thesis are dedicated to providing an analogous prediction for the quark-induced

processes.

Event generators

High precision predictions are essential for the success of the experimental program at the LHC.

However, the experimentally measured final states rarely correspond directly to the predicted

distribution. In reality, the final states of the hard interaction hadronize and form collimated

sprays of particles (jets) before they are detected. Comparing these measurements to a prediction

at parton-level requires complicated – if at all possible – unfolding of detector effects as well

as decay and shower processes [52]. Event generators simulate the full process from the hard

interaction to final states that can be detected at colliders and therefore provide a realistic

1PDFs describe the probability to find a parton (a gluon or quark) with a given momentum fraction of its

parent’s hadron momentum.
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picture of what is happening in a particle collision. Partons originating from a hadron collision

emit high energetic quarks and gluons which keep emitting more radiation. An exact description

of these emissions is in principle possible but a calculation would be intractable. These particles

eventually hadronize in a non-perturbative process and form jets. Consequently, hadronization

cannot be described by the methods of perturbation theory. The evolution from a single parton

to a jet is modeled by parton showers which provide an approximate description of the underlying

partonic processes. Event generators thus provide an important bridge between high precision

calculations of the underlying hard processes and the final states measured at experiments.

Factorization and sub-leading power effects

In high energy physics, we often use factorization as a tool to factorize physics at different scales.

For instance, if we have a high scale Q and low scale m with m≪ Q, the cross section can be

written as

σ(m,Q) = H(Q,µ)F (m,µ) +O
(
m

Q

)

, (1.1)

where we introduced an additional scale µ in order to factorize the cross section. The scale

dependence between the functions H(Q,µ) and F (m,µ) has to cancel such that the cross section

is independent of µ. Now, all physics at the high scale is captured by H(Q,µ) and physics at

the low scale is described by F (m,µ). In general the cross section σ(m,Q) can contain large

logarithms of m/Q which spoil the convergence of the perturbative series. Factorization is the

first step towards resumming these logarithms which then restores the convergence of the cross

section and yields a meaningful prediction.
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The first term in the sum of eq. (1.1) is referred to as leading power whereas the corrections

of m/Q≪ 1 are suppressed due to the small size of m relative to Q. Usually it is sufficient to

include the leading power contribution. However, with this unprecedented amount of precision

data provided by the LHC increasingly precise predictions are needed and often sub-leading

power effects can no longer be ignored. Unfortunately, calculations at sub-leading power are often

tedious and include some undesired features such as endpoint divergences. These divergences

arise at the level of the cross section and have to be regulated and canceled carefully. In

this thesis, we will often consider heavy-quark effects which are in fact subleading: to good

approximation quarks can be treated as massless particles in high energy collision where a typical

energy scale is Q ≈ 100GeV while the bottom-quark mass is roughly mb = 5GeV. However,

when considering the transverse momentum spectrum for quark initiated Higgs production, we

will see that quark mass effects become relevant at this level of precision and should in fact be

included.

Hadronization

So far, we have mostly elaborated on the bigger picture: short-comings of our underlying theory,

the Standard Model. However there are of course other puzzles in particle physics which might

not question our understanding of the underlying theory but also affect our understanding

of nature. A prominent example is hadronization – the process describing how color charged

partons (gluons and quarks) from high energy collisions form color neutral bound-states. These

bound-states are called hadrons. The most famous hadrons are protons and neutrons that

together with electrons form atoms and, thus, the matter that we encounter in our every day

lives. The Standard Model provides us with a description of quark and gluon interactions which

is referred to as Quantum Chromodynamnics (QCD). The strong coupling constant g determines

the strength of the interactions between quarks and gluons. In contrast to the name the coupling

constant is in fact not constant but evolves with the energy scale of the considered process. At

low energies around 100MeV the coupling constant diverges and the coupling becomes infinitely

strong. This phenomenon is called confinement and leads to the hadronization of quarks and

gluons. Hence, we know that hadronization is happening but a fundamental understanding

of how quarks and gluons are fragmenting into hadrons cannot be gained from perturbative

calculations within the Standard Model. There exist different approaches of hadronization

models but an understanding from first principles remains elusive [53].

On the way to gain a better understanding of the fragmentation process heavy-quarks like charm

and bottom quarks can play a vital role. For light quark fragmentation, we have multiple light

hadrons after the fragmentation process but it is unclear which hadron contains the parent quark.

This is illustrated in figure 1.4a where the gray blob represents the hadronization and the orange

ellipses represent light hadrons. These additional hadrons originate from QCD radiation that the

parent light quark emitted during the fragmentation process. The heavy quark fragmentation

process is shown in figure 1.4b. In this case, there will also be additional QCD radiation which

eventually fragments into light hadrons. However, the heavy-quark exists through the whole

fragmentation process and will fragment into a heavy hadron which can be identified. Further,

the mass of the heavy quark provides a perturbative scale on the otherwise non-perturbative

dynamics of hadronization. For these reasons, heavy quarks are ideal to study the hadronization

process. In this thesis, we will use the framework of transverse-momentum distribution for heavy

quarks for the first time.
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Chapter 2

Theoretical Framework

In this chapter, we present the theoretical foundations necessary to follow the topics discussed in

this thesis. We begin with a brief overview of Quantum Chromodynamics (QCD) in section 2.1.

QCD is the fundamental theory describing the strong interaction, which plays a central role in

the production and dynamics of hadronic processes. We then discuss Higgs boson production at

hadron colliders in section 2.2, highlighting the key production mechanisms and taking a first

look at the production cross section. In sections 2.3 and 2.4, we introduce effective field theories,

focusing on the Heavy Quark Effective Theory (HQET) and Soft-Collinear Effective Theory

(SCET), which provide powerful tools for handling multi-scale problems in QCD. Building on

these concepts, we explore factorization and resummation techniques in section 2.5, which allow

for the systematic separation of short- and long-distance physics and the resummation of large

logarithms. In section 2.6, we examine transverse momentum distributions, which are important

for describing the kinematics of particles produced in hadronic collisions or partons fragmenting

into hadrons.

2.1 Basics of QCD

Quantum Chromodynamics (QCD) [54–59] is the quantum field theory describing strong in-

teractions. It is based on the non-abelian SU(Nc) gauge group where Nc = 3 is the number of

colors. The degrees of freedom of this theory are spin-1/2 fermions called quarks and massless

spin-1 bosons called gluons. Quarks are described by Dirac fields ψif which transform under the

fundamental representation of SU(3)

ψif (x) → ψ′
f
i
(x) =

Nc∑

j

Uijψ
j
f (x) with U ∈ SU(3). (2.1)

The subscript f indicates the flavor of the quark which can take the values up, down, charm,

strange, bottom or top. For brevity, we will from now on suppress the indices of the fundamental

representation and write ψf (x) → Uψf (x). Gluons, on the other hand, are described by a vector

field Aaµ and transform under the adjoint representation of SU(3)

Aµ(x) ≡ Aaµ(x)T
a → A′

µ(x) = Aaµ(x)UT
aU †, (2.2)

where we left the sum over adjoint color indices a implicit. The matrices T a are the generators of

the SU(3) group in the fundamental representation. The generators fulfill the following relations

[T a, T b] = ifabcT c, Tr(T aT b) = TF δab =
1

2
δab, (2.3)
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where fabc is the so-called structure constant of the corresponding Lie algebra. The quadratic

Casimir operators of the fundamental (CF ) and adjoint (CA) representations are given by

T aT a = CF1, facdf bcd = CAδ
ab. (2.4)

For SU(3), we have Nc = 3 and thus

CF =
N2
c − 1

2Nc
=

4

3
, CA = Nc = 3. (2.5)

The QCD Lagrangian is constructed by demanding its invariance under local gauge transforma-

tions U(x) of eqs. (2.1) and (2.2)

ψf (x) → ψ′
f (x) =U(x)ψf (x), (2.6)

Aµ(x) → A′
µ(x) =U(x)[Aµ(x) +

i

g
∂µ]U

†(x), (2.7)

where g is the coupling parameter. Given these transformation properties, we define the covariant

derivatives for the fundamental and adjoint representations as

Dµ =∂µ − igAµ(x), (2.8)

Dab
µ =∂µδ

ab + gfabcAcµ(x). (2.9)

With these definitions, the QCD Lagrangian takes the form

LQCD =
∑

f

ψ̄f (i /D −mf )ψf −
1

4
GaµνG

aµν + Lgauge−fix + Lghost, (2.10)

The first term is the QCD quark term where sum runs over the quark flavor f . The second term

describes the gluon kinematics with the gluon field strength tensor

Gaµν = ∂µA
a
ν(x)− ∂νA

a
µ(x) + gfabcAbµ(x)A

c
ν(x). (2.11)

The remaining two terms in eq. (2.10) are related to gauge invariance: In the path integral

formalism, the generating functional for the theory involves integrating over all possible configu-

rations of the gluon fields. In the path integral over Aaµ, there are many different configurations

of Aaµ that only differ by gauge transformation and, thus, leave the path integral unchanged.

This leads to divergences in the path integral because of overcounting non-physical degrees of

freedom. This issue can be resolved by adding a gauge fixing term to Lagrangian which explicitly

breaks gauge invariance. The Faddeev-Popov procedure [60] involves choosing a gauge condition

to fix the redundant degrees of freedom and introducing a correction term to account for the

overcounting of configurations. This term is given in terms of anti-commuting spin-0 fields ca

called ghosts. The gauge-fixing and and the ghost term in the QCD Lagrangians are given by

Lghost = c̄a(i∂µ)(iDab
µ )cb, Lgauge−fix =

1

2ξ
(i∂µAaµ)(i∂

νAaν). (2.12)

The parameters of QCD are given by the coupling constant g and the quark masses mf which

are given in table 2.1 [29]. The quark masses obey a strong hierarchy where the top quark is by

far the heaviest. In fact, the top quark is too heavy to contribute to the dynamics at typical

production energies at the LHC. We will, therefore, use nf = 5 as the active number of flavors
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quark flavor mass charge

up 2.16± 0.07MeV +2
3

down 4.70± 0.07MeV −1
3

strange 93.5± 0.8MeV −1
3

charm 1.2730± 0.0046GeV +2
3

bottom 4.183± 0.007GeV −1
3

top 172.57± 0.29GeV +2
3

Table 2.1: Quark flavors and their masses and charges. The charge is given in units of the

elementary charge e.

in this thesis. The other quark masses are often neglected in perturbative QCD calculations.

However, in this thesis, we are interested in heavy quark effects in factorization and resummation

and therefore often count bottom and charm quarks as massive.

As QCD is a renormalizable theory the coupling g as well as the quark masses have to be

renormalized. In this thesis we employ the modified minimal subtraction (MS ) scheme. In

this scheme, ultra-violet (UV) divergences are regulated using dimensional regularization, i.e.

the calculations are carried out in d = 4− 2ǫ spacetime dimensions [61]. The strong coupling

αs = g2/(4π) picks up an explicit dependence on the renormalization scale µ. In the MS scheme,

we have

αs = µ2ǫαs(µ)Zαs(ǫ, µ), (2.13)

where Zαs(ǫ, µ) is the MS renormalization factor

Zαs(ǫ, µ) =
eǫγE

(4π)ǫ

[

1− αs(µ)

4π

β0
ǫ

+O
(
α2
s

)
]

. (2.14)

The prefactor eǫγE/(4π)ǫ is precisely the difference between the MS scheme and “regular” minimal

subtraction (MS) where the prefactor is simply 1. The so-called bare coupling (non-renormalized)

on left hand side of eq. (2.13) is independent of the renormalization scale. By taking the µ

derivative, we find

µ
dαs(µ)

dµ
= αs(µ)

[

−2ǫ− Z−1
αs

(µ)µ
dZαs(µ)

dµ

]

(2.15)

Solving the above equation order by order, we find the β-function [62,63]

µ
dαs(µ)

dµ
≡ β[αs(µ)] = −2ǫαs(µ)− 2αs(µ)

∞∑

n=0

βn

(
αs(µ)

4π

)n+1

, (2.16)

which describes the dependence of αs(Q) on a physical scale Q ∼ µ. The coefficients βn can be

calculated perturbatively and are known up to five loops [58, 59, 64–73]. The first term is given

by

β0 =
11

3
CA − 4

3
TFnf . (2.17)
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The leading order solution to eq. (2.16) is given by

αs(µ) =
αs(µ0)

1 + αs(µ0)
β0
2π log

µ
µ0

, (2.18)

which is known as the running coupling. In the above equation αs(µ0) is a value at reference

scale µ0 that has to be extracted from experiments. This is usually done at µ0 = mZ , the mass

of the Z boson, with the current world average being αs(mZ) = 0.1180(9) [29]. For nf ≤ 16,

β0 is positive and αs(µ) decreases for large values of µ. This behavior is called asymptotic

freedom and describes the phenomenon that quarks and gluons can be treated as free particles

at sufficiently large energies due to the small coupling. On the other hand, the coupling αs(µ)

becomes large for small values of µ and diverges as µ approaches the so-called Landau-pole

ΛQCD. At one loop it is given by

Λ
(1)
QCD = µ0 exp

[

− 2π

β0αs(µ0)

]

≈ 100MeV. (2.19)

At this scale, the perturbative description of QCD breaks down, and quarks and gluons can no

longer be treated as free particles. Instead, they form color-neutral bound states, a phenomenon

known as (color) confinement. These bound states, called hadrons, consist either of a quark and

an antiquark, forming a meson, or three quarks or antiquarks, forming a baryon. In principle

there are also more exotic states such as tetra- and pentaquarks. However, we will not consider

these states in this thesis. In experiments, free quarks and gluons are never observed. Instead,

high-energy collisions produce collimated sprays of hadrons known as jets. The observation

of these jets is consistent with the assumption that they originate from a primary parton [74].

Despite strong empirical evidence for confinement, its precise mechanism within QCD remains

unkown. While phenomenological models such as the Lund string model [75] and the cluster

model [76] provide ive descriptions of hadronization, a rigorous derivation from first principles is

still unknown.

In QFT, all parameters in the Lagrangian have to be renormalized which leads us to the

renormalization of the quark mass. This works completely analogous to the renormalization of

the coupling and we can write

m = m(µ)Zm(µ), (2.20)

with the MS mass renormalization factor

Zm(µ) = 1− αs(µ)

4π
3CF +O

(
α2
s

)
. (2.21)

Taking the µ derivative, we obtain

µ
dm(µ)

dµ
= m(µ)

[

−Z−1
m (µ)µ

dZm(µ)

dµ

]

≡ m(µ)γm(µ), (2.22)

where

γm(µ) =

∞∑

n=0

γm,n

(
αs(µ)

4π

)n+1

, (2.23)
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2.2 Higgs production at hadron colliders

is the mass anomalous dimension which governs the µ dependence of the quark mass just like the

β-function for the coupling. The mass anomalous dimension is known up to five loops [77–83].

The renormalized quark mass at next-to-leading order is given by

m(µ) = m(µ0)

[

1− αs(µ0)

4π
γm,0 log

µ0
µ

]

, (2.24)

with γm,0 = −6CF . The reference scale µ0 for the quark masses is given by their respective pole

mass µ0 = mf . An overview of anomalous dimensions is given in section B.1. Equations like

eqs. (2.16) and (2.24) that describe the scale dependence of a renormalized parameter or –more

generally– of a physical observable are called renormalization group equations (RGEs). As we

will see in section 2.5, these RGEs are essential to resum large logarithms and thereby restore

the convergence of the perturbative series.

2.2 Higgs production at hadron colliders

A large portion of this thesis is dedicated to providing high-precision predictions for the Higgs

transverse momentum spectrum. In this section, we give a brief overview of the main Higgs

production mechanisms and take a first look at structure of infra-red (IR) divergences.

Since the discovery of the Higgs boson in 2012 by the ATLAS and CMS experiments at the

LHC [11,12], precise measurements of its properties has been one of the key goals of the LHC

physics program. The mechanism of electroweak symmetry breaking [13–18] not only explains

how the electroweak gauge bosons acquire mass but also provides a framework in which the Higgs

couplings to other particles are uniquely predicted within the Standard Model. Consequently,

high-precision measurements of these couplings serve as stringent tests of the Standard Model

and offer a sensitive probe for potential new physics.

A key element is the Higgs coupling to fermions, which is described by the Yukawa interaction.

This interaction is introduced into the Lagrangian as

Lyuk = −yf ψ̄ φ ψ + h.c., yf ∼ mf

v
, (2.25)

where ψ represents the fermion field, φ denotes the scalar Higgs field, mf is the fermion mass,

and v is the vacuum expectation value of the Higgs field. The relation yf ∼ mf/v contains the

prediction that heavier fermions couple more strongly to the Higgs boson. Therefore, precision

measurements of these Yukawa couplings provide vital information on the mechanism by which

particles acquire mass.

2.2.1 Higgs production channels at hadron colliders

The dominant Higgs production channels in proton collisions are shown in figures 2.1 and 2.2,

where the initial state partons originate from the colliding protons. We can group the Higgs

production mechanisms in two classes: In the first class, the Higgs boson is produced in a via

quark interactions, i.e. involving a coupling to quarks and, thus, featuring a Yukawa coupling.

These processes are shown in figure 2.1. Gluon fusion (figure 2.1a) is the dominant production

mechanism for the Higgs boson at hadron colliders like the LHC despite it only appearing

at O(α2
s). Since gluons are massless they cannot couple directly to the Higgs boson and the

interaction is mediated by a loop of heavy quarks. The top-quark is by far the heaviest elementary

particle and the Yukawa coupling being proportional to the fermion mass compensates the
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Figure 2.1: Higgs production channels involving a direct coupling to fermions: gluon fusion

(left), associated production (ttH) (middle) and quark initiated production (qq̄H) (right).

H

q

q′

(a)

V ∗

H

Vq

q̄′

(b)

Figure 2.2: Higgs production channels involving direct coupling to vector bosons where V =W,Z:

vector boson fusion (left) and Higgs strahlung (right).

formal suppression. As the Higgs coupling to the top-quark is approximately 40 times larger

than to the next heaviest quark (bottom), usually only the top-quark is considered in gluon

fusion. However, with the increasing precision of experimental measurements subleading-power

effects become increasingly important and we will consider b-mass effects in gluon fusion in

chapter 5.

Figure 2.1b shows Higgs production in association with a tt̄ pair. Here the initial state gluons

interact to produce a tt̄ pair and the Higgs boson is radiated off one of the top quarks.

In quark initiated Higgs production two quarks directly annihilate into a Higgs boson. This

process is shown in figure 2.1c. Note that top-quarks are not considered constituents of the

proton and can therefore not participate as an initial state particle in this and other production

channels. The dominant contribution, thus, comes from the bottom-quark. Figure 2.1c is the

leading-order diagram in the five-flavor scheme where only the top-quark is considered heavy and

the other five quarks are considered to be light. In contrast, there is also the four-flavor scheme,

where both top and bottom-quark are considered to be heavy. In this case, the bottom quark

would not participate in the quark initiated diagram either. We will discuss quark initiated

Higgs production in detail in chapter 3.

Figure 2.2 shows the second class of diagrams. Here the Higgs boson is produced in an interaction

with vector bosons. In vector boson fusion (figure 2.2a) two quarks from colliding protons each

emit a vector boson (W or Z) which then fuse to produce a Higgs boson. In Higgsstrahlung,

which is shown in figure 2.2b, a quark and an anti-quark produce a vector boson which then

radiates off a Higgs boson. In this thesis, we are mostly interested in the quark Yukawa couplings

and will therefore focus on class of production mechanisms that features a direct coupling to

quarks. Table 2.2 provides a summary of the production cross sections for the processes discussed

above.
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2.2 Higgs production at hadron colliders

channel cross section Ref.

Gluon fusion 48.61 pb [84]

Vector boson fusion 3.77 pb [84]

WH 1.36 pb [84]

ZH 0.88 pb [84]

tt̄H 0.51 pb [84]

bb̄H 0.49 pb [85]

Table 2.2: Cross sections for key production mechanisms of a Higgs boson at the LHC for√
s = 13TeV and mH = 125.09GeV.

Higgs cross section

As we are considering Higgs production in proton collisions we have no control over the initial

state particles or their energies. Instead, the probability to find a parton i with a given momentum

fraction x of the proton’s momentum is described by parton distribution functions (PDFs). These

objects are intrinsically non-perturbative and have to be extracted from experiments. Another

important property is that PDFs are universal among processes. A process at hadron colliders,

such as Higgs production at the LHC, involves a perturbative scale, e.g. µ = mH = 125GeV.

Then the cross section can be written in a factorized way using the collinear factorization

theorem [86]

σ(pp→ X) =
∑

i,j

∫ 1

0
dxa

∫ 1

0
dxb fi(xa, µF ) fj(xb, µF ) σ̂ij→X(xaPa, xbPb, µR, µF ) +O

(ΛQCD

Q

)
,

(2.26)

stating that the production cross section for a state X in a proton collision with proton momenta

Pa and Pb is given in terms of PDFs, fi(x, µF ), and the partonic cross section σ̂ij→X . Here i

and j are the type of the parton and xi,j are their respective momentum fractions inside the

parent hadron. In the above equation all non-pertubative dynamics are captured by the PDFs.

The partonic cross section, on the other hand, can be calculated perturbatively. Both PDFs

and the partonic cross section, depend on the factorization scale µF which separates physics at

different scales. The partonic cross section has an additional dependence on the renormalization

scale µR. Eq. (2.26) is valid up to so-called higher-twist corrections of ΛQCD/Q where Q is the

hard scale of the process. For Higgs production we can take Q = mH .

Coming back to the Higgs production mechanisms shown in figures 2.2 and 2.1, we want to

focus on the most inclusive channels meaning processes with one Higgs boson as the only final

state particle. This leaves gluon fusion and quark initiated production. Then the leading-order

partonic cross section is given by

σ̂
(0)
ij→H =

1

2ŝ

∫

dφHδ
4(pi + pj − pH)|M(0)|2, (2.27)

where ŝ = (pi + pj)
2 is the partonic center of mass energy squared and M(0) is the matrix

element of the Born process. To keep the notation compact, we assume that |M(0)|2 is already

averaged over spin and color of initial state particles. We integrate over the phase space dφH of

the final state particle where the δ-function enforces momentum conservation.

In this thesis, we are interested in transverse momentum distributions where the final-state

particle, in our example, the Higgs boson recoils against initial state radiation. Let us for now
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Figure 2.3: Next-to-leading order correction to quark initiated Higgs production

consider quark initiated Higgs production where we attach an extra gluon to one of the initial

state quarks as shown in figures 2.3a and 2.3b. This real radiation contributes another quark

propagator to the matrix element where for massless quarks the denominator is proportional to

(pi − k)2 = −2pi · k with i = 1, 2. This propagator diverges for pi · k → 0. We distinguish two

different limits: in the soft limit the gluon has low energy and we have kµ ≪ Q. In this limit,

both denominators are small as p1 · k → 0 and p2 · k → 0 and the matrix element diverges. In

the collinear limit, the emitted gluon need not have low energy, but is closely aligned with its

parent quark and either p1 · k → 0 or p2 · k → 0. In general, soft and collinear singularities are

referred to as infra-red divergences. We write the scalar products as

(pi − k)2 =
k2T

(1− zi)
, (2.28)

where k2T = −k2⊥ is the Euclidean transverse momentum and z can be interpreted as the

momentum fraction of the parent quark i.

The cross section in the soft limit is given in terms of the leading-order cross section times a

divergent integral over kT and z

σ̂soft
qq̄ (p1, p2) = σ̂

(0)
qq̄ (p1, p2)× div. (2.29)

Divergences from the soft limit fully cancel in physical cross sections against poles arising from

virtual gluon exchanged shown in figure 2.3c. The reason for this is that real and virtual gluons

cannot be distinguished as k → 0.

For the collinear limit, we consider the gluon to be aligned with the incoming quark carrying

momentum p1. Then the cross section is given by

σ̂p1-coll
qq̄ (p1, p2) ∼

∫ ∞

0

dk2T
k2T

∫ 1

0
dz1

1 + z21
1− z1

σ̂
(0)
qq̄ (z1p1, p2). (2.30)

The singularity for kT → 0 and z1 → 1 corresponds to a soft gluon emission. This is already

captured by the soft contribution and needs to be subtracted, yielding

σ̂p1-coll
qq̄ (p1, p2) ∼

∫ ∞

0

dk2T
k2T

∫ 1

0
dz1Pqq(z1)σ̂

(0)
qq̄ (z1p1, p2). (2.31)

The Pqq is a splitting function

Pqq(z) = CF

[
1 + z2

1− z

]

+

, (2.32)
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where the plus distribution regulates the divergence at z = 1. An overview over plus distributions

is given in Appendix C. The leftover divergence is purely collinear and stays uncanceled. However,

the partonic cross section is not physical observable. We still need to include the PDFs and

integrate over their momentum fractions to arrive at the hadronic cross section. This allows us

to absorb the collinear divergences into renormalized PDFs. The scale evolution of the PDFs is

given by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [87–89]. At leading

order they are given by

µ
d

dµ
fq(z, µ) =

αs
2π

∫ 1

x

dz

z

[

2Pqq [αs(µ), z] fq

(x

z
, µ
)

+ 2Pqg [αs(µ), z] fg

(x

z
, µ
)]

,

µ
d

dµ
fg(z, µ) =

αs
2π

∫ 1

x

dz

z

[

2Pgg [αs(µ), z] fg

(x

z
, µ
)

+ 2
∑

q

Pgq [αs(µ), z] fq

(x

z
, µ
)
]

, (2.33)

where the sum runs over all quark flavors. The splitting functions are know up to three

loops [90,91] with partial results available at four loops [92–96].

As PDFs are universal across processes, they can therefore be extracted at one experiment at

a scale µ0 and used universally. However, as they depend on the energy scale, they must be

evolved to the correct energy scale Q by solving the differential equations in eq. (2.33)

2.3 Effective field theory

Effective field theory (EFT) is a powerful framework for tackling multiscale problems. It enables

the systematic separation of physics at different energy scales, e.g. a low scale q and a high scale

Q with q ≪ Q. This separation can be implemented directly in physical observables, such as

cross sections, by performing a power expansion in a dimensionless power-counting parameter

λ = (q/Q)a where λ ≪ 1 and a > 0, however, typically a = 1. The expansion can then be

truncated at any desired order: the leading term is called the leading-power contribution, and

higher-order terms are referred to as subleading-power corrections.

There two different types of EFTs: in bottom-up EFTs, the EFT is constructed without assuming

any knowledge of the underlying high energy theory. In this approach the couplings are not

known and have to be extracted from the experiment. A prominent example is the Standard

Model effective field theory (SMEFT) which extends the Standard Model (SM) by higher

dimensional operators to capture effects of physics beyond the SM. These higher dimensional

operators respect SM symmetries.

For top-down EFTs, the high energy theory is known, but they simplify the study of low-energy

properties. Here, interactions in the low-energy degrees of freedom not already included in the

EFT Lagrangian are described by writing down operators allowed by symmetries of the full

theory. The coefficients of these operators are determined through a matching procedure where

we compare scattering amplitudes of some representative processes computed in both full theory

and the EFT. Since the EFT and full theory agree in the infrared, the matching procedure fixes

once for all the coefficients that account for the mismatch of the two theories in the UV region.

Once the coefficients are fixed, we can use the EFT as standalone theory.

The general approach to set up an EFT is the following

1. Identify the low-energy degrees of freedom at the low scale q.

2. Write down all possible operators Oi consistent with the symmetries of the full theory up

to the desired order in λ.
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3. Determine the so-called Wilson coefficients Ci in LEFT =
∑

iCiOi. For top-down theories

this archived by performing a matching calculation, for bottom-up theories the coefficients

have to be extracted from the experiment.

4. Calculate the desired observables in the EFT.

In this thesis, we work with two top-down theories: Heavy-Quark Effective Theory (HQET) [97–

100] and Soft-Collinear Effective Theory (SCET) [101–106] which will be reviewed in the following

sections.

Heavy-Quark Effective Theory

This section follows the review on HQET from ref. [19]. For a detailed discussions see e.g.

ref. [107]. Heavy quark physics is a prime example for the application of EFTs. The mass of the

heavy quark mQ provides a natural separation of scales with mQ ≫ ΛQCD. Here, physics at the

scale mQ is high energetic whereas physics at the scale ΛQCD describes low energetic hardonic

effects. In HQET, we consider a heavy quark Q with four-momentum

pµQ = mQv
µ + kµ, (2.34)

with the velocity of the heavy quark v and v2 = 1. The momentum kµ denotes fluctuations due

to interactions with soft (low-energetic) degrees of freedom and scales as kµ ∼ ΛQCD. The heavy

quark field can then be written as

ψQ(x) = e−imQv·x [hv(x) +Hv(x)] , (2.35)

where hv(x) are the large and Hv(x) are the small components. The hv(x) are implemented as

Dirac spinors satisfying the projection relations

P± ≡ 1± /v

2
, P+hv = hv , P−hv = 0 , h̄vP+ = h̄v , h̄vP− = 0 . (2.36)

The field Hv(x) is suppressed by 1/mQ compared to hv(x) and describes off-shell fluctuations of

the heavy quark field at the scale mQ. Then the tree-level matching of the massive QCD quark

field onto hv at µ ∼ m reads:

ψQ(x) = e−imv·xhv(x)
[

1 +O
( 1

m

)]

. (2.37)

Inserting this yields the leading-order HQET Lagrangian

L = h̄v(iv ·D)hv + Llight +O
( 1

mQ

)

, (2.38)

where Llight is a copy of the QCD Lagrangian with nℓ massless quark flavors.

The spin degrees of freedom of the heavy-quark can be explicitly decoupled from the light

dynamics at leading power in 1/m by performing a field redefinition involving static Wilson

lines Yv(x) [103,108],

hv(x) = Yv(x)h
(0)
v (x) , Yv(x) = P

[

exp
(

ig

∫ ∞

0
ds v ·A(x+ vs)

)]

. (2.39)

In this way, the heavy-quark Lagrangian becomes that of a free theory,

L(0) = h̄(0)v (iv · ∂)h(0)v (2.40)

and Yv(x) takes hv(x) place in all external operators where it serves as a source of soft gluons.

We will use HQET and in particular bHQET – its application to boosted heavy quarks– in

chapter 6 to study heavy-quark fragmentation functions.
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2.4 Soft-Collinear Effective Theory

2.4 Soft-Collinear Effective Theory

SCET is a top-down EFT describing dynamics of soft and collinear degrees of freedom associated

with energetic particles participating in a high energy collision at a hard scale Q≫ ΛQCD. Soft

particles carry less energy with p0s ≪ Q and exhibit isotropic scaling. Collinear particles, on the

other hand, are more energetic p0c ∼ Q. See the discussion above eq. (2.28). Similar to HQET,

we will integrate out off-shell modes but not entire degrees of freedom.

This review is based on ref. [109] where we use the label momentum formalism developed in

refs. [101–104]. One can also perform a multipole expansion in position space [105, 106], see

ref. [110] for a review.

When describing soft and collinear particles, it is convenient to work in light-cone coordinates

where we decompose four-vectors in terms of in terms of lightlike vectors nµ, n̄µ. These vectors

need to fulfill the following relations:

n2 = 0, n̄2 = 0, n · n̄ = 2. (2.41)

A typical choice is

nµ = (1, 0, 0, 1), n̄µ = (1, 0, 0,−1). (2.42)

Note that there is some freedom in the choice of the light-cone vectors n and n̄: they only

requirement is that eq. (2.41) is obeyed. This freedom leads to symmetry of SCET referred to

as reparametrization invariance (RPI) which guarantees that observables remain unchanged

under the transformations summarized in table 2.3. With the vectors n and n̄, we can now write

four-momenta as

pµ = n · p n̄
µ

2
+ n̄ · p n

µ

2
+ pµ⊥ ≡ (p+, p−, p⊥) , (2.43)

with

p− ≡ n̄ · p, p+ ≡ n · p. (2.44)

We always take transverse vectors with subscript ⊥ to be Minkowskian, p2⊥ ≡ p⊥ · p⊥ < 0, and

denote their magnitude by pT =
√

−p2⊥. Then the invariant mass is given by

p2 = p−p+ + p2⊥. (2.45)

We can also define the metric and antisymmetric tensor in transverse space as

gµν⊥ ≡ gµν − nµn̄ν

2
− n̄µnν

2
, ǫµν⊥ ≡ ǫµνρσ

n̄ρnσ
2

. (2.46)

Our convention for the antisymmetric tensor is ǫ0123 = +1.

To identify the relevant degrees of freedom, let us consider a high energetic collision with two

incoming particle beams, one in n and one in n̄ direction. The hard interaction takes place at a

scale Q. Then n-collinear and n̄-collinear particles exhibit the momentum scaling

pµnc = (p+, p−, p⊥) ∼ Q (λ2, 1, λ), pµn̄c ∼ Q (1, λ2, λ), (2.47)

with the power-counting parameter λ ≪ 1. Collinear to a directions refers to the fact that

a n-collinear particle travels near to the n-direction but not exactly along that direction. In
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RPI-I RPI-II RPI-III

nµ → nµ +∆µ
⊥, ∆⊥ ∼ λ nµ → nµ nµ → eαnµ, α ∼ 1

n̄µ → n̄µ n̄µ → n̄µ + ǫµ⊥, ǫ⊥ ∼ 1 n̄µ → e−αn̄µ

Table 2.3: Summary of reparametrization invariance. Type I and II are infinitesimal trans-

formations that require n · ∆⊥ = n̄ · ∆⊥ = 0 and n · ǫ⊥ = n̄ · ǫ⊥ = 0 and type III is a finite

transformation. The scaling for ∆⊥, ǫ⊥ and α follow from requiring that the collinear scaling

(λ2, 1, λ) stays unchanged on these transformations.

(a) (b)

Figure 2.4: Modes for SCETI-like (a) and SCETII-like setups. The different modes are separated

by their virtuality. Hard modes (blue) will be integrated out in the theory. Collinear modes are

shown in green and soft and ultra-soft modes in orange.

addition to collinear modes, there can also be soft and ultra soft modes with the momentum

scalings

pµs ∼ Q (λ, λ, λ), pµus ∼ Q (λ2, λ2, λ2). (2.48)

The parametric scaling of soft modes is either larger or smaller as the p± components of collinear

modes. Thus, soft and collinear modes can only interact via the ⊥ component. On the other,

ultra-soft modes can directly interact with the p± of n(n̄)-collinear modes. Ultra-soft and soft

modes lead to different effective theories referred to as SCETI and SCETII, respectively. Their

relevant modes are illustrated in figure 2.4. SCETI is commonly used for measurements which

are sensitive to the ± momenta, whereas SCETII is used for oberservables with a dependence on

the transverse momentum. Finally, there are Glauber modes,

pµG ∼ Q(λ2, λ2, λ). (2.49)

These modes are off-shell and can therefore not radiate into the final state. The contribution

from these modes for sufficiently inclusive processes, such as the ones considered here, cancels to

all orders or is perturbatively suppressed, we will not consider them in this thesis.
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2.4.1 The SCETI Lagrangian

We will start with deriving the SCETI Lagrangian to leading power by expanding the QCD

Lagrangian in the power-counting parameter λ. To do so, we start by expanding the Dirac

Spinors for particles, u(p), and anti-particles, v(p), with n-collinear momentum p. Recall that the

large momentum component for n-collinear momenta is given by p− ≡ p3 + p0 ≪ p+ ≡ p3 − p0.

Then we can write the Dirac spinors as

u(p) =

√
2p0
2

(

U
~σ·~p
p0

U

)

=

√

p−

2

( U
σ3U

)

+O(λ)

v(p) =

√
2p0
2

(

V
~σ·~p
p0

V

)

=

√

p−

2

( V
σ3V

)

+O(λ) (2.50)

by introducing lightcone momenta and expanding in λ. We define

un =

√

p−

2

( U
σ3U

)

, vn =

√

p−

2

( V
σ3V

)

. (2.51)

Here U and V are either (1 0) or (0 1). For our purpose, it is also useful to define the projection

operators

Pn =
/n/̄n

4
=

1

2

(
1 σ3
σ3 1

)

, Pn̄ =
/̄n/n

4
=

1

2

(
1 −σ3

−σ3 1

)

, (2.52)

with Pn + Pn̄ = 1. These operators act on our collinear spinors as

Pnun = un, Pnvn = vn, Pn̄vn = 0, Pn̄un = 0. (2.53)

In the next step, we split the quark field in two components

ψ = Pnψ + Pn̄ψ = ξ̂n + ϕn̄. (2.54)

From the definition of Pn and Pn̄,we can derive the following relations

/nξ̂n = 0, Pnξ̂ = ξ̂, /̄nϕn̄ = 0, Pn̄ϕn̄ = ϕn̄. (2.55)

We can now insert eq. (2.54) in the massless QCD lagrangian

LQCD = ψ̄i /Dψ

= (
¯̂
ξn + ϕ̄n̄)

(
/̄n

2
in ·D +

/n

2
in̄ ·D + i /D⊥

)

(ξ̂n + ϕn̄)

=
¯̂
ξn
/̄n

2
in ·Dξ̂n + ϕ̄n̄i /D⊥ξ̂n +

¯̂
ξni /D⊥ϕn̄ + ϕ̄n̄

/n

2
in̄ ·Dϕn̄ (2.56)

The field ϕn̄ only contributes at subleading power and can therefore be integrated out. This is

achieved by imposing the equations of motion yielding

δL
δϕn̄

= 0 ⇒ ϕn̄ =
1

in̄ ·D i /D⊥
n̄

2
ξ̂. (2.57)

Inserting this in eq. (2.56), two terms cancel and we can write the leading power Lagragian for

the ξ̂n field as

L =
¯̂
ξn

(

in ·D + i /D⊥
1

in̄ ·D i /D⊥

)
/̄n

2
ξ̂n. (2.58)
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which picks out the label momentum pl. Recalling the scaling of pl in eq. (2.61), we find

n · P = 0, P̄ ≡ n̄ · P ∼ p−l ∼ O(λ0), Pµ
⊥ ∼ pµl,⊥ ∼ O(λ). (2.66)

Now, we can rewrite our collinear quark field as

ξ̂n(x) =
∑

pl 6=0

e−ipl·xξn,pl(x) =
∑

pl 6=0

e−iP·xξn,pl(x) = e−iP·xξn(x). (2.67)

Then the derivative ∂µ acts on the collinear quark field as

i∂µξ̂n(x) = i∂µe−iP·xξn(x) = e−iP·x(Pµ + i∂µ)ξn(x), (2.68)

where the label operator picks out the large components and ∂µ has ultra-soft scaling.

For the full SCETI Lagrangian, we must include contributions from both n-collinear and ultrasoft

gluons. An n-collinear gluon field scales as An ∼ pn ∼ (λ2, 1, λ) while an ultra-soft gluon field

scales as Aus ∼ pus ∼ (λ2, λ2, λ2). We can therefore write

Aµ = Âµn +Aµus + p.c., (2.69)

where "p.c." stands for power corrections which can be ignored at leading order. We proceed

with the collinear gluon field analogous to the collinear quark field and write

Âµn(x) =
∑

ql 6=0

e−iql·xAµn,ql = e−iP·xAµn(x), (2.70)

where

Aµn(x) =
∑

ql 6=0

Aµn,ql . (2.71)

This allows to write the collinear quark Lagrangian as

L = e−iP·xξ̄n

(

in ·D + i /D⊥
1

in̄ ·D i /D⊥

)
/̄n

2
ξn (2.72)

and with the covariant derivative

Dµ = ∂µ − iP − igAµ. (2.73)

Now, that we assigned a scaling to all fields and derivatives, we can expand the covariant

derivative in our power counting parameter λ

in ·D =in · ∂ + gn ·An + gn ·Aus ∼ O
(
λ2
)
,

in̄ ·D =P̄ + gn̄ ·An +O
(
λ
)
= in̄ ·Dn +O

(
λ
)

∼ O
(
λ0
)
,

iD⊥ =Pµ
⊥ + gn̄ ·An +O

(
λ2
)
= iDn⊥ +O

(
λ2
)

∼ O
(
λ
)
. (2.74)

Finally, we have all ingredients to write down the leading power collinear quark Lagrangian

L(0)
nξ = ξ̄n

(

in ·D + i /Dn⊥
1

in̄ ·Dn
i /Dn⊥

)
/̄n

2
ξn, (2.75)
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where we omitted the overall factor of e−iP·x. In order to derive the Lagrangian for collinear

and ultra-soft gluons, we start with the gluonic part of the QCD Lagrangian

L = −1

2
Tr{GµνGµν}+

1

ξ
Tr{(i∂µAµ)2}+ 2Tr{c̄i∂µiDµc}, (2.76)

where ξ is the gauge-fixing parameter. In the next step, we expand the covariant derivative for

collinear gluons

iDµ =
nµ

2
(P̄ + gn̄ ·An) + (Pµ

⊥ + gAµ⊥,n) +
n̄µ

2
(in · ∂ + gn ·An + gn ·Aus) (2.77)

and ultra-soft gluons

iDus =
nµ

2
P̄ + Pµ

⊥ ++
n̄µ

2
(in · ∂ + gn ·Aus) (2.78)

where we kept the leading terms only. Then the leading-order collinear gluon Lagrangian is

given by

L(0)
ng =

1

2g2
Tr{[iDµ, iDµ]2}+ 1

ξc
Tr{[iDµ

us, Anµ]
2}+ 2Tr{c̄n[iDus

µ , [iDµ, cn]]}, (2.79)

with the collinear gauge-fixing parameter ξc. At leading power, ultra-soft quarks and gluons are

simply described by the QCD Lagrangian

L(0)
us = ψ̄usi /Dusψus −

1

2
Tr{GµνusGusµν}+

1

τus
Tr{(i∂µAµus)2}+ 2Tr{c̄usi∂µiDµ

uscus} (2.80)

where the fields and covariant derivatives satisfy ultra-soft scaling and Dµ
us = ∂µ − igAus. We

introduce the ultra-soft gauge-fixing parameter τus in the above equation. Finally, we can write

down the full SCETI Lagrangian which is given by

L(0) = L(0)
nξ + L(0)

ng + L(0)
us . (2.81)

The corresponding Feyman rules are given in figures 2.6 and 2.7. The extension of this result

to multiple collinear sector is straightforward. We simply add sum over all distinct ni-collinear

modes

L(0)
SCETI

=
∑

n

(

L(0)
nξ + L(0)

ng

)

+ L(0)
us . (2.82)

Two collinear modes ni and nj are only distinct if they fulfill

ni · nj ≫ λ2 for i 6= j. (2.83)

2.4.2 Symmetries of SCET

In this section, we want to discuss the symmetries of SCET which are a powerful tool to constrain

operators in the effective theory. We already mentioned RPI as a manifestation of Lorentz

symmetry that is explicitly broken by the choice of light-cone coordinates below eq. (2.42).

In particular, RPI-III ensures that for arbitrary four-vectors Aµ and Bµ only the following

combinations can appear

n ·A
n ·B =

A+

B+
,

n̄ ·A
n̄ ·B =

A−

B− , (n ·A)(n̄ ·B) = A+B−, A⊥ ·B⊥. (2.84)
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(p, pr)
=i
/̄n

2

n̄ · p
n · prn̄ · p+ p2⊥ + i0

a, µ

p p
′

=igT anµ
/̄n

2

a, µ

p p
′

=igT a

(

nµ +
γµ⊥/p⊥
n̄ · p +

/p′⊥γ
µ
⊥

n̄ · p′ −
/p′⊥/p⊥

n̄ · pn̄ · p′ n̄
µ

)

/̄n

2

a, µ b, ν

p p′

q
=

ig2T aT b

n̄ · (p− q)

(

γµ⊥γ
ν
⊥ −

γµ⊥/p⊥
n̄ · p n̄

ν − /p′⊥γ
ν
⊥

n̄ · p′ n̄
µ +

/p′⊥/p⊥
n̄ · pn̄ · p′ n̄

µn̄ν

)

/̄n

2

+
ig2T aT b

n̄ · (q + p′)

(

γµ⊥γ
ν
⊥ −

γν⊥/p⊥
n̄ · p n̄

µ − /p′⊥γ
µ
⊥

n̄ · p′ n̄
ν +

/p′⊥/p⊥
n̄ · pn̄ · p′ n̄

µn̄ν

)

/̄n

2

Figure 2.6: O(λ0) Feynman rules. Collinear quarks are represented by the dashed fermion line,

collinear gluons are springs with a line and soft gluons are regular springs.

Another important symmetry of SCET is gauge invariance. As the QCD fields split into collinear

and ultrasoft fields ξn and ξus, they also require distinct gauge transformations Uc and Uus with

independent gauge-fixing parameters ξc and τus [102–104]

Un = exp [iαan(x)T
a] , Uus = exp [iαaus(x)T

a] . (2.85)

In SCET, it is particularly important that the gauge transformation does not change the

scaling of the field. Otherwise they would no longer be described by the EFT. Thus, the gauge

transformations must follow the scalings

i∂µUn(x) ∼ Q(λ2, 1, λ)Un(x), i∂µUus(x) ∼ Q(λ2, λ2, λ2)Uus(x). (2.86)

The collinear gauge transformation can be implemented using a Fourier transform as ψ(x) →
U(x)ψ(x) is equivalent to ψ̃(p) →

∫
dqŨ(p − q)ψ̃(q) which includes a convolution over label

momenta. Then the collinear gauge transformations are given by

ξn,p(x) → Un,p−q(x)ξn,q(x),

Aµn,p(x) → Un,p−q(x)

[

gAµn,q−q′(x) + δq,q′
i

g
Dµ
us

]

U †
n,q′(x), (2.87)
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(p, pr)

a, µ b, ν

=
−iδab

n · prn̄ · p+ p2⊥ + i0

[

gµν −
(

1− 1

ξc

)
pµpν

n · prn̄ · p+ p2⊥

]

a, µ

p p′

c, ρb, ν
=gfabcnν

[

n̄ · p gνρ − 1

2
(1− ξc)

(
n̄ρpν + n̄νp′

ρ)
]

a, µ b, ν

c, ρ d, σ
=
i

4
g2nµnν n̄ρnσ (1− τus) (f

acef bde + fadef bce)

a, µ b, ν

c, ρ d, σ
=− i

2
g2nν

[

fabefdce(n̄σgνρ − n̄ρgνσ) + facef bde(n̄νgσρ − n̄σgνρ)

+fadef bce(n̄νgσρ − n̄ρgνσ)
]

Figure 2.7: O(λ0) Feynman rules of collinear gluons interacting with ultra-soft gluons. Collinear

gluons are springs with a line and ultra-soft gluons are regular springs. The interactions of

collinear and ultra-soft quarks among themselves are given by standard QCD Feynman rules

with the understanding the gluons have collinear or ultra-soft scaling.

where we left the sum over label momenta implicit. Ultra-soft fields do not transform under

collinear gauge transformations to preserve their scaling

ψus(x) → ψus(x), Aµ(x)us → Aµus(x). (2.88)

Further, ultra-soft fields transform under ultra-soft gauge transformations just like standard

QCD fields transform under a gauge transformation

ψus(x) → Uus(x)ψus(x), Aµus(x) → Uus(x)

[

Aµus(x) +
i

g
∂µ
]

U †
us(x). (2.89)

Collinear fields, on the other hand, transform covariantly under ultra-soft gauge transformation

with Aus treated as a background field

ξn(x) → Uus(x)ξn(x),

Aµn(x) → Uus(x)A
µ
n(x)U

†
us(x). (2.90)
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⇒
n2 n1

(a)

kn2

qn1

⇒

qn1

n2 n1

(b)

kn2

q2
n1

qk
n1

q1
n1

. . .

⇒ q
1

n1

q
1

n2

q
k
n2

n2 n1

. . .

(c)

Figure 2.8: Emergence of the collinear Wilson line. (a) Tree-level matching of dijet operator

onto SCET. (b) Attachment of an n1-collinear gluon to an n2 collinear quark. (c) Attachment

of multiple n1-collinear gluons to an n2 collinear quark.
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2.4.3 Collinear Wilson lines

Let us consider of two distinct collinear sectors that are cuopled through the QCD current

JQCD = ψ̄Γψ. (2.91)

At tree-level, this is matched onto

JSCET = ξ̄n1
Γξn2

, (2.92)

where n1 and n2 represent the different collinear sectors as shown in figure 2.8a. Next, we want

to attach gluons to figure 2.8a: The attachment of ni-collinear gluons to ni-collinear quarks

is described by the SCET Lagrangian in eq. (2.75). Additionally, we can consider scenarios

shown in figures 2.8b and 2.8c where we attach one (or multiple) n1-collinear gluon(s) to the

n2-collinear quark. This diagram cannot be described by the SCET Lagrangian in eq. (2.75)

and require new operators beyond eq. (2.92) The matrix element is given by

Aµan1
ξ̄n1

Γ
i(/q + /kn2

)

(q + kn2
)2
igT aγµξn2

= ξ̄n1
Γ

(−gn̄1 ·An1

n̄1 · q

)

ξn2
+O(λ), (2.93)

where we expanded the gluon field and all momenta in λ and used that /n2i = 0 and /niξni = 0.

Note that the quark propagator is off-shell with

(kn2
+ q)2 = 2kn2

· q = (n̄2 · kn2
)(n̄1 · qn1

)
n1 · n2

2
≫ λ2, (2.94)

because n2 · n2 ≫ λ2 and hence must be integrated out. Its effects are captured in an effective

operator. Additionally, it is important to highlight that the result with the attached gluon in

eq. (2.93) is not power-suppressed but instead contributes at leading order in λ.

We can now go one step further and study multiple gluon attachments shown in figure 2.8c

where each attached gluon contributes an off-shell propagator and needs to be integrated out.

Summing over all emissions, we can write the SCET current as

JSCET = ξ̄n1
ΓWn1

ξn2
, (2.95)

where an n-collinear Wilson line in momentum space is defined as

Wn =
∑

k=0

∑

perms.

(−g)k
k!

[

n̄ ·An(q1) · · · n̄ ·An(qk)
(n̄ · q1) · · · (n̄ ·∑k

i=1 qk)

]

. (2.96)

Since we must consider diagrams with crossed gluon lines, we need to include a sum over the

permutations of the momenta {q1, . . . qk}. In position space, the n-collinear Wilson line is given

by

Wn(x) = P exp

[

ig

∫ 0

−∞
ds n̄ ·An(x+ n̄s)

]

, (2.97)

with the path-ordering operator P. It can also be convenient to write the Wilson line in a more

compact notation using the label operator

Wn(x) =
∑

perms

exp

[ −g
n̄ · P n̄ ·An(x)

]

. (2.98)
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Considering n1-collinear gluon attachments to an n2-collinear gluon line yields new operators

which can be summed up via the replacement

Wn2
→Wn1

Wn2
W †
n1
, (2.99)

and vice versa. Returning to the SCET current in eq. (2.95), we can of course also have

n1-collinear attachments to the n2-collinear quark line, yielding

JSCET = ξ̄n1
W †
n2
ΓWn1

ξn2
. (2.100)

At this point, the Wilson lines appear to the in the wrong order. However, so far we have

only considered multiple gluon attachments to a quark line. We can of course also have n1-

collinear gluon attachments to an n2-collinear gluon line and vice versa. Taking all possible

O(g2) diagrams into account, we find the

JSCET = (ξ̄n1
Wn1

)Γ(W †
n2
ξn2

) (2.101)

with the correct order of Wilson lines. In fact, we can replace all occurrences of the field n̄ ·An
by the Wilson line Wn: Using the equation of motion of the Wilson line

in̄ ·DnWn = (P̄ + gn̄ ·An)Wn = 0, (2.102)

allows to write the action of in̄ ·Dn and some operator as

in̄ ·Dn(WnO) = (P̄ + gn̄ ·An)WnO = [(P̄ + gn̄ ·An)Wn]O +WnP̄O =WnP̄O. (2.103)

This allows to write the collinear quark Lagrangian as

L(0)
nξ = ξ̄n

(

in ·D + i /Dn⊥W
†
n

1

P̄Wni /Dn⊥

)
/̄n

2
ξn. (2.104)

An important outcome of writing the Lagrangian L(0)
nξ in this way is that it is explicitly local

at and below the scale Qλ because of absence of inverse derivative operators, whereas the non-

locality only appears at the short distance scale Q. Note that collinear Wilson lines transform

under gauge transformations as

collinear : Wn,p(x) → Un,p−q(x)Wn,q(x),

ultra-soft : Wn,p(x) → Uus(x)Wn,q(x)U
†
us. (2.105)

This transformation behavior exactly cancels the transformation behavior of the collinear gauge

fields, guaranteeing that eq. (2.101) is gauge invariant.

2.4.4 Ultra-soft factorization

In the current form of the SCET Lagrangian, the ultra soft gluon still interacts with the collinear

fields and prevents a full factorization of the collinear and ultra-soft sectors. Now, consider QCD

graphs analogous to figure 2.8 where we attach ultra-soft gluons to either n1 or n2 collinear

quarks. In this case, the numerator involves n2 ·Aus ∼ λ2 which, though power suppressed, is

compensated by the scaling of the quark propagator, (kn2
+ q)2 = (n̄2 ·kn2)(n2 · q) ∼ λ2, yielding

a contribution at leading power. Summing over all possible graphs yields

Yn(x) = P exp

[

ig

∫ 0

−∞
ds n ·Aus(x+ ns)

]

, (2.106)
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which describes the emission of an ultra-soft gluon from a collinear quark. Note that the above

equation is only valid for incoming collinear particles. For outgoing particles the integral runs

over s ∈ [0,∞]. An ultra-soft emission of a collinear gluon is given by the adjoint representation

Yn(x) where we replace Aµ = AaµT
a → Aaµ(−ifabc).

The ultra-soft Wilson satisfies the following relations

in ·DYn = 0, YnY
†
n = 1. (2.107)

We can now perform the Bauer-Pirjol-Stewart (BPS) field redefinition [103]

ξn(x) = Yn(x)ξ
(0)
n (x), Aµn = Yn(x)A

(0)µ
n (x)Y †

n (x), cµn = Yn(x)c
(0)µ
n (x)Y †

n (x). (2.108)

As Yn commutes with the label operator, the collinear Wilson line tranforms as

Wn(x) → Yn(x)W
(0)
n (x)Y †

n (x), (2.109)

where W
(0)
n is built from A

(0)
n . The above equation is analogous to eq. (2.99). We have now

explicitly removed all ultra-soft interactions and the remain fields ξ
(0)
n , A

(0)
n and c

(0)
n completely

decouple and we can write our collinear quark Langrangian as

L(0)
nξ = ξ̄(0)n,p

[

in · ∂ + gn ·A(0)
n,q +

(
/Pn⊥ + g /A

(0)
n,q,⊥

)
W (0) †
n

1

P̄W
(0)
n (/Pn⊥ + g /A

(0)
n,q,⊥

)
]
/̄n

2
ξ(0)n,p, (2.110)

which is completely independent of the ultra-soft gluon field. It is easy to show that the

same happens for the full leading-order collinear Lagrangian L(0)
n and the ultra-soft gluon field

decouples completely at Lagrangian level

L(0)
n [ξn, A

µ
n, cn, n ·Aus] = L(0)

n [ξ(0)n , A(0),µ
n , c(0)n , 0]. (2.111)

The interactions with the ultra-soft gluon field, however, have not disappeared. They simply

moved from the Lagrangian into the currents. Let us, for example, consider the SCET current

in eq. (2.101)

JSCET =(ξ̄n2
Wn2

)Γ(W †
n1
ξn1

)

=ξ̄(0)n2
W (0)
n2
Y †
n2
ΓYn1

W (0) †
n1

ξ(0)n1
. (2.112)

Now, the ultra-soft and n1- and n2-collinear sectors are fully factorized.

Operator building blocks

At this point it is convenient to define gauge invariant operator building blocks. The SCETI

building blocks are given by the "quark jet field"

χn ≡W †
nξn, (2.113)

and the "gluon jet field"

Bµn,⊥ ≡ 1

g

[
1

n̄ · PW
†
n

[
in̄ ·Dn, D

µ
n,⊥
]
Wn

]

. (2.114)
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The two degrees of freedom in the above equation can be interepreted as the physical gluon

polarizations. A complete basis of operators to build collinear operators to all orders in λ is

given by [111]

ξn, Bµn,⊥, Pµ
n,⊥. (2.115)

All other operators can be expressed in terms of these objects and we can write the SCET

current as

JSCET = χ̄n2
Y †
n2
ΓYn1

χn1
. (2.116)

2.4.5 SCETII and rapidity divergences

In SCETII, soft and collinear modes which share the same virtuality p2s = p2n = λ2Q2 contribute

to the measurement. The interaction of soft gluons with collinear particles puts the resulting

particle off the mass-shell

p = pn + ps ∼ Q(λ, 1, λ). (2.117)

These off-shell particles need to be integrated out. This gives rise to the soft Wilson line

Sn(x) =P exp

[

ig

∫ 0

−∞
ds n ·As(x+ ns)

]

=
∑

perms

exp

[ −g
n · P n ·As(x)

]

. (2.118)

The soft Wilson line appears in currents to ensure gauge invariance under soft gauge transforma-

tions. The adjoint soft Wilson line is given by

T aSabn = SnT
bS†
n. (2.119)

SCETII can be constructed by a subsequent matching [112]

QCD → SCETI → SCETII. (2.120)

First, we match QCD onto SCETI with a power-counting parameter
√
λ. Then we have hard-

collinear and ultra-soft modes which scale as phc ∼ Q(λ, 1,
√
λ) and pus ∼ Q(λ, λ, λ), respectively.

Next, we perform the BPS field redefinition. In the last step, we match onto SCETII by lowering

the virtuality of the collinear modes and taking Yn → Sn

phc ∼ Q(λ, 1,
√
λ) → pn ∼ Q(λ2, 1, λ),

pus ∼ Q(λ, λ, λ) → ps ∼ Q(λ, λ, λ). (2.121)

As soft and collinear modes have the same virtuality, they live on the same trajectory in figure 2.4

and are only separated by their rapidity y = log(p−/p+)/2. This separation explicitly breaks

boost invariance and introduces divergences when p−/p+ → 0 and p−/p+ → ∞ [113–117]. These

rapidity divergences arise from an overlap of the collinear and soft integrals. A typical rapidity

divergent integral has the from

In =

∫ ∞

0

dk−

k−
R(k, η), (2.122)
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where R(k, η) is the regulator function. The resulting integrals cannot be regulated using

dimensional regularization and require a rapidity regulator which allows to distinguish the

different modes. Since the full theory is free of rapidity divergences, they have to cancel when

combining soft and collinear sectors. There is a variety of regulators that have been used in the

literature such as the η-regulator [113,118,119], hard cutoffs [115,120–122], the δ-regulator [123],

tilting Wilson lines off the lightcone [124], the analytic regulator [125–127], the exponential

regulator [128] or the pure rapidity regulator [129]. In this thesis we employ the η-regulator and

the pure rapidity regulator where the latter is particularly well suited for next-to-leading power

calculations.

The η-regulator regulates the kz momentum of emissions by modifying the Wilson Lines to

Wn(x) =
∑

perms

exp

[ −g
n̄ · P

w2|2Pz|−η
ν−η

n̄ ·An(x)
]

,

Sn(x) =
∑

perms

exp

[

−g
n · P

w|2Pz|− η
2

ν−
η
2

n ·As(x)
]

, (2.123)

where we introduced the rapidity regularization scale ν. Similarly to the ǫ-poles from dimensional

regularization, the rapidity divergences will appear in the from of η poles after integrating and

expanding in η. We also inserted a book-keeping parameter w, which will be set to 1 in the end.

It ensures that the regulated Wilson lines are independent of ν

ν
dw(ν)

dν
= −η

2
w(ν), (2.124)

analogously to the QCD β-function in eq. (2.16). The regulator function for the η-regulator is

given by

R(k, η) = w2

∣
∣
∣
∣

2kz

ν

∣
∣
∣
∣

−η
= w2

∣
∣
∣
∣

k− − k+

ν

∣
∣
∣
∣

−η
. (2.125)

In the n-collinear limit, the k− dominates and we can write

Rn(k, η) = w2

∣
∣
∣
∣

k−

ν

∣
∣
∣
∣

−η
. (2.126)

The n̄-collinear limit yields the same result with k− → k+. In the soft limit, the regulator is

homogeneous in λ and will not be expanded.

The pure rapidity regulator is similar to the but instead of the momentum kz it regulates the

rapidity yk of the momentum kµ. The regulator function is then given by

RY (k, η) = w2υη
∣
∣
∣
∣

k−

k+

∣
∣
∣
∣

− η
2

. (2.127)

The rapidity scale υ is dimensionless but apart from that analogous to the scale ν. An important

feature of the pure rapidity regulator is that it renders typical soft integrals scaleless as we will

see when considering b-quark effects in gluon fusion later in this thesis.
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Figure 2.9: Higgs production via gluon fusion (left) and quark annihilation (right) with one

additional emission.

2.5 Factorization and resummation

2.5.1 Resummation of large logarithms

In this thesis, we are interested in the transverse momentum spectra of final state particles

produced in hadron collisions. Let us consider a Higgs boson that is produced at the LHC, either

via gluon fusion or quark-antiquark annihilation. At Born-level the Higgs boson is produced

at rest, such that qT = 0, resulting in a trivial qT spectrum. We therefore need at least one

emission the Higgs boson can recoil against to pick up a transverse momentum as illustrated in

figure 2.9. Most Higgs bosons are produced at small qT . Hence, we are most interested in the

cross section for qT ≪ Q = mH . In general the cross section will contain large logarithms of the

form

log
qT
Q

= log
qT
µ

+ log
µ

Q
, (2.128)

where the additional scale µ has been introduced in order to split up the logarithm which allows

to separate the high and the low scale. Let us consider a toy example where the cross section

can then be written in a factorized way as

σ(qT , Q) = H(Q,µ)F (qT , µ) +O
( q2T
Q2

)

. (2.129)

Here, H(Q,µ) is the hard function capturing all physics at the hard scale whereas F (qT , µ)

describes the dynamics at the low scale qT . Each power of strong coupling comes with a large

logarithm –to a possibly different power. This leads to a complete break down of the perturbative

series for small values of qT . More precisely, the cross section involves δ(qT ) distributions and

logarithmic plus distributions [logn(qT /Q)/Q]+ in the qT → 0 limit.

In order to arrive at a meaningful prediction, these large logarithms must be resummed using

the renormalization group equations (RGEs) of the factorized ingredients. The RGEs govern

the µ dependence of the renormalized functions H(Q,µ) and F (qT , µ). They read

µ
d

dµ
H(Q,µ) = γHH(Q,µ), µ

d

dµ
F (qT , µ) = γFF (qT , µ), (2.130)

where γH,F are the anomalous dimensions of the respective functions. Then, the all-order

resummation is archived by evaluating H(Q,µ) and F (qT , µ) at their canonical scales

µH = Q, µF = qT , (2.131)

which are chosen such that the logarithms are minimized at this scale. Next, H(Q,µ) and

F (qT , µ) are evolved to a common scale µ by solving the RGEs. The resummed cross section is
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then given by

σres(qT , Q) = H(Q,µH)UH(µH , µ)F (qT , µF )UF (µF , µ). (2.132)

The renormalization group evolution factors, also called evolution kernels, are given by

UX(µX , µ) = exp

[∫ µ

µX

dµ′

µ′
γX(µ

′)

]

, (2.133)

with X = H,F . In particular, the functions H(Q,µH) and F (qT , µF ) are free of large logarithms

at their respective canonical scale. The large logarithms are exponentiated in kernels which

restores the convergence of the perturbative series. This procedure is referred to as resummation.

The resummation generates a Sudakov peak in the cross section before it goes to 0 as qT → 0

which is illustrated in figure 2.10.

As the physical cross section does not depend on the scale µ

µ
d

dµ
σ(qT , Q) = 0, (2.134)

we can use RG consistency as a cross check

γH = −γF , (2.135)

which in this toy example states that the anomalous dimensions must cancel.

Turning away from our toy example, the anomalous dimension of the hard function actually has

a more complicated form

γiH = 4Γicusp

[
αs(µ)

]
log

Q

µ
+ γiH

[
αs(µ)

]
, (2.136)

where the cusp anomalous dimension, Γicusp, is universal among processes and only depends on

the color representation of the annihilating parton i. The non-cusp anomalous dimension, γiH , on

the other hand, is process dependent. We give the explicit expressions of the cusp and non-cusp

anomalous dimensions in appendix B.1. The specific structure of the hard anomalous dimension

containing a logQ/µ allows for the resummation of Sudakov double-logarithms αns log
m(qT /Q)

with m ≤ 2n. These logarithms arise in high-energy processes when there is an overlap of soft

and collinear regions of phase space.

Next, we analyze the structure of a generic perturbative series. The standard, so-called fixed-order,

counting counts powers of the strong coupling αs

σ(qT ) ∼ 1 +
αs
4π

[

c12 log
2 qT
Q

+ c11 log
qT
Q

+ c10

]

NLO

+
(αs
4π

)2
[

c24 log
4 qT
Q

+ c23 log
3 qT
Q

+ c22 log
2 qT
Q

+ ...

]

NNLO

+
(αs
4π

)3
[

c36 log
6 qT
Q

+ c35 log
5 qT
Q

+ c34 log
4 qT
Q

+ ...

]

N3LO (2.137)

LL NLL NNLL

However, for small values of qT terms scaling as αns log
m(qT /Q) & 1 are no longer suppressed.

Hence, we need to adapt our counting to capture the leading logarithmic terms where we count
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Boundary Anomalous dimensions FO matching

Order conditions γi (noncusp) Γcusp, β (nonsingular)

LL 1 - 1-loop -

NLL 1 1-loop 2-loop -

NLL′ (+NLO) αs 1-loop 2-loop αs
NNLL (+NLO) αs 2-loop 3-loop αs

NNLL′ (+NNLO) α2
s 2-loop 3-loop α2

s

N3LL (+NNLO) α2
s 3-loop 4-loop α2

s

N3LL′ (+N3LO) α3
s 3-loop 4-loop α3

s

N4LL (+N3LO) α3
s 4-loop 5-loop α3

s

Table 2.4: Definition of resummation orders. The (+NnLO) in the order refers to whether or

not the nonsingular O(αns ) corrections in the last column are included.

columns instead of lines. The first column captures the the leading-logarithmic order (LL), the

second column the next-to-leading-logarithmic order (NLL) and so forth.

In order to archive LL resummation, we only require the leading contribution of the cusp

anomalous dimension as it is enhanced by a logarithm compared to the non-cusp contribution as

well as the leading term of the QCD-β-function. Starting from NNLL, we also need to include the

O(αs) contribution of the functions evaluated at there canonical scales, H(Q,µH) and F (qT , µF ).

This contributions are referred to as boundary condition or boundary term. A summary of the

ingredients needed for resummation up N4LL is given in table 2.4.

2.5.2 Matching to fixed order

The resummed cross section provides a meaningful for small values of qT . In addition to the

leading-power contributions, which can be resummed by making use of the factorization theorem

in eq. (2.132), we also have to include the nonsingular power corrections of q2T /Q
2 in eq. (2.129)

which become important for large values of qT . To obtain a prediction that is valid across the

entire qT range, we add the resummed singular contributions and the the fixed-order nonsingular

terms. The resulting matched cross section is given by

σ(qT , Q) = σres(qT , Q) + σnons(qT , Q)

= σres(qT , Q) +
[

σFO(qT , Q)− σsing(qT , Q)
]

. (2.138)

The first line is equivalent to eq. (2.129), using the all-order resummed result σres for the leading-

power term. By the singular cross section, σsing(qT , Q), we mean the fixed-order reexpansion

of the resummed cross section where all terms are evaluated at the fixed-order scale µFO ∼ Q.

To avoid double counting, the overlap of the resummed and singular contributions has to be

subtracted. The nonsingular cross section σnons(qT , Q) is obtained as shown in the second line in

eq. (2.138), i.e. by using eq. (2.129) at fixed order and subtracting the fixed-order singular terms

from the full fixed-order result, where both are evaluated at common fixed-order scales µFO.

For small qT ≪ mH , the nonsingular terms are a small power correction and it is sufficient to

include them at fixed order despite the fact that the singular terms are resummed there. For

the nonsingular to be indeed power suppressed it is essential that σFO and σsing are evaluated

at the same fixed order, such that σsing exactly contains and cancels the singular terms of σFO.
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Figure 2.10: Matched cross section for quark initiated Higgs production at NNLL+NLO.

If this is cancellation is correctly taken care of the NnLL accuracy of the resummed result is

preserved in the low qT region.

On the other hand, as qT approaches qT ∼ Q, the distinction between singular and nonsingular

becomes arbitrary and only the full fixed-order result in σFO is physically meaningful. To recover

the correct σFO in this limit, σres(µres) and σsing(µFO) must cancel each other in eq. (2.138).

We require this cancellation to be exact with no leftover higher-order terms in αs, because for

qT ∼ Q the resummed terms are unphysical and typically become numerically much larger

than the actual physical result given by σFO. This requires the turning off of the resummation

in σres(µres) – in so doing, one guarantees that the result becomes equal to the fixed-order

σsing(µFO) and preserves the fixed-order NmLO accuracy of the matched result. Considering

the first line of eq. (2.138), this implies that for qT ∼ mH there are typically large numerical

cancellations between the singular and nonsingular contributions.

In summary, in order to have a consistent description of the cross section for all values of qT ,

the terms in eq. (2.138) are required to satisfy two conditions: firstly, σsing and σFO must be

evaluated at the same fixed order; secondly, σsing and σres must become equal in the limit where

the resummation in σres is turned off.

The most natural way to turn off the resummation in σres(µres) is to set all boundary scales

to the common fixed-order scales µFO, i.e. in our notation µres = µFO. The second condition

above thus requires σres(µres = µFO) = σsing(µFO). In order for the first condition above to be

fulfilled it is necessary that for a given resummation order nonsingular matching corrections of

the corresponding order are included. Namely, the αs order of the boundary conditions in the

resummed result must match the αs order of the full and nonsingular results, which are the

orders shown in the last column of table 2.4. The accuracy of the matched result is then given

by NnLL+NmLO.

Figure 2.10 shows the matched cross section for quark initiated Higgs production where we

chose the ss̄→ H channel for illustrative purposes. The full-fixed order cross section is shown in

dashed blue and diverges for qT . 15GeV. The non-singular (dotted green) is power suppressed

and indeed goes to 0 for qT → 0. The resummed shown in red has Sudakov peak at qT ∼ 5GeV

before turning to zero. Finally, the matched cross section in equal to resummed at the very

beginning of the spectrum. At the peak the matched slightly differs from the resummed which is

due to non-singular contribution that are included. At large values of qT , the matched becomes

36



2.5 Factorization and resummation

equal to the full fixed-order prediction.

2.5.3 Factorization and resummation for qT spectra

In this thesis, we focus on resummed transverse momentum (qT ) spectra of color singlet processes

which are dominated by soft and collinear radiation. The color-singlet finial state particle recoils

against soft and colllinear initial state radiation and picks up a transverse momentum. Studying

the qT spectra at experiments allows to extract more information from the experimental data

–such as the shape of the spectrum– as e.g. a total cross section would. The relevant theory

framework to describe this is provided by SCETII with the power-counting parameter λ = qT /Q.

The factorization of the leading-power qT spectrum was first established by Collins, Soper and

Sterman [130–132], and was further elaborated upon and extended in refs. [124,133,134]. Here,

we employ the framework of SCET, in which qT factorization was formulated in refs. [113,119,

128,135], and which is equivalent to the modern formulation in ref. [124].

The factorized form for the transverse momentum spectrum, often also referred to as transverse

momentum dependent (TMD) factorization is given by

dσsing

dY d2~qT
=
∑

a,b

Hab(Q
2;µ)[Ba ⊗Bb ⊗ Sab](xa, xb, ~qT ;µ) , (2.139)

where the kinematic quantities ωa,b and xa,b are given by

ωa = Qe+Y , ωb = Qe−Y and xa,b =
ωa,b
Ecm

. (2.140)

Physically, xi is the longitudinal momentum fraction of the parton i and ωi is the large lightcone

momentum component of the parton in the lab frame.

The process dependence is encoded in the hard function Hab(Q
2, µ). It describes the underlying

hard interaction producing the color singlet particle via ab→ X where the sum runs over the

available parton channels a, b.

The factor [Ba ⊗ Bb ⊗ Sab] describes physics at the low scale µ ∼ qT . The beam function Bi
describes a collinear parton i with transverse momentum ~ki and longitudinal momentum ωi
orginatnating from a proton with collinear momentum Pµn = P−

n n
µ/2. In SCET, the bare quark

and gluon beam functions are defined as proton matrix elements of collinear fields

Bq

( ω

P−
n
, ~k
)

= θ(ω)
1

2

∑

spin

〈pn|χ̄q,n(0)[δ(ω − P̄)δ2(~k − ~P⊥)
/̄n

2
χq,n(0)]|pn〉,

Bµν
g

( ω

P−
n
, ~k
)

= θ(ω)ω
1

2

∑

spin

〈pn|Bµn,⊥(x)[δ(ω − P̄)δ2(~k − ~P⊥)Bνn,⊥(0)]|pn〉, (2.141)

where the gluon beam function has a non-trivial polarized contribution ∝ kµg kνg/k
2
g − gµν⊥ /2

due to the vectorial nature of the measurements [136]. We suppressed the Lorentz indices in

eq. (2.139) for brevity.

The the soft function Sab describes soft radiation with total transverse momentum ~ks. It is given

in terms of a vacuum expectation value of Wilson lines

Sqq(~k) =
1

Nc
〈0|Tr{T̄ [S†

n̄(x)Sn(x)]δ
2(~k − ~P⊥)T [S

†
n̄(0)Sn(0)]}

Sgg(~k) =
1

N2
c − 1

〈0|Tr{T̄ [S†
n̄(x)Sn(x)]δ2(~k − ~P⊥)T [S†

n̄(0)Sn(0)]}. (2.142)
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Note that the soft function is specific to color singlet processes.

Momentum conservation in the transverse plane implies that the sum of ~ka, ~kb, ~ks must be equal

to the measured final state transverse momentum ~qT , leading to the convolution structure in of

the factor [Ba ⊗Bb ⊗ Sab]

[Ba ⊗Bb ⊗ Sab](xa, xb, ~qT ;µ) ≡
∫

d2~ka d
2~kb d

2~ks δ
2(~qT − ~ka − ~kb − ~ks) (2.143)

×Ba(xa, ~ka;µ, ν/ωa)Bb(xb,~kb;µ, ν/ωb)Sab(~ks;µ, ν) .

The functions in eq. (2.143) are universal objects in ~qT factorization, independent of the details of

the hard process. The above equation can be futher simplified by applying azimuthal symmetry:

the soft functions in eq. (2.142) and the quark beam function Bq are azimuthally symmetric.

Thus their Fourier transform only depends on the magnitude of bT ≡ |~bT |. The gluon beam

function can be split in two orthogonal contributions, kµg kνg/k
2
g and gµν⊥ /2. The coefficients of

these contributions again only depend on bT in Fourier space. Then eq. (2.143) simplifies to

[Ba ⊗Bb ⊗ Sab](xa, xb, ~qT ;µ)

=
1

2π

∫ ∞

0
dbT bTJ0(bT qT )B̃a(xa, bT ;µ, ν/ωa) B̃b(xb, bT ;µ, ν/ωb) S̃ab(bT ;µ, ν) , (2.144)

where J0 is the zeroth Bessel function of the first kind.

Renormalization of beam and soft functions

In this section, we will discuss briefly the renormalization of the hard, beam and soft functions.

For more details we refer to refs. [137,138]. The hard function is renormalized as

Hbare(Q) = ZH(Q,µ)H(Q,µ) (2.145)

with the counterterm ZH . The RGE and the running of the hard function were already discussed

in section 2.5.1.

As we are working in SCETII, there will be rapidity divergences arising from on overlap of soft

and collinear regions that need to be regulated. This is denoted by the additional dependence

on the rapidity scale ν of beam and soft functions in eq. (2.143). The scale ν is analogous to

the Collins-Soper scale ζ used in ref. [130]. For the qT spectrum, we employ the exponential

regulator from ref. [128]. Up to two loops it yields the same results as the η regulator used

in refs. [113, 119]. The rapidity divergences are sensitive to qT and therefore renormalized in

a convolution. Note that RGEs for gluon and quark beam and soft functions have the same

structure. We will therefore omit the q and g indices.

The bare functions are renormalized as

Bbare(ω, ~pT ) =

∫

d2~kTZB(~pT − ~kT , ω, µ, ν)B(ω,~kT , µ, ν) (2.146)

Sbare(~pT ) =

∫

d2~kTZS(~pT − ~kT , ω, µ, ν)S(~kT , µ, ν) (2.147)

where ZX again denote the counterterms. The RGEs are given by

µ
d

dµ
B(ω, ~pT , µ, ν) =γB(ω, µ, ν)B(ω, ~pT , µ, ν) (2.148)

µ
d

dµ
S(~pT , µ, ν) =γS(µ, ν)S(~pT , µ, ν). (2.149)
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The µ-anomalous dimensions of beam and soft functions have the all-order form

γB(ω, µ, ν) = 2Γcusp

[
αs(µ)

]
log

ν

ω
+ γB

[
αs(µ)

]
, (2.150)

γS(µ, ν) = 4Γcusp

[
αs(µ)

]
log

µ

ν
+ γS

[
αs(µ)

]
. (2.151)

The µ independence of the physical cross section is given by the RG consistency relation

γH(αs) + 2γB(αs) + γS(αs) = 0, (2.152)

where γH(αs) is the noncusp anomalous dimension of the hard function. The rapidity RGEs are

given in terms of convolutions in ~kT

ν
d

dν
B(ω, ~pT , µ, ν) =

∫

d2~kT γν,B(~pT − ~kT , µ, ν)B(ω,~kT , µ, ν), (2.153)

ν
d

dν
S(~pT , µ, ν) =

∫

d2~kT γν,S(~pT − ~kT , µ, ν)S(~pT , µ, ν). (2.154)

Just as for the resummation scale µ, the cross section has to be independent of the rapidity scale

ν. This argument implies that there is only one rapidity anomalous dimension that we take to be

γν(~pT , µ) ≡ γν,S(~pT , µ) = −2γν,B(~pT , µ). (2.155)

At this point is more convenient switch to bT space where it is easy to see that the µ and ν

RGEs from a coupled system of equations

µ
d

dµ
B̃(ω, bT , µ, ν) = γ̃B(ω, µ, ν)B̃(ω, bT , µ, ν), µ

d

dµ
S̃(bT , µ, ν) = γ̃S(µ, ν)S̃(bT , µ, ν),

ν
d

dν
B̃(ω, bT , µ, ν) = −1

2
γ̃ν(bT , µ)B̃(ω, bT , µ, ν), ν

d

dν
S̃(bT , µ, ν) = γ̃ν(bT , µ)S̃(bT , µ, ν).

(2.156)

We can take the µ and ν derivatives of the soft RGEs to relate the anomalous dimensions yielding

µ
d

dµ
γν(bT , µ) = ν

d

dν
γS(µ, ν) = −4Γcusp

[
αs(µ)

]
, (2.157)

where we used the fact that the µ and ν derivates of the soft function commute. The above

equation also serves as RGE for γν(bT , µ) which needs to be resummed itself if the rapidity

evolution takes place at a scale µ≫ µ0 ∼ 1/bT .

Canonical scales and resummation

The canonical scales for hard, beam and soft functions in qT space are given by

virtuality: µH ∼ Q, µB ∼ qT , µS ∼ qT , µ0 ∼ qT

rapidity: νB ∼ Q, νS ∼ qT . (2.158)

Due to the vectorial structure of ~qT , the resummation in qT is very challenging [139]. As shown

in ref. [137], the exact solution for the RG evolution in ~qT space in terms of distributions is

equivalent to this canonical solution in bT space modulo different conventions for the boundary

conditions. Since the latter is much easier to obtain, we also use it here, as is often done. The
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resummed singular ~qT spectrum, dσres, is then obtained as the inverse Fourier transform of the

canonically resummed bT space result, dσ̃res(~bT ),

dσres

dY d2~qT
=

∫
d2~bT
(2π)2

e−i~bT ·~qT dσ̃res(~bT )

dY d2 ~bT
.

The canonical boundary scales in bT space are given by

µH = Q, µB = b0/bT , µS = b0/bT , µ0 = b0/bT ,

νB = Q, νS = b0/bT , (2.159)

where we choose the convention b0 ≡ 2e−γE ≈ 1.12291. We can now evaluate the functions in

the factorization theorem at their canonical scales and use the RGEs in eq. (2.153) to evolve

them to common scales µ and ν. The resummed cross section is then given by

dσres

dY d2~qT
=

∫
d2~bT
(2π)2

e−i~bT ·~qT Hab(Q
2, µH)B̃a(ωa, bT , µB, νB)B̃b(ωb, bT , µB, νB)S̃(bT , µS , νS)

× exp

[∫ µ

µH

dµ′

µ′
γH(Q,µ

′) + 2

∫ µ

µB

dµ′

µ′
γB(ω, µ

′, νB) +

∫ µ

µS

dµ′

µ′
γS(µ

′, νS)

]

× exp

{

log
νB
νS

[∫ µ

µ0

dµ′

µ′
γν(bT , µ

′)

]}

. (2.160)

Here the first line contains the fixed-order boundary conditions of the hard beam and soft

functions where each of them is evaluated at their canonical scales. The second line describes the

evolution from the canonical scales µX to a common scale µ where all large logarithms of µH/µB
and µH/µS are being resummed. The last line governs the rapidity evolution which resums

logarithms of νB/νS including the evolution of the rapidity anomalous dimension from µ0 to µ.

The relevant anomalous dimensions are given in appendix B.1. Eq. (2.160) is the main result of

this section and will be used to obtain the qT spectrum for quark initiated Higgs production in

chapter 3.

2.5.4 Factorization of N-jettiness

The resummation of the transverse momentum qT plays an important role when measuring color

singlet processes. In these processes, the hadronic radiation is not measured directly; rather, it

is reconstructed from the recoil of the color-singlet state which could for example be a Higgs

boson. Event shape observables take a different approach and aim to describe the geometry of

the final-state particles after the event. A famous example of these kinds of observables is the

N -jettiness observable [140]. It describes how well a final is described by an event with N hard

jets. N -jettiness is most often defined is as

TN =
∑

i

min
m

{
2qm · pi
Qm

}

, (2.161)

where the sum runs over the four-momenta of all colored particles pµi , the minimization over

m = {a, b, 1, ..., N} runs over all beam and jet reference momenta qµm, and the factors Qm are

normalization factors. Here, a, b denote the incoming beams and 1, ..., N the N jets. To make

this more accessible, let us consider the example of T0

T0 =
∑

i

min

{
2qa · pi
Qa

,
2qb · pi
Qb

}

, (2.162)
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which is an appropriate variable to describe color-singlet production processes, since they do not

feature a hard jet in the final state. The reference vectors qa and qb are aligned with the beam

axis. There are two possible choices for the normalization factor [141,142]: either Qa,b = Q or

Qa,b = Qe±Y where Y is the rapidity. If the scalar product of the beam reference momentum

and a colored particle qa · pi is small, the particle is closely aligned with the beam axis. If this is

true for all colored particles, the final state looks like a 0-jet event and the 0-jettiness is small,

T0 → 0.

The definition in eq. (2.161) uses an invariant mass-like measure and follows a SCET-I type

factorization. The factorization formula reads [140]

dσκ
dQdY dTN

=
∑

i,j

tr Ĥij(Q
2, µ)

N∏

J=1

∫

dsJ

∫

dta dtbBi(ta, xa, µ)Bj(tb, xb, µ)

× ŜijN

(

TN − ta
Qa

− tb
Qb

−
∑

J

sJ
QJ

, {qm}, µ
)

JJ (sJ , µ) +O
(TN
Q

)

, (2.163)

where the soft function Ŝ and the hard function Ĥ are matrices in color space and tr denotes a

trace in color space. The inclusive beam Bi,j and jet J functions describe collinear radiation

emitted from the initial and final state, respectively. Further, sJ is the invariant mass of the

radiation within the jet and ta,b are the total virtualities of the colliding partons.

In general, the cross section in eq. (2.163) will contain large logarithms of TN/Q which need to

be resummed. To do so the the hard, beam, jet and soft functions have to be computed at their

canonical scales [140]

µH ∼ Q, µB ∼
√

TNQ, µJ ∼
√

TNQ, µS ∼ TNQ. (2.164)

In the second step, we use the RGEs to evolve them to a common scale µ. The renormalization

group evolution of the beam function is governed by [140,143]

µ
d

dµ
Bi (ti, xi, µ) =

∫

dt′i γ
i
B

(
ti − t′i, µ

)
Bi
(
t′i, xi, µ

)
, (2.165)

with the anomalous dimension

γiB(t, µ) = −2Γicusp(αs)L0 (t, µ) + γiB(αs)δ(t) . (2.166)

The evolution of the beam function is well known [144–146], but we refrain from giving the

explicit solution of this equation in this thesis and refer to ref. [143] for details. The jet function’s

renormalization group equation reads [140,143]

µ
d

dµ
JJ (sJ , µ) =

∫

ds′J γ
i
B

(
sJ − s′J , µ

)
JJ
(
s′J , µ

)
, (2.167)

where in fact γiJ(t, µ) = γiB(t, µ) to all orders in perturbation theory [143]. Finally, the RGE of

the soft function is given by [141,143]

µ
d

dµ
S (k, µ) =

∫

dk′ γiS
(
k − k′, µ

)
S
(
k′, µ

)
, (2.168)

with

γiS(k, µ) = 4Γicusp(αs)L0 (k, µ) + γiS(αs)δ(k) . (2.169)

The soft function S (k, µ) is the hemisphere soft function for incoming Wilson lines which is

defined by measuring k =
∑

i{k+i , k−i } on all soft emissions ki. In chapter 4, we will use T1 with

a generalized measure as a jet resolution variable.

41



Chapter 2 – Theoretical Framework

2.6 Transverse Momentum Distributions

In the previous section, we discussed factorization of transverse momentum distributions at

length. In this section, we want to look at this topic from a different angle by using transverse

momentum distributions (TMDs) and their factorization theorems. In large parts of this thesis,

we are considering processes at hadron colliders. In section 2.2, we established that the exact

initial state in hadron collisions is not fully determined, since protons are composite objects.

Instead, we rely on collinear PDFs to describe the probability of finding a parton of type a

carrying a momentum fraction xa in a colliding proton. However, collinear PDFs only describe the

dependence on the longitudinal momentum and therefore only provide a one dimensional picture.

In the framework of transverse momentum dependent distributions the parton distributions pick

up an additional dependence on the transverse momentum of the parton which allows for a three

dimensional description of the motion of quarks and gluons inside the nucleon.

The final state counterparts of TMD PDF are TMD fragmentation functions (FFs). Collinear

fragmentation functions describe the probability of parton to hadronize into a specific hadron.

They depend on the longitudinal momentum fraction zH that the hadron retains from its

parent parton. TMD FFs describe the transverse momentum that the hadron picks up by

recoiling against other fragmentation products, including the full quantum correlations with the

quark polarization, which provides a three-dimensional picture of the fragmentation cascade.

Thus, TMD factorizing provides a rigorous field-theoretic framework in which hadronization

can be studied in detail. Corresponding all-order factorization theorems have been established

in ref. [147]. The TMD dynamics of light quarks and gluons are a well-established field of

experimental study [148–158], phenomenological analysis (see e.g. refs. [159–162]), and progress

towards first-principle calculations using lattice field-theory [163–169]. For a recent overview,

see ref. [170].

In this section, we aim to give a brief overview of TMDs. We start by considering factorization

at hadron colliders in terms of TMD PDFs in section 2.6.1. In sections 2.6.2 and 2.6.3, we

discuss the leading TMD PDFs and FFs that are relevant to this thesis. In section 2.6.4, we

give a brief overview of TMD cross sections. This section in part follows ref. [170]. Parts of

sections 2.6.2 and 2.6.3 follow the introductory sections of ref. [3].

2.6.1 TMD factorization at hadron colliders

As an illustrative example we start with the collinear factorization theorem for the Higgs

production cross section from section 2.2. In this section, we are particularly interested in the

transverse momentum spectrum. For large values of qT , we can write as

dσ

dY d2~qT
=
∑

i,j

∫ 1

0
dxa

∫ 1

0
dxb fi(xa) fj(xb)

dσ̂ij(xa, xb)

dY d2~qT

[

1 +O
(

Λ2
QCD

q2T
,
Λ2
QCD

Q2

)]

, (2.170)

where we omitted the dependence on the factorization scale for brevity. Just as in the previous

sections, xa and xb are longitudinal momentum fractions and σ̂ is the partonic cross section.

For small values of qT , it becomes apparent that we need a different description of the cross

section. For ΛQCD . qT ≪ Q, the parton distributions describing the incoming partons need

an additional dependence on the transverse momentum. This leads to the TMD version of the
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2.6 Transverse Momentum Distributions

factorization theorem

dσ

dY d2~qT
=
∑

ij

Hij(Q
2, µ)

∫

d2~kad
2~kb δ

(2)(~qT − ~ka − ~kb) fi(xa, ~ka, µ, ζa) fj(xb, , ~kb, µ, ζb)

×
[

1 +O
(

q2T
Q2

,
Λ2
QCD

Q2

)]

, (2.171)

where Hij(Q
2, µ) is the process dependent hard function. Now, the densities describing the

incoming partons not only depend on the longitudinal momentum fraction but also on the

transverse components of the incoming partons. They are referred to as transverse momentum

dependent PDFs (TMD PDFs). As TMD PDFs suffer from endpoint divergences which need to

be regulated, they pick up an additional dependence on the Collins-Soper scales ζa,b [130,131]

which are given by

ζa = x2aM
2
Ne

2YA , ζb = x2bM
2
Ne

2YB . (2.172)

Here MN is the nucleon mass and YA,B are the nucleon rapidities. Their product yields the

mass invariant mass of the hard process

ζaζb = Q4. (2.173)

We denote the quantities related to nucleon with the subscripts A,B whereas everything related

to partons carries the subscripts a, b. It is understood that the parton a originates from the

nucleon A.

In practice, we will often work with the Fourier transformed TMD PDFs which is given by

fi(x,~bT , µ, ζ) =

∫

d2~kT e
−i~bT ·~kT fi(x,~kT , µ, ζ). (2.174)

Then the TMD cross section reads

dσ

dY d2~qT
=
∑

ij

Hij(Q
2, µ)

∫
d2~bT
(2π)2

ei
~bT ·~qT fi(xa,~bT , µ, ζa) fj(xb, ,~bT , µ, ζb). (2.175)

The above equation closely resembles the factorized cross-section given in eq. (2.139). Indeed,

they are equivalent ways of writing the same cross section where the soft and beam functions

were combined to the TMD PDF

fi(x,~bT , µ, ζ) = Bi(x,~bT , µ, ν/
√

ζ)
√

Si(bT , µ, ν). (2.176)

The hard function, Hij(Q
2, µ), is identical in both descriptions. We traded the rapidity evolution

scale ν for the Collins-Soper scale ζ. For TMD PDFs, the rapidity evolution is governed by the

rapidity anomalous dimension, known as the Collins-Soper kernel. For details on TMD evolution

see e.g. ref. [170].

2.6.2 Leading quark TMD PDFs

In the previous section, we discussed TMD cross section for Higgs production in terms of the

unpolarized TMD PDFs f = f1. The unpolarized TMD PDF which describes an unpolarized

parton originating from an unpolarized nucleon. In this section, we will extend our discussion to
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possibly polarized quarks and nucleons. There exists of course also gluon TMD PDFs. However,

in this thesis, we are interested in heavy-quark effects and will therefore focus on quark TMDs.

The nucleon has momentum

PµN = P−
N

nµ

2
+
M2
N

P−
N

n̄µ

2
, (2.177)

with P−
N ≫ P+

N =M2
N/P

−
N in the rest frame of the hard scattering. Note that we take the large

component of the hadron (nucleon) momentum to be along the nµ direction to make this section

self contained, but the case of an n̄-collinear incoming hadron follows from nµ ↔ n̄µ.

The bare TMD quark-quark correlator between forward nucleon states that describes this process

is

Φββ
′
(x, b⊥) =

∫
db+

4π
e−ib+(xP−

N )/2
〈
N
∣
∣ψ̄β

′

Q (b)W (b)W †(0)ψβQ(0)
∣
∣N
〉
, (2.178)

where x is the lightcone momentum fraction carried by the heavy quark and b ≡ (0, b+, b⊥) is

the Fourier conjugate of the transverse momentum kT . Recall that we are using the notation

bT =
√

−b2⊥. Further, we have suppressed the rapidity regulator, the soft factor, and transverse

gauge links at infinity in the above equation for simplicity. The Wilson line W (x) is defined as

an anti-path ordered exponential of gauge fields extending to positive infinity along the lightcone

direction n̄µ,

W (x) = P̄
[

exp
(

−ig

∫ ∞

0
ds n̄ ·A(x+ n̄s)

)]

. (2.179)

The Wilson lines only depend on the direction of n̄µ and are thus invariant under n̄µ 7→ eα n̄µ.

This also applies to the full correlator and is a manifestation of type-III reparameterization

invariance discussed in section 2.4.

For the explicit perturbative calculations it can also be useful to define the momentum-space

version of the above correlator,

Φββ
′
(x, k⊥) =

∫
d2b⊥
(2π)2

e−ik⊥· b⊥Φββ
′
(x, b⊥) . (2.180)

The spin decomposition of eq. (2.180) in terms of scalar TMD PDFs is well known [171,172],

Φ(x > 0, k⊥) =
{

f1(x, kT )− f⊥1T (x, kT )
ǫρσ⊥ k⊥ ρS⊥σ

MN
+ g1L(x, kT )SLγ5 − g⊥1T (x, kT )

k⊥ · S⊥
MN

γ5

+ h1T (x, kT ) γ5/S⊥ + h⊥1L(x, kT )SLγ5
/k⊥
MN

− h⊥1T (x, kT )
k⊥ · S⊥
M2
N

γ5/k⊥

+ ih⊥1 (x, kT )
/k⊥
MN

+
(
higher twist

)} /n

4
, (2.181)

where SL is the longitudinal nucleon polarization in the Trento frame [173] and S⊥ is the

transverse nucleon polarization. The TMD PDFs can be obtained by tracing the correlator

against suitable Dirac structures, also called projectors. The different TMD PDFs correspond to

different quark and nucleon polarizations

• The unpolarized TMD PDF f1(x, kT ) describes an unpolarized qaurk within an unpolarized

hadron, similar to the unpolarized collinear PDF.
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• The helicity TMD PDF g1L describes a longitudinally polarized quark inside a longitudinally

polarized hadron which is similar to the collinear helicity PDF.

• The transversity TMD PDF h1T describes a transversely polarized quark inside a trans-

versely polarized hadron which corresponds to the TMD case of the collinear transversity

PDF.

The remaining five distributions do not have collinear counterparts and only appear when the

transverse momentum is measured.

• The Sivers function f⊥1T (x, kT ) [174] describes an unpolarized quark inside a transversely

polarized hadron.

• The worm-gear T, g⊥1T , [175] and L, h⊥1L, [176] describe a longitudinally polarized quark

inside a transversely polarized hadron and vice versa.

• The Bœr-Mulders function h1 describes a transversely polarized quark within an unpolarized

hadron [177].

• Finally, there is the pretzelosity function, h⊥1T , which contributes to the TMD distribution

of a transversely polarized quark inside a transversely polarized hadron in addition to the

helicity TMD PDF [178].

The Sivers function as well as the Bœr-Mulders function are time-reversal odd. For LHC physics,

only the unpolarized TMD PDF and Bœr-Mulders function are relevant as the protons at the

LHC are unpolarized. However, there are other experiments using polarized proton beams such

as the future Electron-Ion Collider (EIC) [179]. In fact, precision TMD measurements are part

of its key physics targets.

2.6.3 TMD fragmentation functions

Besides PDFs, there are also fragmentation function which can be seen as the “final-state

counterpart” to PDFs. Fragmentation describes the process of partons produced in a high-energy

collision forming color-neutral bound states, hadrons. A collinear fragmentation function (FF)

Dh
i (zH) describes the probability of an initial parton i to fragment into the hadron h where zH

is the fraction of the partons longitudinal momentum retained by the hardon. Similar to PDFs,

there is also a transverse momentum description of FFs, TMD FFs. These are of particular

interest when studying hadronization process as they allow for a three dimensional picture of

the hadronization cascade (in contrast to collinear FFs which only provide a one dimensional

picture).

In position space, the TMD quark-quark correlator describing this fragmentation process is

defined as

∆ββ′

h/q(zH , b⊥) =
1

2zHNc

∫
db+

4π
eib

+(P−
H /zH)/2

× Tr
∑
∫

X

〈
0
∣
∣W †(b)ψβQ(b)

∣
∣HX

〉〈
HX

∣
∣ψ̄β

′

Q (0)W (0)
∣
∣0
〉
, (2.182)

where β, β′ are the open spin indices of the quark fields, Tr denotes a trace over fundamental

color indices, and b ≡ (0, b+, b⊥). The hadron momentum is given by

PH = P−
H

nµ

2
+ P+

H

n̄µ

2
, (2.183)
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Figure 2.11: Illustration of TMD processes at colliders: Drell-Yan (left), di-hadron production

in e+e− collisions (middle) and SIDIS (right). Figure adapted from ref. [170]

where PH ≪ P+
H = M2

H/P
−
H with the hadron mass MH is boosted in the frame of the hard

scattering and by definition PH,⊥ = 0, coinciding with the “hadron frame” for fragmentation [147].

We have kept a sum over the possible hadron helicities hH , which are not experimentally resolved,

implicit in the constrained sum over states, i.e.,

∑
∫

X

|HX〉〈HX| ≡
∑
∫

X

∑

hh

|H,hH ;X〉〈H,hH ;X| . (2.184)

The Wilson line W (x) was defined in eq. (2.179). As for the TMD PDF, we have suppressed the

rapidity regulator, the soft factor, and transverse gauge links at infinity in eq. (2.182).

There are eight leading-power quark TMD FFs, which are defined by tracing the correlator

against a suitable Dirac structure. Just like TMD PDFs, the leading TMD fragmentation

functions have been proven to be universal between processes [180], i.e., they are independent of

whether the Wilson line points to the future (e+e− → hadrons) or the past (SIDIS).

In this thesis, we want to restrict ourselves to unpolarized hadrons which leaves two TMD

FFs. The unpolarized TMD FF (D1H/Q) encodes the total rate for producing an unpolarized

hadron from an unpolarized quark, while the Collins TMD FF (H
⊥(1)
1H/Q) describes the strength

of the correlation between the quark’s transverse polarization and the direction of the hadron

transverse momentum. They are defined in position space as1

D1H/q(zH , bT ) = tr
[ /̄n

2
∆H/q(zH , b⊥)

]

,

H
⊥(1)
1H/q(zH , bT ) = tr

[ /̄n

2

/b⊥
MHb2T

∆H/q(zH , b⊥)
]

, (2.185)

where tr denotes a trace over spin indices.

2.6.4 TMD processes at colliders

As already hinted above, TMDs are universal between processes. In this section, we want to

briefly discuss the processes most relevant to this thesis which are illustrated in figure 2.11. In

1Our conventions for Fourier transforms and the spin decomposition of TMD correlators follow ref. [172]. Note

the superscript (1) on the bT -space Collins function indicating a bT derivative that arises from integrating a

term /k⊥ in the momentum-space correlator by parts, and that is specifically required due to the conventional

normalization to the hadron mass [181].

46



2.6 Transverse Momentum Distributions

section 2.6.1, we already discussed TMD cross section for processes at hadron colliders such as

Tevatron or the LHC. The standard example for TMD cross sections at hadron collinsions is

usually the Drell-Yan process

p+ p→ ℓ+ + ℓ− +X, (2.186)

where two protons p collide and produce at lepton pair ℓ+ℓ−. Additional final-state particles

including remnants of the proton are denoted by X. The Drell-Yan process is shown in left

panel of figure 2.11. The underlying hard scattering process is described by a quark-anti-quark

pair producing the lepton pair via a virtual photon or Z-boson. Schematically, the cross section

can be written as

dσpp→ℓ+ℓ−+X

dY dQd2~qT
= = σ̂qq̄→ℓ+ℓ− ⊗ fq ⊗ fq̄, (2.187)

where the first convolutions is in the longitudinal momentum fraction and the second convolution

is the both, the transverse and the longitudinal momentum fraction. The hard part is given by

σ̂qq̄→ℓ+ℓ− and fq and fq̄ are TMD PDFs.

The cross section for quark initiated Higgs production has the same form as eq. (2.187). The

cross section only differ by the process dependent hard function. For gluon fusion, the TMD

cross section again has a similar structure. However, since the process is gluon induced, we need

gluon TMD PDFs.

So far we only considered cross section containing TMD PDFs but of course there are also

other processes containing TMD FFs such as semi-inclusive deep inelastic scattering (SIDIS). In

traditional DIS, an electron (or a different lepton) scatters off a nucleon via the exchange of a

virtual photon. SIDIS extends this to not only detecting the electron in the final state but also

at least one hadron,

ℓ+N → ℓ′ + h+X, (2.188)

where ℓ and ℓ′ are the initial and final leptons, N is the nucleon, h is the identified hadron

and X are undetected remnants of the nucleon. This process is illustrated in the right panel of

figure 2.11. SIDIS is particularly well suited to study TMD PDFs and FFs as provides direct

access to both the intrinsic transverse momentum of partons and the correlations between spin

and momentum. The SIDIS cross section can be written in terms of a hard scattering part,

σ̂ℓq→ℓ′q′ , a TMD PDF, fq, and a TMD FF, Dh/q′ :

dσℓN→ℓ′hX

dx dy dz d2 ~PT
=σ̂ℓq→ℓ′q′ ⊗ fq ⊗Dh/q′ . (2.189)

The finial state quark, q′, fragments into the detected hadron after participating in the hard

interaction. Here x is the Bjorken scaling variable, y is the fraction of initial lepton’s energy

transferred to the nucleon, z is the momentum fraction of the finial state quark, q′, retained

by the identified hadron and ~PT is the hadron’s transverse momentum. With the future EIC,

there is a modern SIDIS experiment with polarized beams which will provide more detailed

information on the respective TMDs and the 3D hadron structure.

Finally, there is also di-hadron production in e+e− collision which is the first process where TMD

factorization was proven [130], which is illustrated in the central panel of figure 2.11. Here, two

leptons annihilate and produce a quark-anti-quark. The quarks then fragment into a di-hadron
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pair. At leading order, the two hadrons would be exactly back-to-back. However, in practice

there is additional radiation X which spoils this behavior. The cross section for this process is

given in terms of a hard contribution and two fragmentation functions [131]

dσe+e−→h1h2

d cos θ dφ dz1 dz2 d2 ~P1,T

=σ̂e+e−→qq′ ⊗Dh1/q ⊗Dh2/q′ . (2.190)

where cos θ and φ are the spherical coordinates of hadron h2, z1 and z2 are the lightcone

momentum fractions of the two hadrons, and ~P1,T is the transverse momentum of hadron h1.
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Chapter 3

The qT spectrum in Higgs

Production via Quark Annihilation

In this chapter, we present a new state-of-the-art prediction for the transverse momentum spec-

trum of a Higgs boson produced via the annihilation of heavy quarks (s, c, b) in proton-proton

collisions. Our finial result is a prediction at three-loop order in resummed perturbation theory

(N3LL′) matched to full fixed-order results at approximate N3LO (aN3LO).

This chapter is based on ref. [2] reflecting the author’s contribution. Compared to ref. [2], we

included analytic leading-order calculation in the main part of this chapter. Additionally, we

included the gluon fusion contribution in figure 3.17 and adapted the discussion of this figure.

3.1 Motivation

We have already established that precise measurements of the Higgs boson’s properties are

essential to understand its role in the SM. Further, we need equally precise theoretical predictions

to exploit the full potential of the high precision data that is taken at the LHC. In this thesis we

focus on the Yukawa couplings for bottom, charm and strange quarks. The bottom-quark Yukawa

coupling is of particular interest, as certain BSM models, such as the Two Higgs Doublet Model

or the Minimally Supersymmetric Standard Model (MSSM), predict an enhanced bottom-quark

Yukawa coupling relative to its SM value [32,33].

The bottom and charm Yukawa couplings have been measured from H → bb̄ and H → cc̄

decays, respectively [26, 34–36]. These measurements are rather challenging due to the required

jet tagging and the huge multi-jet background. An alternative for the measurement of quark

Yukawa couplings is therefore of great interest. A promising approach is to measure the Yukawa

couplings from a fit to the Higgs transverse momentum spectrum which is sensitive to the quark

flavor [40,41]. Indeed, ATLAS and CMS have already demonstrated that they can constrain yb
and yc from their shape only [42,43].

In this chapter, we present a new state-of-the-art prediction for the qT spectrum of Higgs

production via quark annihilation qq̄ → H, where we consider bottom, charm, and strange

quarks for the incoming quarks. Of these, bottom-quark annihilation is by far the dominant

process since the b is the heaviest, followed by charm and then strange annihilation. Precise

predictions for the qq̄ → H process are important, since it can in principle provide direct

sensitivity to the quark Yukawa couplings from the production process. In addition, while the
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cross section for bottom-quark annihilation is significantly smaller than that of gluon fusion, these

are often grouped together in experimental analyses, since they have very similar acceptances

and are a priori hard to distinguish experimentally.

For these reasons, qq̄ → H production, in particular bottom-quark annihilation, has received

much attention in the past, see e.g. refs. [32, 50, 51, 182–198]. The qq̄H form factor and hard

function have been computed up to four loops [199,200], the total inclusive bb̄→ H cross section

to N3LO [201, 202], and bb̄ → H+jet to NNLO1 [203] (the subscript 1 on the order counting

indicates that it is relative to the H + 1-parton cross section).

In ref. [2], we computed the resummed qT spectrum for qq̄ → H at N3LL′ order matched to fixed

NNLO and approximate N3LO.1 We use soft-collinear effective theory (SCET) [102–105,204]

to resum the logarithms of qT /mH . We work in the limit mq ≪ qT , where we only keep the

Yukawa coupling of the annihilating quarks and otherwise take them to be massless. For bb̄→ H,

this is commonly referred to as the five-flavour scheme. Finite-mass effects become relevant for

mq ∼ qT and are thus necessary for a complete description of the small-qT region, especially for

bb̄→ H [50,205]. Their full treatment in the resummed qT spectrum was worked out in ref. [205]

and is quite involved. We therefore focus here on the massless limit and leave the inclusion of

finite-mass effects in the resummed spectrum to future work.

This chapter is organized as follows. We explain how the resummed results were obtained

in section 3.2, where we also discuss the general procedure for matching the resummed and

fixed-order calculations using profile scales. In section 3.3, we discuss our implementation

of the fixed-order results and the matching to them in some detail. It transpires that the

numerical size of the nonsingular fixed-order corrections depends strongly on the incoming quark

flavour. In particular, they are substantially larger for bb̄→ H than what is commonly found

to be the case for gluon-fusion or Drell-Yan production. This requires additional care in the

matching and some refinements to the usual estimation of the matching uncertainties based on

profile-scale variations. Furthermore, we discuss the matching to approximate N3LO, i.e., to

approximate O(α3
s). For this purpose, we introduce a general strategy to decorrelate the singular

and nonsingular contributions at large qT , generalizing a method recently introduced in ref. [206].

This allows us to construct an approximation of the missing O(α3
s) nonsingular contributions

and a corresponding approximate full NNLO1 result that incorporates the exact O(α3
s) singular

contributions, which are necessary for a consistent matching to the N3LL′ result. We present our

numerical results for the resummed qT spectrum and its perturbative uncertainties in section 3.4

and provide a summary in section 3.5.

3.2 Resummed prediction

We consider the cross section for an on-shell Higgs boson differential in the Higgs rapidity Y and

Higgs transverse momentum ~qT . Recalling the factorization theorem discussed in section 2.5.3,

we can write singular cross section as

dσsing

dY d2~qT
=
∑

a,b

Hab(m
2
H ;µ)[Ba ⊗Bb ⊗ Sab](xa, xb, ~qT ;µ) , (3.1)

1We note that, at O(α3
s), contributions to the subprocess qg → Hq may appear which do not feature a Yukawa

coupling yq but instead proceed via a top-quark loop. These are usually considered to be part of the gluon-fusion

process, and hence we do not include them here, instead setting yt = 0. The approximate inclusion of these effects

in the heavy-top limit has been found to have a sub-percent level effect on yb [203].
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3.2 Resummed prediction

where the kinematic quantities ωa,b and xa,b are given by

ωa = mHe
+Y , ωb = mHe

−Y and xa,b =
ωa,b
Ecm

. (3.2)

The process dependence is encoded in the hard function Hab(m
2
H , µ). It describes the underlying

hard interaction producing the Higgs boson via ab→ H, with the available partonic channels

being ab = {qq̄, q̄q}. At leading order, H(0) corresponds to the partonic Born squared matrix

element, while at higher orders it includes the finite virtual corrections to the Born process. To

perform all-order resummation, each function is first evaluated at its own natural boundary

scale(s): µH , (µB, νB) and (µS , νS). By choosing appropriate values for the boundary scales

close to their canonical values (see section 3.2.1), each function is free of large logarithms and

can therefore be evaluated in fixed-order perturbation theory. Next, all functions are evolved

from their respective boundary conditions to a common arbitary point (µ, ν) by solving their

coupled system of renormalization group equations (RGEs). For details on the resummation

procedure, we refer to section 2.5.3.

For the resummation at N3LL′ we require the N3LO boundary conditions for the hard func-

tion [199, 207], and the beam and soft functions [208–212]. We also need the 3-loop noncusp

virtuality [143,208,210,213,214] and rapidity anomalous dimensions [208,209,215], as well as

the 4-loop cusp anomalous dimension Γcusp [90, 216–219] and QCD β function [66–69].

3.2.1 Canonical scales and resummation in bT space

The canonical boundary scales in bT space are given by

virtuality: µH = mH , µB = b0/bT , µS = b0/bT , µf = b0/bT , µ0 = b0/bT ,

rapidity: νB = mH , νS = b0/bT , (3.3)

where b0 ≡ 2e−γE ≈ 1.12291. Here, µH , (µB, νB), and (µS , νS) are the boundary scales for the

hard, beam, and soft functions, and µf is the scale at which the PDFs inside the beam functions

are evaluated. The rapidity anomalous dimension must also be resummed and µ0 is its associated

boundary scale. When the functions in eq. (3.1) are evolved from these scales, the evolution

resums all canonical bT -space logarithms lnn[(b0/bT )/mH ].

As shown in ref. [137], the exact solution for the RG evolution in ~qT space in terms of distributions

is equivalent to this canonical solution in bT space modulo different conventions for the boundary

conditions. Since the latter is much easier to obtain, we also use it here, as is often done. The

resummed singular ~qT spectrum, dσres, is then obtained as the inverse Fourier transform of the

canonically resummed bT space result, dσ̃res(~bT ),

dσres

dY d2~qT
=

∫

d2~bT e
i ~qT ·~bT dσ̃res(~bT )

dY
= 2π

∫

dbT bTJ0(bT qT )
dσ̃res(~bT )

dY
. (3.4)

With the canonical scales in eq. (3.3), the strong coupling and the PDFs inside the beam functions

are evaluated at αs(b0/bT ), which means the beam and soft functions and rapidity anomalous

dimension become sensitive to nonperturbative effects for 1/bT . ΛQCD. To perform the Fourier

transform in eq. (3.4), we must therefore choose a prescription to avoid such nonperturbative

scales.

The traditional approach is to perform a global replacement of bT everywhere in the bT -space cross

section by a function b∗(bT ), which asymptotes to some fixed perturbative scale bmax . 1/ΛQCD
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Chapter 3 – The qT spectrum in Higgs Production via Quark Annihilation

for 1/bT → 0, while away from this limit it becomes bT . An important drawback of this global b∗

prescription is that it leads to much larger than necessary distortions of the bT -space cross section.

This can be avoided by applying this replacement only to the canonical scale choices [220],

which suffices to avoid nonperturbative scales. More precisely, following ref. [49], we use the µ∗
prescription

µX = µ∗
(
b0/bT , µ

min
X

)
with µ∗(x, y) =

√

x2 + y2 , (3.5)

where µX stands for any of µS , µB , µ0, µf . In principle any function µ∗(x, y) can be used which

satisfies µ∗(x → 0, y) → y and µ∗(x ≫ y, y) → x. Under these conditions, all scales approach

their chosen minimum value µmin
X for 1/bT → 0, while approaching their canonical values away

from this limit, as desired. Note that one advantage of this prescription is that we have the

option to choose different µmin
X values for different scales, which we will make use of for µf .

3.2.2 Profile scales and matching to fixed order

Recalling the discussion in section 2.5.2, the resummed prediction is only appropriate for small

values of qT ≪ mH . For qT ∼ mH the cross section is given by the fixed-order contribution. In

order to have description that is valid for all values of qT , we need to combine both contributions

resulting in the matched cross section

dσ = dσres(µres) + dσnons(µFO)

= dσres(µres) +
[

ddσFO(µFO)− dσsing(µFO)
]

. (3.6)

Now, for small values of qT the nonsingular terms dσnons(µFO) are small and the resummed

dominates. For qT ∼ mH , the cross section is given in terms of the fixed-order contribution as

dσres(µres)− dσsing(µFO) cancels in this limit. In practice, we want to turn off the resummation

smoothly, such that the difference dσres(µres)− dσsing(µFO) vanishes equally smoothly as qT →
mH . This is conveniently achieved by using profile scales [221, 222], which provide a smooth

transition for µres from canonical resummation scales to the common fixed-order scales. Here

we use hybrid profile scales µX(bT , qT ) [220], which depend on both bT and qT and undergo a

smooth transition from their canonical bT -dependence in eq. (3.5) to the bT -independent µFO,

with the transition happening as a function of qT ,

µX(bT , qT ) = µ∗
(
b0/bT , µ

min
X

)
for qT ≪ mH ,

µX(bT , qT ) → µFO for qT → mH . (3.7)

We choose the central scales as

µH = νB = µFO = mH ,

µX = mH frun

[ qT
mH

,
1

mH
µ∗
( b0
bT
, µmin

X

)]

for µX ∈ {µB, µS , νS , µf} ,

µ0 = µ∗
( b0
bT
, µmin

0

)

, (3.8)

where frun is the hybrid profile function given by [220]

frun(x, y) = 1 + grun(x)(y − 1) , (3.9)
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3.2 Resummed prediction

where grun(x) determines the transition as a function of x = qT /mH ,

grun(x) =







1 0 < x ≤ x1 ,

1− (x−x1)2
(x2−x1)(x3−x1) x1 < x ≤ x2 ,
(x−x3)2

(x3−x1)(x3−x2) x2 < x ≤ x3 ,

0 x3 ≤ x ,

(3.10)

with the transition points xi with i ∈ {1, 2, 3}. The parameters x1 and x3 determine the start

and the end of the transition and x2 = (x1 + x3)/2 corresponds to the turning point. As a result

the scales are canonical for qT ≤ x1mH and the resummation is fully turned off for qT > x3mH .

The values are usually chosen such that the transition begins somewhere in the resummation

region and is finished by the time the singular and the nonsingular contributions are of the same

size and exhibit sizeable numerical cancellations. We will use [x1, x2, x3] = [0.1, 0.45, 0.8] as our

central values as explained in section 3.3.2.

For the µmin
X nonperturbative cutoffs we use

µmin
B = µmin

S = µmin
0 = 1GeV , νmin

S = 0 . (3.11)

We can set νmin
S = 0 because νS never appears as argument of αs or the PDFs. For µmin

f we

pick the larger of the PDF’s Q0 value or a value based on the quark mass mq used by the PDF

set as threshold for the corresponding heavy-quark PDF. This choice of µmin
f avoids running

into numerical noise below the scale where the heavy-quark PDFs vanish and where the results

are in any case not particularly meaningful without the proper inclusion of finite-mass effects,

which is beyond our scope here. For the MSHT20nnlo PDF set we use, this amounts to taking

µmin
f = Q0 = 1.0GeV for ss̄ → H, µmin

f = mc = 1.4GeV for cc̄ → H and µmin
f = 5.0GeV

for bb̄ → H. The latter is chosen slightly above the actual bottom-quark mass threshold

mb = 4.75GeV to avoid numerical instabilities.

In the fixed-order limit, we can identify µFO ≡ µR with the usual renormalization scale for αs
and µf ≡ µF with the usual factorization scale at which the PDFs are evaluated. Our central

choices above correspond to µR = µF = mH .

3.2.3 Perturbative uncertainties

To estimate the perturbative uncertainties, we vary the profile scales around their central values

given in section 3.2.2. Following refs. [49, 138, 223], we identify several different sources of

uncertainty, which are considered as independent and are estimated from different suitable types

of variations. The profile scales are varied as follows:

µH = µFO = 2wFO mH ,

νB = µFO f
vνB
vary

( qT
mH

)

,

µX = µFO f
vµX
vary

( qT
mH

)

frun

[
qT
mH

,
1

mH
µ∗
( b0
bT
,

µmin
X

2wFOf
vµX
vary

)]

for µX ∈ {µB, µS , νS} ,

µf = 2wF mH frun

[
qT
mH

,
1

mH
µ∗
( b0
bT
,
µmin
f

2wF

)]

,

µ0 = µ∗
( b0
bT
, µmin

0

)

. (3.12)
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To estimate an uncertainty associated with the resummation ∆res, the beam and soft scales are

varied, where the exponents vµB , vνB , vµS , and vνS are taken to be vi = {−1, 0,+1} with the

central scales corresponding to vi = 0. The function

fvary(x) =







2(1− x2/x23) 0 ≤ x ≤ x3/2 ,

1− 2(1− x/x3)
2 x3/2 < x ≤ x3 ,

1 x3 ≤ x ,

(3.13)

with x ≡ qT /mH controls the size of the variations, ranging from a factor of 2 for x = 0 to 1 for

x ≥ x3, where x3 is the same as for frun(x). This source of uncertainty is thus turned off for

qT ≥ x3mH just as the resummation itself is turned off. To estimate the resulting resummation

uncertainty ∆res we perform 36 variations of suitable combinations of the vi and take their

maximum envelope. For details, we refer the reader to ref. [138].

For the fixed-order uncertainty ∆FO, we vary µFO by a factor of 2 by taking wFO = {−1, 0,+1}
everywhere. Note that ∆FO is not defined to be the uncertainty in the fixed-order limit but is

rather meant to estimate a common uncertainty due to missing fixed-order contributions at any

qT . It therefore contributes to both the singular and nonsingular pieces. In the resummed singular

it amounts to an overall variation of the boundary scales such that the resummed logarithms

are unchanged, which is why one can interpret it as a fixed-order uncertainty. Furthermore, we

estimate a separate uncertainty ∆µf related to the DGLAP running of the PDFs, for which we

vary the PDF scale µf by taking wF = {−1, 0,+1} (where wF = 0 is the central value). In the

nonsingular and full fixed-order cross sections, this corresponds to taking µf ≡ µF = 2wFmH .

The resulting ∆FO and ∆µf are then given by the maximum envelope of the respective variations.

We obtain the total perturbative uncertainty by adding the individual uncertainties in quadrature,

∆total =
√

∆2
FO +∆2

res +∆2
µf

+∆2
match. (3.14)

The matching uncertainty ∆match will be discussed in section 3.3.2.

Note that in the fixed-order limit, we do not use an envelope of µR and µF variations as is

commonly done. Instead, we estimate separate uncertainties ∆FO and ∆µf which are added

in quadrature. By separating these two uncertainties in the resummation limit, we essentially

have no choice but to do the same also at fixed order. This is not problematic, but is in fact a

perfectly sensible choice for the fixed-order prediction – here, as in the resummation, the two

variations probe two conceptually different sources of uncertainty.

3.3 Fixed-order contributions

In this section, we discuss several aspects specific to the qq̄ → H process we are interested in.

In section 3.3.1, we describe our implementation and validation of the fixed-order calculation

for the qq̄ → H + j process from which we obtain the nonsingular corrections. In section 3.3.2,

we discuss how we choose the transition points for the profile function in eq. (3.10), and detail

the procedure to estimate the associated matching uncertainty, which is particularly delicate

for bb̄ → H. In section 3.3.3, we describe a general strategy to decorrelate the singular and

nonsingular contributions. Based on this, we construct in section 3.3.4 a suitable approximation

for the fixed O(α3
s) corrections to the nonsingular and full cross sections.

As discussed in section 2.5.2, the nonsingular corrections are obtained at fixed order by taking

dσnons

dqT
=

dσFO

dqT
− dσsing

dqT
, (3.15)
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3.3 Fixed-order contributions

where dσsing is obtained directly in momentum space from the fixed-order expansion of the

factorization theorem in eq. (3.1). Since dσnons is power suppressed, we only need it for qT > 0.

Hence, to evaluate dσFO we require the fixed-order calculation for the qT spectrum in qq̄ → H+j.

At N3LL′ we need dσFO at O(α3
s) corresponding to the qq̄ → H + j calculation at NNLO1.

3.3.1 LO1 and NLO1

Analytic LO1 calculation

We consider the production of an on-shell Higgs boson, measuring its rapidity Y and the

magnitude of its transverse momentum q2T = |~qT |2. The underlying partonic process is

a(pa) + b(pb) → H(q) +X(k1, ....) (3.16)

where a and b are incoming partons and X denotes additional QCD radiation. Following ref. [129],

the cross section can be written as

dσ

dY dq2T
=

∫ 1

0
dζadζb

fa(ζa) fb(ζb)

2ζaζbE2
cm

∫ (
∏

i

ddki
(2π)d

(2π)δ+(k
2
i )

)∫
ddq

(2π)d
|M(pa, pb; {ki}, q)|2

× (2π)δ(q2 −m2
H) (2π)

dδ(d)(pa + pb − k − q) δ

(

Y − 1

2
ln
q−

q+

)

δ
(
q2T − |~kT |2

)
. (3.17)

Here, k =
∑

i ki denotes the total outgoing hadronic momentum, and in particular, ~kT =
∑

i
~ki,T

is the vectorial sum of the transverse momenta of all emissions. Moreover, the incoming momenta

are given by

pµa = ζaEcm
nµ

2
, pµb = ζbEcm

n̄µ

2
. (3.18)

The δ-functions in eq. (3.17) set the Higgs boson on-shell and measure its rapidity, fixing the

incoming momentum fractions to be

ζa(k) =
1

Ecm

(

k− + e+Y
√

m2
H + k2T

)

, ζb(k) =
1

Ecm

(

k+ + e−Y
√

m2
H + k2T

)

, (3.19)

and allowing us to simplify eq. (3.17) to

dσ

dY dq2T
=

∫ (
∏

i

ddki
(2π)d

(2π)δ+(k
2
i )

)
π

ζaζbE4
cm

fa(ζa) fb(ζb)A(Y ; {ki}) δ
(
q2T − |~kT |2

)
. (3.20)

where A(Y ; {ki}) denotes the squared matrix-element

A(Y ; {ki}) ≡ |M(pa, pb, {ki}, q = pa + pb − k)|2 . (3.21)

For reference, we start with the LO0 cross section, i.e. the cross-section for the Born process

qq̄ → H without any QCD radiation, which can be seen in figure 3.1a. Since there is no extra

emission, the Higgs has no transverse momentum and the cross section is proportional to δ(q2T ).

Following from eq. (3.20) we obtain

dσ(0)

dY dq2T
=

π

xaxbE4
cm

fa(xa) fb(xb)A
(0)(Y ) δ

(
q2T
)
, (3.22)
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H

q̄

q

(a) qq̄ → H

q g

q̄ H

(b) qq̄ → Hg

q H

g q

(c) qg → Hq

Figure 3.1: (a): Born process, (b) and (c): Feynman diagrams contributing to LO1

where

xa =
mH e

Y

Ecm
, xb =

mH e
−Y

Ecm
, (3.23)

and the squared matrix element is given by

A(0)(Y ) =
m2
q xa xbE

2
cm

2v2Nc
, (3.24)

For convenience we also define the partonic Born cross section σ̂(0) through

dσ(0)

dY dq2T
=

∫

dxa dxb σ̂
(0)δ(xaxbE

2
cm −m2

H) δ

[

Y − 1

2
ln

(
xa
xb

)]

δ(q2T ) , (3.25)

yielding

σ̂(0) =
πm2

q

2v2Nc
. (3.26)

At LO1, we have one QCD emission so the boson will have a finite transverse momentum. From

eq. (3.20) we obtain

dσ(1)

dY dq2T
=

∫
ddk

(2π)d
(2π)δ+(k

2)
π

ζaζbE4
cm

fa(ζa) fb(ζb)A
(1)(Y ; k) δ

(
q2T − |~kT |2

)

=
q−2ǫ
T

(4π)2−ǫΓ(1− ǫ)

∫ ∞

0

dk−

k−
π

ζaζbE4
cm

fa(ζa) fb(ζb)A
(1)(Y ; k)

∣
∣
∣
∣
k+=q2T /k

−

. (3.27)

The type of diagrams contributing to the squared matrix element can be seen in figures 3.1b

and 3.1c. We decompose A(1)(Y ; k) ≡∑a,b=q,q̄,g A
(1)
ab into its contributing channels

Aqq̄(k
−, q2T , Y ) = Aq̄q(k

−, q2T , Y ) = αsCF
4πm2

b

Ncv2

(
s2ab +m4

H

saksbk

)

,

Agq(k
−, q2T , Y ) = Agq̄(k

−, q2T , Y ) = αsCF
4πm2

q

(N2
c − 1)v2

(
s2bk +m4

H

−sabsak

)

,

Aqg(k
−, q2T , Y ) = Aq̄g(k

−, q2T , Y ) = αsCF
4πm2

q

(N2
c − 1)v2

(
s2ak +m4

H

−sabsbk

)

, (3.28)
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3.3 Fixed-order contributions

where the sab, sak and sbk are kinematic invariants that can be written in terms of k−, q2T and Y

as

sab ≡ 2pa · pb = m2
H + 2q2T +

(
k+eY + k−e−Y

)
√

m2
H + q2T ,

sak ≡ −2pa · k = −q2T − k+e+Y
√

m2
H + q2T ,

sbk ≡ −2pb · k = −q2T − k−e−Y
√

m2
H + q2T , (3.29)

with k+ = q2T /k
−. The limits of the k− integral are found by constraining the PDF argument to

be between zero and one, yielding

k−min =
q2T
Ecm

− e−Y
√

q2T +m2
H ,

k−max = Ecm − e+Y
√

q2T +m2
H . (3.30)

We implemented the analytic expression of the LO1cross section (eq. (3.27)) in the C++ library

SCETlib [224] to obtain our phenomenological predictions.

Numerical NLO1 contribution using GENEVA

For the NLO1 calculation, we use a parton-level Monte Carlo calculation, which we have

implemented in the Geneva event generator [225,226] using FKS subtractions [227]. We have

used the virtual matrix elements in analytic form, which were calculated in ref. [228] and

implemented in the Geneva code in ref. [229]. The tree-level double-real emission matrix

elements are obtained from the OpenLoops library [230]. Note that often only the bb̄ → H

process is considered. We therefore performed several internal cross checks to also ensure

the correct implementation of cc̄ → H + j and ss̄ → H + j. At LO1, we also checked the

implementation against our analytic implementation in SCETlib.

A powerful cross check of the fixed-order calculation is provided by the cancellation of all

singular terms in the qT → 0 limit in eq. (3.15). This is shown for both the O(αs) and O(α2
s)

corrections in figure 3.2. In both cases, the full (blue) and singular (red) results become essentially

equal for small qT , and the nonsingular (green) given by their difference exhibits the expected

power suppression. Note that these plots show |dσ/d log10 qT | on a log-log scale, for which an

O(q2T /m
2
H) power suppression corresponds to a line with an asymptotic slope of −2 for qT → 0.

This is clearly seen at O(αs). At O(α2
s) this is less apparent due to the limited Monte-Carlo

integration precision at very small qT and because the nonsingular contribution contains powers

of logarithms lnn(q2T /m
2
H) up to n ≤ 3, which weaken the power suppression and effectively delay

the strictly quadratic scaling to smaller qT . We nevertheless observe a clear power suppression

from around 30 GeV down to a few GeV until the numerical precision becomes insufficient to

actually resolve the small but nonzero value of the nonsingular. Note that once this happens,

the result for the nonsingular should fluctuate around and be consistent with zero within the

statistical uncertainties. This is confirmed in figure 3.3, which shows the nonsingular from

figure 3.2 but on a linear y axis and including the sign.

For completeness, here we provide the analogous plots for cc̄→ H and ss̄→ H on a logarithmic

scale in figure 3.4 and on a linear scale in figure 3.5. In both cases we observe the expected

power suppression of the nonsingular similar to bb̄→ H, which provides an important validation

of our implementation of the LO1 and NLO1 fixed-order results.
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NNLO1

A calculation for bb̄ → H + j has been achieved at NNLO1 in ref. [203] using N -jettiness

subtractions [231, 232]. This calculation uses a cut on the jet-pT ≥ 30GeV, which gives an

unbiased result for the qT spectrum only for qT ≥ 60GeV. The jet-pT cut limits the size of

residual power corrections in the N -jettiness slicing parameter, which scale with the inverse

of the smallest kinematic scale in the process. It would require substantial high-performance

computing resources to perform the full NNLO1 calculation without a jet cut down to much

smaller qT (this is also what experience has shown in case of Drell-Yan [48]). On the other

hand, the spectrum at small qT is entirely dominated by the resummed singular contributions,

while the O(α3
s) nonsingular corrections only give a very small correction: this does not justify

the computational cost and associated carbon footprint. In addition, we also need the NNLO1

calculations for charm and strange production, which are not presently available. Therefore, we

find it more prudent to construct an approximate NNLO1 calculation, described in section 3.3.4,

that is suitable for our purposes and which is designed to give good agreement with the known

result for bb̄→ H + j at qT ≥ 60GeV.

ytyq interference contributions

Starting at O(α3
s) there are contributions, e.g. to the subprocess qg → Hq, that do not feature a

light-quark Yukawa coupling yq but instead proceed via the Higgs being emitted from a closed

top-quark loop proportional to yt. Effectively, these contributions amount to an interference

between real-emission corrections to the qq̄ → H and gg → H Born processes proportional to

ytyq. Due to their different coupling structure, they form a gauge-invariant subset and can be

considered separately from the leading y2q contributions discussed here. The corresponding y2t
contributions to the partonic subprocess qq′ → Hqq′ with light-quark final states are part of the

double-real corrections to the gluon-fusion process.

At leading power in qT , the ytyq interference contributions are not present to all orders in αs,

because the structure of the leading-power result is determined by the Born process and the

qq̄ → H and gg → H Born processes cannot interfere with each other due to their different initial

states. In other words, their respective leading-power factorization theorems cannot interfere.

This is in contrast to the gg → H process, which does receive leading-power ytyq contributions,

from the interference of closed top and light-quark triangle diagrams at Born level which we

consider in chapter 5. As a result, these interference contributions do not enter at any order in

the resummed predictions. Instead, they are purely nonsingular and only enter via matching to

the full O(α3
s) results at large qT . Since our primary focus here is on the qq̄ → H channel and

its leading-power resummation at small qT , we do not include the ytyq interference contributions,

as is also often done in the literature (see e.g. ref. [203]). If desired for phenomenological studies,

these terms can be obtained from a separate fixed NLO2 calculation [192,233] and can simply

be added to our results.

3.3.2 Estimation of the matching uncertainties

Naïvely, one might expect the qq̄ → H process to share many features in its numerical behavior

with the Drell-Yan process. Indeed, both are quark-initiated at Born level and produce a single

heavy color-singlet state in the s channel. Therefore, both cross sections have the form of eq. (3.1)

and contain the same beam and soft functions. The only difference in the process dependent hard

function and one would expect rather similar results for these processes. Nevertheless, inspecting
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Figure 3.6: Different contributions entering the matching procedure for ss̄ → H (left) and

bb̄ → H (right) at NNLL+NLO. The final matched result dσ (solid black) is the sum of the

nominal resummed dσres (solid red) and the nonsingular dσnons (dashed green). The fixed-order

result dσFO (dashed blue) is the sum of the fixed-order singular dσsing (long-dashed orange) and

dσnons (dashed green). Here, the canonically resummed result is denoted as dσcanon (short-dashed

yellow). The nominal resummed dσres transitions from dσcanon at small qT to dσsing at large qT .

figure 3.6, we see that this is not quite the case. The figure shows the various contributions

entering in the matching procedure for both ss̄→ H and bb̄→ H. It shows that the numerical

importance of the different contributions strongly depends on the incoming flavour. The ss̄

channel indeed behaves very similar to Drell-Yan (see e.g. ref. [138]): it exhibits a very small

nonsingular contribution dσnons (dotted green), such that the final matched result (solid black)

is almost the same as the nominal resummed result dσres (solid red). Furthermore, the transition

of dσres, using profile scales, from the canonically resummed result dσcanon (short-dashed yellow)

at small qT towards the fixed-order singular dσsing (long-dashed orange) at large qT is very gentle.

The bb̄ channel instead features a much larger nonsingular contribution, and the transition that

dσres has to undergo from canonical resummation to fixed-order singular is very pronounced.

The result of this is a much increased sensitivity to the precise choice of the transition points xi
compared to the Drell-Yan case.

This difference between the channels can be understood from the very different size of the

quark PDFs involved. At lowest order, the nonsingular receives contributions from two different

flavour channels, namely qq̄ → Hg and gq → Hq (which includes gq̄ → Hq̄ for the sake of

this discussion). In Drell-Yan, these two channels have opposite sign and similar size (see

e.g. ref. [129]), and thus partially cancel each other, leading to the relatively small nonsingular

corrections typical for that process. The same also happens for ss̄→ H. For bb̄→ H, however,

the very small b-quark PDF suppresses the bb̄-induced contributions. This has two effects

leading to the observed behaviour: first, the nonsingular is dominated by the gluon-induced

channels leading to smaller cancellations. This is compounded by the fact that the leading

(NLL) contributions in the resummed are also bb̄ induced and numerically suppressed. Both of

these effects numerically enhance the nonsingular. The second effect furthermore causes a larger

difference between (canonically) resummed and fixed-order singular. From this discussion one

would expect the cc̄→ H process (not shown in figure 3.6) to exhibit behaviour intermediate

between ss̄→ H and bb̄→ H, which is indeed the case.

The stronger sensitivity to the (ultimately arbitrary) choice of transition points in bb̄ → H

61



Chapter 3 – The qT spectrum in Higgs Production via Quark Annihilation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 3.7: Singular (solid red), full (dashed blue), and nonsingular (dotted green) contributions

at fixed O(αs) as a function of qT /mH for ss̄→ H (left) and bb̄→ H (right).

requires us to take greater care in choosing the transition points and in estimating the associated

matching uncertainty. Usually, the start and endpoints of the transition, x1 and x3 (see

section 3.2.2) are chosen based on examining the relative sizes of the singular and nonsingular

pieces as a function of qT , as shown in figure 3.7 for ss̄ → H (left) and bb̄ → H (right). The

rather different behaviour of the channels is seen again here. The ss̄→ H channel again looks

very similar to Drell-Yan, with the nonsingular becoming important only at relatively large

qT /mH & 0.8, such that a typical choice for the transition points would be x1 = 0.3, x3 = 0.9,

x2 = (x1 + x3)/2 = 0.6 [49, 138]. In contrast, for bb̄ → H the nonsingular becomes important

much earlier. Based on this plot, one might take sensible central values of x1 = 0.2, x3 = 0.7,

and x2 = (x1 + x3)/2 = 0.45.

The matching uncertainty ∆match is related to the ambiguity in these choices. The standard

method to estimate it is to vary x1 and x3, typically by ±0.1, with x2 given by (x1 + x3)/2 for

any given variation. The resulting variations for bb̄→ H are shown in figure 3.8. We first note

that this standard method leads by construction to a one-sided uncertainty above the central x3
and below the central x1, because varying x3 up or x1 down can only change the cross section

in one direction. In practical applications, e.g. when propagating the x1,3 variations in a fit,

this is a rather undesirable feature. Furthermore, varying x1 and x3 up (long-dashed green)

produces an unreasonably large uncertainty. The reason for this large variation, as evident from

the left plot, is precisely due to the rather large difference between the canonically resummed

and fixed-order results already discussed, between which the transition must interpolate.

We therefore adopt a somewhat different approach to estimate the matching uncertainty. We

first fix x1 to its lowest and x3 to its highest reasonable value, e.g. to their respective minimum

and maximum values one would consider in the previous approach (which are x1 = 0.1 and

x3 = 0.8 in our example). We then vary the point x2 to estimate the matching uncertainty.

Conceptually, this effectively varies whether the transition happens earlier or later within the

maximal window in which the transition should occur. Here, we take x2 = (x1 + x3)/2 = 0.45 as

our central value and vary it within the range [0.2, 0.6]. Note that the size of this range is twice

that of the x1 and x3 variations, so the total amount of variation is preserved. The resulting

variations are shown in figure 3.9.

We begin by observing that this method avoids the undesired one-sided uncertainties, although

the uncertainty is still somewhat asymmetric at any given qT . This is practically unavoidable,
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since it is inherent to the nature of the matching uncertainty. We can, however, choose the x2
range of variation such that the maximum up and down variations in the cross section are of

similar size, which is why we vary it further down than up. Furthermore, the x2 variation yields

a much more reasonable size for the matching uncertainty. Finally, this method has the added

benefit that the matching uncertainty is now parametrized by a single variable. This makes it

much easier to propagate in practice, as it avoids having to take envelopes of different parameter

variations.

For our final numerical results, the matching uncertainty ∆match is still obtained as the maximum

of the absolute impact of varying x2 down to 0.2 and up to 0.6. However, this is now just for

ease of presentation and not a requirement. Since ss̄→ H and cc̄→ H are less sensitive to the

precise transition, we will use the same central values and x2 variations for simplicity.

3.3.3 Decorrelation of singular and nonsingular contributions

As discussed in section 3.3.1, we wish to construct an approximate result for dσFO at NNLO1,

which we can consistently match to dσres at N3LL′. This requires that the NNLO1 cross section

contains the correct singular terms dσsing, which are part of the N3LL′ result. We must therefore

approximate the remaining nonsingular part of the full NNLO1. However, at large qT there is a

strong cancellation between singular and nonsingular. Thus, the two pieces are strongly correlated

and only the full fixed-order result is meaningful for large values of qT . Hence, at large qT we

should do the opposite and approximate the full result, considering the nonsingular as a derived

quantity given by the difference of full and singular. To satisfy these competing requirements,

we introduce a general method to decorrelate the singular and nonsingular contributions, which

we will then use in the next subsection to construct the actual approximation.

The basic idea behind the decorrelation of the singular and nonsingular contributions at large

qT involves shifting a correlated piece between the two [206],

dσFO(qT ) = dσsing(qT ) + dσnons(qT )

= dσsing(qT ) + dσcorr(qT )
︸ ︷︷ ︸

dσ̃sing

+dσnons(qT )− dσcorr(qT )
︸ ︷︷ ︸

dσ̃nons

≡ dσ̃sing(qT ) + dσ̃nons(qT ) ,

(3.31)

where here and below we use the notation dσ(qT ) ≡ dσ/dqT to make the qT dependence explicit.

We call dσ̃sing(qT ) and dσ̃nons(qT ) the decorrelated singular and nonsingular contributions. The

correlated piece dσcorr(qT ) is as of yet unspecified.

To achieve the desired decorrelation, we require the decorrelated nonsingular to become equal to

the full fixed-order result toward large qT , and as a consequence the decorrelated singular to

vanish,

dσ̃nons(qT → mH) → dσFO(qT ) , dσ̃sing(qT → mH) → 0 . (3.32)

This guarantees that no cancellations occur between them. At the same time, the decorrelated

nonsingular must remain power suppressed for qT ≪ mH , such that the decorrelated singular

still contains all singular terms,

dσ̃nons(qT )

dσsing(qT )
∼ O

( q2T
m2
H

)

, dσ̃sing(qT ) = dσsing(qT )

[

1 +O
( q2T
m2
H

)]

. (3.33)
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These two conditions are equivalent to the following two conditions on dσcorr(qT ),

dσcorr(qT → mH) → −dσsing(qT ) ,
dσcorr(qT )

dσsing(qT )
∼ O

( q2T
m2
H

)

. (3.34)

The easiest way to satisfy these conditions might be simply to take dσcorr(qT ) to be a constant,

dσcorr(qT ) = −dσsing(mH). This is equivalent to what was used in ref. [206], where the analogous

decorrelation was used in a similar context. In that particular case, the phase space was strictly

bounded to the equivalent of qT ≤ mH . In contrast, this is no longer possible in our case: the

phase space does not have such a strict boundary, and the decorrelation condition in eq. (3.31)

must hold not only at the single point qT = mH but for any qT & mH . In other words, we

require not only that dσ̃sing(qT ) crosses through 0 at qT = mH , but also that it remains zero for

any larger qT . Furthermore, a constant value for dσcorr(qT ) only corresponds to a linear power

suppression of O(qT /mH). To obtain the correct quadratic power suppression of O(q2T /m
2
H),

the correct extension of ref. [206] to our case is to take dσcorr/dq2T to be a constant.

To achieve this, let us denote s(qT ) ≡ dσ/dq2T and choose dσcorr(qT ) more generally such that

scorr(qT ) = −ssing(qT ) for qT ∼ mH ,

scorr(qT ) = −ssing(κmH) = const. for qT ≪ mH . (3.35)

That is, scorr(qT ) is given by −ssing(qT ) at large qT and freezes to a constant −ssing(κmH) at

small qT , where κ ∼ 1 is a constant of our choice. To make this a smooth transition, we can

reuse our profile functions and take

scorr(qT ) = −ssing[q̃T (qT )] , (3.36)

where q̃T (qT ) is a function of qT that transitions from κmH to qT ,

q̃T (qT ) = κmH grun(qT /mH) + qT [1− grun(qT /mH)] , (3.37)

and grun(qT ) is defined as in eq. (3.10). For simplicity, we will use the same transition points

[0.1, 0.45, 0.8] which we use for turning off the resummation (see section 3.2.2). Using eq. (3.36),

we arrive at our final choice for dσcorr(qT ),

dσcorr(qT ) = −2qT s
sing[q̃T (qT )] = − qT

q̃T (qT )
dσsing[q̃T (qT )] . (3.38)

In figure 3.10, we study the decorrelation procedure at NLO1, where the fixed-order result is fully

known. The left panel of the figure shows the correlated piece dσcorr(qT ) for different choices

of κ alongside −dσsing(qT ). For qT ≥ x3mH = 100GeV, dσcorr(qT ) exactly equals −dσsing(qT ),

while going to lower qT it starts to deviate and eventually turn around and vanish linearly for

qT → 0 as required by eq. (3.38). The correlated contribution itself depends strongly on the

choice of κ, which determines where it effectively freezes out and turns around toward 0. Note

also that by construction this dependence cancels exactly, such that the full result at this order is

independent of κ. The actual choice of κ could in principle influence our NNLO1 approximation,

but essentially does not do so, as we shall see in the following subsection.

The right panel of figure 3.10 shows both the original, correlated singular (solid grey) and

nonsingular (dotted grey) as well as the decorrelated singular (solid red) and nonsingular (dotted

green) for κ = 0.6. Since they each sum to the fixed-order result (dashed blue), the correlated

terms clearly exhibit a large cancellation for large qT ∼ mH . In contrast, the decorrelated
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Figure 3.10: Decorrelation of singular and nonsingular at NLO1. Left: Correlated contribution

for different choices of κ (coloured lines) and its large-qT asymptotic value −dσsing (black). Right:

Decorrelated singular (solid red), full, (dashed blue), and decorrelated nonsingular (dotted green)

for κ = 0.6 at fixed NLO1. The original, correlated singular and nonsingular are shown by the

dotted and solid grey lines.

singular goes to zero for qT ∼ mH , while the decorrelated nonsingular (dotted green) becomes

equal to the full fixed order. This confirms that the decorrelation works as expected, and that

dσ̃nons and dσ̃sing no longer exhibit strong cancellations. We will therefore use κ = 0.6 for

bb̄ → H. Since the strong cancellations between singular and nonsingular occur successively

later for cc̄→ H and ss̄→ H, as we saw in section 3.3.2, we will use higher values κ = 0.7 for

cc̄→ H and κ = 0.8 for ss̄→ H.

3.3.4 Approximate NNLO1

Using the decorrelation method explained in the previous section, we are now in a position to

construct an approximate NNLO1 result as

dσFO(qT ) = dσ̃sing(qT ) + dσ̃nons(qT ) = dσsing(qT ) + dσcorr(qT ;κ) + dσ̃nons(qT ;κ) , (3.39)

where we made the dependence on κ in the last two terms explicit. We now need to approximate

the unknown O(α3
s) contribution of dσ̃nons(qT ). To do so, we decompose dσ̃nons at the fixed

scale µR = µF = mH in terms of perturbative coefficients c̃i(qT ),

dσ̃nons(qT ) = |yb(mH)|2
[

αs(mH) c̃1(qT ) + α2
s(mH) c̃2(qT ) + α3

s(mH) c̃3(qT )
]

, (3.40)

where c̃1(qT ) and c̃2(qT ) are known, and our goal is to approximate c̃3(qT ). To get the correct

power of logarithms for c̃3(qT ), we perform a Padé-like approximation

c̃approx3 (qT ) = K
[c̃2(qT )]

2

c̃1(qT )
, (3.41)

where we use the constant factor K to rescale this result such that its overall size agrees with

ref. [203]. When using this approximation in eq. (3.39), we refer to the result as aNNLO1.

To determine an appropriate value for K, we consider the ratio of our approximate O(α3
s)

coefficient to the exact result shown on the right in figure 3.11. The exact O(α3
s) coefficient is

obtained by subtracting NNLO1−NLO1, where we can read off the ratio NNLO1/NLO1 from
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Figure 3.12: Decorrelation at aNNLO1. Left: The resulting full fixed-order order cross section for

different values of κ. Right: Decorrelated singular (solid red), full (dashed blue), and decorrelated

nonsingular (dotted green) for κ = 0.6.

yb(mH) in terms of αs(µR), which yields

dσ̃nons

dqT
= |yb(µR)|2

{

αs(µR) c̃1(qT ) + α2
s(µR)

[

c̃2(qT ) +
c̃1
2π

(β0 − γ0) ln
µR
mH

]

+ α3
s(µR)

[

c̃3(qT ) +
[ c̃1(qT )

8π2
(β1 − γ1) +

c̃2(qT )

2π
(2β0 − γ0)

]

ln
µR
mH

+
c̃1(qT )

8π2
(2β20 − 3β0γ0 + γ20) ln

2 µR
mH

]}

, (3.42)

where βn and γn are the relevant coefficients of the QCD beta function and the Yukawa anomalous

dimension which are given in appendix B.1. The µR dependence in the approximated result is

therefore exact, and we are able to vary µR without further approximation.

For the µF dependence, for simplicity we perform the approximation for c̃3(qT ) in eq. (3.41) in

terms of c̃1(qT ) and c̃2(qT ) at any given µF , using the same rescaling factor K as for the central

µF choice. This means we will only have an approximate µF dependence at O(α3
s) that only

approximately cancels up to higher O(α4
s) terms. This will lead to slightly larger µF variations

compared to the exact O(α3
s) µF dependence, which we can simply consider as an additional

uncertainty due to the approximation.

3.4 The qT spectrum at N3LL’+aN3LO

In this section, we present our numerical result for the qq̄ → H qT spectrum. We use Ecm =

13TeV, mH = 125GeV, and the MSHT20nnlo PDF set [234] with αs(mZ) = 0.118. We assess

the impact of changing the PDF set in appendix D. For the Yukawa coupling we evolve

mq(µq) to µFO where µb,c = mb,c for the bottom and charm quarks and µs = 2GeV for the

strange quark. The input MS quark masses are mb(mb) = 4.18GeV, mc(mc) = 1.27GeV, and

ms(2GeV) = 93.4MeV [19], and we use v = 246.22GeV for the Higgs vev to convert the masses

into Yukawa couplings. Our scale choices are described in sections 3.2.1 and 3.2.2. All our

numerical results for the resummed and fixed-order singular contributions are obtained with

SCETlib [224]. The full fixed-order results are obtained as discussed in sections 3.3.1 and 3.3.4.

For the aNNLO1 result we use the parameter K = 0.75.
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In figure 3.13, we show the resummed qT spectrum for bb̄ → H (top), cc̄ → H (middle) and

ss̄→ H (bottom) at different resummation orders up to the highest N3LL′+aN3LO. The bands

show the perturbative uncertainty estimate as discussed in section 3.2.3. We observe excellent

perturbative convergence for all channels, with reduced uncertainties at each higher order. The

perturbative uncertainties increase in general from ss̄→ H, to cc̄→ H, to bb̄→ H. Comparing

the ratio plots for ss̄→ H and bb̄→ H it is evident that the relative uncertainties for bb̄→ H at

a given order are of similar size as those for ss̄→ H at one lower order. As already mentioned in

section 3.3.2, the main difference between the channels is the relative size of the PDF luminosities.

Since for bb̄→ H, the bb̄ Born channel is numerically suppressed by the small b-quark PDFs, the

gluon-induced PDF channels which start at one higher order play a much more prominent role.

This explains the observed pattern of uncertainties for the different cases. We also want to point

that plot showing the bb̄→ H qT spectrum in figure 3.13 is only shown for qT > 5GeV. With

the bottom mass mb = 4.18GeV our assumption of mq ≪ qT and therefore our factorization

theorem are no longer valid for qT . 5GeV and we would have to include proper mass effects.

In fact, we can already see for qT ≈ 7GeV that highest-order prediction is no longer included in

the lower uncertainty bands which indicated that the subleading-power mass effects should be

included at this order. For the cc̄→ H and ss̄→ H channels this is less of a problem due to the

lighter quark masses.

Our default choice for the PDF scale µf corresponds to taking µF = mH in the fixed-order

limit. Fixed-order predictions for bb̄ → H traditionally use a lower scale of µF = mH/2 or

µF = mH/4, so one might wonder whether the uncertainties for bb̄ → H might be reduced

by choosing a lower central value for µF . For completeness, we therefore also give results for

bb̄→ H at these lower values for the central factorization scale. We implement this by taking

wF = −1 or wF = −2 as central choice in eq. (3.12). Figure 3.14 shows the convergence of the

resummed contribution to the qT spectrum at NLL (yellow), NNLL (green), N3LL (blue), and

N3LL′ (red) for µF = mH/2 (left) and µF = mH/4 (right). While the convergence pattern of

subsequent orders is acceptable in all cases, both the corrections and perturbative uncertainties

are somewhat larger for µF = mH/2 than for µF = mH , and substantially larger for µF = mH/4.

In our context these lower choices are therefore clearly less preferable.

A detailed breakdown of the uncertainty estimate for bb̄→ H is shown in figure 3.15. The ∆µf

uncertainty (short-dashed green) dominates up to qT . 20GeV before tending to a constant for

qT & 80GeV. At NNLL+NLO the matching uncertainty ∆match (long-dashed purple) is largest

for 30GeV . qT . 80GeV and vanishes outside of the transition region as it should. At higher

orders, the resummation uncertainty ∆res (solid orange) dominates in this region before going to

zero as the resummation is turned off toward large qT . As one might expect, at the same time

the fixed-order uncertainty ∆FO (dashed blue) increases and becomes the dominant uncertainty

in the fixed-order region.

In figure 3.16, we show the impact of the individual uncertainties for cc̄→ H and ss̄→ H. In

general, they display a behaviour very similar to bb̄ → H. The main difference between the

processes is the size of the resummation and the matching uncertainty. The matching uncertainty

is slightly smaller for bb̄ → H; this is to be expected, since we chose our transition points in

section 3.3.2 for this specific case. On the other hand, ∆res is smaller for cc̄→ H and ss̄→ H.

The total uncertainty for ss̄→ H is therefore dominated by ∆match for 30GeV . qT . 70GeV.

For cc̄ → H, ∆match has the largest impact at N3LL+NNLO whereas at N3LL′+aN3LO ∆res

contributes the most. The fixed-order uncertainty starts to dominate the total uncertainty

slightly earlier than for bb̄→ H as the other contributions are in general smaller.

In figure 3.17, we compare the normalized qT spectra for ss̄ → H (red), cc̄ → H (blue), and
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Figure 3.17: Comparison of the normalized qT spectrum for ss̄ → H, cc̄ → H, bb̄ → H and

gg → H at NNLL+NLO (left) and N3LL′+aN3LO (right). The gg → H channel is only included

at N3LL′+NLO

bb̄→ H (green). We also included the gluon fusion contribution (gg → H) in yellow. The left

panel shows the spectra at NNLL+NLO, where one can already see that the spectra of the

channels exhibit different shapes. At this order however the uncertainties largely overlap in the

peak region. The right panel shows the spectra at N3LL′+aN3LO. Here, the uncertainties are

significantly smaller and we can clearly distinguish the channels by their different shapes in qT .

Just as before the plot is only shown for qT > 5GeV. Below this value of qT bottom-mass effects

become relevant and our factorization theorem is no longer valid. A prediction for qT < 5GeV

would therefore not be reliable. The gluon fusion prediction exhibits a slightly different shape

with a much broader peak and be clearly distinguished in both plots. This difference in the

shape is due to the different color factors in the Wilson coefficient of the hard function. The

quark induced channels come with a CF whereas the gluon induced contribution comes with a

CA instead. We want to point out that the gluon fusion contribution looks much smaller then

the quark initiated channels. This is due to the normalization.

Our predictions could therefore be used to improve the determination of quark Yukawa coupling

from the shape of the measured Higgs qT spectrum – such an analysis has already been performed

in refs. [42, 43], using measurements in the H → ZZ∗ → 4ℓ and H → γγ decay channels.

3.5 Summary and Outlook

In this chapter, we have studied the transverse momentum spectrum of the Higgs boson produced

in heavy quark annihilation, qq̄ → H with q = s, c, b. This is an interesting process, as it has

the potential to constrain the Yukawa couplings of charm, bottom, and possibly strange quarks.

We have used soft-collinear effective theory to resum large logarithms of qT /mH up to N3LL′

order and matched these results to fixed-order calculations. For bb̄→ H and to a lesser extent

cc̄→ H, the large size of the nonsingular terms requires extra care in the matching procedure

and the estimation of matching uncertainties. Accordingly, we introduced some refinements to

the standard method when using profile-scale variations, which could also be useful in other

contexts. It consists of fixing the extreme profile function transition points and varying instead

the central point over a wider range. This leads to an uncertainty estimate without one-sided
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uncertainties, and which in our case avoids being overly conservative.

We have constructed an approximation of the qT spectrum at fixed O(α3
s), which we have used to

extrapolate from existing NNLO1 results for bb̄→ H+j for qT ≥ 60GeV to smaller qT and other

flavour channels. This is based on introducing a decorrelation procedure to ensure the correct

cancellation between singular and nonsingular terms at scales qT ∼ mH , and then approximating

the O(α3
s) nonsingular piece. This allows us to achieve a final accuracy of N3LL′+aN3LO for

the qT spectrum. Our results display good convergence properties from order to order, and

constitute the highest available accuracy for these processes. As we have seen in figure 3.17, at

the highest available order the uncertainties are significantly reduced, such that the different

flavour channels are clearly distinguishable by their different shapes in qT . Our predictions could

therefore be used to improve the determination of Higgs Yukawa couplings from the Higgs qT
spectrum as carried out in refs. [42, 43].

Our treatment of the qq̄ → H process in this work has neglected finite quark-mass effects,

which are relevant for qT ∼ mq and are thus an important consideration especially for bb̄→ H.

The inclusion of these terms in the resummation formalism has been derived for the Drell-Yan

process in ref. [205], and the extension to our case would be relatively straightforward. It would

also be interesting to investigate in more detail the impact of the resummation of time-like

logarithms in the qq̄H hard function on the resummed qT spectrum, as it has been shown to have

a nontrivial impact on the inclusive bb̄→ H cross section [207]. Further, we used scale variation

to estimate our uncertainties. These uncertainties often fail to capture the next higher order, i.e.

they underestimate the uncertainties at the given perturbative order. More importantly, scale

variations do not contain any information about the correlations between different uncertainties.

These correlation are important for experimental analysis. A promising method that fully

captures the correlations of different sources of uncertainties are theory nuisance parameters

(TNPs) [235]. It would be interesting to see how the uncertainties change if we use TNPs

instead of scale variations. Finally, we have only considered the qT spectrum for inclusive Higgs

production here. Experimentally required cuts on the Higgs decay products induce fiducial power

corrections [138,236], which were found to be important in case of gg → H production [44]. It

would thus be interesting to investigate their importance also in case of qq̄ → H. These topics,

however, are beyond the scope of this thesis.
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Chapter 4

Resumming transverse observables

in GENEVA

In the previous chapter, we presented a new high-precision prediction for the transverse momen-

tum spectrum of quark initiated Higgs production. However, in practice the experimental data

looks quite different from the analytically calculated spectrum. Often, the final-state particles

cannot be detected directly and can only be reconstructed from their decay products. Event

generators are important tools in particle physics as they simulate the full evolution of a collision.

This includes the hard interaction process as well as hadronization, parton showers and decays to

the color-neutral hadrons which are detected. In this chapter, we present the full implementation

of the qq̄ → H process in the event generator Geneva [225, 226]. We choose the transverse

momentum qT and 1-jettiness as resolution variables to distinguish events with zero, one or two

and more jets which we resum to NNLL′ and NLL′ accuracy. This presents a first step towards

NNLO+PS in Geneva for the qq̄ → H process and is –to our knowledge– the first time that

the generalized 1-jettiness variable is resummed beyond leading logarithmic order.

This chapter is based ref. [6] reflecting the author’s contribution. Compared to ref. [6], we

shortened section 4.3 and give preliminary results of the qT and T1 spectra. Additionally, we

extended the discussion section 4.4.1.

4.1 Motivation

The state-of-the-art for predictions matched to parton shower generators is currently next-to-

next-to-leading order (NNLO+PS). Two main approaches exist to achieve this accuracy [237,238],

while a third, rather different approach, is currently under active development [239]

An interesting question relevant to the construction of NNLO+PS generators concerns the choice

of resolution variables, which partition the phase space into jet bins of differing multiplicity.

These resolution variables must be resummed to high logarithmic accuracies. While many choices

are in principle possible, the predictions for exclusive observables will depend on this choice,

naturally introducing a source of systematic uncertainty. A natural way to gauge the size of

this uncertainty would be to compare the predictions of generators constructed using the same

method but different resolution variables. In addition, the availability of higher-accuracy parton

shower algorithms [240–243] means that one may wish to explore novel variable choices to ensure

the preservation of the shower accuracy in matching.
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In this chapter, we implement a new combination of resolution variables in the Geneva approach.

The original formulation of Geneva [225] used the zero- and one-jettiness [140] to separate the

phase space into zero, one and two or more jet bins. Here zero- and one-jettiness take care of the

separation between 0/1- and 1/2- jet bins respectively, and indeed many electroweak processes

have since been examined in this context [226, 229, 244–248]. The jettiness variable has the

advantage of considerable simplicity, admitting a simple factorization structure in SCET-I which

faciliates resummation [141,249]. The factorization of N -jettiness was discussed in section 2.5.4.

However, the fact that the usual definition of the jettiness involves an invariant mass-like measure

complicates the matching to commonly employed parton shower algorithms, which tend to be

ordered in transverse momentum. An alternative formulation using the colour-singlet transverse

momentum qT to separate the 0/1-jet bins was studied in Ref. [250], with qT resummation at

N3LL provided by the RadISH formalism [251,252]. The 1/2-jet separation variable remained,

however, the one-jettiness. In Ref. [253], a generator for W+W− production was constructed

using the hardest and second-hardest jet transverse momenta as variables and SCET-based

resummation [223,254]. With these choices, the need for truncated showering techniques [255]

in Geneva could be overcome.

The new class of generators we initiate in this work uses transverse observables to separate all jet

bins, as in Ref. [253]. We use qT as the primary resolution variable, though exploiting analytic

SCET-II resummation provided by SCETlib [224] rather than the RadISH approach previously

taken. As a secondary resolution variable, we choose a generalization of the one-jettiness

which uses a transverse momentum-like measure. Though the definition of this observable was

introduced in the original N -jettiness paper over 14 years ago [140], to our knowledge this is the

first time that its resummation has been accomplished beyond leading logarithmic order. 1 The

observable is interesting not merely because it facilitates matching for color singlet processes, but

because of the promise it holds for achieving NNLO+PS matching for color-singlet production

in association with additional jets. The work we present here takes a very first step in this

direction, achieving resummation at NLL′.

As a case study, we consider the production of a Higgs boson through bottom-quark annihilation

bb̄→ H. The qT resummation for this process was discussed in detail in the previous chapter.

An NNLO+PS generator for the bb̄H process was constructed in Ref. [257] using the MiNNLOPS

formalism. As detailed in e.g. Ref. [40], measurements of the Higgs boson qT spectrum could

be used in conjunction with precision theory predictions for bb̄H to extract a value for the

bottom Yukawa coupling yb. Generalizations to other color-singlet processes are in principle

straightforward.

The rest of this chapter is arranged as follows. In section 4.2, we provide a brief overview of the

Geneva method. In section 4.3 we briefly review the definition of the generalized jettiness. We

present NNLL’+NLO results for the qT spectrum and NLL’+NLO results for the T1 spectrum

for bb̄H in section 4.4 which present the first steps towards an NNLO+PS prediction with these

resolution variables and summarize our results in section 4.5.

4.2 The GENEVA method

The GENEVA method [225, 237] relies on defining infra-red (IR) safe events at a specific

perturbative order, which are obtained from both fixed-order and resummed calculations. This

is achieved by converting IR-divergent final states with M partons into IR-finite final states with

1We note that a similar generalization of the jettiness has more recently been proposed in Ref. [256].
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N partonic jets, where M ≥ N , ensuring that the divergences cancel on an event-by-event basis.

This conversion is performed using an N -jet resolution variable rN which divides the phase space

into regions with different numbers of resolved emissions: Φ0 where there is no additional jet,

Φ1 with one jet and Φ2 with two or more jets in the final state. Then, the 0-jet cross section

contains all 0-jet events and all events with r0 < rcut0 , i.e. where the additional jet is unresolved.

The differential cross section with no extra emission is given by

dσMC
0

dΦ0
(rcut0 ) =

dσNNLL′

dΦ0
− dσNNLL′

dΦ0

∣
∣
∣
∣
∣
NNLO0

+ (B0 + V0 +W0)(Φ0)

+

∫
dΦ1

dΦ0
(B1 + V1)(Φ1)θ[r0(Φ1) < rcut0 ]

+

∫
dΦ2

dΦ0
B2(Φ2)θ[r0(Φ2) < rcut0 ], (4.1)

where dσNNLL′
is the resummed cross section at NNLL′ and dσNNLL′ |NNLO0

is its fixed-order

expansion. BM contains the tree-level contributions with M partons in the final state, VM the

M -parton one-loop contributions and W0 the two-loop contribution. We also introduced the

short-hand notation

dΦM
dΦN

= dΦMδ[ΦN − ΦN (ΦM )], (4.2)

which indicates an integration over the part of the ΦM phase space that can be reached from a

ΦN point. The differential cross sections with one additional jet has two contributions: the one

above rcut0

dσMC
1

dΦ1
(r0 > rcut0 ; rcut1 ) =

{

σNNLL′

dΦ0dr0
P(Φ1)−

[

dσNNLL′

dΦ0dr0
P(Φ1)

]

NLO1

+ (B1 + V C
1 )(Φ1)

}

× U1(Φ1, r
cut
1 )θ(r0 > rcut0 )

+

∫
[

dΦ2

dΦr1
B2(Φ2)θ(r0(Φ2) > rcut0 )θ(r1 < rcut1 )

− dΦ2

dΦC1
C2(Φ2)θ(r0 > rcut0 )

]

− B1(Φ1)U
(1)
1 (Φ1, r

cut
1 )θ(r0 > rcut0 ), (4.3)

and the nonsingular terms below rcut0 which arises from non-projectable configurations

dσMC
1

dΦ1
(r0 ≤ rcut0 ; rcut1 ) = (B1 + V1)(Φ1)Θ

FKS
map (Φ1)θ(r0 < rcut0 ). (4.4)
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Similarly, the cross section for two or more jets is given by

dσMC
≥2

dΦ2
(r0 > rcut0 ; r1 > rcut1 ) =

{

σNNLL′

dΦ0dr0
P(Φ1)−

[

dσNNLL′

dΦ0dr0
P(Φ1)

]

NLO1

+ (B1 + V C
1 )(Φ1)

}

× U ′
1(Φ1, r1)θ(r0 > rcut0 )

∣
∣
∣
Φ1=Φr

1(Φ2)
P(Φ2)θ(r1 > rcut1 )

+
{

B2(Φ2)[1−Θr(Φ2)θ(r1 < rcut1 )]

−B1(Φ
r
1)U

(1)
1

′(Φr1, r1)P(Φ2)θ(r1 < rcut1 )
}

× θ(r0(Φ2) > rcut0 ), (4.5)

and

dσMC
≥2

dΦ2
(r0 > rcut0 ; r1 ≤ rcut1 ) = B2(Φ2)Θ

r
map(Φ2)θ(r1 < rcut1 )θ(r0(Φ2) > rcut0 ). (4.6)

In the above equations, U1(Φ1, r
cut
1 ) denotes the NLL Sudakov factor that resums rcut1 and

U1(Φ1, r
cut
1 )′ is its derivative with respect to rcut1 . The terms U

(1)
1 (Φ1, r

cut
1 ) and U

(1)
1

′(Φ1, r
cut
1 )

denote their respective O(αs) expansion.

The projection

dΦ2

dΦr1
≡ dΦ2δ[Φ1 − Φr1(Φ2)]Θ

r(Φ2), (4.7)

is used to generate 1 → 2 events, where Θr(Φ2) defines the region of Φ2 that can be projected

onto the Φ1 via the map Φr1(Φ2). The mapping is constructed in such a way that it preserves

the value of r0

r0(Φ
r
1(Φ2)) = r0(Φ2), (4.8)

which crucial to ensure the cancellation of the singular r0 dependence on an event-by-event basis

in eqs. (4.3) and (4.5). The V C
1 term is given by

V C
1 = V1(Φ1) +

∫
dΦ2

dΦC1
C2(Φ2), (4.9)

where C2 acts as a standard NLO subtraction that reproduces the singular behaviour of B2.

We need to extend the dependence of the resummed cross section from an N -jet to an N + 1-jet

phase space. This can be achieved by using a normalized splitting function

∫
dΦN+1

dΦNdrN
P(ΦN+1) = 1. (4.10)

The differential dependence on ΦN+1 is included in terms of rN and two other variables. These

could, for example, be an energy fraction z and an azimuthal angle ϕ.

Additionally, we are using an extension of the GENEVA method, developed in [253], which

provides better control over the resummation of variable r1. Using an NLL Sudakov factor in

eqs. (4.3) and (4.5) does not account for all singular terms in the r1 → 0 limit. This can be

solved by upgrading the resummation accuracy of r1 to NLL′. Then the 0-jet exclusive, 1-jet

exclusive and 2-jet differential cross sections are given by
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dσMC
0

dΦ0
(rcut0 ) =

dσNNLL′
r0

dΦ0
(rcut0 )− dσNNLL′

r0

dΦ0
(rcut0 )

∣
∣
∣
∣
∣
NLO0

+
dσNLO0

dΦ0
(rcut0 ) (4.11)

dσMC
1

dΦ1
(rcut1 ) =

{[

dσNNLL′
r0

dΦ0dr0
− dσNNLL′

r0

dΦ0 dr0

∣
∣
∣
∣
∣
NLO1

]

P0→1(Φ1)U1(Φ1)

+
dσNLO1

dΦ1
(rcut1 ) +

dσNLL′
r1

dΦ1
(rcut1 )− dσNLL′

r1

dΦ1
(rcut1 )

∣
∣
∣
∣
∣
NLO1

}

θ(r0 > rcut0 )

+
dσLO1

nonproj

dΦ1
(4.12)

dσMC
≥2

dΦ2
=

{[

dσNNLL′
r0

dΦ0dr0
− dσNNLL′

r0

dΦ0 dr0

∣
∣
∣
∣
∣
NLO1

]

P0→1(Φ1)U
′

1(Φ1, r1)P1→2(Φ2)

+
dσLO2

dΦ2
+

[

dσNLL′
r1

dΦ1dr1
− dσNLL′

r1

dΦ1 dr1

∣
∣
∣
∣
∣
LO2

]

P1→2(Φ2)

}

θ(r1 > rcut1 )θ(r0 > rcut0 )

+
dσLO2

nonproj

dΦ2
θ(r1 < rcut1 )θ(r0 > rcut0 ), (4.13)

which reproduce the exact NNLL′ spectrum for the r0 resummation. We have also introduced

the following short-hand notation

dσNLO0

dΦ0
(rcut0 ) =B0(Φ0) + V0(Φ0) +

∫
dΦ1

dfΦ0
B1(Φ1)θ(r0 < r0), (4.14)

dσNLO1

dΦ2
(rcut1 ) =B1(Φ1) + V1(Φ1) +

∫
dΦ2

dfΦ1
B2(Φ2)θ(r1 < r1), (4.15)

dσLO2

dΦ2
=B2(Φ2). (4.16)

The contributions eqs. (4.4) and (4.6) which arise from the non-projectable configurations, are

denoted by a subscript “nonproj”.

In this chapter we use r0 = qT where qT is the transverse momentum of the Higgs boson, and

r1 = T1 is the 1-jettiness observable.

4.3 One-jettiness with generalized measures

In section 2.5.4, we discussed the definition of N -jettiness with an invariant mass-like measure.

However, it was already pointed out in the original N -jettiness paper [140], that the definition

in eq. (2.161) can be extended to use generic measures in each beam or jet region. Moreover,

N -jettiness can be thought of not merely as an event-shape, but as a way to define an exclusive

jet algorithm which partitions the phase space into two beam and N jet regions, to which

emissions are assigned. The measure factors which are used to assign emissions to each region

need not be identical to the value which the observable returns. In general, therefore, we must

define separate distance measures dm(pi) which, when minimal, assign an emission i to one of

the N+2 regions m:

TN ({n̂m}) =
∑

i

pT,imin
{
d1(pi), . . . , dN (pi), da(pi), db(pi)

}
, (4.17)
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and the resulting observable fm which is returned by that emission once it falls into the region

m,

T (m) =
∑

i∈m
fm(ηi, φi)pT,i , (4.18)

where ηi, φi and pT,i denote the pseudorapidity, azimuth and transverse momentum associated

with i. The determination of the jet axes may be performed either by running an inclusive jet

algorithm (e.g. anti-kT ) over the final state, or by a minimization of the N -jettiness over all

possible axes,

TN = min
n̂1,...,n̂N

TN ({n̂m}) . (4.19)

The latter definition has the advantage of guaranteeing insensitivity to soft-recoil effects, whose

correct treatment require the introduction of additional transverse momentum convolutions

in the factorization formula. At one-loop, it is equivalent to using the winner-take-all (WTA)

axis [258], in that the jet direction is determined solely by the ‘hardest’ emission.

This generalized definition of the N -jettiness has also been well-studied in the literature, and the

choice of the measures has important consequences for the structure of the factorization. The

XCone algorithm implements precisely the procedure described above to act as an exclusive jet

algorithm, and in that context an number of different measure choices have been studied [259].

Ref. [260] completed the study of factorization types (i.e., all possible combinations of SCET-

I/SCET-II measures for beams and jets) and provided the one-loop soft functions relevant

for colour singlet production in association with a single jet. In addition, the N -subjettiness

observable, introduced in ref. [261] as a way to study jet substructure, uses choices of the fm
which are transverse momentum-like by default.

In this work, we will make specific choices for both the dm and fm and use N = 1, thus defining

a generalized one-jettiness observable which we refer to as T pT
1 . Specifically, we choose the

conical measure [259,262] for the region assignment, which (for isolated jets) clusters in a manner

equivalent to the anti-kT algorithm:

d0(pi) = 1, dm≥1(pi) =
R2
im

R2
. (4.20)

In the above equation, we have defined a single beam measure,

d0(pi) = min{da(pi), db(pi)} , (4.21)

and introduced the distance

Rim ≡
√

(ηi − ηm)2 + (φi − φm)2 (4.22)

and (constant) jet radius R. For the measurement itself, defining

T1 =
∑

i

{

pT,i fB(ηi), for dB(pi) < dJ(pi),

pT,i fJ(ηi, φi), for dJ(pi) < dB(pi),
(4.23)

we choose the boost-invariant generalization of broadening [260,263] for the jet region,

fJ(ηi, φi) =
√

2 cosh(ηi − ηJ)− 2 cos(φi − φJ)

≡ RiJ (4.24)
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4.4 Results

where the distance is measured with respect to the jet axis J , and the transverse energy for the

beam region,

fB(ηi) = 1 . (4.25)

Both observables are of SCET-II type – the setup described above corresponds to one of the

choices made in ref. [260], for which the one-loop soft function was calculated. It was shown in

that work that the cross section then factorises as

dσκ
dΦ1dT1

= Hκ(Φ1, µ)

∫
(
∏

n

dkn

)

Sκ

(

T1 −
∑

i

ki, {nm}, {dm}, µ,
ν

µ

)

×Bκa

(

ka, xa, µ,
ν

ωa

)

Bκb

(

kb, xb, µ,
ν

ωb

)

Jκj

(

kj , µ,
ν

ωj

)

, (4.26)

where the channel index κ ≡ {κa, κb, κj} runs over all possible flavours of incoming and outgoing

partons. The RGEs as well as the ingredients need to resum eq. (4.26) to NLL’ accuracy are

given in ref. [6].

4.4 Results

In this section, we present our numerical result for the bb̄ → H qT and T1 spectra. We use

Ecm = 13TeV, mH = 125GeV. For our final resummed predictions, we use the MSHT20nnlo

PDF set [234] with αs(mZ) = 0.118. For the validation we use CT14NNLO PDF set [264] with

the same value of αs. For the Yukawa coupling we evolve mb(mb) to µFO. The input MS quark

mass is given by are mb(mb) = 4.18GeV [19], and we use v = 246.22GeV for the Higgs vacuum

expectation value to convert the masses into Yukawa couplings. The transverse momentum qT
as well as the 1-jettiness variable are resummed in SCETlib which we linked to Geneva.

4.4.1 Validation

We validate our implementation of bb̄→ H against implementation in MCFM [203]. For this

comparison, we use µR = mH and µF = mH/4. In figure 4.1, we show the NLO rapidity

spectrum. The central values of the MCFM results are shown in green. Our fixed-order NLO

implementation is shown in blue. This contribution was tested extensively for the use as the

fixed-order prediction in ref. [2]. The resummed NLL’+NLO contributions are shown in red. As

the rapidity distribution is an inclusive distributions, all three distribution have to agree. Indeed,

in figure 4.1 we find good agreement between MCFM as well our fixed-order and resummed

prediction. The error markers correspond to statistical uncertainties. On the right panel of

figure 4.1, we show the deviations from the MCFM distribution in percent. In this plot the

agreement of the different contributions is particularly apparent.

In figure 4.2, we compare our implementation of NNLL’+NNLO rapidity spectrum shown in blue

against the the NNLO spectrum provided by ref. [203] shown in red. We find good agreement

across all bins.

4.4.2 Resummed qT and T1 distributions

The qT spectrum at NNLL′+NNLO accurary is shown in figure 4.3. In the right panel, we

show the spectrum with T1 resummation (red) and without T1 resummation (blue). The left
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Figure 4.4: Resummed Higgs qT spectrum at NNLL′+NNLO and NLL′+NLO.

panel shows the deviation from the T1 resummed spectrum. As expected, we find that the

resummation of T1 does not affect the qT spectrum. Figure 4.4 shows the Higgs qT spectrum.

The NNLL′+NNLO contribution is shown in blue and the NLL′+NLO contribution in red. The

central values shown in this plot have been validate using the SCETlib results from the previous

chapter. A result including all uncertainties for both orders is currently under preparation.

In figure 4.5, we show the T1 spectrum where the red curve shows the resummed contribution

whereas the blue one does not include T1 resummation. We want to point the T1 resummation

is only valid if T1 is smaller then any other scale. This is plot we chose qcutT = 50GeV to ensure

that we have a hard jet in the final state. In the tail of the both contributions agree which

is expected as there no large logarithms of T1. For the fixed-order contribution we observe a

very large first bin which indicates a divergence. The resummed contribution has a peak at

around 30GeV before smoothly going to zero. Figures 4.5 and 4.3 present the main results of

this chapter.

4.5 Summary and Outlook

In this section, we presented first steps towards an NNLO+PS prediction for qq̄ → H. We

implemented a new set of resolution variables in Geneva , namely the transverse momentum qT
as 1-jet resolution variable and a generalization of 1-jettiness T1 with a transverse momentum-like

measure as 2-jet resolution variable. This choice of resolution variables facilitates the matching to

the shower as parton showers which tend to be ordered by the transverse momenteum. Further,

this is the first that a resummation beyond leading order is achieved for the 1-jettniness variable.

We validated our implementation of the resummed prediction using inclusive observables such as

the total cross section and rapidity spectrum which are not sensitive to resummation. We found

good agreement between our implementation and the NNLO rapidity spectrum from MCFM. We

further checked that our transverse momentum spectrum is not affected by the T1 resummation.
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Figure 4.5: T1 spectrum at NLL′+NLO with and without T1 resummation.

Moreover, we saw that our resummed T1 prediction indeed resums large logarithms of T1 and

restores the convergence of the spectrum.

The next step on the way towards an NNLO+PS prediction for this set of variables will be to

implement the matching to the parton shower. However, this is beyond the scope of this thesis.
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Chapter 5

Bottom Mass Effects in the Higgs

Production via Gluon Fusion

In this chapter, we study finite b-mass effects in the Higgs qT spectrum arising from the bottom-

loop in Higgs production via gluon fusion for the first time. In contrast to the cases of the

H → γγ decay or the gg → H form factor investigated previously at amplitude level, the

nontrivial b-mass effects are also resolved by real emissions and have to be considered within the

context of qT factorization and resummation. We consider the various hierarchies between mb

and qT and mH , leading to different factorization setups.

This chapter is based on ref. [5] reflecting the author’s contribution.

5.1 Motivation

In the last two chapters we dicussed the qT spectrum of quark initiated Higgs production in

detail. One of our motivations for a new high-precision prediction was the measurement of the

quark Yukawa couplings from fitting to the shape of the qT spectrum of the Higgs boson which

is sensitive to the initial states. This method was first suggested in refs. [39–41]. As we saw in

chapter 3 shape of qT spectrum is highly sensitive to the quark channel. The quark and gluon

induced channels can also be well distinguished by there shape as their predictions come with

different Casimir scaling, see figure 3.17. To allow a fit to the qT spectrum it is particularly

important that all contributions of the spectrum are known to sufficiently high orders. The full

Higgs qT spectrum in proton collisions reads

dσ(pp→ H)

dqT
= y2t

dσtt
dqT

+ y2b
dσbb
dqT

+ ytyb
dσtb
dqT

+ (yb → yc), (5.1)

where yq denotes the respective quark Yukawa coupling. The first term describes the gluon

fusion process and is diagrammatically shown in figure 5.1a. In this figure the top-quark loop was

approximated by a contact operator as commonly done in the heavy top-quark limit. Recalling

the production cross sections in table 2.2, we note that the gluon fusion process contributes

the largest part to the Higgs production cross section. The qT spectrum for gluon fusion was

predicted to N3LL′+ N3LO in ref. [44]. The second term in eq. (5.1) denotes the b-quark initiated

contribution that we discussed in detail in chapter 3 and is shown in figure 5.1b.

The focus of this chapter is the third contribution in eq. (5.1) which we refer to as the yb-yt-

interference term. Interference between different diagrams can only occur between diagrams
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with the same initial and final states. This contribution is illustrated in figure 5.1c. Usually

only the top contribution in gluon fusion is considered as the top is be far the heaviest quark.

However, the contribution with the bottom-quark loop contributes up to O(5 − 10%) to the

gluon fusion cross section [265, 266]. Lighter quarks only make up a few percent of the cross

section. In the cross section in eq. (5.1), these bottom-mass effects only appear at sub-leading

power in mb/mH ≪ 1. However, with the unprecedented amount of precision data obtained by

the experiments at the LHC this contribution can no longer be ignored.

The amplitude of the related Higgs boson decay to two photons via a b-quark loop was studied

a long time ago [267]. Both processes – the Higgs decay via two photons as well as Higgs

production via gluon fusion – feature large logarithms of Q/mb that need to be resummed. Here,

the hard scale of the problem is given by Q = mH where mH is the mass of the Higgs boson.

The low scale is given by the bottom-quark mass mb ≪ Q. An all order resummation of these

large logarithms to NLL was archived in refs. [267, 268] using the methods of perturbative QCD.

This approach was extended in refs. [265, 266] The factorization and resummation of b-mass

effects for the Higgs boson decay and production amplitudes in the context of SCET were first

considered in refs. [269–271]. The renormalization and the treatment of endpoint divergences of

the amplitude are still an active topic of research and were recently studied in ref. [272].

In this chapter, we study bottom-mass effects in the Higgs qT spectrum using SCET for the

first time. In comparison to the form factor calculation from refs. [269–271] the qT measurement

adds a third scale to the problem. To allow the Higgs boson to pick up a transverse momentum,

we need to add an emission k that the Higgs boson can recoil against which is illustrated in

figure 5.2b, where ~kT = −~qT .

This chapter is organized as follows: in section 5.2, we discuss the leading-order contribution

to this process (without the emission k) which is shown in figure 5.2a. We use this calculation

as an illustrative example to introduce the notation and discuss the regularization of endpoint

divergences. We want to point out that the results of this calculation are available in the

literature and have been published in ref. [269]. In section 5.3, we write down bare factorization

theorems that are valid in different kinematic regions. In section 5.4, we calculate the real

emission diagrams corresponding to the diagrams shown in figure 5.2b, where we focus on the

diagrams where the emission k has collinear scaling. In section 5.5 we summarize the rather

subtle cancellation of endpoint divergences. We provide a summary of the main results in

section 5.6.

yt

(a)

b

b̄

•

yb

(b)

b

b

b

•

yb yt

(c)

Figure 5.1: (a): Gluon fusion process, (b) quark initiated Higgs production and (c) yb-yt-

interference contribution.
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b

b
b

(a)

k

b

b
b

(b)

Figure 5.2: Illustration of Higgs production via gluon fusion via a bottom-quark loop. (a)

Leading-order contribution. (b) Next-to-leading order contribution with an extra emission k.

This diagram serves as an example for all possible gluon attachments to the leading order

diagram.

5.2 Operator basis and calculation of the LO contribution

We want to start by calculating the amplitude for the leading-order gluon fusion diagram shown

in figure 5.2a in SCET. To do so, we need consider the possible momentum scalings that can

occur. In general, the loop momenta can scale as

n-collinear: p ∼ mH(λ
2, 1, λ)

n̄-collinear: p ∼ mH(1, λ
2, λ)

hard: p ∼ mH(1, 1, 1)

soft: p ∼ mH(λ, λ, λ), (5.2)

where our power-counting parameter is given by λ = mb/mH . The incoming gluons are n-and

n̄-collinear and scale as

p1 ∼ mH(λ
2, 1, λ), p2 ∼ mH(1, λ

2, λ). (5.3)

In fact, we can choose them to be exactly aligned with their respective lightcone momenta:

pµ1 = p−1
nµ

2
, pµ2 = p+2

n̄µ

2
, (5.4)

such that p1 = (0, p−1 , 0) and p2 = (p+2 , 0, 0). The Higgs boson is always produced in a hard

interaction which we denote by ⊗. With these constraints, there are four possible scenarios

which are diagrammatically shown in figure 5.4: One possibility is that all loop momenta have

hard scaling. As commonly done in SCET they are integrated out and “shrunken to a point”.

This correponds to the first term in the sum in figure 5.4. We can also have two hard-collinear

quark momenta producing the Higgs boson. Then the remaining quark line connecting the two

gluons has soft scaling which is shown by second term in the sum. The last two terms correspond

to a scenario where only one of the quark momenta involved in the production of the Higgs

boson exhibits hard scaling. The remaining quark propagators then have n-collinear scaling

(third term in the sum) or n̄-collinear scaling which corresponds to the last term in figure 5.4.

In practice, we only need to consider one of the collinear contributions as both contributions are

related by symmetry. The soft and collinear contributions suffer from endpoint divergences. This

is a common feature in SCET factorization theorems beyond leading power. We will regulate

these divergences with rapidity regulators discussed in section 2.4.5.
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(a) (b)

Figure 5.3: Tree-level diagrams associated with the collinear operator Obbg (a) and the soft

operator Oab
bbgg (b).

The relevant SCET operators at tree-level are shown in figure 5.3. For the definition of the

building blocks we refer to section 2.4.4. The n-collinear operator is given by [269,273]

Oa
bbg = χ̄n,ω1

/̄n

2
(g/Bn̄,⊥)ω̄T aχn,ω2

, (5.5)

where ω1,2 denote the large lightcone momenta of the collinear quarks and ω̄ denotes the gluon’s

large lightcone momentum. The sum of incoming + and - momenta has to add up to the Higgs

+ and - momenta. Hence, we have ω1+ω2 = q− = mH and ω̄ = q+ = mH . The collinear Wilson

coefficient is given by

Cbbg =
1

ω1
− 1

ω2
, (5.6)

which we can simply read off the Feynman rule in eq. (E.1). The soft operator is given by [269,273]

Oab
bbgg(ℓ

+ℓ−) =
1

ℓ+ℓ−
[ψ̄Snδ(ℓ

+ − n · P])[(g/Bn⊥)q−T a
/̄n/n

4
S†
nSn̄(g/Bn̄⊥)q+T b][S†

n̄ψδ(ℓ
− − n̄ · P])

+ (n↔ n̄), (5.7)

where we suppressed the +i0 in the 1/(ℓ+ℓ−) term for brevity. When calculating the soft diagram

the imaginary part becomes relevant for the contour integral and needs to be reinstated. The Wil-

son coefficient for this operator is given by C
(0)
bbgg = 1 at this order. Note that we set the Yukawa

coupling to 1 in both operators. It can trivially be included at any desired stage of the calculation.

In the following section, we calculate all relevant leading-order contributions. The relevant

Feynman rules are given in appendix E.

5.2.1 Leading-order collinear contribution

The n-collinear leading-order diagram is shown in figure 5.5. We use massive SCET Feynman

rules from ref. [109] and our Feynman rule for the effective vertex with the Higgs boson in

eq. (E.1). Evaluating the trace, we find

MLO
c =− ig2δab

∫

dωndξ

∫
ddℓ

(2π)d
Cbbg(ξ)

mµ2ǫgµν⊥ p−1
(ℓ2 −m2 + i0) [(ℓ+ p1)2 −m2 + i0]

× δ(ωn − p−1 )δ(ξωn − ℓ− − p−1 )δ(p
+
2 − q+)δ(ωn − q−), (5.8)
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→ + + +

Figure 5.4: Decomposition of full QCD diagram in terms of hard, soft and n- and n̄-collinear

loop momenta. Springs with a line denote ni-collinear gluons, dashed fermion lines ni-collinear

quarks, and solid fermion lines soft quarks. The hard interaction is denoted by ⊗.

n̄, b, ν

n, a, µ

ℓ+ p1

ℓ

p2

p1

Figure 5.5: Leading-order n-collinear contribution.
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ξ
|

1

|

0×
×

×
×

×

×

ωnξ , ωn(ξ − 1)

Figure 5.6: Pole analysis for the collinear leading-order contribution. This figure shows the sign

of the factors that determine whether the pole will be in the upper or lower half of the complex

plane. From this analysis we see that the two poles will only be on different sides and, therefore,

give a nonzero contribution for 0 < ξ < 1 which introduces a set of θ-functions for the ξ integral

θ(ξ)θ(1− ξ).

where q is the Higgs momentum. We also changed variables from (ω1, ω1) → (ωn, ξ) where

ωn = ω1 + ω2 = q− and ξ = −ω2/ωn. In this notation the Wilson coefficient is given by

Cbbg(ξ) =
1

ξ
+

1

1− ξ
. (5.9)

For simplicity, we will omit the δ-function constraining the overall + and − momenta. Throughout

this calculation we assume transverse gluon polarization for the external gluons, i.e.

nµ = 0, nν = 0, n̄µ = 0, n̄ν = 0. (5.10)

We also take the external gluons to be on shell, p21 = 0 and p22 = 0.

To evaluate the diagram in figure 5.5, we start by solving the ωn and ℓ− integrals that are fixed

by δ-functions

MLO
c =

∫

dξ

∫
dℓ+dd−2ℓ⊥
(2π)d−1

ig2Cbbg(ξ)ωnδ
abmµ2ǫgµν⊥

4π(ℓ2⊥ + ωnξℓ+ −m2 + i0)
[
ℓ2⊥ + ωn(ξ − 1)ℓ+ −m2 + i0

] . (5.11)

The ξ integral will be divergent due to endpoint divergences. These divergences only cancel

once the collinear and soft contributions are combined. We will regulate these divergences with

two different regulators: the absolute value or η-regulator [113,118,119] and the pure rapidity

regulator [129]. For the absolute value regulator it is sufficient to include the regulator just

before integrating over ξ. The pure rapidity regulator, on the other hand, depends on ℓ− and

ℓ+ and has to be included before performing the ℓ+ integral. We start with the absolute value

regulator in the next section.

Absolute value regulator

In the next step, we do the ℓ+ integral by contours. Importantly, the signs of the poles in the

complex plane depend on the sign of ξ. We only obtain a non-vanishing contour integral for

values 0 < ξ < 1. This is illustrated in figure 5.6. The resulting ℓ⊥ integral can be solved using

standard formulæand we find

MLO
c =

∫

dξ(−g2)mµ2ǫ(4π)ǫ−2Cbbg(ξ)δ
abgµν⊥ m−2ǫΓ(ǫ)θ(ξ)θ(1− ξ). (5.12)

Now, the only remaining integral is the endpoint divergent ξ integral. Recalling the definition of

the Wilson coefficient in eq. (5.9), we see that the integral is singular in both limits. We also
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5.2 Operator basis and calculation of the LO contribution

note that the ξ dependence is fully given by Cbbg(ξ) and the rest of the integral is independent

of ξ. We regulate the integral in each limit with the absolute regulator and switch from the

MS to the MS scheme by shifting µ2 → eγEµ2/(4π). Then the final result for the n-collinear

contribution is given by

MLO
c =− g2

(4π)2
δabgµν⊥ eǫγEµ2ǫm1−2ǫΓ(ǫ)

∫ 1

0
dξ

(
1

ξ

∣
∣
∣
ωnξ

ν

∣
∣
∣

−η
+

1

1− ξ

∣
∣
∣
ωn(1− ξ)

ν

∣
∣
∣

−η
)

=
g2

(4π)2
δabgµν⊥ eǫγEµ2ǫm1−2ǫ

∣
∣
∣
ωn
ν

∣
∣
∣

η 2Γ(ǫ)

η
. (5.13)

For this regulator, the n̄-collinear diagram gives the same result as the n-collinear diagram. We

therefore simply multiply our final result by a factor of 2

MLO
c +MLO

c̄ =
g2

(4π)2
TF δ

abgµν⊥ eǫγEµ2ǫm1−2ǫ
∣
∣
∣
ωn
ν

∣
∣
∣

η 2Γ(ǫ)

η
, (5.14)

where we made the color factor TF explicit.

Pure rapidity regulator

For the pure rapidity regulator, the regulator has to be inserted before the ℓ+ and ℓ− integrals

MLO
c =− ig2δab

∫

dωndξ

∫
ddℓ

(2π)d
Cbbg(ξ)

mµ2ǫgµν⊥ p−1 δ(ωn − p−1 )δ(ξωn − ℓ− − p−1 )

(ℓ2 −m2 + i0) [(ℓ+ p1)2 −m2 + i0]

(
ℓ− + i0

ℓ+ + i0

)− η
2

.

(5.15)

The ℓ− integrals is again fixed by δ-functions

MLO
c pη =

∫

dξ

∫
dℓ+dd−2ℓ⊥
(2π)d−1

ig2Cbbg(ξ)ωnδ
abmµ2ǫgµν⊥ [ωn(ξ − 1)]−

η
2 (ℓ+ + i0)

η
2

4π(ℓ2⊥ + ωnξℓ+ −m2 + i0)
[
ℓ2⊥ + ωn(ξ − 1)ℓ+ −m2 + i0

] , (5.16)

where we kept the i0 in the ℓ+ term. This term introduces a branch cut and the i0 moves the

branch cut to the upper half-plane. However, by choosing the pole in the lower half-plane we

can avoid this branch cut in the contour integral. The poles in the complex are the same as

in our previous contour analysis shown in figure 5.6 and we find the same constraints on the ξ

integral. Just as before, we can straightforwardly evaluate the ℓ⊥ integral and change to the

MS scheme in the same step. At this point we can simply evaluate the ξ integral and arrive at

our finial expression for our n-collinear contribution using the pure rapidity regulator

MLO
c pη =− g2

(4π)2
δabgµν⊥ eǫγEµ2ǫm1−2ǫ+η Γ(ǫ− η

2 )

Γ(1− η
2 )

∫ 1

0
dξ

(
1

ξ
+

1

1− ξ

)

[ωn(ξ − 1)]−
η
2 (ωnξ)

− η
2

=− g2

(4π)2
δabgµν⊥ eǫγEµ2ǫm1−2ǫ+η(−ωn)−η

Γ(ǫ− η
2 )Γ(−

η
2 )

2

Γ(1− η
2 )Γ(−η)

(5.17)

For n̄-collinear contribution we have to replace η → −η this time,

MLO
c̄ pη =− g2

(4π)2
δabgµν⊥ eǫγEµ2ǫm1−2ǫ−η(−ωn)η

Γ(ǫ+ η
2 )Γ(

η
2 )

2

Γ(1 + η
2 )Γ(η)

(5.18)

In the sum of the n- and n̄-collinear contributions the endpoint divergences and the η-dependence

cancel by definition,

MLO
c pη +MLO

c̄ pη = − g2

2π2
TF δ

abgµν⊥ eǫγEµ2ǫm1−2ǫΓ(ǫ)

[

ψ(0)(ǫ) + γE + log
−ω2

n

m2

]

, (5.19)
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n̄, b, ν

n, a, µ

ℓ

Figure 5.7: Leading-order soft contribution.

where ψ(0) is the polygamma function of order 0. For the pure rapidity regulator, there is a

non-trivial zero-bin contribution for ℓ → 0 that needs to be subtracted. The zero bin yields

exactly −MLO
c pη and we can simply include a factor of 2 in eq. (5.19) to account for it.

5.2.2 Soft LO0

The soft leading-order diagram is shown in figure 5.7. Using SCET Feynman rules and our

Feynman rule for the effective vertex with the Higgs boson in eq. (E.5) and evaluating the trace,

we find

Ms =

∫
ddℓ

(2π)d
1

(ℓ+ + i0)(ℓ− − i0)

−2ig2mµ2ǫδabgµν⊥
ℓ2 −m2 + i0

(5.20)

The 1/(ℓ+ℓ−) prefactor renders the contour analysis of the soft integral much more complicated

then in the collinear case. At this point it is useful to change variables to dℓ+dℓ− = 2dℓ0dℓz.

Absolute value regulator

As before, we only need to include the absolute value regulator before the divergent ℓz integral.

We start with doing the ℓ0 integral by contours.

Ms =

∫
dℓ0dℓzd

2−2ǫℓ⊥
(2π)d

−ig2µ2ǫmδabgµν⊥
(ℓ0 − ℓz + i0)(ℓ0 + ℓz − i0)

1

ℓ2⊥ + ℓ20 − ℓ2z −m2 + i0
(5.21)

In the contour analysis we find four poles in the complex ℓ0-plane

ℓ1,20 = ±ℓz ∓ i0, ℓ3,40 = ±
√

ℓ2z − ℓ2⊥ +m2 − i0 = ±
√

ℓ2z − ℓ2⊥ +m2 ∓ i0√
ℓ2z − ℓ2⊥ +m2

,

(5.22)

where ℓ2z > or< ℓ2⊥−m2 determines the location of the pole in the complex ℓ0 plane. Consequently,

we need to consider the regions ℓ2z > and < ℓ2⊥ −m2 separately. Some calculational details as

well as the full pole analysis is shown in appendix F.1. Using the residue theorem we find the

92



5.2 Operator basis and calculation of the LO contribution

following results:

M>
s =g2µ2ǫmδabgµν⊥

∫ ∞
√

ℓ2⊥−m2

dℓz
2π

∫
d2−2ǫℓ⊥
(2π)2−2ǫ

1

ℓ2⊥ −m2



− 1

ℓz
+

1
√

ℓ2z − ℓ2⊥ +m2



 ,

M<
s =g2µ2ǫmδabgµν⊥

∫
√

ℓ2⊥−m2

−∞

dℓz
2π

∫
d2−2ǫℓ⊥
(2π)2−2ǫ

1

ℓ2⊥ −m2



− 1

ℓz
− 1
√

ℓ2z − ℓ2⊥ +m2



 . (5.23)

In the next step, we do the ℓz integral and introduce our rapidity regulator. We can already see

in eq. (5.23) that the 1/ℓz terms will combine to scaleless integral. For the second term we find

M>
s =g2µ2ǫmδabgµν⊥

∫
d2−2ǫℓ⊥
(2π)2−2ǫ

∫ ∞
√

ℓ2⊥−m2

dℓz
2π

1

ℓ2⊥ −m2

∣
∣
∣
∣

2ℓz
ν

∣
∣
∣
∣

−η 1
√

ℓ2z − ℓ2⊥ +m2

=
g2

2π
µ2ǫmδabgµν⊥

|ν|η
η

2F1

(η

2
, η;

η + 2

2
;−1

)
∫

d2−2ǫℓ⊥
(2π)2−2ǫ

1

(ℓ2⊥ −m2)1+
η
2

. (5.24)

After the ℓz-integral the M>
s and M<

s are the same and we can simply multiply a factor of 2 to

include the M<
s contribution,

Ms =
g2

π
µ2ǫmδabgµν⊥

|ν|η
η

2F1

(η

2
, η;

η + 2

2
;−1

)
∫

d2−2ǫℓ⊥
(2π)2−2ǫ

1

(ℓ2⊥ −m2)1+
η
2

. (5.25)

The remaining ℓ⊥ integral is then given by standard integration formulas and yields

Ms =− iηg2

4π2
δabgµν⊥ eǫγEµ2ǫm1−2ǫ−η |ν|η

η
2F1

(η

2
, η;

η + 2

2
;−1

)Γ(ǫ+ η
2 )

Γ(η2 + 1)
, (5.26)

where we shifted µ2 → eγEµ2/(4π) corresponding to the MS scheme.

Pure rapidity regulator

The soft contribution in eq. (5.20) can, of course, also be regulated with the pure rapidity

regulator. In this case, we start by evaluating the ℓ⊥-integral which can be straightforwardly

done using known integral formulæ. The remaining integral is scaleless and the soft contribution

using the pure rapidity regulator is zero.

5.2.3 Leading-order hard contribution

The leading-order hard contribution is given by the full QCD result minus the soft and collinear

contributions. However, we can also get this contribution from evaluating the full QCD diagram

for p1, p2 ≫ m which amounts to evaluating this diagram using the method of regions [274–276].

We start by taking the trace and expanding the full QCD diagram

Mh =2

∫
ddℓ

(2π)d
Tr

{

(−1)igT aγµi(/l +m)igT bγν i(/l + /p2 +m)i(/l − /p1 +m)

(ℓ2 −m2 + i0)[(ℓ+ p2)2 −m2 + i0][(ℓ− p1)2 −m2 + i0]

}

=

∫
ddℓ

(2π)d
2ig2mδab[(2ℓ2 + 2p1 · p2)gµν − 8ℓµℓν ]

(ℓ2 + i0)[(ℓ+ p2)2 + i0][(ℓ− p1)2 + i0]
+O(m2), (5.27)
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which has the form of a massless triangle. Note that there is also a contribution with reversed

fermion flow. After integration, both contributions give the same result and we can simply

calculate one diagram and multiply it with a factor of 2, which is already included in the equation

above. Here, we evaluate the integral directly without switching to lightcone coordinates, yielding

Mh = 24ǫ−3πǫ−
1
2 g2mδabgµν⊥

csc(πǫ)

ǫΓ(12 − ǫ)
(−ω2

n − i0)−ǫ
[

2ǫ2

2ǫ2 − 3ǫ+ 1
− ω2

n

ω2
n + i0

]

, (5.28)

where we used that the incoming gluons can only have ⊥ polarization and p−1 = p+2 = ωn. Details

of the calculation are given in appendix F.2. For later convenience we expand the result and

define

Mh =
g2mδabgµν⊥

8π2

[

− 1

ǫ2
+

1

ǫ
log

−ω2
n − i0

µ2
− 1

2
log2

−ω2
n − i0

µ2
+ 2 +

π2

12

]

=
g2mδabgµν⊥

8π2
C1, (5.29)

where C1 is a hard Wilson coefficient that we will use in the NLO calculation.

5.2.4 Combine results

As illustrated in figure 5.4, the sum of individual contributions has to reproduce the full QCD

amplitude. As the full QCD amplitude is free of endpoint divergences and ǫ-poles, all poles

of the individual contributions have to cancel in the sum. Endpoint divergences are solely a

feature of soft and collinear contributions. Hence, the sum of these contributions has to be

free of endpoint divergences and independent of the regulator. We start by expanding our final

results using the absolute value regulator for the soft and collinear terms in η and ǫ

Mc +Mc̄ =
g2m

4π2
gµν⊥ TF δ

ab

[
2

ǫη
+

2

η
log

µ2

m2
+

1

ǫ
log

ν2

ω2
n

+ log
ν2

ω2
n

log
µ2

m2
+O(η, ǫ)

]

(5.30)

Ms =
g2m

4π2
gµν⊥ TF δ

ab

[
1

ǫ2
− 2

ηǫ
− 2

η
log

µ2

m2
− 1

ǫ

(

log
ν2

µ2
− iπ

)

+
1

2
log

µ2

m2

(

log
µ2

ν2
+ log

m2

ν2
+ 2iπ

)

− π2

12

]

.

As expected, the endpoint divergences as well as the dependence on the rapidity scale ν cancel

in the sum:

Mc +Mc̄ +Ms =
g2m

4π2
gµν⊥ TF δ

ab

[
1

ǫ2
− 1

ǫ

(

log
m2
H

µ2
− iπ

)

− log
m2

µ2

(

log
mµ

m2
H

− iπ

)

− π2

12

]

.

(5.31)

Recalling that the soft contribution was scaleless using the pure rapidity regulator, the sum of

the n- and n̄-collinear contributions has to yield the same result as eq. (5.31). We find that this

is indeed the case.

We can now add the hard contribution and find that also the ǫ-poles cancel and we arrive at a

finite result.

Mh +Mc +Mc̄ +Ms =
g2mδabgµν⊥

4π2
TF

[

−1

2

(

log
m2

m2
H

− iπ

)2

+ 2

]

. (5.32)

which agrees with the leading term in the full QCD result given in ref. [277].
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→ C1× + +

Figure 5.8: Decomposition of interference diagram in terms of hard, beam and soft functions. We

only show example diagrams in each case. The springs with a solid line represent collinear gluons.

Collinear gluons attached to ⊗ represent a beam function. The solid double line represents a

soft Wilson line where only soft gluons can attach.

5.3 Bare factorization theorems

We are now set up to think about the yb-yt-contribution to the Higgs qT spectrum. While we

just calculated a 2 → 1 amplitude, now we have a gluon crossing the cut. This is illustrated in

figure 5.8. The first diagram shows the full QCD diagram which is then decomposed in terms of

hard, collinear and soft contributions. Let us first focus on the right hand side of the cut which

represents the top-quark loop that was integrated out. In the effective theory, this contribution

is given in terms of leading-power beam and soft amplitudes. The left hand side of the cut

shows the bottom-quark contributions. Similar to the leading-order diagram, we can write the

this interference contribution in terms of next-to-leading-power (NLP) hard, beam and soft

amplitudes. Once both sides are interfered, we will find new NLP beam and soft functions. In

the first term in the sum the mass dependence is included in the Wilson coefficient C1 that we

defined in eq. (5.29). In the second and third terms in the sum the mass dependence is included

in subleading-power beam and soft functions. Note that the diagrams in figure 5.8 symbolically

stand for a full class of diagrams.

In order to pick up a transverse momentum, we need a singular emission kT = qT that the Higgs

boson can recoil against. This emission kT adds a third scale to the problem. The masses, of

course, follow the same scaling as before mb ≪ mH but the emission can have different scalings.

Thus, we have to consider different kinematic regimes for our factorization theorems. These

regimes are illustrated in figure 5.9. The hard scale Q = mH and the low scale mb are always

fixed. The hard-collinear scale is given by the intermediate scale
√
mbQ.

5.3.1 Factorization theorem for qT ≪ mb ≪ mH

We start by considering the kinematic region where the transverse momentum is smaller than

any other scale qT ≪ mb ≪ mH . This scenario is sketched in figure 5.9a. The bottom-quark

mass, mb = 4.18GeV [29] (MS scheme), is already rather light. Thus, this kinematic region is

only valid for the very beginning of the spectrum and is phenomenologically not particularly

relevant. As mb is much larger than the qT , the bottom quark can be integrated out and we can

describe this kinematic region using standard soft and beam function for nf = 4 light flavors.

The factorization theorem is given by

dσytyb
dqT

= 2Re[C∗
ggt(mH)Cggb(mb,mH)]Bg(qT )⊗Bg(qT )⊗ Sgg(qT ). (5.33)
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(a) (b) (c) (d)

Figure 5.9: Illustration of different kinematic regimes with a hard scale Q = mH , an intermediate

scale
√
mbQ and a low scale mb. The emission kT can have different scalings.

In this factorization theorem the mb and the qT dependence nicely factorize. Here all emissions

are described by leading-power beam and soft functions and the mb-dependence is governed by

the hard function. The hard function has two contributions: Cggt is the Wilson coefficient that

appears when integrating out the top quark and Cggb is the Wilson coefficient from integrating

out the bottom quark which is given in terms of the form factor for the Born process from

ref. [271].

5.3.2 Factorization theorem for qT ∼ mb ≪ mH

Next, we consider the regime where the transverse momentum is of the size of the bottom-quark

mass corresponding to figure 5.9b. Phenomenologically, the regime is the most important one as

the gluon fusion cross section peaks at roughly qT ≈ 10GeV ≈ 2mb. The all-order factorization

theorem reads

dσytyb
dqT

=Hgg(m)Bg(qT )⊗Bg(qT )⊗ Sgg(qT )

+

∫

dξHbbg(ξ) [Bn,χ̄χ(ξ, qT ,m, z)⊗Bg(qT )⊗ Sgg(qT )

+Bg(qT )⊗Bn̄,χ̄χ(ξ, qT ,m, z)⊗ Sgg(qT )]

+

∫

dℓ+dℓ−HbbggJ (ℓ+)J (ℓ−)Bg(qT )⊗Bg(qT )⊗ Sψ̄ψ(ℓ
+, ℓ−, qT ,m). (5.34)

The next-to-leading power beam and soft functions are defined as

Bn,χχ̄(ξ, kT ,m, z =
ω

P−
N

) =
∑
∫

X

〈N |Ba,µ⊥ δ2(k⊥ − PX,⊥)|X〉〈X|χ̄n,ωξT aγ⊥µχn,ω(1−ξ)|N〉, (5.35)

Sψ̄ψ(ℓ
+, ℓ−, kT ,m) =

∑
∫

X

1

N2
c − 1

〈0|O(0) ab
s δ2(k⊥ − PX,⊥)|X〉〈X|Oba

s,ψ̄ψ|0〉. (5.36)

The first term in both functions denotes the leading-power contribution where as the second

term includes the NLP operators defined in eqs. (5.5) and (5.7). This factorization theorem

in eq. (5.35) looks much more complicated than the previous one. In the following, we will go

through the different contributions one by one and illustrate them using single-emission diagrams.

The first term in the sum describes the scenario where all propagators in the loop are hard and
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5.3 Bare factorization theorems

the mass dependence is fully encoded in the hard function Hgg(m). Diagrammatically, we can

write this contribution as

Hgg(m)Bg(qT )⊗Bg(qT )⊗ Sgg(qT ) =C1 ×










+ +










.

(5.37)

For convenience we only show the left hand side of the cut. The additional gluon is always

understood to cross the cut and interfere with the leading-power contribution of the top quark.

Here C1 carries the subleading-power mass dependence whereas the emissions are described

by leading-power soft and beam functions. Since there is no hard emission, C1 is given by the

leading-order hard contribution that we calculated in section 5.2.3. For the convolution of beam

and soft functions there can only be one NLO contribution at this order and the other two

functions contribute at leading order. The emission can be n or n̄-collinear with the respective

other beam function and the soft function contributing at leading order which is described by

the first two terms in the sum of eq. (5.37). The emission can also have soft scaling, which is

shown in the last term in the sum. In this case the two beam functions contribute at leading

order .

Next we take a closer look a the second term in eq. (5.34) where the mass dependence is

captured by either the n-or the n̄-collinear beam function. This term is more complicated the

first term we discussed as it suffers from endpoint divergences which appear in the ξ integral.

Diagrammatically, we can write this term as
∫

dξHbbg(ξ)Bn,χ̄χ(ξ, qT ,m, z)⊗Bg(qT )⊗ Sgg(qT )

= + ×










+










. (5.38)

Here we have two contributions: In the first term in the sum, the emission comes from the

subleading-power beam function which also governs the mass dependence. In second term, we

have a virtual contribution to the subleading-power massive beam function, but the emission is

given in terms of leading-power emissions.

Finally, we also want discuss the last term in the eq. (5.34) where the mass dependence is

included in the soft function. Similar to eq. (5.38), we have a term where the emission originates

from the subleading-power soft function and two terms with the leading-order massive soft

function and leading-power emission from the beam functions
∫

dℓ+dℓ−HbbggJ (ℓ+)J (ℓ−)Bg(qT )⊗Bg(qT )⊗ Sψ̄ψ(ℓ
+, ℓ−, qT ,m)

= +










+










× , (5.39)
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where the two jet functions J (ℓ+)J (ℓ−) encode the effect of virtual and hard-collinear contribu-

tions. At our working order the jet functions are simply given by J (ℓ±) = 1.

5.3.3 Factorization theorem for mb ≪ qT ≪ mH and mb ≪ mH . qT

Considering the kinematic regime where mb ≪ qT ≪ mH one could think that the factorization

theorem has the form of a massless factorization theorem as mb ≪ qT . However, this is not the

case since there are still large logarithms of mb that need to be resummed and, more importantly,

subleading-power operators must still be included during the high-scale matching in order to

pick up the correct mass suppression at the low scale where the bottom-quark loop is closed. A

promising method to find the structure for this part of the cross section is to consider the two

neighboring regimes and perform an interpolation, which will rely on the results of the thesis.

In the regime where qT is of order of the hard scale, mb ≪ mH . qT , the logarithms of qT /Q

are no longer large and one could think that the full fixed order result which was originally

calculated in ref. [278] is sufficient. However, the logarithms of mb/Q are still large and re-

quire resummation and, as before, the subleading-power operators must be included during the

high-scale matching. In order to pick up a transverse momentum of order Q the gluon crossing

the cut must have hard scaling. Therefore, we cannot consider a diagram-level factorization in

this regime. Instead, the factorization takes place at cross-section level and takes a PDF-like form.

A detailed discussion of these regimes as well as their factorization theorems are therefore beyond

the scope of this thesis.

5.4 Collinear emission diagrams

In the leading-order calculation carried out in section 5.2, we separated the contributions by the

scaling of the loop momenta which could be hard, soft or collinear. Now that we are considering

real emission diagrams, we need to adjust this classification. Recalling the factorization theorems

in eqs. (5.39) and (5.38), the emission can have soft or collinear scaling even if the loop momenta

have e.g. soft scaling and vice versa. A substantial part of the NLO calculation will be to verify

the cancellation of the endpoint divergences which we already encountered in section 5.2. We will

see in this section that this cancellation is much more delicate at NLO. The endpoint divergences

have to cancel point by point in k. This statement already hints towards a sensible classification:

the sum of all diagrams with a collinear emission as well as the sum of all diagrams with a soft

emission have to be individually η finite. Note that ǫ poles will only cancel once we combine the

soft and collinear contributions with the contribution from the hard loop.

In this section, we will calculate all diagrams with a collinear emission as shown in figure 5.10.

We introduce a color coding to clearly distinguish n-collinear and n̄-collinear particles which

are shown in green and magenta. The soft loop is shown as solid fermion line. As mentioned

before that sum of all these diagrams has to be rapidity finite. We can, however, identify certain

sub-classes which are rapidity finite on their own.

Before we start with the calculation of the diagrams in figure 5.10, we want to introduce a new

variable z ≡ ωn/p
−
1 ∈ [0, 1] which allows us to write the two external minus momenta as

p−1 =
ωn
z
, k− =

ωn(1− z)

z
. (5.40)

98



5.4 Collinear emission diagrams

n̄, b, ν

n, a, µ

n, c, ρ

ℓ+ p1

ℓ

p2

p1

k

n̄, b, ν

n, a, µ n, c, ρ

ℓ

ℓ+ p2

p2

p1

k

n̄, b, ν

n, a, µ

n, c, ρ

ℓ

p2

p1

k

n̄, b, ν

n, a, µ n, c, ρ

ℓ+ p1 ℓ+ k

ℓ

p2

p1
k

n̄, b, ν

n, a, µ

n, c, ρ

−ℓ

−ℓ− k

−ℓ− p1

p2

p1

k

n̄, b, ν

n, a, µ n, c, ρ

ℓ+ p1

ℓ+ k

p2

p1

k

n̄, b, ν

n, a, µ n, c, ρ

ℓ+ p1 − k

ℓ

p2

p1 − k

p1 k

n̄, b, ν

n, a, µ n, c, ρ

ℓ+ p1 − k

ℓ

p2

p1 − k

p1 k

n̄, b, ν

n, a, µ n, c, ρ

ℓ

p2

p1 − k−
p1

k

Figure 5.10: All diagrams where the emission k has collinear scaling. All particles with n

(n̄)-collinear scaling are drawn in green (magenta). The sum of these diagrams is free of endpoint

divergences.
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n̄, b, ν

n, a, µ n, c, ρ

ℓ+ p1 − k

ℓ

p2

p1 − k

p1 k

(a) dn
ggg

n̄, b, ν

n, a, µ n, c, ρ

ℓ+ p1 − k

ℓ

p2

p1 − k

p1 k

(b) dn̄
ggg

n̄, b, ν

n, a, µ n, c, ρ

ℓ

p2

p1 − k−
p1

k

(c) ds
ggg

Figure 5.11: dggg-type diagrams: all diagrams where the collinear emission comes from the

interaction of three collinear gluons.

We will also make use of the fact that our emission k is on-shell and replace k+ = −k2⊥/k−.

As in section 5.2, ωn denotes the overall minus momentum of the process which coincides with

minus momentum of the Higgs boson. At NLO, we have

ωn = p−1 − k−. (5.41)

For the evaluation of the LO1 diagram, we proceed just as in the LO0 case: For the diagrams

involving a collinear loop, we start by using the δ-function to perform the ℓ− integral. Next, we

do the ℓ+ integral by contours. This constrains the ξ integral since the contour integral only has

support in specific regions for ξ. After doing the contour integral we can use standard formulæ to

solve the ℓ⊥ integral. In the last step, we evaluate the ξ integral which suffers from endpoint

divergences and, thus, needs to be regulated. For the diagrams involving a soft loop, we can

simply reuse the leading-order soft calculation as the loop is never affected by the additional

collinear emission.

5.4.1 Triple-gluon-vertex emission diagrams

We start with the diagrams where the collinear emission comes from an interaction of three

collinear gluons. This class of diagrams shown in figure 5.11 is very similar to the leading-order

calculation as the collinear emission does not effect the loop.

We start with the contribution where the loop is n-collinear which is shown in figure 5.11a. The

evaluation is completely analogous to the collinear LO calculation carried out in section 5.2.1.

The result for this contribution can in fact be recovered from shifting p1 → p1 − k in eq. (5.8)

and only contracting with the triple gluon vertex after all integrals are evaluated. We therefore
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refrain from giving any calculational details. The result is given by

Mdnggg =
fabcg3

32π2
meǫγEµ2ǫ

k2⊥ωnz

[
2gµν⊥ kρ⊥ωnz(z − 1) + gµν⊥ n̄ρk2⊥z

2 + gµν⊥ nρω2
n(1− z2)

+ 4gνρ⊥ kµ⊥ωnz(1− z) + 4gµρ⊥ kν⊥ωn(z − 1) + 4kµ⊥k
ν
⊥n̄

ρz(z − 1)
]

×






π log



1 +
k2⊥

2m(z − 1)
+

√
k2⊥
1−z

√
k2⊥
1−z − 4m2

2m2





+π log



1 +
k2⊥

2m(z − 1)
−

√
k2⊥
1−z

√
k2⊥
1−z − 4m2

2m2





− i

16π2
m−2ǫΓ(ǫ)

η

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η}

. (5.42)

Despite the similarity of the calculation the NLO result looks much more complicated. This is

not only due to additional Lorentz structures but also due to the fact that the propagator in the

loop features non-vanishing k+ and k⊥ terms in the denominator.

Next, we consider diagram dn̄ggg which is shown in figure 5.11b. Here, the loop is n̄-collinear and

the gluon is emitted from the n-collinear gluon which affect the loop. The gluon emission puts the

gluon participating in the hard interaction off-shell. The Feynman rule in eq. (E.3) was derived

for on-shell gluons. We thus need to make a slight modification and replace /n→ /n+ /p1,⊥/p
−
1

before evaluating the integral. In fact, we need to do the same replacement in the soft Feynman

rule in eq. (E.5) when evaluating the dsggg diagram (figure 5.11c). Evaluating these integrals in

analogy to the leading-order calculations, we find

Mdn̄ggg =− ifabcg3

16π2
Γ(ǫ)

η

m1−2ǫeǫγEµ2ǫ

ωnzk2⊥

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η
[
2gµν⊥ kρ⊥ωnz(z − 1) + gµν⊥ n̄ρk2⊥z

2

+ gµν⊥ nρω2
n(1− z2) + 4gνρ⊥ kµ⊥ωnz(1− z) + 4gµρ⊥ kν⊥ωn(z − 1) + 4kµ⊥k

ν
⊥n̄

ρz(z − 1)
]
,

(5.43)

Mdsggg =− ifabcg3

16π2
z

ω2
nk

2
⊥
m1−2ǫ−ηeǫγEµ2ǫ

|ν|η
η

2F1

(η

2
, η;

η + 2

2
;−1

)Γ(ǫ+ η
2 )

Γ(η2 + 1)

×
[

gµν⊥ nρω3
n

1− z2

z
+ 2gµν⊥ kρ⊥ω

2
n(z − 1) + gµν⊥ n̄ρk2⊥zωn + 4gµρ⊥ kν⊥

ω2
n(z − 1)

z

+ 4gνρkµ⊥ω
2
n(1− z) + 4kµ⊥k

ν
⊥n̄

ρωn(1− z)
]
. (5.44)

We can now combine all three contributions

Mdggg = Mdnggg +Mdn̄ggg +Mdsggg = O
(
η0
)
. (5.45)

and find that this subset is indeed free of endpoint divergences.

5.4.2 Vertex emission diagrams

In this section, we sketch the calculation of contributions where the gluon is emitted from an

effective vertex. These diagrams are shown in figure 5.12. In this class of diagrams, the emission

can either come from the hard interaction vertex as in figures 5.12a- 5.12c or the SCET vertex

double quark-gluon vertex in figure 5.12d.
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ℓ
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k

(b) dsV E

n̄, b, ν

n, a, µ

n, c, ρ

ℓ+ p1

ℓ
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k

(c) dnV E

n̄, b, ν

n, a, µ n, c, ρ

ℓ+ p1

ℓ+ k

p2

p1

k

(d) dqqgg

V E

Figure 5.12: dV E diagram class: all diagrams where the emission is attached to an effective

vertex.

Contribution from n̄-collinear and soft loops

The n̄-collinear and soft in the class of diagrams are analogous to the leading-order calculation.

The contribution from the dn̄V E and the dsV E can be obtained by contracting the leading-order

Feynman rule with the gluon field strength at O(g) which is given in appendix of ref. [279]. This

amounts to shifting

T a → ifacdT d
gn̄ρ

n̄ · k , (5.46)

in the leading-order Feynman rule. Note that in our case the gluon is outgoing which leads to

an overall minus sign w.r.t ref. [279]. For completeness, we give the resulting Feynman rules in

eqs. (E.4) and (E.6). From the simplicity of this modification, it is apparent that we can do the

same replacement at the level of the leading-order results. This leads to the following results

Mdn̄V E
=− ifabcg3

8π2
Γ(ǫ)

η

z

ωn(1− z)
m1−2ǫeǫγEµ2ǫ

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η

gµν⊥ n̄ρ (5.47)

MdsV E
=
ifabcg3

8π2
z

ωn(1− z)
n̄ρgµν⊥ eǫγEµ2ǫm1−2ǫ−η i

η

η

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η

2F1

(η

2
, η;

η + 2

2
;−1

)Γ(ǫ+ η
2 )

Γ(η2 + 1)
. (5.48)

d
qqgg
V E contribution

For this diagram (shown in figure 5.12d), the additional emission comes from the SCET vertex

given in figure 2.6. The evaluation of the ℓ−, ℓ+ and ℓ⊥ integrals is completely analogous to the

diagram for the leading-order calculation and we find

MdqqggV E
= − ig3m

32π2
z

ωn
eǫγEµ2ǫΓ(ǫ)

∫ 1

0
dξ
(1

ξ

∣
∣
∣
ξωn
ν

∣
∣
∣

−η
+

1

1− ξ

∣
∣
∣
(1− ξ)ωn

ν

∣
∣
∣

−η)
(5.49)

×
(

m2 +
k2⊥ξ(ξ − 1)

1− z

)ǫ
fabc(2ξ2z − 2ξz + 1) + idabc(2ξ − 1)

(ξz − 1)[(ξ − 1)z + 1]
.

For the first time in this calculation, we now have an integrand that has a ξ dependence in

addition to the Wilson coefficient. This adds extra complication to the integral as it cannot be

evaluated directly. Note that the endpoint divergences are isolated and the rest of the integral is
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5.4 Collinear emission diagrams

finite in the limits ξ → 1 and ξ → 0. Therefore we can use the following trick

I(ξ) =
∫ 1

0
dξ

(
1

ξ
+

1

1− ξ

)

f(ξ)

=

∫ 1

0
dξ

{

1

ξ

[∣
∣
∣
ξωn
ν

∣
∣
∣

−η
f(0)−f(0) + f(ξ)

︸ ︷︷ ︸

regular for ξ→0

]

+
1

1− ξ

[∣
∣
∣
(1− ξ)ωn

ν

∣
∣
∣

−η
f(1)−f(1) + f(ξ)

︸ ︷︷ ︸

regular for ξ→1

]
}

,

(5.50)

where the subtractions f(ξ)− f(0) and f(ξ)− f(1) cancel in the respective divergent limit and

contribute a finite result. In fact, they cancel completely in our calculation once the integral is

evaluated. Our final result for this contribution is then given by

MdqqggV E
= − ifabcg3

162
Γ(ǫ)

η

z

ωn(1− z)
m1−2ǫeǫγEµ2ǫ

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η

gµν⊥ n̄ρ. (5.51)

d
n
V E contribution

Similar to the soft and n̄-collinear contributions, the dnV E diagram corresponds to the leading-

order diagram with a modified effective vertex. However, in this case it is not sufficient to simply

modify the prefactor of our leading-order result: In the full theory, the gluon can be emitted

from either one of the quarks or the gluon. This leads to the modified Feynman rule eq. (E.2).

This Feynman rule has two different sets of δ-function and a different color structure. This leads

to a different denominator after resolving the δ-functions:

MdnV E
=

∫

dξ

∫
dℓ+dd−2ℓ⊥
(2π)d−1

g3m

8π

z

z − 1
Cbbg(ξ)n̄

ρgµ,ν⊥
[

fabc − idabc
[
ωn(ξ − 1)ℓ+ + ℓ2⊥ −m2 + i0

] [
ωn((ξ − 1)z + 1)ℓ+ + z(ℓ2⊥ −m2 + i0)

]

+
fabc + idabc

[
ωnξℓ+ + ℓ2⊥ −m2 + i0

] [
ωn(ξz − 1)ℓ+ + z(ℓ2⊥ −m2 + i0)

]

]

. (5.52)

We will call the different terms the M+
dnV E

and M−
dnV E

contributions corresponding to the relative

sign between fabc and idabc. In the next step, we do the ℓ+ integral by contours where we have

to consider both contributions separately. In figure 5.13, the coefficients of the i0 are shown as a

function of ξ. The sign of these coefficients determines whether the corresponding pole in ℓ+ is in

the upper or lower half-plane when doing the ℓ+ integral. The contour integral only has support

for specific values of ξ which imposes a constraint on the ξ integral. We find 1− 1/z < ξ < 1 for

M−
dnV E

and 0 < ξ < 1/z for M+
dnV E

which we will keep in mind for the ξ integral.

After doing the ℓ+ integral it is straightforward to evaluate the ℓ⊥ integral and only the

endpoint-divergent ξ integral remains. As in the leading-order calculation, only the Wilson

coefficient

Cbbg =
1

ξ
+

1

1− ξ
, (5.53)

depends on ξ. Recalling that our two contributions have support for different values of ξ, it is

convenient to define three different regions of ξ,

R− =

[

1− 1

z
, 0

]

, R0 = [0, 1] , R+ =

[

1,
1

z

]

, (5.54)
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|
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×

×
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×
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z ]

(a)

ξ
|

1
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1
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ωnξ , ωn(ξ − 1
z )

(b)

Figure 5.13: Pole analysis for the collinear dnV E contribution. (a) shows the poles of M−
dnV E

and

(b) shows the poles of the M+
dnV E

contribution. The black interval marks the region where the

contour integral is non-zero.

and divide the ξ integral accordingly. Both contributions, M+
dnV E

and M−
dnV E

, have support in the

central region R0 where the endpoint divergences appear in both integral limits. Additionally,

each term also gets a contribution from one of the outer regions: M+
dnV E

from R+ and M−
dnV E

from R− which only diverge in one of the integral limits. As before, we regulate the endpoint

divergences with the absolute value regulator and find

Iξ,+ =

∫ 1
z

1
dξ

(

1

ξ

∣
∣
∣
∣

ξωn
ν

∣
∣
∣
∣

−η
+

1

1− ξ

)

=
(1

z
− 1
)−η

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η 1

η
− log z,

Iξ,− =

∫ 0

1− 1
z

dξ

(

1

ξ
+

1

1− ξ

∣
∣
∣
∣

(1− ξ)ωn
ν

∣
∣
∣
∣

−η
)

=
(1

z
− 1
)−η

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η 1

η
− log z,

Iξ,0 =
∫ 1

0
dξ

(

1

ξ

∣
∣
∣
∣

ξωn
ν

∣
∣
∣
∣

−η
+

1

1− ξ

∣
∣
∣
∣

(1− ξ)ωn
ν

∣
∣
∣
∣

−η
)

= −2

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η 1

η
. (5.55)

After integrating, we can recombine the different contributions and arrive at our result for this

diagram

MdnV E
=− ifabcg3

16π2
Γ(ǫ)

η

z

ωn(1− z)
m1−2ǫeǫγEµ2ǫgµν⊥ n̄ρ

[

2

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η

−
(
1

z
− 1

)−η ∣∣
∣
∣

ν

ωn

∣
∣
∣
∣

η

+ η log z

]

(5.56)

Combing all dV E diagrams

We have now calculated all diagrams in figure 5.12 and can finally combine them:

MdV E
=Mdn̄V E

+MdsV E
+MdqqggV E

+MdnV E
= O(η0).

In the sum all endpoint divergences of this diagram class cancel.

5.4.3 Loop emission diagrams

This sub-class of diagrams is the most complex one as we have a third propagator in the loop

which modifies the δ-functions fixing the ℓ− and ξ integrals. Using the choice of momenta in

figure 5.14, both diagrams have the same denominators which simplifies the calculation. As

before, we start by doing the ℓ− integral by resolving the δ-functions.
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n̄, b, ν

n, a, µ n, c, ρ

ℓ+ p1 ℓ+ k

ℓ
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n, a, µ

n, c, ρ

−ℓ

−ℓ− k

−ℓ− p1

p2

p1

k

(b) d2LE

Figure 5.14: dLE-type diagrams: the gluon is emitted from the loop.
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Figure 5.15: Pole analysis for the dLE contributions. (a) shows the poles in the complex ℓ+-plane

of Md1LE
and (b) shows the poles of Md2LE

. The black interval marks the region where the

contour integral is non-zero.

Next, we do the ℓ+ integral by contours. Note that as we have three propagators in the loop,

there will also be three poles in the complex plane. The coefficients of the i0 in the denominators

determine whether the pole will be in the upper or lower-half plane. These coefficients are

shown in figure 5.15 as a function of ξ. We find that we get non-zero contributions in the same

regions as in the previous section. However, the third pole switches sign when going from the

central region R0 to one of the outer regions R±. Therefore all contributions must be considered

separately and can only be combined after integrating over ξ. In the next step, we evaluated the

ℓ⊥ integral where we need Feynman parameters to combine the denominators. Calculational

details on the ℓ⊥ and Feynman parameter integrals are given in appendix F.3.

Now, the only remaining integral is the divergent ξ integral. Once again, we utilize the formula

in eq. (5.50) to isolate the endpoint divergences. This approach remains valid even when the

integral diverges only in one of the limits, as is the case for the R± regions.

For this class of diagrams, the function f(ξ) is rather complex, preventing a straightforward

integration of its finite part over ξ. However, since we only require the full ǫ-dependence of the

endpoint-divergent contribution, we can expand the η-finite piece in ǫ before integrating. This

allows us to extract the 1/ǫ term, which is free of endpoint divergences.

For the ǫ-finite contribution, we were unable to find a closed-form expression. Nevertheless,

our primary focus for now is the structure of the endpoint divergences, leaving the analytic

evaluation of the finite contribution for future work. When comparing to the full QCD result

in ref. [280] or obtaining phenomenological predictions, the integral can always be evaluated
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numerically. For the central region R0, we find

M0
d1LE

=
ig3m(fabc + idabc)

32π2

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η

eǫγEµ2ǫ
Γ(ǫ)

η

{

ǫ(−1)ǫ41+ǫ
[

kµ⊥g
νρ
⊥ − kν⊥g

µρ
⊥
z

+
kµ⊥k

ν
⊥n̄

ρ

ωn

]

× (4m2 − k2⊥)
−1−ǫ

2F1

(1

2
, ǫ+ 1,

3

2
,

k2⊥
k2⊥ − 4m2

)

+
zm−2ǫ

ωn(1− z)
gµν⊥ n̄ρ

}

+ finite, (5.57)

M0
d2LE

=
ig3m(fabc − idabc)

32π2

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η

eǫγEµ2ǫ
Γ(ǫ)

η

{

ǫ(−1)ǫ41+ǫ
[

kµ⊥g
νρ
⊥ − kν⊥g

µρ
⊥
z

+
kµ⊥k

ν
⊥n̄

ρ

ωn

]

× (4m2 − k2⊥)
−1−ǫ

2F1

(1

2
, ǫ+ 1,

3

2
,

k2⊥
k2⊥ − 4m2

)

+
zm−2ǫ

ωn(1− z)
gµν⊥ n̄ρ

}

+ finite, (5.58)

where we added a “+finite” to indicate the presence of the above mentioned ǫ and η-finite piece.

Also note, that both diagrams contribute the exact same result upon the relative sign between

fabc and dabc. In the sum the dabc terms will cancel, leaving a pure fabc part as final result which

we expect as a dabc contribution would break charge symmetry. For the outer regions, R+ and

R−, we find

M+
d1LE

=− ig3(fabc + idabc)

32π2
m1−2ǫeǫγEµ2ǫ

Γ(ǫ)

η

×
{

z

ωn(1− z)

[

log z − 1

η

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η (1

z
− 1
)−η

]

gµν⊥ n̄ρ

+
2

η

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η (1

z
− 1
)−η z

k2⊥ − 4m2

[

kµ⊥g
νρ
⊥ − kν⊥g

µρ
⊥
z

+
kµ⊥k

ν
⊥n̄

ρ

ωn

]

×
[

1 + eiπǫ
4ǫ(2− ǫ)m2ǫ

(k2⊥ − 4m2)ǫ
2F1

(1

2
, ǫ+ 1,

3

2
,

k2⊥
k2⊥ − 4m2

)]
}

+ finite, (5.59)

M−
d2LE

=− ig3(fabc − idabc)

32π2
m1−2ǫeǫγEµ2ǫ

Γ(ǫ)

η

×
{

z

ωn(1− z)

[

log z − 1

η

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η (1

z
− 1
)−η

]

gµν⊥ n̄ρ

+
2

η

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η (1

z
− 1
)−η z

k2⊥ − 4m2

[

kµ⊥g
νρ
⊥ − kν⊥g

µρ
⊥
z

+
kµ⊥k

ν
⊥n̄

ρ

ωn

]

×
[

1 + eiπǫ
4ǫ(2− ǫ)m2ǫ

(k2⊥ − 4m2)ǫ
2F1

(1

2
, ǫ+ 1,

3

2
,

k2⊥
k2⊥ − 4m2

)]
}

+ finite. (5.60)

Again, the only difference of these two contributions is the relative sign between fabc and dabc.

We can now combine all contributions and find that this class of diagram is free of endpoint

divergences

MdLE
= M0

d1LE
+M0

d2LE
+M+

d1LE
+M−

d2LE
= O

(
η0
)
. (5.61)

5.5 Cancellation of endpoint divergences

After the rather technical calculation of the collinear emission diagrams in the previous section,

we now take a step back to reflect on the conclusions we can draw from the cancellation of the
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endpoint divergences. For the form factor, this cancellation is relatively straightforward since

the problem involves only two scales, mb and Q. However, when considering the qT spectrum, an

additional scale is introduced, which affects the coefficient functions of the endpoint divergences.

In general, these coefficients can be non-trivial functions of m/k⊥. In this section, we investigate

how the additional qT dependence influences the structure of the endpoint divergences. To

do so, we express our diagrams in the factorized form already introduced in our discussion of

factorization theorems in section 5.3.

5.5.1 Collinear emission

Let us begin with the collinear emission diagram studied in detail in the previous section. The

diagrams from figure 5.10 can be categorized into two distinct classes. In the first class, the

gluon is emitted from a subleading-power beam function:










+ + + +










× = O
(
1

η

)

. (5.62)

As before, we omit the right-hand side of the cut for better readability. For this class of diagrams

alone, the endpoint divergences remain uncanceled. In the second class of collinear emission

diagrams, the gluon is emitted from a leading-power collinear vertex or Wilson line. Like the

previous class, these diagrams also exhibit endpoint divergences:










+










×










+










= O
(
1

η

)

(5.63)

Only the sum of both classes is free of such divergences. Remarkably, the endpoint divergences

from the non-trivial subleading-power diagrams cancel against those from leading-power emissions

multiplying a virtual next-to-leading-power diagram. This is a highly nontrivial result, indicating

that the mass and kT dependence remain factorized at subleading power. Consequently, the

coefficient functions do not exhibit a complex dependence on m/k⊥.

5.5.2 Soft emission

When discussing the factorization theorem in section 5.3, we saw that the emitted gluon can

have soft or collinear scaling. At this point, we have discussed the collinear emission diagrams in

great detail and now want to focus on the diagrams where the emitted gluon is soft. As the sum

of all collinear emission diagrams is free of endpoint divergences and the endpoint divergences

have to cancel point by point in k, we are free to choose a different regulator for the soft emission

diagrams. We choose the pure rapidity regulator [129], as the soft leading-order diagram vanishes

using this regulator. Thus, we only have two contributions with a soft leading-power emission –
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namely a soft Wilson line multiplying a sub-leading power beam function:









+










×










+










= O
(
η0
)
, (5.64)

which is already rapidity finite on its own. Further, we have two diagrams where the gluon is

emitted from a subleading-power soft function. Since the sum of diagrams in eq. (5.64) is free of

endpoint divergences, the same has to happen in the sum of the NLP emission diagrams. Indeed,

we find









+










× = O
(
η0
)
. (5.65)

Just as for the collinear emission, we find that the mass and the transverse momentum dependence

factorize and conclude that the coefficient functions of the endpoint divergences do not feature a

complex dependence on m/k⊥.

5.6 Summary

In this section, we studied bottom-quark mass effects in the Higgs qT spectrum. This contribution

makes up for about O
(
5− 10%

)
of the gluon fusion process as it is enhanced by the interference

with the top-quark loop and thus an important contribution to the Higgs qT spectrum. The full

prediction can be used to measure the quark Yukawa couplings from the initial state.

To set up the notation, we started with the leading-order calculation involving bottom-mass

effects. Here, we saw that our individual contributions agree with the results in ref. [269] and

the sum of the hard, collinear and soft contributions reproduces the full QCD result. In the LO

calculation, we only have two scales, the quark mass and the hard scale (Higgs mass). When

calculating the qT spectrum, we add a third scale to the problem and need to take the different

possible scales of qT into account. In fact, we need a factorization theorem for each kinematic

regime, where we focused on qT ≪ mb ≪ Q and qT ∼ mb ≪ Q. Further we calculated all collinear

real-virtual emission diagrams and saw that the endpoint divergences cancel within different

subsets of these diagrams. In fact, the endpoint diverges from subleading-power diagrams cancel

and against leading-power emissions. This tell us that the mass and transverse momentum

dependence factorize even at sub-leading power, which is one of the main results of this chapter.

For the soft emission diagrams, we saw that the subleading-power contributions are η finite on

their own when using the pure rapidity regulator. Thus, the sum of contributions featuring a

leading-power soft emission has to be finite as well.

The next steps towards understanding the bottom-mass effects in the Higgs qT spectrum would

be to compare the η-finite parts of all diagrams to the full QCD result in the respective limit

of k being collinear or soft and to perform the phase space integral over k. In the future, it

would also be interesting to renormalize the subleading-power hard, beam and soft functions

and obtain a resummed result for this interference term in the Higgs qT spectrum which we will

leave to future work.
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Chapter 6

Transverse Momentum Distributions

of Heavy Quarks and Heavy Hadrons

In this chapter, we initiate the study of transverse momentum-dependent (TMD) fragmentation

functions for heavy quarks, demonstrate their factorization in terms of novel nonperturbative

matrix elements in heavy-quark effective theory (HQET), and prove new TMD sum rules that

arise from heavy-quark spin symmetry. We discuss the phenomenology of heavy-quark TMD FFs

at B factories. We further calculate all TMD parton distribution functions for the production of

heavy quarks from polarized gluons within the nucleon and use our results to demonstrate the

potential of the future EIC to resolve TMD heavy-quark fragmentation in semi-inclusive DIS,

complementing the planned EIC program to use heavy quarks as probes of gluon distributions

This chapter closely follows ref. [3] reflecting the author’s contribution. In comparison to ref. [3],

section 6.2 was shortened and some calculational details were added in section 6.3.

6.1 Motivation

Hadronization describes the nonperturbative mechanism that confines quarks and gluons pro-

duced in high-energy collisions into the experimentally observable color-singlet hadrons. This is

a key aspect of every process involving QCD particles, but its fundamental description from first

principles remains unknown [53]. We thus rely on phenomenological models to described the

hadronization process. The fragmentation of bottom and charm quarks to heavy mesons can

play a vital role on the way of gaining a better understanding of the fundamental underlying

processes: The mass of the heavy quark imprints as a perturbative scale on the otherwise non-

perturbative dynamics of hadronization. The unique properties of heavy quarks as color-charged,

but perturbatively accessible objects make them ideally suited as probes of the hadronization

cascade, effectively serving as a static color source coupling to the light degrees of freedom.

In this chapter, we present the first study of the transverse momentum dependent (TMD)

fragmentation functions (FFs) of heavy quarks to heavy hadrons. Our theoretical tool to analyze

the fragmentation of heavy quarks is (boosted) Heavy-Quark Effective Theory (bHQET) [97–100,

146,281–284], which has previously been applied to the well-understood collinear (or longitudinal)

heavy-quark FFs [285–288]. We demonstrate that applying bHQET to TMD FFs gives rise to

novel, universal matrix elements describing the nonperturbative transverse dynamics of light

QCD degrees of freedom in the presence of a heavy quark (i.e., a static color source). While
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a large part of this work is devoted to developing this new theoretical formalism. Further, we

also consider the phenomenology of heavy-quark TMD FFs in e+e− collisions and semi-inclusive

deep inelastic scattering (SIDIS) which are relevant for existing B-factories such as Belle-II and

the future EIC, respectively.

These TMD processes are directly sensitive to the nonperturbative transverse dynamics of

heavy-quark fragmentation. We note that the TMD fragmentation of light quarks to quarkonia

has been studied in ref. [289], in that case by matching onto nonrelativistic QCD, and similarly

for light-quark TMD dynamics in hard quarkonium production and decay in ref. [290,291].

This chapter is structured as follows: In Section 6.2, we analyze heavy-quark TMD FFs and

identify the new bHQET matrix elements and perturbative matching coefficients that characterize

the fragmentation dynamics. In Section 6.3, we discuss the all-order structure of matching

polarized heavy quark TMD PDFs onto collinear PDFs and explicitly compute the O(αs)

matching onto gluon PDFs. In Section 6.4, we use our results from the previous two sections to

outline the prospects for heavy-quark TMD phenomenology at e+e− colliders and the future

EIC.

6.2 TMDs for heavy quark fragmentation into a heavy hadron

6.2.1 Calculational setup and parametric regimes

We consider the fragmentation of a (possibly polarized) heavy quark Q into a hadron H that

contains the heavy quark and carries momentum PµH . For this paper, we assume that the heavy

hadron polarization is not experimentally reconstructed. We work in QCD with nf = nℓ + 1

flavors, where the nℓ massless quark flavors are denoted by q and the heavy quark Q has a pole

mass m ≡ mc,mb ≫ ΛQCD. We decompose PµH in terms of lightcone momenta as

PµH = P−
H

nµ

2
+
M2
H

P−
H

n̄µ

2
, (6.1)

where P−
H ≫ P+

H = M2
H/P

−
H is boosted in the frame of the hard scattering and by definition

PH,⊥ = 0, coinciding with the “hadron frame” for fragmentation [147].

We are interested in the dependence of the fragmentation process on the total transverse

momentum of additional hadronic radiation X into the final state, which is equal to the initial

quark transverse momentum k⊥ by momentum conservation, and Fourier conjugate to the

transverse spacetime separation b⊥ between quark fields.

Since ΛQCD ≪ m, the nonperturbative dynamics in the fragmentation process are constrained

by heavy-quark symmetry in all cases, but differences arise depending on the hierarchy between

these two parametric scales and the magnitude kT of the transverse momentum or, equivalently,

the inverse of the transverse distance 1/bT ∼ kT . Broadly speaking, we will consider the two

cases illustrated in figure 6.1. In case (a), which we analyze in section 6.2.3, kT ∼ ΛQCD is

generated during the nonperturbative fragmentation process itself, while perturbative emissions

at the scale m ≫ kT are suppressed. In this case, the heavy hadron carries almost all the

longitudinal momentum provided by the initial heavy quark, while the kT dependence is carried

by universal nonperturbative functions describing how the “brown muck” separates from other

light hadronic final states. In this regime, “disfavored” fragmentation functions where the valence

content of the identified heavy hadron does not match the initial heavy quark, e.g. Q → H̄,

Q→ h, or q, g → H, are forbidden by heavy-quark symmetry. To simplify the analysis, we will
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The dynamic degrees of freedom are heavy-quark fields hv(x) that are labeled by the timelike

direction vµ, which we choose to be the velocity of the heavy hadron,

vµ =
PµH
MH

, v2 = 1 , (6.4)

For external states, the matching reads |H,hH ;X〉 = √
m |Hv, hH ;X〉, and we use a nonrelativis-

tic normalization convention for the bHQET states. In addition, the effective theory contains

light-quark and gluon degrees of freedom that have isotropic momentum pµ ∼ ΛQCD in the rest

frame of the heavy hadron. The tree-level matching for these is trivial; in particular, the Wilson

line W (x) takes the same form in the effective theory, but consists of gluon fields that only have

support on a restricted set of modes.

After performing a field redefinition, a static Wilson line, Yv(x), takes the place of hv(x) in all

external operators, acting as a static source of soft gluons. The field redefinition as well as Yv(x)

were defined in section 2.3. Specifically, the action of hv(x) on a product state in the decoupled

theory is given by

hv(x) |sQ, hQ; sℓ, hℓ, fℓ;X〉 = u(v, hQ)Yv(x) |sℓ, hℓ, fℓ;X〉 , (6.5)

where sQ = 1
2 and hQ = ±1

2 are the spin and helicity of the heavy quark, u(v, hQ) =

u(mv, hQ)/
√
m is an HQET spinor, and sℓ, hℓ, and fℓ are the total angular momentum, helicity,

and flavor content of the light degrees of freedom inside the hadron. (We will specify a helicity

axis in the following section.) Physical hadron states of definite angular momentum sH and

helicity hH also have definite sℓ, which is a good quantum number in the heavy-quark limit. In

general, they involve a coherent sum over the helicity eigenstates in eq. (6.5),

|Hv, hH〉 ≡ |sH , hH , sQ, sℓ〉 =
∑

hQ

∑

hℓ

|sQ, hQ; sℓ, hℓ〉〈sQ, hQ; sℓ, hℓ|sH , hH〉 , (6.6)

where we suppressed the common fℓ and X, and 〈sQ, hQ; sℓ, hℓ|sH , hH〉 is a Clebsch-Gordan

coefficient. (We take the coefficient to vanish for hQ+hℓ 6= hH , i.e., one sum is always eliminated

in practice by helicity conservation.) For the case of inclusive fragmentation, it has been known

for a long time [107,286] that the factorized form of eq. (6.5) together with parity and eq. (6.6)

implies relations between the fragmentation probabilities to different hadron states within the

same heavy-quark spin symmetry multiplet, i.e., with the same sℓ =
1
2 , 1,

3
2 , . . . . As an example,

at the strict leading order in 1/m, an unpolarized charm quark is exactly three times as likely

to fragment into an excited spin-1 vector meson (D∗) than into the corresponding pseudoscalar

state (D). The physical reason for this is that the light dynamics do not see the heavy-quark

spin at leading power, and thus the same nonperturbative matrix elements with given sℓ, hℓ
appear in several cases. This analysis is simplified by the fact that for unpolarized or linearly

polarized heavy quarks, light amplitudes for different helicities cannot interfere. One key goal

of the next section will be to work out the consequences of heavy-quark spin symmetry for

transverse momentum-dependent fragmentation functions, where transverse quark polarization

will let us access this interference for the first time.

6.2.3 Calculating TMD FFs from bHQET for ΛQCD . kT ≪ m

Tree-level matching and discrete symmetries

In this section we calculate the TMD FFs for ΛQCD . kT ≪ m using bHQET. We will use

methods from HQET that were introduced in section 2.3 and refer the reader to this section for
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6.2 TMDs for heavy quark fragmentation into a heavy hadron

details. Additionally, we will use the definition of the TMD quark-quark correlator as well as

the definitions of the unpolarized and the Collins TMD FFs from section 2.6.3.

Using the tree-level matching onto bHQET in eq. (6.3) at the leading order in ΛQCD/m ∼ kT /m,

the correlator evaluates to

∆H/Q(zH , b⊥) =
m

zH

∫
db+

4π
eib

+(P−
H /zH−mv−)/2

{

FH(b⊥) +O(αs) +O
( 1

m

)}

, (6.7)

where FH is a bHQET bispinor defined by

FH(b⊥) ≡
1

2Nc
Tr
∑
∫

X

〈
0
∣
∣W †(b⊥)hv(b⊥)

∣
∣HvX

〉〈
HvX

∣
∣h̄v(0)W (0)

∣
∣0
〉
. (6.8)

Note that we have evaluated the matrix element at b+ = 0, which is justified at leading order in

1/m. Using P−
H = v−[m+O(ΛQCD)], we can perform the b+ integral,

∆H/Q(zH , b⊥) =
δ(1− zH)

n̄ · v FH(b⊥) +O
( 1

m

)

. (6.9)

To analyze the spin structure of FH(b⊥), it is convenient to define the auxiliary vector

zµ = vµ − n̄µ

n̄ · v with z2 = −1 , (6.10)

which defines a unit z axis oriented along the spatial component of n̄ in the rest frame. Written

out explicitly, FH(v, z, b⊥) depends on the three four vectors vµ, i.e., the label direction in

bHQET, corresponding to PµH in the full theory, the spacelike vector zµ parameterizing the

Wilson line direction n̄µ relative to vµ, and the spatial separation bµ⊥ of the fields (with direction

xµ ≡ bµ⊥/bT , x2 = −1). As these three are orthogonal, they define a unique fourth unit direction

yρ = ǫµνρσvµxνzσ with y2 = −1.

There are three applicable symmetries constraining the form of FH : first, the correlator only

propagates the particle components of the bispinor. Second, from its transformation under

hermitian conjugation and, third, from parity conservation. Note that time reversal is broken by

the presence of the out states, and thus is not a good symmetry of fragmentation functions [178].

Finally, charge conjugation relates the form of FH for Q→ H to that of Q̄→ H̄, but does not

constrain the form of FH for a given final state. Then, the most general form of FH(v, z, b⊥)
allowed by Lorentz covariance is given by,

FH(v, z, b⊥) = χ1,H(bT )
1 + /v

2
+ χ⊥

1,H(bT ) /z
/b⊥
bT

1 + /v

2
(6.11)

with two real-valued scalar coefficient functions χ1,H(bT ) and χ⊥
1,H(bT ) that can only depend on

v2 = −z2 = 1 and b2⊥ = b2T . Recalling the definitions of the unpolarized and the Collins TMD

FFs from section 2.6.3

D1H/q(zH , bT ) = tr
[ /̄n

2
∆H/q(zH , b⊥)

]

,

H
⊥(1)
1H/q(zH , bT ) = tr

[ /̄n

2

/b⊥
MHb2T

∆H/q(zH , b⊥)
]

, (6.12)

we perform the traces and identify the two functions, χ1,H(bT ) and χ⊥
1,H(bT ), with the unpolarized

and Collins TMD FF, respectively,

D1H/Q(zH , bT , µ, ζ) = δ(1− zH)Cm(m,µ, ζ)χ1,H

(

bT , µ,

√
ζ

m

)

+O
( 1

m

)

,

bTMH H
⊥(1)
1H/Q(zH , bT , µ, ζ) = δ(1− zH)Cm(m,µ, ζ)χ

⊥
1,H

(

bT , µ,

√
ζ

m

)

+O
( 1

m

)

. (6.13)
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We used the known results [293, 294] for the perturbative matching of SCET onto bHQET

to generalize our results to all orders in perturbation theory. Here the matching coefficient

Cm = 1 +O(αs) arises from separately matching the collinear (“unsubtracted”) and soft contri-

butions to the TMD FFs onto bHQET and QCD with nℓ light flavors, respectively. Starting at

two loops, the matching coefficient features rapidity logarithms of the Collins-Soper scale ζ over

the mass as a consequence of the large boost separating the heavy hadron rest frame and the

frame where the soft radiation is isotropic. The renormalization properties of χ1,H and χ⊥
1,H

follow from eq. (6.13) by consistency with the bHQET matching.

For reference, we can also take suitable traces of eq. (6.11) to obtain explicit definitions of χ1,H

and χ⊥
1,H in terms of bHQET matrix elements,

χ1,H(bT ) =
1

2
trFH(b⊥) , χ⊥

1,H(bT ) =
1

2
tr
[/b⊥
bT
/z FH(b⊥)

]

. (6.14)

which we dub heavy-quark TMD fragmentation factors.

Heavy-quark spin symmetry

We now return to the full correlator FH(b⊥) defined in eq. (6.8) and analyze its heavy-quark

spin symmetry properties, which are particularly transparent when working with sterile fields.

To do so, we first decompose the out states as in eq. (6.6). Acting on these out states with sterile

heavy-quark fields as in eq. (6.5) yields

FH(b⊥) =
1

2

∑

hH

∑

hQ,h
′
Q

∑

hℓ,h
′
ℓ

u(v, hQ) ū(v, h
′
Q) 〈sQ, hQ; sℓ, hℓ|sH , hH〉〈sH , hH |sQ, h′Q; sℓ, h′ℓ〉

× 1

Nc
Tr
∑
∫

X

〈
0
∣
∣W †(b⊥)Yv(b⊥)

∣
∣sℓ, hℓ, fℓ;X

〉〈
sℓ, h

′
ℓ, fℓ;X

∣
∣Y †
v (0)W (0)

∣
∣0
〉

≡ 1

2

∑

hH

∑

hQ,h
′
Q

∑

hℓ,h
′
ℓ

u(v, hQ) ū(v, h
′
Q) 〈sQ, hQ; sℓ, hℓ|sH , hH〉〈sH , hH |sQ, h′Q; sℓ, h′ℓ〉 ρℓ,hℓh′ℓ(b⊥) .

(6.15)

On the last line we defined the spin-density matrix ρℓ of the light degrees of freedom ℓ ≡ {sℓ, fℓ}
which encodes all non-perturbative dynamics.

The fact that the same light spin density matrix ρℓ appears for all hadrons within the same spin

symmetry multiplet (same sℓ and fℓ, but different sH) leads to relations between their TMD

FFs in the heavy-quark limit. We now push on towards the combinations that are relevant for

an unpolarized hadron and that contribute to the two fragmentation factors at hand.

Unpolarized TMD FF: We begin with the unpolarized quark case and perform the trace in

eq. (6.14), which sets hQ = h′Q and thus hℓ = h′ℓ,

χ1,H(bT ) =
1

2

∑

hH

∑

hQ

∑

hℓ

|〈sQ, hQ; sℓ, hℓ|sH , hH〉|2 ρℓ,hℓhℓ(b⊥) . (6.16)

To illustrate this, consider the pseudoscalar case, where

sℓ = 1/2 , sH = 0 : χ1,H(bT ) =
1

4

[
ρℓ,++(b⊥) + ρℓ,−−(b⊥)

]
, (6.17)
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(a) (b)

Figure 6.2: Origin of the Collins TMD FF H⊥
1 for (a) light and (b) heavy quarks. Here k⊥ is

the transverse momentum of additional hadronic radiation into the final state, Sq⊥ (or SQ⊥) is

the quark transverse polarization vector, and Sℓ⊥ is the transverse polarization vector of the

light hadron constituents.

and we have written helicities as ± ≡ ±1
2 for short. We see that the unpolarized TMD FF

encodes information about the magnitude of the amplitude for producing a given light helicity

state. Summing over all hadrons H within the same spin symmetry multiplet Mℓ (i.e., all

hadrons with identical light spin and flavor state ℓ), we further define

χ1,ℓ(bT ) ≡
∑

H∈Mℓ

χ1,H(bT ) =
∑

hℓ

ρℓ,hℓhℓ(b⊥) , (6.18)

where we used the completeness relation of the Clebsch-Gordan coefficients

1

2

∑

H

∑

hH

∑

hQ

∑

hℓ

|〈sQ, hQ; sℓ, hℓ|sH , hH〉|2 = 1. (6.19)

By evaluating the partial sums in eq. (6.16), it is easy to see that in terms of this baseline, the

individual unpolarized TMD fragmentation factors are given by

sℓ =
1
2 : χ1,H(bT ) =

1

4
χ1,ℓ(bT ) , χ1,H∗(bT ) =

3

4
χ1,ℓ(bT ) , (6.20)

where for the purpose of this equation we used H as a shorthand for D (B̄) when Q = c (b).

These relations are textbook knowledge in the inclusive fragmentation case (bT = 0) [107]. Our

analysis shows, for the first time, that they hold without modification and point by point in the

distribution when resolving the hadron transverse momentum.

Collins TMD FF: A naive expectation from heavy-quark spin symmetry might be that the

Collins FF should be suppressed by 1/m because it encodes a correlation between the initial quark

transverse polarization vector and the transverse momentum of hadronic final-state radiation. In

the case of light quarks, this correlation arises directly from the nonperturbative dynamics of the

QCD Lagrangian, as illustrated in figure 6.2 (a), but in the heavy-quark case it naively seems to

require a suppressed magnetic interaction with the heavy-quark spin. We will now see that this
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is not the case. As illustrated in figure 6.2 (b), the angle between the final-state heavy-quark

and light transverse polarization vectors (i.e, the relative phase between their helicity states)

determines which hadron in the spin symmetry multiplet is produced, even without a dynamical

heavy-quark spin interaction taking place. Reconstructing this information experimentally thus

induces a correlation between the heavy-quark and the light spin state. Crucially, spin symmetry

ensures that the final-state heavy-quark spin state is identical to the one it was prepared in. The

light spin state in turn is in general correlated with the transverse momentum k⊥ of hadronic

final-state radiation, since they both arise from the same nonperturbative dynamics of the light

degrees of freedom, leading to a Collins effect at the leading order in 1/m. To illustrate this, it

is again instructive to consider the case of the pseudoscalar meson,

sℓ = 1/2 , sH = 0 : χ⊥
1,H(bT ) =

1

4

[
ρℓ,−+(b⊥)− ρℓ,+−(b⊥)

]
(6.21)

As expected, the Collins FF in the heavy-quark limit contains information about the strength of

the interference, and hence the relative nonperturbative phases, of amplitudes for different light

helicities.

As a corollary, we conclude that the Collins FF must vanish at leading order in 1/m when

summing over all the hadrons in the spin symmetry multiplet,
∑

H∈Mℓ

χ⊥
1,H(bT ) = 0 . (6.22)

Concretely, this means that the Collins FF vanishes altogether for sℓ = 0 baryons, χ1,ΛQ
= 0.

For sℓ = 1/2 using the same notation as in eq. (6.20), the explicit relation is

sℓ =
1
2 : χ⊥

1,H(bT ) + χ⊥
1,H∗(bT ) = 0 . (6.23)

Discussion: The spin symmetry relations in eqs. (6.20) and (6.23) are the main results of this

section. They hold for all values of bT , which means that they also hold point by point in kT
upon Fourier transform. Furthermore, they are unaffected by renormalization, as we discuss

in the next section. This makes them substantially stronger than the known sum rules for

relativistic TMD fragmentation functions. For the light-quark Collins function in particular, the

Schäfer-Teryaev sum rule [295] has only been rigorously proven [296] in the bare case.

Relation to bHQET fragmentation probabilities for ΛQCD ≪ kT

An important property of the TMD fragmentation factors we defined above is their limiting

behavior as kT ≫ ΛQCD or, equivalently, bT → 0. In this limit, the unpolarized TMD fragmen-

tation factor χ1,H is related to the total probability χH for the quark to fragment into H, which

has previously been analyzed in HQET [285–287],

χ1,H(bT , µ, ρ) = C1(bT , µ, ρ)χH +O(Λ2
QCDb

2
T ) . (6.24)

where the matrix-element definition of χH [288] is equal to χ1,H(bT = 0) at the bare level,

χH ≡ 1

4Nc
Tr tr

∑
∫

X

〈
0
∣
∣W †(0)hv(0)

∣
∣HvX

〉〈
HvX

∣
∣h̄vW

∣
∣0
〉
. (6.25)

Because χH is not renormalized [292], we generally expect a perturbative Wilson coefficient

C1(bT , µ, ζ) = 1 +O(αs) to appear in eq. (6.24) at the renormalized level from integrating out
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partonic physics at the scale µ ∼ kT . Eq. (6.24) can be considered the leading term of a twist-like

expansion of χ1,H(bT ) in ΛQCDbT at leading order in the strong coupling.1 In eq. (6.24) we also

assumed without detailed proof that corrections to this relation are quadratic in bT based on

the azimuthal symmetry of χ1,H(bT ).

In contrast to eq. (6.24), the Collins TMD fragmentation factor χ⊥
1,H must vanish at least linearly

as bT → 0 because there is no leading bHQET matrix element it could match onto in this limit.

6.2.4 Matching TMD FFs onto bHQET for ΛQCD ≪ m . kT

We next consider case (b) in figure 6.1. In this regime, the transverse and longitudinal momentum

distributions are determined by dynamics at the scale µ ∼ m ∼ kT and are fully perturbative.

The nonperturbative dynamics in this case are encoded in bHQET matrix elements that involve

additional gluon fields or derivatives and that can be nonlocal along the lightcone, but in contrast

to the previous section are local in the transverse direction. Similar to a standard twist expansion,

these bHQET matrix elements are categorized by their mass dimension, which determines their

scaling as ΛQCD ≪ m, kT , i.e., their mass dimension ∼ ΛnQCD is compensated by powers of bT or

1/m in the Wilson coefficient. This story plays out differently for the unpolarized vs. the Collins

TMD FF, which scale as O(1) and O(ΛQCD bT ), respectively, so we will go through the two

cases separately in the following. We note that the expansion of TMD FFs in terms of bHQET

operators differs from a standard twist expansion insofar as the HQET field hv encoding the

interactions with the heavy valence quark remains present in all low-energy matrix elements.

Unpolarized TMD FF

For the unpolarized TMD FF, the unique bHQET matrix element that can arise in the infrared

at the leading order in 1/m is the total fragmentation probability χH as defined in eq. (6.25):

D1H/Q(zH , bT , µ, ζ) = d1Q/Q(zH , bT , µ, ζ)χH +O
(ΛQCD

m

)

+O(ΛQCDbT ) . (6.26)

Importantly, we have again made use of the assumption in eq. (6.2) that we are sufficiently far

away from (or have fully integrated over) the endpoint regime zH → 1, as otherwise there would

be a nontrivial bHQET shape function on the right-hand side [287,288]. The unique matching

coefficient of χH , which we dub the partonic heavy-quark TMD FF d1Q/Q(z, bT , µ, ζ), is a new

object that, to our knowledge, appears in our analysis for the first time.2 It is independent of

the precise hadronic final state, carries the exact dependence on bTm ∼ 1, and can be calculated

perturbatively by evaluating eqs. (2.182) and (2.185) for partonic final states including at least

one heavy quark, i.e.,

d1Q/Q(zH , bT ) = tr
[ /̄n

2
∆Q/Q(zH , b⊥)

]

= δ(1− zH) +O(αs) . (6.27)

1It is well known that the formal OPE of relativistic fragmentation functions is ambiguous due to an

unconstrained choice of boundary condition at lightcone infinity [297,298]. While this fundamental issue remains

present here, it is interesting to ask whether the case of bHQET TMD fragmentation factors, which are Wilson

loops, can provide additional insight into this issue.
2Curiously, the perturbative transverse dynamics of heavy-quark fragmentation b̄ → Bc have previously been

evaluated in refs. [299, 300]. The complete tree-level result given in the first reference, which starts at O(α2
s), can

be considered a very specific subset of the NNLO corrections to the TMD FF we define here if we sum over final

states. If we tag on the charm instead, their result corresponds to a different perturbative TMD FF d1 bc̄/b ∼ α2
s

whose renormalization, by our analysis, is governed by standard (massive) TMD evolution.
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Its rapidity renormalization is governed by the Collins-Soper kernel of a theory with nℓ massless

and one massive quark degree of freedom [205]. We perform a dedicated NLO calculation

of d1Q/Q(z, bT , µ, ζ) in chapter 7. Since the dependence on the hadronic final state is purely

encoded in χH , which satisfies the same spin symmetry relations as in eq. (6.20), we conclude

that the unpolarized heavy-quark TMD FF satisfies

D1H/Q =
1

3
D1H∗/Q , (6.28)

for all values of bT (or kT ), including 1/bT & m, up to corrections of O(ΛQCD/m).

Eq. (6.26) continues to be valid for kT ≫ m, but features large perturbative logarithms of

bTm≪ 1 in this limit. Their resummation is enabled by further factorizing the physics at those

two scales. To do so, we can first match the heavy-quark TMD FF onto twist-2 heavy-quark

collinear FFs at the scale µ ∼ m [301],

D1H/Q(zH , bT , µ, ζ) =
1

z2H

∑

i

∫
dz

z
Ji/q(z, bT , µ, ζ)DH/i

(zH
z
, µ
)

+O(m2b2T ) , (6.29)

where the sum runs over i = q, q̄, g. This matching takes the same form as the standard matching

of light-quark TMD FFs onto twist-2 FFs at µ ∼ ΛQCD, except that the highest IR scale here is

given by m. The Wilson coefficients Ji/q(z, bT , µ, ζ) encode the perturbative process q → i in a

theory with nℓ + 1 massless flavors at the scale µ ∼ kT , with the quark retaining a fraction z

of the parent’s lightcone momentum, and are known to N3LO [302,303]. In a second step, we

perform the well-known [285–288] matching of the collinear FF of a massive quark onto bHQET

to separate ΛQCD ≪ m,

DH/i(zH , µ) = dQ/i(zH , µ)χH +O
(ΛQCD

m

)

, (6.30)

where dQ/i(zH , µ) is the perturbative collinear heavy-quark FF for i→ Q [292], which is known

to NNLO [304,305]. Combining eqs. (6.29) and (6.30) and comparing to eq. (6.26), we conclude

that the perturbative ingredients are related by

d1Q/Q(zH , bT , µ, ζ) =
1

z2H

∑

i

∫
dz

z
Ji/Q(z, bT , µ, ζ) dQ/i

(zH
z
, µ
)

+O(m2b2T ) . (6.31)

This refactorization condition for d1Q/Q can serve as a cross check on future perturbative

calculations, and in addition enables resumming logarithms of kT /m≫ 1.

Collins TMD FF

To identify the low-energy bHQET matrix element that the Collins TMD FF matches onto in the

limit ΛQCD ≪ m ∼ kT , we use a two-step matching procedure formally valid for the hierarchy

ΛQCD ≪ m≪ kT . (We will later show that the result is correct for either hierarchy.) As for the

unpolarized TMD FF above, this lets us make use of well-known results for the matching of

light-quark TMD FFs onto collinear FFs, which we can then further match onto bHQET.

We start from the diagrammatic small-bT expansion of the bare Collins TMD FF for light quarks,

which is valid for ΛQCD ≪ kT and given by [177,178,306]3

bTMhH
⊥(1)
1h/q(zh, bT ) = bT Ĥh/q(zh) +O(αs) +O(Λ2

QCDb
2
T ) , (6.32)

3In the literature, this relation is more commonly given as a tree-level equality between Ĥh/q and a weighted

kT integral over the bare momentum-space Collins FF. Using eq. (6.44) and integrating by parts, it is easy to
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where Ĥh/q is a twist-3 collinear fragmentation matrix element at the scale µ ∼ ΛQCD.

We now consider the heavy-quark Collins FF and at first assume the hierarchy ΛQCD ≪ m≪ kT .

For the matching at the scale µ ∼ kT , the mass is an infrared scale, and thus the twist expansion

in eq. (6.32) immediately carries over. The collinear matrix element ĤH/Q takes the same

form as before, but is now defined at the scale µ ∼ m. To implement the separation of scales

ΛQCD ≪ m, we match ĤH/Q onto bHQET. At tree level, this amounts to a replacement of the

quark fields as in eq. (6.3), and after expanding the momentum-conserving phase results in

ĤH/Q(zH) = δ(1− zH)χH,G +O(αs) +O
( 1

m

)

, (6.33)

where χH,G ∼ ΛQCD is a novel subleading bHQET matrix element. Similar to the total

fragmentation probability χH defined in eq. (6.25), χH,G no longer depends on b⊥, but is simply

a constant that depends on the identified hadron H.

In the last step, we combine eqs. (6.32) and (6.33) to arrive at our final result for the tree-level

matching of the heavy-quark Collins TMD FF onto bHQET:

bTMH H
⊥(1)
1H/Q(zH , bT ) = δ(1− zH) bTχH,G +O(αs) +O(Λ2

QCD) . (6.34)

Because this derivation assumed ΛQCD ≪ m≪ kT , eq. (6.34) a priori is only valid up to power

corrections in mbT . However, since we found a nonzero result at our tree-level working order

and power corrections in mbT can only arise from real radiation in the calculation of the Wilson

coefficient, eq. (6.34) as written also holds when integrating out both scales simultaneously. We

note that additional low-energy matrix elements will in general be generated when performing

the matching at higher orders in αs, but leave a dedicated construction of the basis of bHQET

operators at this order in ΛQCD to future work.

Conversely, χH,G must vanish when summing over all hadrons in the spin symmetry multiplet

Mℓ,

∑

H∈Mℓ

χH,G = 0 . (6.35)

Combining these results at large kT ∼ m with those in eq. (6.23) we conclude that the Collins

TMD FF satisfies the following relations for all values of bT (or kT ),

H⊥
1H/Q = −H⊥

1H∗/Q , (6.36)

which we have proven here up to corrections of O(ΛQCD/m) and up to radiative corrections at

the scale µ ∼ kT ∼ m for large kT .

6.2.5 Consistency between regimes for ΛQCD ≪ kT ≪ m

Our results in the previous two sections share a common domain of validity when the transverse

dynamics are already perturbative, ΛQCD ≪ kT , but still subject to heavy-quark symmetry,

kT ≪ m. In this section we analyze the consistency relations that arise from this overlap and

relate the perturbative bHQET fragmentation factors to the partonic heavy-quark TMD FFs.

see that this reduces to the derivative of the bT -space Collins FF at bT = 0. The O(αs) corrections to eq. (6.32)

were evaluated at finite kT > 0 in ref. [306] and involve twist-3 matrix elements that depend on two independent

momentum fractions and reduce to Ĥh/q in certain limits by use of the equation of motion. We anticipate that

matching these more general matrix elements onto bHQET will reduce the number of independent (residual)

momenta to one because the heavy-quark momentum is fixed.
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We start with the unpolarized case. Comparing eqs. (6.13) and (6.24), which are valid for

ΛQCD . kT , to eq. (6.26), valid for kT . m, we find the following all-order refactorization

relation for the partonic heavy-quark TMD FF in the limit kT ≪ m,

d1Q/Q(z, bT , µ, ζ) = δ(1− z)Cm(m,µ, ζ)C1

(

bT , µ,

√
ζ

m

)

+O
( 1

bTm

)

. (6.37)

Here we have canceled off the common nonperturbative factors of χH . To interpret the z

dependence, eq. (6.37) says that counting 1 − z ∼ 1, d1Q/Q must approach δ(1 − z) up to an

overall factor at the distributional level for bTm→ ∞, i.e., all Mellin moments of d1Q/Q must

become equal in this limit. Eq. (6.37) provides a powerful consistency check of perturbative

calculations of d1Q/Q in chapter 7. It also enables the resummation of large perturbative

logarithms of kT /m≪ 1, complementing the factorized result in eq. (6.31) for the opposite limit.

For the Collins TMD FF we compare eq. (6.13) to eq. (6.34) and use Cm = 1+O(αs). Canceling

off the z dependence, which is trivial at tree level, this yields

χ⊥
1,H(bT , µ, ρ) = χH,G bT +O(αs) +O(Λ2

QCDb
2
T ) , (6.38)

which can be interpreted as the leading linear term in a small-bT expansion of χ⊥
1,H , as anticipated

in section 6.2.3. As for the Collins function at kT ∼ m, we leave a dedicated higher-order matching

calculation to future work, which will involve nontrivial Wilson coefficients integrated against at

least one additional O(ΛQCD) bHQET matrix element.

6.2.6 Model functions and numerical results

For our numerical results we will assume a simple Gaussian model for the unpolarized TMD

fragmentation factor,

χ1,H(bT , µ0, ρ0) = χH exp
(

−κ2Hb2T
)

, (6.39)

where κH ∼ ΛQCD has units of GeV. Eq. (6.39) is valid at initial scales µ0 ∼ mρ0 ∼ 1/bT of the

TMD evolution. We apply a µ∗ prescription [49,220] (also known as a “local” b∗ prescription)

starting at O(b4T ) to ensure that µ0 stays perturbative without polluting nonperturbative

corrections at O(Λ2
QCDb

2
T ) [307],

µ0 =
( b40
b4T

+ µ4min

)1/4
=
b0
bT

[

1 +O(µ4minb
4
T )
]

, (6.40)

where b0 = 2e−γE ≈ 1.12292 and we take µmin = 1GeV. We take ζ0 ≡ mρ0 to always be equal

to its canonical value, ζ0 = (b0/bT )
2. We then use leading-logarithmic (LL) perturbative TMD

evolution Uq(µ0, ζ0, µ, ζ) to evolve eq. (6.39) to the overall scales µ ∼ √
ζ ∼ Q, with Q the hard

scattering energy.4 This order is sufficient for the exploratory phenomenology we have in mind,

and in particular lets us use TMD evolution and β functions in QCD with nf = 5 massless

flavors at all scales since the quark decoupling only induces next-to-leading logarithms of bTm.

Specifically, we ignore the decoupling relations and NNLL power-like secondary quark mass

corrections to the Collins-Soper kernel γqζ (bT , µ) that were determined in ref. [205]. We also

ignore nonperturbative contributions to the Collins-Soper kernel, since they are orthogonal to

4We refer to ref. [307] for the details of our evolution setup.
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Figure 6.3: Unpolarized heavy-quark (left) and Collins TMD fragmentation functions (right) as

a function of kT and integrated over zH . All results are normalized to the total fragmentation

probability χH . The yellow band in the case of the Collins function corresponds to the indicated

variations of the sign and magnitude of λH⊥. These results are universal for charm and bottom

quarks; see the text for details.

the effects we are interested in here. Overall, this results in the following expression for the

evolved unpolarized heavy-quark TMD FF,
∫

zcut

dzH D1H/Q(zH , bT , µ, ζ) = χH exp
(

−κ2Hb2T
)

Uq(µ0, ζ0, µ, ζ) , (6.41)

Uq(µ0, ζ0, µ, ζ) = exp

[
1

2
γqζ (bT , µ0) ln

ζ

ζ0

]

exp

[∫ µ

µ0

dµ′

µ′
γqµ(µ

′, ζ)

]

,

where for definiteness we considered the integral over zcut ≤ zH ≤ 1. To our working order,

the right-hand side of eq. (6.41) is independent of zcut as long as 1 − zcut ∼ 1 in order to

satisfy eq. (6.2), and also holds for any truncated zH moment of the TMD FF. Note that the

single-parameter model in eq. (6.41) is also accurate at large kT & m, cf. eq. (6.26), where it

reduces to χH and thus is correct up to radiative corrections.

We assume a similar model for the Collins TMD fragmentation factor, but have to account for

the suppression at small bT by modifying the Gaussian,

χ⊥
1,H(bT , µ0, ρ0) = χH λH⊥bT exp

(

−κ2H⊥b
2
T

)

, (6.42)

where we find it convenient to express the overall effect strength in terms of λH⊥ = χH,G/χH ∼
ΛQCD, i.e., relative to the total fragmentation probability χH . The parameter κH⊥ ∼ ΛQCD

controls the relative impact of higher power corrections and is in general distinct from κH in

eq. (6.39). Combining this with NLL nf = 5 TMD evolution as above, we find, for the evolved

heavy-quark Collins function in position space,

bTMH

∫

zcut

dzH H
⊥(1)
1H/Q(zH , bT , µ, ζ) = χH λH⊥bT exp

(

−κ2H⊥b
2
T

)

Uq(µ0, ζ0, µ, ζ) . (6.43)

Taking appropriate Bessel integrals [181], we finally transition to momentum space,

D1H/Q(zH , kT , µ, ζ) =
1

2π

∫ ∞

0
dbT bT J0(bTkT )D1H/Q(zH , bT , µ, ζ) ,

kT
MH

H⊥
1H/Q(zH , kT , µ, ζ) =

MH

2π

∫ ∞

0
dbT b

2
TJ1(bTkT )H

⊥(1)
1H/Q(zH , bT , µ, ζ) . (6.44)
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To evaluate the TMD evolution and the Bessel integrals, we use the numerical implementation

of TMD anomalous dimensions, QCD renormalization-group solutions, and double-exponential

oscillatory integration in SCETlib [224].

Our results for the zH -integrated heavy-quark TMD FFs are shown as a function of kT for

different values of the model parameters in figure 6.3. We use αs(mZ) = 0.118GeV as the input

value for the strong coupling. We note that due to heavy quark flavor symmetry, the charm

and bottom-quark TMD FFs are exactly equal at small kT ≪ m. In other words, they only

depend on the universal Gaussian parameters κH (for the unpolarized TMD FF), κH⊥ (for the

Collins TMD FF), and the Collins effect strength λH⊥. At large kT ∼ m, the TMD FFs remain

independent of the heavy quark mass up to radiative corrections of O(αs), which we ignore at

our LL working order. These plots are thus identical for both flavors we consider. We point

out that the Collins function can in general take any sign, as indicated by the yellow band

scanning various values of the effect strength λH⊥. The effect of varying the size of higher-power

corrections (κH , κH⊥) decreases as kT increases for both TMD FFs, as expected.

6.3 Polarized heavy-quark TMD PDFs

6.3.1 Calculational setup

In this section we consider the production of a heavy quark Q with pole mass m = mc,mb ≫
ΛQCD from light partons within a polarized nucleon N . The nucleon has momentum

PµN = P−
N

nµ

2
+
M2
N

P−
N

n̄µ

2
, (6.45)

with P−
N ≫ P+

N = M2
N/P

−
N in the rest frame of the hard scattering that the heavy quark

participates in. This time, we are interested in the transverse momentum k⊥ of the heavy

quark with respect to the nucleon beam axis, which is again Fourier conjugate to the transverse

spacetime separation b⊥ between quark fields. We recall the spin decomposition of the TMD

quark-quark correlator from section 2.6.2 in terms of scalar TMD PDFs

ΦQ/N (x > 0, k⊥) =
{

f1Q/N (x, kT ) + g1LQ/N (x, kT )SLγ5 + h⊥1LQ/N (x, kT )SLγ5
/k⊥
MN

+ ih⊥1Q/N (x, kT )
/k⊥
MN

+
(
terms ∝ S⊥

)} /n

4
. (6.46)

As we will see in the next section, the terms proportional to the transverse nucleon polarization

S⊥ vanish for heavy quarks to all orders in the strong coupling when matched onto the leading

(twist-2) collinear PDFs. We will also find that the twist-2 matching for the Boer-Mulders

function h⊥1 vanishes at O(αs). The remaining TMD PDFs on the first line, for which we will

find nonzero results at O(αs), are the unpolarized TMD PDF f1, the helicity TMD PDF g1L,

and the so-called worm-gear L function h⊥1L; the latter will be of particular significance, and

encodes the production of a transversely polarized quark from a linearly polarized nucleon. For
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reference, the explicit Hankel transforms relating scalar TMDs in bT and kT space read5

f1(x, kT ) =

∫
dbT
2π

bTJ0(kT bT ) f1(x, bT ) ,

kT
MN

h⊥1 (x, kT ) =MN

∫
dbT
2π

b2TJ1(bTkT )h
⊥(1)
1 (x, bT ) ,

g1L(x, kT ) =

∫
dbT
2π

bTJ0(kT bT ) g1L(x, bT ) ,

kT
MN

h⊥1L(x, kT ) =MN

∫
dbT
2π

b2TJ1(bTkT )h
⊥(1)
1L (x, bT ) . (6.47)

6.3.2 Matching onto twist-2 collinear PDFs

Heavy-quark TMD PDFs are different from their TMD FF counterparts because the heavy

quark cannot be part of the initial-state nucleon wave function at the scale µ ∼ ΛQCD at leading

power in ΛQCD/m,6 whereas in the fragmentation case the heavy quark is always part of the

final-state heavy hadron until its eventual weak decay. This means that heavy quarks must be

pair-produced in initial-state gluon splittings at the scale µ ∼ m instead. In particular, this

means there is at least one perturbative emission with transverse momentum & m setting the

scale of kT & m, while the region of kT ≪ m can only be populated by several emissions with

small net recoil, which is a power-suppressed configuration. In field theory terms, this means

that heavy-quark TMD PDFs can be computed by perturbatively matching them onto collinear

twist-2 nucleon PDFs in a theory with nℓ light flavors, which are the only nonperturbative piece

of information in this case. The matching onto twist-2 collinear PDFs is well developed for

light quark and gluon TMDs, with notable results including all unpolarized quark matching

coefficients through O(α3
s) [211,212] and results for polarized TMDs through O(α2

s) [311,312],

and many of the following steps are standard, see e.g. [147]. Likewise, the O(αs) matching of the

unpolarized heavy-quark TMD PDF onto gluon collinear PDFs has been given in refs. [205, 301].

We nevertheless aim for a self-contained description, giving us the opportunity to point out the

ways in which (polarized) heavy-quark TMD PDFs behave differently.

The bare light-quark and gluon twist-2 collinear correlators are defined as

Φαα
′

q/N (x) =

∫
db+

4π
e−ib+(xP−

N )/2
〈
N
∣
∣ψ̄α

′

q (b)W (b, 0)ψαq (0)
∣
∣N
〉
,

Φµνg/N (x) =

∫
db+

4π
e−ib+(xP−

N )/2
〈
N
∣
∣F−µ(b)W (b, 0)F−ν(0)

∣
∣N
〉
, (6.48)

where b ≡ (0, b+, 0) in this case and W (b, 0) denotes a straight Wilson line segment. The collinear

5We continue to distinguish momentum and position-space functions by their argument. As before, the

superscript (1) on the bT -space functions indicates a bT derivative and that is specifically required due to the

conventional normalization to the hadron mass [181].
6Power corrections of this kind, which are known as “intrinsic charm” and have received substantial recent

interest on the collinear PDF side [308,309], would be an interesting subject to explore in the TMD case in the

future. Very recently, the TMD PDFs for charm quarks within Λc baryons, which are leading valence contributions

and do not have to be produced from gluons, have been evaluated in a lightfront Hamiltonian model in ref. [310];

while these are phenomenologically inaccessible, it would be interesting to analyze these valence dynamics in the

heavy-quark limit as we did for TMD FFs in section 6.2.
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Flavor conservation in QCD implies that a single fermion line has to connect the external light-

quark states in eq. (6.51). It follows that contractions with the quark transversity PDF involve

an odd number of Dirac matrices on the light-quark line and vanish to all orders, i.e., flavor

conservation and chirality for light quark flavors imply that all terms ∝ S⊥ vanish at twist-2 level

in eq. (6.46). This is distinct from e.g. the light-quark transversity TMD PDF, which receives a

tree-level contribution from the transversity collinear PDF of the same flavor. As in the case

of light-quark TMD PDFs, Lorentz covariance further implies that only unpolarized (helicity)

collinear PDFs can contribute to the unpolarized and Boer-Mulders (helicity and worm-gear L)

TMD PDFs, matching the dependence on SL in the spin decomposition. These conclusions

are not modified by the inclusion of the soft factor, the rapidity renormalization, and the UV

renormalization of the TMD PDFs, all of which are orthogonal to the spin structure. They

are likewise unaffected by the renormalization of the collinear PDFs, which acts autonomously

on the unpolarized and longitudinally polarized sectors. Passing to renormalized objects, this

altogether leaves us with the following four nontrivial matching relations for heavy-quark TMD

PDFs onto collinear PDFs,

f1Q/N (x, kT , µ, ζ) =
∑

j

∫
dz

z
CQ/j(z, kT ,m, µ, ζ) fj/N

(x

z
, µ
)

,

kT
MN

h⊥1Q/N (x, kT , µ, ζ) =
∑

j

∫
dz

z
CQ⊥/j(z, kT ,m, µ, ζ) fj/N

(x

z
, µ
)

,

g1LQ/N (x, kT , µ, ζ) =
∑

j

∫
dz

z
CQ‖/j‖(z, kT ,m, µ, ζ) gj/N

(x

z
, µ
)

,

kT
MN

h⊥1LQ/N (x, kT , µ, ζ) =
∑

j

∫
dz

z
CQ⊥/j‖(z, kT ,m, µ, ζ) gj/N

(x

z
, µ
)

. (6.52)

These relations are the key result of this section, and hold up to power corrections in O(ΛQCD/kT )

and O(ΛQCD/m). Here the subscripts λ, λ′ = ∅, ‖,⊥ on CQλ/jλ′
(z, kT , µ, ζ) label the polarization

of the heavy quark and the light parton j, the sum runs over gluons and the nℓ flavors of light

quarks and antiquarks, and we have included a factor of kT /MN on the left-hand side as needed

to ensure that the matching coefficient is independent of the hadronic state. We have also

changed integration variables from p− in eq. (6.52) to z, exploiting the fact that projections of

the matching coefficients onto good components can only depend on z by reparameterization

invariance.

Note that in a crucial difference to the light-quark case, the heavy-quark worm-gear L TMD PDF,

which involves an odd number of Dirac matrices on the heavy-quark line in eq. (6.51) is allowed

at twist-2 level because the quark mass breaks chirality. The same is true for the Boer-Mulders

function. In both cases, the original argument of ref. [314] why the twist-2 matching for these

functions vanishes to all orders in the light-quark case critically relied on chirality. Conversely,

the respective matching coefficients must vanish linearly as m→ 0 to afford the helicity flip,

λ = ∅, ‖ : CQ⊥/jλ(z, kT ,m, µ, ζ) ∝
m

k3T
+O(m2) . (6.53)

Lastly, note that to all orders it is only the gluon PDF fg(x) and the quark singlet PDF
∑

i=q,q̄ fi(x) that contribute to the sum f1Q/N + f1 Q̄/N due to the invariance of eq. (6.51)

under the nℓ light flavor symmetry, and similarly for the two polarized cases. The difference

f1Q/N − f1 Q̄/N of heavy quark and antiquark TMD PDFs receives a nonzero contribution
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proportional to
∑

i=q fi(x)−
∑

i=q̄ fi(x) starting at O(α3
s) due to the relative orientation of the

color flow along the fermion lines in eq. (6.51), as in the light-quark case [211,302,303].

Inverting the Hankel transforms in eq. (6.47), we find the bT -space matching relations

f1Q/N (x, bT , µ, ζ) =
∑

j

∫
dz

z
CQ/j(z, bT ,m, µ, ζ) fj/N

(x

z
, µ
)

,

bTMN h
⊥(1)
1Q/N (x, bT , µ, ζ) =

∑

j

∫
dz

z
CQ⊥/j(z, bT ,m, µ, ζ) fj/N

(x

z
, µ
)

,

g1LQ/N (x, bT , µ, ζ) =
∑

j

∫
dz

z
CQ‖/j‖(z, bT ,m, µ, ζ) gj/N

(x

z
, µ
)

,

bTMN h
⊥(1)
1LQ/N (x, bT , µ, ζ) =

∑

j

∫
dz

z
CQ⊥/j‖(z, bT ,m, µ, ζ) gj/N

(x

z
, µ
)

, (6.54)

where the matching coefficients are given by (n = 1 for λ =⊥ and n = 0 otherwise)

CQλ/jλ′
(z, bT ,m, µ, ζ) = 2π

∫

dkT kTJn(kT bT )CQλ/jλ′
(z, kT ,m, µ, ζ) . (6.55)

For the dimensionless bT -space matching coefficients, eq. (6.53) simply reads

λ = ∅, ‖ : CQ⊥/jλ(z, bT ,m, µ, ζ) ∝ mbT +O(m2) . (6.56)

6.3.3 One-loop evaluation of matching coefficients

At O(αs), only the gluon diagram in eq. (6.51) is nonzero. We use standard QCD Feynman

rules as well as

χn,ω χn,k⊥

zp+ k⊥

ℓ = δ(ω − ℓ−) δ(2)(k⊥ − ℓ⊥)Γ , (6.57)

where ω = z p and Γ are the Dirac structures that project out the desired TMD PDF. In

particular

Γ =
{ /̄n

2
,
1

SL

/̄n

2
γ5,

MN

SL

/̄n

2

/k⊥
k2⊥
γ5,MN ǫ

αρ /̄n

2
γργ5

k⊥,α
−k2⊥

}

, (6.58)

for the unpolarized, the helicity, the Bœr-Mulders and the worm-gear-L functions. We find the

leading-order result

Cββ
′

Q/g µν(zp
−, p−, k⊥,m) =

β β′

zp+ k⊥

µ ν

p pℓ

(6.59)

= − ig2

2

∫
d4ℓ

(2π)4
δ(zp− − p− − ℓ−) δ(2)(k⊥ − p⊥ − ℓ⊥)

[ (/p+ /ℓ +m)γµ(/ℓ +m)γν(/p+ /ℓ +m)]ββ
′

[(p+ ℓ)2 −m2 + i0]2(ℓ2 −m2 + i0)
,
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where p = (p−, 0, 0) is the momentum of the external gluon and ℓ is defined as indicated (in the

direction of fermion flow).

Dotting eq. (6.59) into the gluon collinear PDF correlator in eq. (6.49) and projecting onto quark

spin structures, we find individual momentum-space matching coefficients

CQλ/gλ′
(z, kT ,m, µ, ζ) =

αs(µ)

4π
C

(1)
Qλ/gλ′

(z, kT ,m) +O(α2
s) . (6.60)

As an example, we calculate CQ/g(z, kT ,m) at O(αs) explicitly. The unpolarized TMD PDF

matches onto the unpolarized collinear PDF and therefore therefore picks a gµν⊥ from the gluon

polarization

CQ/g(z, kT ,m) =− ig2

2

(
− 1

2
gµν⊥
)
∫

d4ℓ

(2π)4
δ(zp− − p− − ℓ−) δ(2)(k⊥ − p⊥ − ℓ⊥)

×
Tr
[
/̄n
2 (/p+ /ℓ +m)γµ(/ℓ +m)γν(/p+ /ℓ +m)

]

[(p+ ℓ)2 −m2 + i0]2(ℓ2 −m2 + i0)
.

As the ℓ− and ℓ⊥ integrals are fixed by δ-functions, we can immediately solve them after taking

the trace. The only non-trivial integral is the ℓ+ integral which can be straightforwardly done

by contours

CQ/g(z, kT ,m) =− ig2

(2π)4

∫

dℓ+
(z p−)2ℓ+ + zp−k2T −m2p−(1 + z)− p−k2T

[zp−ℓ+ − k2T −m2 + i0]2[ℓ+p−(z − 1)− k2T −m2 + i0]

=
αs
4π2

k2T (1− 2z + 2z2) +m2

(k2T +m2)2
. (6.61)

Then, the leading-order coefficient functions for all relevant TMD PDFs are given by

C
(1)
Q/g(z, kT ,m) = TF Θ(z)Θ(1− z)

2

π

k2T (1− 2z + 2z2) +m2

(k2T +m2)2
,

C
(1)
Q⊥/g

(z, kT ,m) = 0 ,

C
(1)
Q‖/g‖

(z, kT ,m) = TF Θ(z)Θ(1− z)
2

π

k2T (2z − 1) +m2

(k2T +m2)2
,

C
(1)
Q⊥/g‖

(z, kT ,m) = TF Θ(z)Θ(1− z)
4

π

mkT (z − 1)

(k2T +m2)2
. (6.62)

As a nontrivial check, we have confirmed that using massive SCET Feynman rules [315] results in

the same expressions after performing the spin traces and integrating over the loop momentum.

Note that the projection of the O(αs) twist-2 matching diagram onto the Boer-Mulders function

remains zero even for finite quark masses. This is expected because the Boer-Mulders function

is odd under time reversal [316], i.e., it changes sign depending on whether the Wilson lines

in the operator point to the future (SIDIS) or the past (Drell-Yan). The diagram in eq. (6.59)

does not yet feature gluon attachments to the Wilson lines that could resolve their direction,

and thus its projection onto the Boer-Mulders function has to vanish. Starting at O(α2
s), the

matching coefficient can in general receive nonzero contributions from the absorptive part of

real-virtual diagrams because chirality is broken by the quark mass, and it would be interesting

to investigate these contributions further.
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Evaluating the inverse Hankel transforms in eq. (6.55), we find the position space matching

coefficients

CQλ/gλ′
(z, bT ,m, µ, ζ) =

αs(µ)

4π
C

(1)
Qλ/gλ′

(z, bTm) +O(α2
s) , (6.63)

which at this order only depend on the dimensionless combination bTm and are given by

C
(1)
Q/g(z, bTm) = TF Θ(z)Θ(1− z) 4

[

(1− 2z + 2z2)K0(bTm) + z(1− z) bTmK1(bTm)
]

,

C
(1)
Q⊥/g

(z, bTm) = 0 ,

C
(1)
Q‖/g‖

(z, bTm) = TF Θ(z)Θ(1− z) 4
[

(2z − 1)K0(bTm) + (1− z) bTmK1(bTm)
]

,

C
(1)
Q⊥/g‖

(z, bTm) = TF Θ(z)Θ(1− z) 4(z − 1) bTmK0(bTm) , (6.64)

where K0 and K1 are modified Bessel functions of the second kind. These are the main analytic

results of this section. The unpolarized matching coefficient C
(1)
Q/g has been computed long

ago [301], and we agree with the bT -space expression given in that reference as well as with the

kT -space result in ref. [205]. The results for the polarization-dependent matching coefficients are

new.

6.3.4 Consistency with the light-quark limit

For ΛQCD ≪ m ≪ kT , heavy-quark TMD PDFs can be determined using a two-step match-

ing [205]. First, the TMD operators at the scale µ ∼ kT are matched onto collinear PDFs in a

theory with nℓ+1 massless quark flavors, which results in the standard massless TMD matching

coefficients. In a second step, the nℓ + 1-flavor PDFs are matched onto those in a theory with nℓ
flavors at the scale µ ∼ m. At fixed order, this implies the following consistency relation for the

unpolarized and linearly polarized massive TMD matching coefficients,

CQ/k(z, bT ,m, µ, ζ) =
∑

j

∫
dz′

z′
CQ/j(z

′, bT , µ, ζ)Mj/k

( z

z′
,m, µ

)

+O(m2b2T ) , (6.65)

CQ‖/k‖(z, bT ,m, µ, ζ) =
∑

j

∫
dz′

z′
CQ‖/j‖(z

′, bT , µ, ζ)Mj‖/k‖

( z

z′
,m, µ

)

+O(m2b2T ) ,

where Mjλ/kλ denotes the PDF matching function, the sum runs over all light degrees of freedom,

and the subscript λ = ∅, ‖ again labels the polarization of the heavy quark and the light partons

j and k. Perturbatively expanding the matching functions as

Ciλ/jλ(z
′, bT , µ, ζ) = δij δ(1− z) +

∞∑

n=1

(αs(µ)

4π

)n
C

(n)
iλ/jλ

(z, bT , µ, ζ) ,

Mjλ/kλ(z,m, µ) = δjk δ(1− z) +
∞∑

n=1

(αs(µ)

4π

)n
M(n)

jλ/kλ
(z,m, µ) , (6.66)

these relations simplify for our dimensionless O(αs) coefficient functions in bT space,

C
(1)
Qλ/gλ

(z, bTm) = C
(1)
qλ/gλ

(z, bT , µ) +M(1)
qλ/gλ

(z,m, µ) , (6.67)
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where the µ dependence has to cancel within the matching coefficient. For the unpolarized

case, this relation has previously been verified in refs. [205,301]. At NLO, the polarized PDF

matching function relevant for our case is given by [317]

M(1)
Q‖/g‖

(z,m, µ) = TF (2z − 1) ln
µ2

m2
. (6.68)

The massless matching coefficient for the quark helicity TMD PDF onto the collinear gluon

helicity PDF was calculated in ref. [311],

C
(1)
q‖/g‖

(z, bT , µ, ζ) = 4TF

[

(2z − 1) ln
2e−γE

µbT
+ (1− z)

]

. (6.69)

Using K0(x) = − ln 2e−γE

x +O(x), it is straightforward to see that our result in eq. (6.64) indeed

satisfies eq. (6.67).

By contrast, the worm-gear L matching coefficient is suppressed by one power of the mass, see

eq. (6.56), and therefore cannot be reproduced by a leading-power PDF matching at the scale

µ ∼ m. Interestingly, it contains a logarithm of mbT at subleading power,

C
(1)
Q⊥/g‖

(z, bTm) = 4TF bTm(z − 1) ln
2e−γE

mbT
+O(m3b3T ) . (6.70)

Unlike the leading-power logarithms in C
(1)
Q/g and C

(1)
Q‖/g‖

, this logarithm cannot be resummed

by the evolution of nℓ + 1-flavor PDFs between µ ∼ m and µ ∼ 1/bT . Subleading-power mass

logarithms in amplitudes that require a helicity flip have received much attention in the context

of Higgs boson production through a bottom-quark loop, see e.g. refs. [269–271,318,319], and it

would be interesting to understand whether the logarithm in eq. (6.70) might be amenable to

similar techniques.

6.3.5 Numerical results for TMD PDFs

For numerics, we evaluate eq. (6.54) at the boundary scales µ0 ∼
√
ζ0 ∼ 1/bT given in and below

eq. (6.40), perform the TMD evolution back to µ =
√
ζ = Q as described around eq. (6.41), and

finally take a numerical Fourier transform as in eq. (6.47). E.g., we have

f1(x, bT , µ, ζ) = Uq(µ0, ζ0, µ, ζ)
αs(µ0)

4π

∫
dz

z
C

(1)
Q/g(z, bTm) fg

(x

z
, µ0

)

(6.71)

for the evolved unpolarized heavy-quark TMD PDF, and similarly for the other cases. For

the input collinear gluon PDFs we use the NNPDF31_nnlo_as_0118 unpolarized proton PDF

set [320] together with the NNPDFpol11_100 set for the polarized case [321]. Our input values

for the strong coupling and the quark pole masses were given in section 6.2.6.

In figure 6.4, we show our numerical results for the heavy quark TMD PDFs for producing

a charm or bottom quark from a longitudinally polarized proton as a function of kT and x,

respectively. The bottom quark TMD PDFs have a wider peak in kT compared to the charm

because of its larger mass, as can be understood from the fact that the expressions in eq. (6.64)

only depend on mbT up to RG effects. Note also that the worm-gear L function (after including

a Jacobian 2πkT ) is quadratic in the small kT region with a coefficient proportional to 1/m3,

whereas the unpolarized and helicity TMD PDFs are linear in kT . As this approximation is

valid to higher kT in the case of the bottom quark than that of the charm, the bottom-quark
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Figure 6.4: TMD PDFs for producing a charm (left) or bottom quark (right) from gluons within

a longitudinally polarized proton as a function of kT at fixed x (top) or vice versa (bottom).

Dashed red lines in the bottom two panels indicate negative sign.
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TMD PDF has a numerically smaller value over a wide range. As x decreases, the unpolarized

heavy-quark TMD PDF rises much more rapidly than the polarized ones, as expected from the

smaller gluon polarization fraction at smaller x. We point out that the unpolarized TMD PDF

changes sign at very high x ≥ 0.6, indicating a need for resumming subleading-power threshold

logarithms of 1− x using e.g. the tools of refs. [322].
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6.4 Towards phenomenology with heavy-quark TMDs

In this section, we present our phenomenological studies for heavy quark TMDs. A brief overview

including a sketch of the relevant processes was already given in section 2.6.4.

6.4.1 Accessing heavy-quark TMDs in e+e− collisions

In e+e− collisions, TMD fragmentation functions may be accessed from double-inclusive mea-

surements with two identified hadrons, e+e− → HaHbX. For instance, the six-fold differential

cross section for this process in the TMD limit Pa,T ,Ma,b ≪ Q is given by [323,324]

dσe+e−→HaHbX

d cos θ dφ dza dzb d2 ~Pa,T
=

3α2
em

Q2

[(1

2
− y + y2

)

Wincl(Q
2, za, zb, Pa,T /za)

+ y(1− y) cos(2φ0)Wcos(2φ0)(Q
2, za, zb, Pa,T /za)

]

+ (odd under y ↔ 1− y) , (6.72)

where cos θ and φ are the spherical coordinates of hadron Hb with respect to the incoming

beams in the center-of-mass frame, za and zb are the lightcone momentum fractions of the two

hadrons, and ~Pa,T is the transverse momentum of hadron Ha. On the right-hand side, αem is

the fine-structure constant, Q is the center-of-mass energy of the collision, y = (1+ cos θ)/2, and

φ0 is the azimuthal angle of ~Pa,T measured relative to the plane spanned by Hb and the beams.

The hadronic structure functions factorize into TMD FFs,

Wincl(Q
2, za, zb, qT ) = Fee

[

HD1D1

]

,

Wcos(2φ0)(Q
2, za, zb, qT ) = Fee

[

HH
⊥(1)
1 H

⊥(1)
1

]

, (6.73)

where Fee denotes a weighted sum over flavors and a convolution of two TMD FFs (i.e., a

product in bT space) at total partonic transverse momentum qT = Pa,T /za,

Fee
[

HD(n)D(m)
]

= z2az
2
b

∫ ∞

0

dbT bT
2π

(MabT )
n(MbbT )

mJn+m(bT qT )

×
∑

i,j

Hee→ij(Q
2, µ)DHa/i(za, bT , µ,Q

2)DHb/j(zb, bT , µ,Q
2) , (6.74)

and the hard function describing the pair production of quarks is given by

Hee→ij(Q
2, µ) = δij̄

{

e2i − 2vevieiRe
[
PZ(Q

2)
]
+ (v2e + a2e)(v

2
i + a2i )

∣
∣PZ(Q

2)
∣
∣2
}

. (6.75)

Here we have kept the contribution from Z boson exchange and Z-photon interference, as relevant

for measurements on the Z pole, where PZ(Q
2) = Q2/(Q2 −m2

Z + iΓZmZ) is the reduced Z

propagator and ef (vf , af ) are the electromagnetic charge (vector, axial coupling to the Z)

of a fermion f . We may assume that the experimental measurement involves an integral over

symmetric ranges in cos θ such that the forward-backward asymmetry and an associated odd

Collins effect in eq. (6.72) drop out.

Crucially, the TMD factorization theorems in eqs. (6.72) and (6.73) only assume that the hard

scale Q ∼ zaQ ∼ zbQ is large compared to all other scales, i.e., all masses and transverse

momenta, and therefore hold for both light-quark and heavy-quark fragmentation at za,b ∼ 1

without modification. In particular, the heavy quarks are approximately massless at the scale
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µ ∼ Q at which they are produced, and their polarization states are thus fully entangled. The

hard function in eq. (6.75) could be modified to account for the effect of perturbative spin flips,

but this amounts to retaining power corrections in m/Q further suppressed by powers of αs.

Importantly, this means that a characteristic cos(2φ0) modulation (the Collins effect) is present

both for light and for heavy quarks at leading power and at tree level. As is commonly done for

light quarks, the Collins effect strength

Rcos(2φ0)(Q
2, qT ) ≡

∫
dza

∫
dzbWcos(2φ0)(Q

2, za, zb, qT )
∫
dza

∫
dzbWincl(Q2, za, zb, qT )

(6.76)

can be accessed by taking suitable ratios of weighted cross sections, which we here take to be

integrated over za and zb as likely relevant for an initial study of the heavy-quark Collins effect.

κH [MeV]

500

400

600

0 1 2 3 4 5 6

Pa,T [GeV]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1
/
σ
d
σ
/
d
P

a
,T

e+e− → DD̄X (10GeV)

κH [MeV]

500

400

600

0 1 2 3 4 5 6

Pa,T [GeV]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1
/
σ
d
σ
/
d
P

a
,T

e+e− → DD̄X,BB̄X (92GeV)

κH⊥ [MeV]

500

400

600

0 1 2 3 4 5 6

qT [GeV]

0

1

2

3

4

5

6

7

8

9

10

R
c
o
s(
2
φ
0
)
[%

]

e+e− → DD̄X (10GeV)
κH = 500MeV

λH⊥ = ±(200 ± 50)MeV

κH⊥ [MeV]

500

400

600

0 1 2 3 4 5 6

qT [GeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
c
o
s(
2
φ
0
)
[%

]

e+e− → DD̄X,BB̄X (92GeV)
κH = 500MeV

λH⊥ = ±(200 ± 50)MeV

Figure 6.5: Normalized TMD cross sections (top) and Collins effect strengths (bottom) for charm

quarks at Q = 10GeV (left) and charm and bottom quarks at Q = mZ (right) as a function of

PaT and integrated over zH . The yellow bands in the case of the Collins effect correspond to the

indicated variations of the sign and magnitude of λH⊥.

In figure 6.5 we show the predicted e+e− → DD̄X or BB̄X cross sections as a function of

hadron transverse momentum Pa,T , and the Collins effect strength Rcos(2φ0) as a function of qT .

The universality for charm and bottom quarks follows along the same lines as for figure 6.3,

and holds as long as the center-of-mass energy is sufficient to produce the quark-antiquark

pair in a boosted state. This is the case for charm mesons at typical continuum center-of-mass

energies at existing B factories, such as Belle II [325], and for both charm and bottom mesons at

higher values of Q such as at the Z pole. The Collins effect is smaller at higher center-of-mass
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energies because χ⊥
1,H is linearly suppressed in bT compared to the unpolarized, which means

it predominantly contributes at larger values of bT where the Sudakov suppression at higher

energies tends to be stronger.

We show the results of varying κH (κ⊥H) for the unpolarized (Collins) TMD FF, and illustrate the

variation of λH⊥ by the yellow band, exactly as in figure 6.3. Note that the information about

the absolute sign of the Collins function is lost in e+e− collisions, i.e., for two charge-conjugate

hadrons we end up with a positive effect strength for any value of λH⊥ = λH̄⊥ since the effect is

proportional to the square of the Collins function. One may nevertheless extract the relative

factor between e.g. the D and D∗ Collins function, which heavy-quark spin symmetry predicts to

be exactly minus one, see eq. (6.36), by measuring the Collins effect separately for e+e− → DD̄X

and e+e− → D∗D̄X. Explicitly, our prediction from heavy-quark spin symmetry reads

RDD̄cos(2φ0)
= −1

3
RD

∗D̄
cos(2φ0)

= −1

3
RDD̄

∗

cos(2φ0)
= +

1

9
RD

∗D̄∗

cos(2φ0)
(6.77)

We point out that for generic O(ΛQCD) model parameters, the Collins effect strength reaches

the several-percent level for continuum open charm production at existing B factories, in line

with our expectation of an effect strength that is comparable to the light quark case, making a

future dedicated measurement (or search) appear very feasible.

Comment on claims regarding a mass suppression of the Collins effect

In e+e− collisions, the “intrinsic” heavy-quark Collins effect we analyzed above has been

disregarded so far. Note that this effect is in general distinct from the large background

contribution of DD̄ weak decays to e.g. a measurement of the Collins effect on a KK̄ sample.

This contribution is indeed considered in experimental analyses [326–329] and subtracted as

a background using Monte-Carlo simulations and heavy-quark enriched samples, but cannot

be immediately interpreted as a sign of a (nonperturbative) Collins effect since the progenitor

DD̄ pair in this case is not constrained to be near the back-to-back limit by the measurement,

meaning that e.g. perturbative gluon emissions can also induce azimuthal correlations on the

DD̄ pair and thus their weak decay products.

Ref. [326] mentions that it would be possible to look for the intrinsic heavy-quark Collins effect

with some further improvements to their analysis, but also incorrectly expects that the Collins

effect should be parametrically suppressed by the mass of heavy quarks. The argument sketched

in that reference (see beginning of their section IV) is that helicity flips should wash out the spin

correlation between the heavy quark and the antiquark. This is not the case, as we have argued

above: The quarks are approximately massless at the scale µ ∼ Q at which they are produced,

and thus are produced with fully entangled spin states, such that there is no suppression by

the mass from physics at this scale. Similarly, in our detailed analysis of the Collins FF at the

scale µ ≤ kT ≤ m, we find no suppression of the effect by the mass, and the Collins effect in

particular is fully allowed by heavy-quark symmetry when accounting for the presence of lightlike

Wilson lines. Note that this is not contradictory to the fact that we do find a suppression of the

Collins effect by ΛQCD/kT at large kT , since this suppression is exactly commensurate with the

twist suppression of the two Collins functions in the light-quark case, which has been mapped

out extensively [326–330]. We conclude that the prospects for a measurement of the intrinsic,

nonperturbative heavy-quark Collins effect at B factories are even better than anticipated in

ref. [326].
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6.4.2 Accessing heavy-quark TMDs at the future EIC

TMD fragmentation functions may also be accessed from single-inclusive measurements with one

identified hadron in electron-nucleon collisions, e−(ℓ)+N(P ) → e−(ℓ′)+H(PH)+X, where the

scattering is mediated by an off-shell photon with momentum q = ℓ− ℓ′ (and Q2 ≡ −q2 > 0).

The fully differential cross section for this process in the TMD regime reads [112,147,171,172,331]

dσeN→eHX

dx dy dzH d2 ~PH,T
= σ0

{

WUU,T (Q
2, x, zH , ~PH,T /zH)

+ λeSL
√

1− ǫ2WLL(Q
2, x, zH , ~PH,T /zH)

+ SL ǫ sin(2φH) W
sin(2φH)
UL (Q2, x, zH , ~PH,T /zH)

}

. (6.78)

On the left-hand side, x = Q2/(2P · q), y = (P · q)/(P · ℓ), zH = (P · PH)/(P · q), and ~PH,T is

the outgoing hadron’s transverse momentum relative to ~q in the Breit frame. On the right-hand

side,

σ0 =
α2
emπy

zHQ2(1− ǫ)
, ǫ =

1− y

1− y + y2/2
, (6.79)

up to power corrections in xMN/Q, xMHMN/(zHQ
2), or xPH,TMN/(zHQ

2), all of which are

small in the TMD regime of interest, and φH is the azimuthal angle of the hadron transverse mo-

mentum in the Trento (photon) frame [171]. The beam polarization information is encoded in the

lepton beam helicity λe and the covariant nucleon spin vector Sµ = (0, ST cosφS , ST sinφS ,−SL)
as decomposed in the Trento frame. We have dropped terms proportional to ST , which cannot

be populated by leading-power heavy-quark TMD PDFs, see section 6.3. We have also dropped

terms proportional to the Boer-Mulders function, whose twist-2 matching in the heavy-quark

case is suppressed by at least one additional power of αs. The hadronic structure functions

factorize in terms of one TMD PDF and one TMD FF each,

WUU,T (Q
2, x, zH , ~qT ) = FeN

[

H f1D1

]

,

WLL(Q
2, x, zH , ~qT ) = FeN

[

H g1LD1

]

,

W
sin(2φH)
UL (Q2, x, zH , ~qT ) = −FeN

[

H h
⊥(1)
1L H

⊥(1)
1

]

, (6.80)

where the convolution in transverse momentum may be written in position space as [181]

FeN
[

H g(n)D(m)
]

= 2zH

∫ ∞

0

dbT bT
2π

(MNbT )
n(−MHbT )

mJn+m(bT qT )

×
∑

i

Hei→ei(Q
2, µ) gi/N (x, bT , µ,Q

2)DH/i(zH , bT , µ,Q
2) , (6.81)

and the hard function for scattering a quark off a virtual photon is

Hei→ei(Q
2, µ) = |ei|2 +O(αs) . (6.82)

As for e+e− collisions, the TMD factorization theorems in eq. (6.80) only assume that the hard

scale Q ∼ zQ is large compared to all low scales, and thus hold for both light and heavy hadron

production without modification. Again, the heavy quark is approximately massless at the

hard scale such that helicity is conserved during the hard scattering. This means that while
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σ(eN → eHX) [pb] c, x > 0.01 c, x > 0.1 b, x > 0.01 b, x > 0.1

qT < 2GeV, Q > 4GeV 84 3.47 18 0.65

qT < 4GeV, Q > 10GeV 16 1.45 4.9 0.42

Table 6.1: Total cross sections in picobarn for producing charm (left two columns) or bottom-

quark hadrons (right two columns) in the TMD region at the future 18 × 275GeV2 EIC for

different cuts on x > xmin, Q > Qcut, qT = PH,T /z < qcutT . See the text for further details on

the acceptance cuts we consider.

the production mechanisms for longitudinally or transversely polarized heavy quarks from an

incoming nucleon are different from light quarks (and are fully perturbative), the way they

imprint on the distribution of final-state hadrons is the same, leaving nonzero spin asymmetries

ALL(Q
2, x, qT ) =

∫
dzHWLL(Q

2, x, zH , ~qT )
∫
dzHWUU,T (Q2, x, zH , ~qT )

,

A
sin(2φH)
UL (Q2, x, qT ) =

∫
dzHW

sin(2φH)
UL (Q2, x, zH , ~qT )

∫
dzHWUU,T (Q2, x, zH , ~qT )

. (6.83)

In particular, the sin(2φH) modulation induced by a nucleon beam polarization flip gives direct

access to the heavy-quark Collins function including its sign, which is not accessible in e+e−

collisions.

To assess the statistical power of the future EIC to constrain charm and bottom quark TMD

dynamics, we first estimate the expected sample size of heavy hadrons in electron-proton collisions.

To do so, we consider the total cross section for producing a heavy quark in the TMD region

summed over beam polarizations,

σeN→eHX(Qcut, q
cut
T ) =

∫

dx dy dzH d2 ~PH,T
dσeN→eHX

dx dy dzH d2 ~PH,T
(6.84)

×Θ(qcutT − PH,T /zH)Θ(Q−Qcut)ΘDIS(x, y)

= σ0

∫

dx dy dzH Θ(Q−Qcut)ΘDIS(x, y) 2z
3
H

∫ ∞

0
dbT q

cut
T J1(bT q

cut
T )

×
∑

i

Hei→ei(Q
2, µ) f1 i/N (x, bT , µ,Q

2)D1H/i(zH , bT , µ,Q
2) ,

where ΘDIS(x, y) denotes DIS acceptance cuts given by

x > xmin , 0.01 < y < 0.95 , W 2 =
(1

x
− 1
)

Q2 > 100GeV2 . (6.85)

We consider the EIC at beam energies Ee = 18GeV and EN = 275GeV. Any experimental cuts

on zH > zcut and the additional prefactor of z3H in eq. (6.84) are irrelevant at our working order

because the heavy quark carries all the energy in all regimes, i.e., zH = 1 either at leading power

in the heavy-quark expansion or at the leading perturbative order, see the comments below

eq. (6.41). For this estimate we set κH = 0 in the unpolarized heavy-quark TMD FF, since the

total integral of the cross section up to qcutT ≫ ΛQCD is independent of it up to corrections of

O(Λ2
QCD/q

cut
T ) [307], and sum over all heavy hadrons containing the heavy quark, exploiting

∑

H χH = 1. This means that the total rate at which heavy quarks are produced is predicted

fully perturbatively, as expected.
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Our results for the expected total charm and bottom-quark TMD cross sections are given in

table 6.1 for Qcut = 4GeV and Qcut = 10GeV, where higher Qcut allows for mapping out the

TMD region to higher qT before encountering power corrections, but at the cost of much lower

rates. (We have also adjusted qcutT accordingly in each case.) Scaled to an integrated luminosity

of 10 fb−1, we expect a total charm quark sample of 35× 103 in the TMD region for the loose cut

on Q and in the region x > 0.1 where polarization effects are expected to be most pronounced,

see figure 6.4, and where a measurement of the sin(2φH) asymmetry is the most promising. This

suggests that even with this limited integrated luminosity, percent-level asymmetries should be

statistically resolvable.

In figure 6.6 we show the results for the unpolarized SIDIS cross section with a D (B) meson in

the final state, and for the two spin asymmetries defined in eq. (6.83). Note that the effect of

different κH in the unpolarized TMD fragmentation function is negligible in the cross section

and the ALL asymmetry, which as expected are dominated by perturbative physics. The ALL
asymmetry is very sizable at ∼ 30% at the chosen value of x = 0.2. On the other hand, the

AUL asymmetry is substantially smaller (1− 2%) for the generic O(ΛQCD) parameters we picked

here due to the smaller value of both h⊥1L compared to g1L and H⊥
1 compared to D1 in most

of the contributing TMD region, see figures 6.3 and 6.4 and the surrounding discussion. The

numerically smaller value of h⊥1L for bottom quarks discussed around figure 6.4 is likewise

reflected in the size of the asymmetry for bottom compared to charm quarks. We emphasize

that a measurement of AUL, compared to the Collins effect in e+e− collisions, has the unique

benefit of accessing the absolute sign of the heavy-quark Collins function. Resolving this sign

should well be possible within the expected statistics at the future EIC. While we leave the

study of systematic effects (such as luminosity uncertainties) to future work, we note that the

requirements that the established heavy-flavor/gluon distribution program of the EIC places on

instrumentation have already been analyzed in depth in ref. [179]. Among these requirements

are secondary vertex reconstruction capabilities and the momentum resolution on soft pions from

D decays, all of which will also benefit the kind of differential measurements of semi-inclusive

heavy-quark fragmentation that we propose here.

6.5 Summary

In this chapter, we discussed the transverse momentum-dependent (TMD) dynamics of bottom

or charm quarks with mass m ≡ mc,mb ≫ ΛQCD fragmenting into heavy hadrons which were

studied in [3] for the first time. We considered two parametric regimes for the transverse

momentum kT , (a) ΛQCD . kT ≪ m, where the hadron transverse momentum kT is determined

by nonperturbative soft radiation into the final state, and (b) ΛQCD ≪ m . kT , where kT is

set by perturbative emissions. We assumed throughout that the heavy quark is produced at a

hard scale Q≫ m, kT , i.e., it is boosted in the frame of the hard scattering, such that standard

TMD factorization applies at the scale Q and only the low-energy TMD matrix elements are

modified by the heavy quark dynamics. In both regimes, the dynamics at scales below the heavy

quark mass are constrained by heavy-quark symmetry and encoded in novel low-energy matrix

elements in boosted Heavy-Quark Effective Theory (bHQET)

We showed that in regime (a), the unpolarized and Collins TMD fragmentation functions (FF)

match onto new, universal nonperturbative bHQET matrix elements χ1,H(kT ) and χ⊥
1,H(kT ),

which we dubbed TMD fragmentation factors. In regime (b), we found new inclusive bHQET

matrix elements, χ1,H and χ⊥
1,H . An important new ingredient in this analysis is the unpolarized
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Figure 6.6: Normalized unpolarized TMD cross sections (top), longitudinal spin asymmetry

(center), and sin(2φH) spin asymmetry (right) for charm quarks (left) and bottom quarks (right)

at the future EIC. The yellow bands correspond to the indicated variations of the sign and

magnitude of λH⊥, i.e., the heavy-quark Collins function.
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6.5 Summary

partonic heavy quark TMD FF d1Q/Q, a perturbative Wilson coefficient that appears in our

analysis for the first time and that we expect to appear also in other contexts. Further, we

proved new TMD sum rules that arise from heavy-quark symmetry. We want to point out

that an improved field-theoretic understanding of heavy-quark fragmentation will also benefit

the description of heavy flavor in Monte-Carlo generators for the LHC [332], where many key

searches and Higgs coupling measurements involve final-state charm or bottom quarks.

To extend our analysis to the possible phenomenology at the future Electron-Ion Collider (EIC),

we also considered the production of polarized heavy quarks from a polarized nucleon, which is

encoded in all-order matching relations between heavy-quark TMD PDFs and twist-2 collinear

light-parton PDFs. We find nontrivial matching coefficients at O(αs) for the heavy-quark

worm-gear L and helicity TMD PDFs onto the gluon helicity collinear PDF, both of which

we computed explicitly for the first time. We anticipate that the heavy-quark Boer-Mulders

function will receive a contribution from the twist-2 collinear gluon PDF starting at O(α2
s),

where it becomes allowed by time-reversal invariance.

Combining the standard TMD factorization theorems for e+e− to hadrons and SIDIS with simple

numerical models for the new nonperturbative functions we identified, we provided predictions

for unpolarized heavy-quark TMD cross sections, the Collins effect strength for heavy quarks at

e+e− colliders (and in particular for cc̄ continuum production at current B factories), as well as

for the relevant spin asymmetries at the future EIC. We find that a measurement of the intrinsic

heavy-quark Collins effect is well within reach of existing B factories, and is motivated by the

rich nonperturbative structure of the heavy-quark Collins function that our analysis revealed.

The fact that transversely polarized heavy quarks are produced from linearly polarized nucleons

at a significant rate, as encoded in the worm-gear L matching coefficient, in addition provides a

clean avenue for probing the heavy-quark Collins functions in heavy-quark SIDIS at the future

EIC, including its absolute sign.

The theoretical framework we developed in this chapter paves the way for many promising

future applications: While we only considered the case of unpolarized heavy hadrons in this

work, an immediate next application of our framework are polarized vector mesons or baryons

containing heavy quarks. This gives access to a larger set of transverse-momentum dependent

polarized fragmentation functions [323,333,334] which in the heavy-quark case resolve the light

spin density matrix in even greater detail and obey additional sum rules. Another promising

prospect is to consider heavy-quark TMD fragmentation within jets, which makes its rich physics

accessible in hadron collisions. This extension is in fact straightforward because our results

for the heavy-quark TMD FFs hold independent of the factorization theorem they appear

in. This makes it possible to insert them into the hadron-in-jet frameworks of refs. [335, 336]

as long as Q ∼ pjetT R ≫ m, kT . Yet another possibility, which could mitigate the effect of

nonglobal logarithms that can become nonperturbative in our regime of interest, would be to

apply grooming to the jet and study the hadron transverse momentum spectrum with respect to

the groomed jet axis [337,338].

Other natural extensions are higher-order calculations of the various new partonic matching

coefficients we introduced in this chapter, which will reduce the perturbative uncertainties on the

lowest-order theory predictions we provided here. This will also involve analyzing the renormalon

structure and optimizing the choice of quark mass scheme. In addition, one could consider

the matching onto subleading bHQET fragmentation matrix elements (for TMD FFs) or onto
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twist-3 collinear PDFs (for TMD PDFs, extending the work of ref. [339] to the massive case),

which would make it possible to interpret phenomenological extractions in terms of higher-point

correlation functions. Higher-order resummed predictions for heavy-quark TMD spectra then

immediately follow from our factorization results by solving the attendant renormalization group

equations, and will serve as powerful, highly differential benchmarks of the heavy-quark physics

encoded in present and future parton showers, including their interface with hadronization mod-

els, on which our field-theory analysis of the nonperturbative dynamics places rigorous constraints.

In conclusion, our analysis reveals that a wealth of information on the all-order and nonper-

turbative structure of QCD resides in the transverse momentum dependence of heavy-quark

fragmentation. An experimental exploration of this new subfield of TMD physics is in immediate

reach of existing B factories and will be an exciting addition to the planned heavy-flavor physics

program of the future EIC.
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Chapter 7

TMD heavy-quark fragmentation at

NLO

In this chapter we calculate all TMD FFs involving heavy quarks and the associated TMD

matrix element in HQET to next-to-leading order in the strong coupling. Our results confirm

the renormalization properties, large-mass, and small-mass consistency relations predicted in

ref. [3].

This chapter is based on ref. [1] reflecting the author’s contribution. Compared to ref. [1], we

shortened the calculation of d1Q/Q section 7.3 and omitted sections 4, 6, 7 and 8.

7.1 Motivation

The fragmentation of heavy (bottom or charm) quarks into the experimentally observed heavy

meson and baryon states is of particular interest because the mass of the quark imprints as a

perturbative scale on the otherwise nonperturbative process of hadronization. In the last chapter,

we discussed study of transverse momentum-dependent (TMD) fragmentation functions (FFs)

for the formation of heavy hadrons from a parent heavy quark initiated in ref. [3]. Our work

generalized the well-studied case where only the collinear momentum fraction of the hadron is

resolved [285–288,292] (see refs. [340] for a recent precision study on data), and is part of a larger,

ongoing research effort to understand differential jet and fragmentation functions involving heavy

quarks, heavy hadrons, and heavy-quark bound states [3, 289, 338, 341–345]. In this context,

TMD FFs are unique in the wealth of information they can provide on the hadronization process,

essentially offering a full three-dimensional view of the fragmentation cascade.

In this chapter, we present the results for all unpolarized heavy-quark TMD FFs at perturbative

transverse momenta to complete next-to-leading order (NLO) in the strong coupling. Our final

results in position space agree with those of a recent calculation by another group [344] that

used a highly orthogonal organization of singularities in the intermediate momentum-space steps,

providing a strong independent cross check.

Importantly, the factorization paradigm ensures that the heavy-quark TMD FFs appear as

universal building blocks across predictions for a large number of processes involving final-state

heavy quarks. In the previous, we explicitly considered their phenomenology in heavy-hadron

pair production in the back-to-back limit in e+e− collisions and in (polarized) semi-inclusive

DIS at the future Electron-Ion Collider [179], cf. ref. [346] for recent dedicated projections for
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polarized collinear parton distribution functions (PDFs) and FFs involving heavy quarks at

the EIC. However, the applicability of heavy-quark TMD FFs is much wider: Applications of

immediate phenomenological interest range from Z+hadron [347] and dihadron [348] azimuthal

decorrelations in pp and pA collisions to hadron-in-jet transverse-momentum distributions [335,

336], transverse momentum-like event shapes (extending the calculation of mass effects in thrust-

like event shapes [294, 349–351]), and energy-energy correlators in the back-to-back limit in

e+e− [352], ep and eA [353,354], and pp collisions [355,356]. In all of these cases, factorization

formulas involving TMD FFs have been derived, and the NLO results we present in this chapter

enable one to fully account for the effect of quark masses and accurately capture their highly

nontrivial interplay with transverse momenta in all of these processes.

7.2 Theoretical framework

7.2.1 Heavy-quark TMD FFs

We study the fragmentation of a heavy quark Q with pole mass m≫ ΛQCD into an unpolarized

heavy hadron H and additional fragmentation products X. We work in QCD with nf = nℓ + 1

flavors, where nℓ is the number of massless quark flavors. Just as in chapter 6, we work in

the “hadron frame” for fragmentation [147] where PµH = (P−
H ,M

2
H/P

−
H , 0), with MH the hadron

mass, and PH,⊥ = 0 by definition.

In section 6.2.4, we showed that up to a factor of the total probability for Q to fragment into H,

the distribution differential in kT = PX,T ∼ MH and the lightcone momentum fraction zH of

the original quark retained by H is governed by a new perturbative matching coefficient, the

partonic heavy-quark TMD FF d1Q/Q(z, kT , µ, ζ),

D1H/Q(zH , bT , µ, ζ) = d1Q/Q(zH , bT , µ, ζ)χH +O
(ΛQCD

m

)

+O(ΛQCDbT ) . (7.1)

Making all regulators explicit, the formal definition of d1Q/Q at the bare level reads

dbare1Q/Q(z, bT , ǫ, η, ζ/ν
2) =

1

2z1−2ǫNc

∫
db+

4π
eib

+(p−/z)/2 (7.2)

× Tr
∑
∫

X

tr
[ /̄n

2

〈
0
∣
∣W †

η (b)ψQ(b)
∣
∣QX

〉〈
QX

∣
∣ψ̄Q(0)Wη(0)

∣
∣0
〉]

,

where we work in d = 4− 2ǫ spacetime dimensions, Nc is the number of colors, Tr (tr) indicates

a trace over color (spin), and
∑∫

X indicates a sum over all possible partonic final states combined

with an integral over their phase space. The fields in the first matrix element are evaluated at a

spacetime position b ≡ (0, b+, b⊥) with b⊥ Fourier conjugate to k⊥, and b2T ≡ −b2⊥ and k2T = −k2⊥,

respectively. The heavy quark in the external state carries momentum pµ = (p−,m2/p−, 0), i.e.,

the above definition is equal to the hadron-level definition of the heavy-quark TMD FF D1H/Q,

but with H replaced by Q itself in the external state and restricting to partonic final states

X [3]. The definition in eq. (7.2) is given in terms of the heavy-quark field renormalized on shell,

ψbare
Q (x) = Z

1/2
ψ,OS(m,µ, ǫ)ψQ(x) , (7.3)

and in terms of Wilson lines Wη(x) defined as anti-path ordered exponentials of gauge fields

extending to positive infinity along the lightcone direction n̄µ,

Wη(x) = P̄
[

exp
(

−ig

∫ ∞

0
ds n̄ ·A(x+ n̄s)

)]

η
. (7.4)
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The subscript η indicates the presence of an additional rapidity regulator. In explicit calculations,

we will use the so-called η regulator of refs. [113, 118]. The final result for the bare matrix

element depends on ζ/ν2, with ζ ≡ (p−/z)2 the Collins-Soper scale.

In terms of the bare collinear matrix element in eq. (7.2), the renormalized partonic heavy-quark

TMD FF is given by

d1Q/Q(z, bT , µ, ζ) = lim
ǫ→0

ZUV(µ, ζ, ǫ) lim
η→0

[

dbare1Q/Q(z, bT , ǫ, η, ζ/ν
2)
√
S(bT ,m, ǫ, η, ν)

]

, (7.5)

where S is the universal bare TMD soft function for the η regulator, which cancels all poles of η

and the associated ν dependence, and is independent of the heavy-quark mass up to secondary

quark mass effects starting at two loops. By contrast, the MS renormalization factor ZUV for

quark TMDs is independent of the mass to all orders by RG consistency with the hard matching

coefficient at the hard scattering energy Q ∼ p−/z ≫ m ∼ kT ∼ 1/bT . While soft subtractions

(known as zero bins in the SCET literature) generally need to be accounted for in both virtual

and real collinear diagrams when computing the bare collinear matrix element itself, we have

explicitly verified that they lead to scaleless integrals for our choice of regulator, also in the

presence of the quark mass.

7.2.2 Nonvalence contributions

There are two further ways in which heavy quarks can participate in the TMD fragmentation

process for m ∼ kT ∼ 1/bT ≫ ΛQCD; these were sketched in ref. [3], but we spell them out here

explicitly. In one case, the resolved final state is a heavy hadron H, while the parent parton

i = g, q, q̄ is light,

D1H/i(zH , bT , µ, ζ) = d1Q/i(zH , bT , µ, ζ)χH +O(ΛQCD) . (7.6)

Here χH is again the universal inclusive fragmentation probability for Q→ H, while the bare

matching coefficient d1Q/i is obtained from eqs. (7.2) and (7.5) after replacing the heavy-quark

fields in the bare correlator by suitable unpolarized combinations of gluon or light-quark fields.

In the other case, the resolved final-state hadron h is light. In this case the TMD FF D1h/i

for i = g, q, Q̄,Q, Q̄ has to be matched onto collinear fragmentation functions Dh/j at the scale

ΛQCD where all degrees of freedom j = g, q, q̄ are light,

D1h/i(zH , bT , µ, ζ) =
1

z2H

∑

j

∫
dz

z
Jj/i(z, bT ,m, µ, ζ)Dh/j

(zH
z
, µ
)

+O(ΛQCD) . (7.7)

This has the standard form of matching TMD FFs onto collinear FFs, but note that we include

the mass as an additional third argument of the matching coefficient to make explicit that even

when i is light, the heavy quark may in general contribute to the matching at µ ∼ m ∼ kT
through closed loops.

7.2.3 bHQET fragmentation factors and the large-mass limit

In ref. [3], we showed that for transverse momenta kT ≪ m, the TMD dynamics are governed

by new (and in general nonperturbative) matrix elements defined in boosted HQET [146,284]

that we dubbed TMD fragmentation factors. Specifically, for ΛQCD . kT ≪ m and counting

1− zH ∼ 1 , (7.8)
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which amounts to integrating over wide bins in zH or taking low zH moments, the TMD FF for

producing a heavy hadron H off a heavy quark Q factorizes as [3]

D1H/Q(zH , bT , µ, ζ) = δ(1− zH)Cm(m,µ, ζ)χ1,H

(

bT , µ,

√
ζ

m

)

+O
( 1

m

)

, (7.9)

where Cm(m,µ, ζ) is generated by separately matching collinear and soft modes at the scale

µ ∼ m onto HQET and QCD with nℓ flavors, respectively [293]; explicit expressions for Cm and

other perturbative ingredients to the order required for our perturbative checks are given in

appendix B.3.

In eq. (7.9), the TMD dynamics are encoded in the unpolarized TMD fragmentation factor

χ1,H . For ΛQCD ≪ kT ∼ 1/bT , we showed in ref. [3] that it is given by a product of the total

fragmentation probability χH and a perturbative matching coefficient C1,

χ1,H(bT , µ, ρ) = C1(bT , µ, ρ)χH +O(Λ2
QCDb

2
T ) , (7.10)

where C1 was calculated in ref. [1]. Here we have also introduced the shorthand ρ ≡ v− =
√
ζ/m

for the boost of the hadron.

At the partonic level, eqs. (7.9) and (7.10) together imply the following consistency condition

for the partonic heavy-quark TMD FF in the limit m≫ kT ∼ 1/bT [3],

d1Q/Q(z, bT , µ, ζ) = δ(1− z)Cm(m,µ, ζ)C1

(

bT , µ,

√
ζ

m

)

+O
( 1

bTm

)

, (7.11)

and in section 7.4.1 we will use this relation as a check of our one-loop results. By contrast,

nonvalence (or disfavored) partonic heavy-quark TMD FFs become power-suppressed in the

heavy-quark limit,

i 6= Q : d1Q/i(z, bT , µ, ζ) = O
( 1

bTm

)

. (7.12)

The indirect effect (D1h/i, i 6= Q, Q̄) of the heavy quark on light-hadron production for m≫ kT
is leading in 1/m. It is governed by virtual contributions from collinear and soft so-called mass

modes and thus follows exactly the TMD PDF case [205]. Finally, the direct contribution (D1h/Q)

to light-hadron production becomes strongly peaked at zh → 0 in the limit m ≫ kT & ΛQCD,

but for any finite value of zh (or argument z of Jj/Q at the partonic level) is kinematically

suppressed as m≫ kT ; we will verify this latter behavior in section 7.4.1, but leave a dedicated

analysis of its zh → 0 behavior – which is known to be subtle in fragmentation [357] – to future

work.

7.2.4 Consistency conditions in the light-quark limit

In the case when the heavy-quark is light compared to kT , the matching at the scale µ ∼ kT
takes exactly the standard form for matching TMD FFs onto twist-2 collinear FFs [3],

D1 h/Q(zh, bT , µ, ζ) =
1

z2h

∑

i

∫
dz

z
Ji/q(z, bT , µ, ζ)D(nℓ+1)

h/i

(zh
z
, µ
)

+O(m2b2T ) , (7.13)

where h = h,H may be both a heavy or a light hadron and D
(nℓ+1)
h/j are collinear FFs in a

theory with nℓ light and one massive flavor, i.e., the mass is the highest IR scale in the twist-2

matching. Importantly, the TMD FF matching coefficients Ji/q are independent of these details
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in the IR and are thus given by the universal TMD FF matching coefficients in a theory with

nf = nℓ + 1 light degrees of freedom, which are known to N3LO [302,303]. The problem of the

mass dependence is thus reduced to the well-understood behavior of the collinear FFs, which

differs depending on whether h is heavy or light [358,359],

D
(nℓ+1)
H/i (zH , µ) = dQ/i(zH , µ)χH +O

(ΛQCD

m

)

,

D
(nℓ+1)
h/i (zh, µ) =

∑

j

∫
dz

z
Mj/i,T (z,m, µ)D

(n)
h/j

(zh
z
, µ
)

. (7.14)

Here dQ/i(zH , µ) is the partonic collinear heavy-quark FF and Mj/i,T is the timelike matching

function governing the flavor decoupling in light-hadron collinear FFs.

Comparing eqs. (7.1), (7.6), and (7.7) to eqs. (7.13) and (7.14), we can read off the following

leading-power behavior of the relevant perturbative heavy-quark TMD matrix elements in the

limit m≪ kT ∼ 1/bT [3],

d1Q/i(z, bT , µ, ζ) =
1

z2

∑

j

∫
dz′

z′
Jj/i(z′, bT , µ, ζ) dQ/j

( z

z′
, µ
)

,

Jk/i(z, bT ,m, µ, ζ) =
1

z2

∑

j

∫
dz′

z′
Jj/i(z′, bT , µ, ζ)Mk/j,T

( z

z′
,m, µ

)

. (7.15)

In section 7.4.2, we will use these expressions, together with the various known ingredients on

the right-hand side, to perform cross checks of our one-loop results in section 7.3 in all channels.

7.3 Partonic heavy-quark TMD fragmentation at NLO

For ease of calculation, we will perform our calculation of the bare collinear matrix element

as well as its renormalization in momentum space, i.e., as a function of z and kT , and later

compute various integral transforms of the renormalized object directly. Passing to momentum

space, the one-loop correction to the renormalized heavy-quark TMD FF in eq. (7.5) reads

d
(1)
1Q/Q(z, kT , µ, ζ) = lim

ǫ→0

{

δ(1− z)
1

π
δ(k2T )Z

(1)
UV(µ, ζ, ǫ) (7.16)

+ lim
η→0

[

d
bare (1)
1Q/Q (z, kT , ǫ, η, ζ/ν

2) + δ(1− z) 1
2S

(1)(kT , ǫ, η, ν)
]}

,

where we have used that d
(0)
1Q/Q = δ(1− z) 1

π δ(k
2
T ) at tree level. (Here and in the following we

use the same symbol for functions of bT and their Fourier transforms, as the meaning is always

clear from the argument.) Note that in our implementation of dimensional regularization in the

transverse plane, we make use of the azimuthal symmetry of the unpolarized TMD FF and take

the curly braces in eq. (7.16) to be a density in πk2T for convenience, i.e., they have an integer

mass dimension of −2, where the factor of π ensures that final results in d = 4 are properly

normalized azimuthally symmetric densities in vectorial ~kT [360,361]. With these preliminaries,

the bare collinear matrix element in momentum space is given by

dbare1Q/Q(z, kT , ǫ, η, ζ/ν
2) =

1

2z1−2ǫNc

∫
dΩ2−2ǫ

2π
k−2ǫ
T Tr

∑
∫

X

tr
[ /̄n

2

〈
0
∣
∣W †

η ψQ
∣
∣QX

〉
(7.17)

×
〈
QX

∣
∣
[
δ
(
p−/z + i∂−

)
δ(2−2ǫ)

(
kµ⊥ + i∂µ⊥

)
ψ̄QWη

]∣
∣0
〉]

.
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p−/z, k⊥

p

ℓ

(a)

p−/z, k⊥

p

ℓ

(b)

p−/z, k⊥

p− ℓ

ℓ

(c)

Figure 7.1: Diagrams contributing to the partonic heavy-quark TMD FF in Feynman gauge.

Heavy quark propagators and field insertions are indicated in red. In diagrams (a) and (c) the

gluon attaches to the Wilson lines that are part of the operators denoted by ⊗. The dashed

line indicates on-shell cuts. Mirror diagrams for (a) and (c) are understood and are included in

expressions given in the text.

Here dΩ2−2ǫ is the solid angle element for kµ⊥ in 2− 2ǫ dimensions and the δ functions involving

derivative operators on the second line act on the fields to their right, i.e., they fix the total

minus and perpendicular momentum injected into the compound operator.

Compared to a direct calculation in position space, which involves expanding Bessel-like hyper-

geometric functions in the dimensional regulator, the main challenge in the momentum-space

calculation is the careful distributional treatment of the singularity structure prior to expanding

in ǫ, which we address in section 7.3.1. Renormalized results in momentum space are presented

in section 7.3.2, which we independently verify and further simplify by moving to cumulant

space in section 7.3.3.

7.3.1 Bare real-emission diagrams and distributional expansion

The two contributing real-emission diagrams in Feynman gauge are given in figure 7.1 (a) and

(b), where X = g is a single gluon. Including the mirror diagram for (a), their contributions to

d
bare (1)
1Q/Q evaluate to

d
bare (a)
1Q/Q =

αsCF
4π

eǫγE

Γ(1− ǫ)

( µ

kT

)2ǫ(
√
ζ

ν

)−η 1

πz2−2ǫ

zη

z̄1+η
4z3

k2T z
2 +m2z̄2

, (7.18)

d
bare (b)
1Q/Q =

αsCF
4π

eǫγE

Γ(1− ǫ)

( µ

kT

)2ǫ 1

πz2−2ǫ
2z2z̄

×
[k2T z

2 +m2(1− 4z + z2)− ǫ(k2T z
2 +m2z̄2)

(k2T z
2 +m2z̄2)2

]

, (7.19)

where we defined the shorthand z̄ ≡ 1 − z and αs = αs(µ) is the renormalized MS coupling.

Note that to our working order, all results in this paper are independent of whether they are

expressed in terms of α
(nf )
s or α

(nℓ)
s . We suppress overall factors of Θ(z), Θ(z̄), or Θ(k2T ) from

the final-state on-shell conditions in the following, but stress that they are formally present in

all the distributional identities we use or derive, and also multiply all finite remainder terms.

The two seemingly simple expressions above feature an intricate interplay of singularities as

kT → 0 and/or z → 1 (z̄ → 0), which in particular arise as the quark propagator goes on shell

for k2T z
2 +m2z̄2 → 0. At this step, the singularities are regulated by powers of z̄−η, dimensional

regularization, or both. However, if we restrict to finite z < 1 and kT > 0, the limits η → 0 and

ǫ→ 0 can be taken right away and all other contributions in the renormalized one-loop formula
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including the virtual diagrams drop out in eq. (7.16), leaving behind a finite result from the sum

of (a) and (b),

z < 1 and kT > 0 : d
(1)
1Q/Q(z, kT , µ, ζ) =

αsCF
4π

2

π

k2T z
2(1 + z2) +m2z̄4

z̄(k2T z
2 +m2z̄2)2

. (7.20)

This is, exactly the differential splitting probability for QQ̄ → (Qg)Q̄ in the quasi-collinear

limit [362,363], but the field-theoretic definition of d1Q/Q provides us with explicit regulators

controlling the singular limits. It is in this sense that the heavy-quark TMD FF, after including

the virtual diagram and performing the renormalization, will provide a fully differential extension

of the splitting probability into the unresolved limit(s) that is finite in d = 4, universal, and

embedded in factorization theorems.

We employ a distributional expansion to systematically isolate divergences using plus distributions.

The contribution from diagram (a) features a 1/η pole which cancels when combined with the

η-regulated soft function

1

2
S(1)(kT , ǫ, η, ν) =

αsCF
4π

eǫγE

Γ(1− ǫ)

( µ

kT

)2ǫ 1

πk2T

[

+
4

η
+ 2 ln

ν2

k2T
+O(η)

]

. (7.21)

We can now take the η → 0 limit and referred to combined result as d
bare(a+s)
1Q/Q . The second

diagram in figure 7.1 does not need a rapdity regularization. In order to expand in the dimensional

regulator, expand our results in terms of as generalized plus distributions with two variables

cf. ref. [364] and use the HypExp 2.0 package [365] to expand in ǫ. For details of this calculation

we refer to ref. [1]. The finite terms involving the one and two-dimensional plus distributions are

lengthy and reappear in our renormalized result below, so we only quote the poles for reference:

d
bare (a+s)
1Q/Q + d

bare (b)
1Q/Q =

αsCF
4π

1

πz2

{

δ(z̄)δ(k2T )
(

−2

ǫ
ln

ζ

m2
+

2

ǫ

)

+O(ǫ0)

}

. (7.22)

7.3.2 Virtual contributions and UV renormalization

The virtual diagram (c) from figure 7.1 is common to any collinear matrix element involving

massive fermions and can be evaluated in a straightforward way using integration by contours

for the ℓ+ component of the loop momentum ℓ, Feynman parametrization for the ℓ⊥ integral,

and an analytic ℓ− integral at the end. Including the mirror diagram, the result reads

d
bare (c)
1Q/Q =

αsCF
4π

δ(1− z)
1

π
δ(k2T )

2eǫγEΓ(ǫ)

ǫ(1− 2ǫ)

µ2ǫ

m2ǫ
, (7.23)

and contributes a double 1/ǫ2 pole. So far our calculation was performed in terms of bare quark

fields, and we still have to account for eq. (7.3). We use the standard on-shell renormalization

factor for a quark field with pole mass m in dimensional regularization,

Zψ,OS ≡ 1 + Z
(1)
ψ,OS +O(α2

s) , Z
(1)
ψ,OS = − αsCF

4π

(3

ǫ
+ 3 ln

µ2

m2
+ 4
)

. (7.24)

The MS UV renormalization factor for quark TMD PDFs and FFs is likewise well known and

independent of the mass [170],

Z
(1)
UV(µ, ζ, ǫ) = −αsCF

4π

{
2

ǫ2
+

3

ǫ
− 2

ǫ
ln

ζ

µ2

}

. (7.25)
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It precisely cancels the left-over poles from the mass renormalization when inserting both into

eq. (7.16), as expected. We thus confirm by an explicit one-loop calculation that the TMD FF

for heavy quarks obeys standard TMD evolution equations, with secondary mass effects in the

Collins-Soper kernel at higher loop orders understood [205].

Taking the ǫ→ 0 limit, we obtain our final result for the O(αs) correction to the renormalized

partonic heavy-quark TMD FF:

d
(1)
1Q/Q(z, kT , µ, ζ)

=
αsCF
4π

1

πz2

{

δ(z̄)
[

2 ln
ζ

µ2
L0(k

2
T , µ

2) + 2 ln
µ2

m2
L0(k

2
T ,m

2)− ln2
µ2

m2
δ(k2T ) + 3 ln

µ2

m2
δ(k2T )

]

+
1

m2

[
2xz4(1 + z2) + 2z2z̄4

z̄(xz2 + z̄2)2

]

+,+

+ δ(k2T )

[
2(1 + z2)

z̄
ln
(

1 +
z2

z̄2

)

− 4z3

z̄(1− 2z̄z)

]

+

+ δ(z̄)
1

m2

[

−2 + 3x+ 4x2 + 3x3 + π
√
x(2 + 7x+ x2) + x(1 + 7x+ 2x2) lnx

x(1 + x)3

]

+

+ δ(z̄) δ(k2T )
(

5− π

2
− 2π2

3

)}

, (7.26)

where we use the dimensionless variable x ≡ k2T /m
2. Eq. (7.26) is the main result of this

section. The one- and two-dimensional plus distributions are defined in appendix C. Up to the

terms on the first line of the right-hand side, which are predicted by the RGE and vanish for

ζ = µ2 = m2, we have cast the heavy-quark TMD FF precisely in the form of a two-dimensional

plus distribution with nontrivial functions of z and kT living on the respective boundaries and

an overall boundary contribution at z = 1 and kT = 0. Of course, the total contribution in the

bulk at z < 1 and kT > 0, which can simply be read off from the content of the [. . . ]+,+ brackets

accounting for the prefactor of 1/z2, is still equal to the simple result we found in eq. (7.20).

7.3.3 Cumulant space and position space results

Fixed-order subtraction methods, as well as certain qT resummation formalisms like the RadISH

approach [252], require the cumulative distribution in kT integrated over transverse momenta
~kT with |~kT | ≤ kcutT as an input,

d1Q/Q(z, k
cut
T , µ, ζ) ≡ π

∫ (kcutT )2

d(k2T ) d1Q/Q(z, kT , µ, ζ) (7.27)

often simply referred to as the cumulant. As for the Fourier transform we will indicate the

cumulative distribution simply through its argument kcutT .

Our final result for the NLO correction to the renormalized heavy-quark TMD FF in cumulant

space reads

d
(1)
1Q/Q(z, k

cut
T , µ, ζ)

=
αsCF
4π

1

z2

{

δ(1− z)

[

− 4 ln
µ

kcutT

ln
ζ

m2
+ 4 ln2

µ

m
+ 6 ln

µ

m
− 4 ln2

kcutT

m
+ 4− π2

6

]

− 4
(

1− 2 ln
kcutT

m

)

L0(1− z)− 8L1(1− z) +R
[

z,
(kcutT

m

)2 ]
}

, (7.28)

where we defined

R(z, xcut) ≡
4− 4z(1− xcutz)

z̄2 + xcutz2
+ 4 ln

z̄2

xcut
+

1

z̄

[

2(1 + z2) ln
(

1 +
xcutz

2

z̄2

)

− 4z ln
xcut
z̄2

]

. (7.29)
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We note that R(z, xcut) = O(z̄0) for z → 1 and also R(z, xcut) = O(z0) for z → 0, so it is

integrable in all limits. For later reference we note its total integral,

∫ 1

0
dzR(z, xcut) = −4Li2

(

1 +
1

i
√
xcut

)

− 4Li2

(

1− 1

i
√
xcut

)

− 3x2cut + 3xcut + 2

(1 + xcut)2
lnxcut +

2xcut(xcut − π
√
xcut + 1)

(1 + xcut)2
. (7.30)

We now move on to position-space results in terms of the ~bT variable Fourier-conjugate to ~kT ,

which are the key input for producing resummed predictions from solving multiplicative bT -space

RGEs and Fourier-transforming the final result. As is standard, the two-dimensional Fourier

transform of the azimuthally symmetric renormalized TMD FF at hand is simply given by a

Fourier-Bessel (or Hankel) transform of zeroth order,

d1Q/Q(z, bT , µ, ζ) = 2π

∫ ∞

0
dkT kT J0(bTkT ) d1Q/Q(z, kT , µ, ζ) , (7.31)

where Jn is the nth-order Bessel function of the first kind. Evaluating the relevant Hankel

transforms, our result for the NLO correction to the renormalized heavy-quark TMD FF in

position space reads

d
(1)
1Q/Q(z, bT , µ, ζ) =

αsCF
4π

1

z2

{

δ(1− z)

[

− 2Lb ln
ζ

m2
+ 4 ln2

µ

m
+ 6 ln

µ

m
− L2

y + 4− π2

6

]

− 4(1 + Ly)L0(1− z)− 8L1(1− z) + R̃(z, bTm)

}

, (7.32)

where we have used the shorthands

Lb ≡ 2 ln
bTµ

2e−γE
, y ≡ bTm, Ly ≡ 2 ln

y

2e−γE
, (7.33)

and the regular term R̃(y) is again integrable for z → 0, 1 and given by

R̃(z, y) ≡ y

∫ ∞

0
dt J1(ty)R(z, t2)

=
4

z̄

[

1 + Ly + (1 + z2)K0

(yz̄

z

)

− yz̄K1

(yz̄

z

)

+ 2 ln z̄
]

. (7.34)

7.3.4 Nonvalence channels at O(αs)

For completeness we also compute the partonic TMD FFs (or TMD FF matching coefficients

onto collinear distributions) for all remaining partonic channels involving heavy quarks. The

relevant diagrams at O(αs) are given in figure 7.2, where we labeled the identified final-state

“hadron” by the momentum p. Note that for diagrams (b) and (c) compared to the otherwise

identical diagrams in figure 7.1, this also changes the definition of k⊥, as the coordinate system

needs to be adjusted such that the gluon now has vanishing transverse momentum. Results for

antiquarks are identical at this order. For the g → Q contribution, diagram (a) evaluates to

d
(1)
1Q/g(z, kT ) =

αs
4π
TF

2

πz2
k2T z

4
(
2z2 − 2z + 1

)
+m2z2

(
k2T z

2 +m2
)2 . (7.35)
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(b)

p−/z, k⊥

ℓ
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Figure 7.2: Diagrams contributing to the gluon-initiated partonic heavy-quark TMD FF and

the mass-dependent TMD FF matching coefficients at O(αs). Heavy quark propagators and

field insertions are indicated in red. The mirror diagrams for (a) and (b) are understood and are

included in expressions given in the text.

For gluon production off the heavy quark, we find after summing over diagrams (b) and (c) and

including the mirror diagram for (b),

J (1)
g/Q(z, kT ,m) =

αs
4π
CF

2

π

k2T
(
z2 − 2z + 2

)
+m2z2

z
(
k2T +m2

)2 . (7.36)

It is straightforward to verify from eq. (7.20) that at 0 < z < 1 and kT > 0 the above

expression satisfies 1/z2J (1)
g/Q(z, kT ,m) = d

(1)
1Q/Q(1− z, kT

z
1−z ), as expected from z ↔ 1− z and

the simultaneous change of coordinate system; similarly, d
(1)
1Q/g(z, kT ) = d

(1)
1Q/g(1 − z, kT

z
1−z ).

Note that the bare results in eqs. (7.35) and (7.36) are finite at z > 0 in d = 4 and without a

rapidity regulator on their own, as expected because there is no cross term with the soft function

or the UV renormalization at this order. This is in particular the case as kT → 0, where all

singularities in kT are now cut off by the mass for any value of z > 0.

The effect of the heavy quark on the gluon-onto-gluon matching coefficient at one loop can be

written as

J (1)
g/g(z, kT ,m, µ, ζ) ≡ J (1,nℓ)

g/g (z, kT , µ, ζ) + ∆J (1,h)
g/g (z, kT ,m) , (7.37)

and arises purely from its contribution to the gluon wave function renormalization; here

J (1,nℓ)
g/g (z, kT ) is the well-known NLO matching coefficient for the gluon TMD onto the collinear

gluon FF in the case where both are defined in a purely light theory with nℓ flavors, see eq. (B.19).

After MS -renormalizing the matching coefficient, the net result is

∆J (1)
g/g(z, kT ,m, µ) =

αsTF
4π

δ(1− z)
1

π
δ(k2T )

4

3
ln
m2

µ2
. (7.38)

This agrees with ref. [366], where the same contribution was recently revisited as part of

computing all secondary heavy-quark effects in the two-loop gluon TMD PDF; we refer to that

reference for a detailed discussion of how it ensures the proper TMD renormalization properties

when connecting the theories with nℓ and nℓ + 1 quark degrees of freedom.

Taking cumulant integrals, we find

d
(1)
1Q/g(z, k

cut
T ) =

αs
4π
TF

2

z2

{

(2z2 − 2z + 1) ln(xcutz
2 + 1) +

2xcut(1− z)z3

xcutz2 + 1

}

,

J (1)
g/Q(z, k

cut
T ,m) =

αs
4π
CF

2

z

{

(z2 − 2z + 2) ln(xcut + 1) +
2xcut(z − 1)

1 + xcut

}

, (7.39)
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where xcut ≡ (kcutT /m)2. Finally, taking a J1 Hankel transform of the cumulant results, we arrive

at the following bT -space results:

d
(1)
1Q/g(z, bT ) =

αs
4π
TF

4

z2

{

(2z2 − 2z + 1)K0

(bTm

z

)

+ bTm(1− z)K1

(bTm

z

)}

,

J (1)
g/Q(z, bT ,m) =

αs
4π
CF

4

z

{
(z2 − 2z + 2)K0(bTm)− bTm(1− z)K1(bTm)

}
. (7.40)

7.4 Consistency checks in the large and small-mass limits

7.4.1 Large-mass limit

To check the behavior of our final position-space results for d1Q/Q in eq. (7.32), we first note that

the result is exponentially suppressed at z < 1 for y ≡ mbT ≫ 1 as a consequence of eq. (7.8)

and the large-argument behavior of the Bessel K functions, i.e., it is given by δ(1− z) up to a

proportionality factor. To verify the prediction from the heavy-quark limit in eq. (7.11), it is

then sufficient to compare the total z integral (or any other z moment) of both sides of eq. (7.11).

The total z integral yields

∫

dz d
(1)
1Q/Q(z, bT , µ, ζ) =

αsCF
4π

{

−2Lb ln
ζ

m2
+ 4 ln2

µ

m
+ 6 ln

µ

m
+ 4− L2

y −
π2

6

− 4π

y
+ 4L0(y

2, b20) + 12δ(y2) +O
( 1

y3

)}

. (7.41)

Here we used eq. (7.30) for the total z integral of the cumulant-space remainder term R(z, kcutT /m),

which we then power expanded for small kcutT /m, letting us evaluate the total z integral of

eq. (7.34) power by power in 1/m. We point out the interesting observation that the first

subleading O(1/m) correction in eq. (7.41) is free of large logarithms Ly ≡ 2 ln y
b0

, b0 ≡ 2e−γE ,

suggesting a simple structure if factorized in terms of subleading O(1/m) TMD matrix elements

in bHQET. On the other hand, the terms at the next order require plus regularization in bT
space due to their 1/y2 scaling and do feature a single-logarithmic term L0(y

2, b20).

For completeness, we may also expand the nonvalence results in eq. (7.40) for y ≫ 1 at finite

values of 0 < z < 1 in a similar way, which simply yields

d
(1)
1Q/g(z, bT ) =

αsTF
4π

1

z2

{

8z2 δ(y2) +O
( 1

y3

)}

,

J (1)
g/Q(z, bT ,m) =

αsCF
4π

{

8z δ(y2) +O
( 1

y3

)}

, (7.42)

i.e., both channels are in fact suppressed by 1/m2 at finite z.
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7.4.2 Small-mass limit

Expanding eqs. (7.32) and (7.40) for small values of the mass, y ≡ mbT ≪ 1, we obtain:

d
(1)
1Q/Q(zH , bT , µ, ζ) =

αsCF
4π

1

z2

{

δ(1− z)

[

− 2Lb ln
ζ

m2
+ 4 ln2

µ

m
+ 6 ln

µ

m
− L2

y + 4− π2

6

]

− 4(1 + Ly)L0(1− z)− 8L1(1− z)

+ 4 + 2Ly(1 + z) +
8 ln z̄ − 4(1 + z2) ln z̄

z

z̄

+ y2
(

1

z2
− z − Ly(1 + z)2z̄

2z2
− (1 + z)2z̄ ln z̄

z

z2

)

+O(y4)

}

,

d
(1)
1Q/g(zH , bT , µ, ζ) =

αsTF
4π

{

−2Ly[2(z − 1)z + 1]− 4(z − 1)z + 4[2(z − 1)z + 1] ln z

+ y2
(

−Ly(1− 2z)2

2z2
+

3(z − 1)z + 1

z2
+

(1− 2z)2 ln z

z2

)

+O(y4)

}

,

J (1)
g/Q(zH , bT , µ, ζ) =

αsCF
4π

{

−2Ly[(z − 2)z + 2]

z
+

4(z − 1)

z

+ y2
(

−Ly(z − 2)2

2z
+ z +

3

z
− 3

)

+O(y4)

}

. (7.43)

It is straightforward to verify that the leading O(y0) terms are in full agreement with the

prediction in eq. (7.15) using the one-loop ingredients collected in our notation in Appendix B.3.

At leading power, the logarithms Ly ≡ 2 ln y
2e−γE

in all channels are predicted by the timelike

DGLAP evolution between the TMD matching coefficients at µ ∼ 1/bT and the matching kernels

and partonic collinear FFs at µ ∼ m. The O(y2) terms, which we here give explicitly, likewise

feature single logarithms Ly in all partonic channels, and can be used to investigate the O(b2T )

twist-4 matching of TMD FFs in a physics setup where the low scale matrix elements at µ ∼ m

are perturbatively calculable.

7.5 Summary

In this section, we calculated all heavy-quark transverse-momentum dependent fragmentation

functions (TMD FFs) to next-to-leading order (NLO) in the strong coupling. We provided

explicit results in transverse momentum (kT ) space – both for the differential and the cumulative

distribution – and in the conjugate position (bT ) space, retaining the exact dependence on kT /m

and bTm, respectively, with m the mass of the heavy quark. Our calculations provide the last

missing key ingredient for a complete next-to-next-to-leading logarithmic (NNLL) description of

the transverse momentum distributions of observed heavy hadrons, capturing all quark mass

effects. Our results also enable the extension of fixed-order subtraction methods to quasi-collinear

limits involving final-state heavy quarks. As an immediate application of our results is the

complete quark mass dependence of the energy-energy correlator (EEC) in the back-to-back

limit at O(αs) which we discuss in detail in ref. [1].
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Conclusion

In this thesis, we have studied the effects of heavy quarks in QCD where we largely focused

on Higgs boson prodution via quark interactions. Quark-mass effects are often neglected in

QCD calculations as they only contribute at subleading power. However, in this era of high

precision physics subleading effects become more and more important and can no longer be

ignored. Recalling the multiple shortcomings of the Standard Model and the fact that as of

today no direct evidence for New Physics beyond the Standard Model was found, the most

promising approach is to compare high-precision measurements and theoretical predictions to

look for deviations for the SM. This is particularly important for Higgs related processes as

measuring and constraining the Higgs boson’s properties is one of the key goals of the experiments

at the LHC. An important tool for the results in this thesis are effective field theories. We

used Soft-Collinear effective field theory to resum large logarithms as well as to identify the

relevant diagrammatic contributions in the effective field theory. We further used boosted Heavy

Quark effective theory to factorize perturbative and nonperturbative physics when discussing

heavy-quark transverse-momentum dependent (TMD) fragmentation functions.

Higgs boson production via quark annihilation

We studied the transverse momentum spectrum for Higgs boson production via quark annihila-

tion where we considered b, c and s quarks as initial state quarks. This process is interesting as

it provides access to the quark Yukawa couplings in Higgs production. Further, the transverse

momentum spectrum is sensitive to the quark flavor. A precise prediction for this process

therefore has the potential to constrain the quark Yukawa couplings which presents an orthog-

onal approach for measurements from the Higgs boson decaying to a quark anti-quark pair.

These measurements are rather involved and an alternative is in high demand. We have used

Soft-Collinear effective theory to resum large logarithms of qT /mH up to N3LL′ order and

matched these results to fixed-order calculations where we constructed an approximation for the

O(α3
s) contribution. In this instance, the standard procedure for matching the resummed and

fixed-order contributions led to unphysically large uncertainties and we presented a modified

matching procedure to resolve this issue. Our result provides the most precise prediction for

the transverse momentum spectrum of quark initiated Higgs production to this day. Indeed,

we could see that at N3LL′+aN3LO the uncertainties are sufficiently small to distinguish the

different quark channels. Thus, these predictions could be use to constrain the Yukawa couplings

from fitting to the shape of the spectra. However, we also noted that quark-mass effects become

important at this high order and it would be interesting to include them in the future.
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Bottom-quark effects in Higgs boson production via gluon fusion

Moreover, we studied bottom-mass effects for the Higgs transverse momentum spectrum in the

gluon fusion process for the first time. In the gluon fusion process, the dominant contribution

comes from a massive top-quark loop, with contributions from other quarks often neglected.

However, to fully exploit high-precision measurements at the LHC, it becomes essential to

account for subleading effects. In particular, the contribution from the bottom quark can no

longer be ignored. The interference between the top- and bottom-quark contributions plays a

significant role and is crucial for measuring the bottom-Yukawa coupling in Higgs production.

These mass-effects appear at next-to-leading power and, so far, have only been considered for the

form factor with just a Higgs boson in the final state. We saw that the emitted gluon introduces

an additional scale, qT , making it a three-scale problem with mb ≪ mH , where mb is the bottom

mass and mH is the Higgs mass. As a result, we had to consider different kinematic regimes

and consider a factorization formulæ for the different cases. As the bottom-mass effects only

appear at subleading power these contributions are plagued by endpoint divergences. For the qT
spectrum the cancellation of these endpoint divergence is particularly subtle as the coefficients of

these divergences could in general be nontrivial functions of the emitted gluon momentum, k, and

the b-mass. The cancellation of these divergences across different sets of diagrams indicated that

the mass and the qT dependence factorize in the factorization theorem to lowest logarithmic order

which is a highly non-trivial result. Once we have a resummed prediction for this contribution,

it can be combined with the N3LL′+aN3LO predictions for quark initiated Higgs production

and leading-power gluon fusion to fit the Yukawa coupling from the initial state.

NNLO+PS prediction for Higgs production via quark annihilation

High precision prediction are essential to fully exploit high precision measurements at the LHC.

However, an analytic expression of a kinematic distribution is often not sufficient for a comparison

to experimental data. The final states from the hard interaction hadronize and form jets before

they are detected. These additional steps are modeled by event generators where a parton

shower describes the formation of jets.

We presented first steps towards an NNLO prediction matched to a parton shower for Higgs

production via quark annihilation. To achieve this, we implemented a new combination of

resolution variables in the Geneva approach. We choose the transverse momentum qT and

1-jettiness with a transverse momentum-like measure as resolution variables to distinguish events

with zero, one or more jets. The two resolution variables are resummed to NNLL′ and NLL′

accuracy, respectively. Commonly used parton shower algorithms tend to be ordered in transverse

momentum. We, thus, expect that our choice of resolution variables will facilitate the matching

to the parton shower.

Heavy quark TMDs

From years of studying particles collisions we know that partons form color-neutral bound

states before they are detected. However, the fundamental process behind hadronization is

still to be understood. The fragmentation of heavy quarks is particularly well suited to study

the fragmentation process as they form a heavy hadron which can be identified in a zoo of

light hadrons. For light quark fragmentation, on the other hand, it is impossible to tell which
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of the final state hadrons contains the parent quark. In this thesis we studied heavy-quark

TMD fragmentation functions (FFs) for the first time. A better understanding of heavy-quark

fragmentation also paves the way for improvements in heavy flavor modeling in Monte-Carlo

generators. These are used for many key searches and Higgs coupling measurements which

involve final-state charm or bottom quarks. Heavy quark TMD FFs offer broad phenomenological

applications such as the application of TMD fragmentation functions within jets. We are looking

forward to many interesting future applications. Further, we calculated all heavy quark TMD

PDFs which enabled us to perform first phenomenological studies for existing B-factories and

the future EIC involving heavy quark TMDs.

TMD heavy-quark fragmentation at NLO

Moreover, we calculated all TMD fragmentation functions for heavy quarks to next-to-leading

order in the strong coupling. Our calculations confirm the renormalization properties as well as

large-mass and small-mass consistency relations predicted in earlier work. These results present

the last missing ingredient for a NNLL resummation of transverse momentum distributions of

heavy hadrons.

Concluding remarks

With first analysis of LHC run 3 data coming up and the high-luminosity LHC around the

corner, the era of precision measurements has only just begun. In this thesis, we covered a broad

range of topics in QCD starting from high-precision phenomenological prediction over analytic

calculations of subleading-power contributions for gluon fusion to hadronization and heavy quark

TMDs. Hopefully some of these topics will help gaining an even better understanding of the

underlying theory. We are looking forward to comparing our new predictions against upcoming

measurements.
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Appendix A

Notation and conventions

A.1 Lightcone coordinates

Lightcone coordinates can be written in terms of two lightlike vectors nµ and n̄µ with n2 = n̄2 = 0

and n · n̄ = 2. One possible choice is

nµ = (1, 0, 0, 1), n̄µ = (1, 0, 0, 1) (A.1)

Now any four-vector can be written in the lightcone basis as

pµ = p+
n̄µ

2
+ p−

nµ

2
+ pµ⊥ ≡ (p+, p−, p⊥) , (A.2)

where

p+ ≡ n · p = p0 − p3, p− ≡ n̄ · p = p0 + p3, p⊥ ≡ (0, p1, p2, 0) . (A.3)

Then the inner product of two vectors is given by

p · q = p+q−

2
+
p−q+

2
+ p⊥ · q⊥. (A.4)

The transverse vectors with subscript ⊥ are always Minkowskian, p2⊥ ≡ p⊥ · p⊥ ≤ 0, and we

denote their magnitude by pT =
√

−p2⊥ such that p2T ≥ 0. For n-collinear momenta we take the

p− component to be large such that p− ≫ p⊥ ≫ p+. The metric tensor in transverse space is

given by

gµν⊥ = gµν − nµn̄ν

2
− nν n̄µ

2
, (A.5)

and the antisymmetric tensor in transverse space is

ǫµν⊥ = ǫµνρσ
n̄ρnσ
2

, (A.6)

where we use the convention ǫ0123 = +1.
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A.2 Fourier transforms

Our convention for the Fourier conjugate of a function f(~kT ) is given by

f(~bT ) =

∫

d2~kT f(~kT )e
i~bT ·~kT . (A.7)

The inverse Fourier transform is given by

f(~kT ) =

∫
d2~bT
(2π)2

f(~bT )e
−i~bT ·~kT . (A.8)

We use the same notation for the function and its Fourier conjugate. It will always be clear

from the context and the argument whether we are referring to the function itself or its Fourier

conjugate. If the function f(~kT ) or f(~bT ) has no angular dependence and therefor only depends

on the magnitude kT ≡ |~kT | or bT ≡ |~bT |, respectively, the Fourier conjugate and its inverse

simplify to Hankel transforms

f(bT ) =2π

∫ ∞

0
dkT kTJ0(kT bT )f(kT ), (A.9)

f(kT ) =kT

∫ ∞

0
dbT J0(kT bT )f(bT ), (A.10)

where J0 is the zeroth Bessel function of the first kind.
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Appendix B

Perturbative ingredients

B.1 Anomalous dimensions

In this section, we give the anomalous dimensions needed for the N3LL′ resummation.

The µ dependence of the strong coupling is governed by the QCD β-function

µ
dαs(µ)

dµ
≡ β[αs(µ)], β

(
αs(µ)

)
= −2αs(µ)

∞∑

n=0

βn

(
αs(µ)

4π

)n+1

, (B.1)

The coefficients up to four loops in the MS scheme are [66–69]

β0 =
11

3
CA − 4

3
TF nf ,

β1 =
34

3
C2
A −

(20

3
CA + 4CF

)

TF nf , (B.2)

β2 =
2857

54
C3
A +

(

C2
F − 205

18
CFCA − 1415

54
C2
A

)

2TF nf +
(11

9
CF +

79

54
CA

)

4T 2
F n

2
f ,

β3 =
149753

6
+ 3564ζ3 −

(1078361

162
+

6508

27
ζ3

)

nf +
(50065

162
+

6472

81
ζ3

)

n2f +
1093

729
n3f ,

where for β3 we inserted the SU(3) color factors in order to keep the notation compact.

The renormalized quark mass is given by

µ
dm(µ)

dµ
= m(µ)γm(µ), γm(µ) =

∞∑

n=0

γm,n

(
αs(µ)

4π

)n+1

(B.3)

where the coefficients are known up to five loops [77–83]. We only require the coefficients up to

three loops:

γm 0 = −6CF ,

γm 1 = −2CF

(3

2
CF +

97

6
CA − 10

3
TF nf

)

,

γm 2 = −2CF

[
11413

108
C2
A − 129

4
CFCA +

129

2
C2
F + CA TF nf

(

−556

27
− 48ζ3

)

+ CF TF nf (−46 + 48ζ3)−
140

27
T 2
F n

2
f

]

. (B.4)
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The cusp anomalous dimension is expanded as

Γicusp(αs) =

∞∑

n=0

Γin

(αs
4π

)n+1
, (B.5)

where i indicates whether the process is quark (i = q) or gluon(i = q) induced. We have

Γqn = CFΓn, Γgn = CAΓn, (B.6)

with the quadratic Casimir operators of QCD. The MS coefficients are given by [90,91,216]

Γ0 = 4 ,

Γ1 = 4
[

CA

(67

9
− π2

3

)

− 20

9
TF nf

]

=
4

3

[
(4− π2)CA + 5β0

]
,

Γ2 = 4
[

C2
A

(245

6
− 134π2

27
+

11π4

45
+

22ζ3
3

)

+ CA TF nf

(

−418

27
+

40π2

27
− 56ζ3

3

)

+ CF TF nf

(

−55

3
+ 16ζ3

)

− 16

27
T 2
F n

2
f

]

. (B.7)

The expansion of the non-cusp anomalous dimension reads

γ(αs) =
∞∑

n=0

γn

(αs
4π

)n+1
. (B.8)

As we are only considering the resummation of a quark-induced process, we only give the MS

coefficients for the quark non-cusp anomalous dimension [213,367–369]

γqC, 0 = −3CF ,

γqC, 1 = −CF
[

CA

(41

9
− 26ζ3

)

+ CF

(3

2
− 2π2 + 24ζ3

)

+ β0

(65

18
+
π2

2

)]

,

γqC, 2 = −CF
[

C2
A

(66167

324
− 686π2

81
− 302π4

135
− 782ζ3

9
+

44π2ζ3
9

+ 136ζ5

)

+ CFCA

(151

4
− 205π2

9
− 247π4

135
+

844ζ3
3

+
8π2ζ3
3

+ 120ζ5

)

+ C2
F

(29

2
+ 3π2 +

8π4

5
+ 68ζ3 −

16π2ζ3
3

− 240ζ5

)

+ CAβ0

(

−10781

108
+

446π2

81
+

449π4

270
− 1166ζ3

9

)

+ β1

(2953

108
− 13π2

18
− 7π4

27
+

128ζ3
9

)

+ β20

(

−2417

324
+

5π2

6
+

2ζ3
3

)]

. (B.9)

For quark-initiated Higgs production, we need the quark non-cusp and the mass anomalous

dimension. Then the non-cusp anomalous dimension is given by [207]

γ = 2γqC − γm. (B.10)

B.2 Hard function and quark scalar-current matching coeffi-

cient

For our N3LL′+aN3LO prediction in chapter 3, we also require the hard function up to three

loops. The hard function, H(Q,µ), is given in terms of the hard Wilson coefficient C(Q,µ)

H(Q,µ) = |C(Q,µ)|2. (B.11)
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The RGE for hard Wilson coefficients is given by [207]

µ
d

dµ
C(Q,µ) =

{

Γcusp[αs(µ)] log
−Q− i0

µ2
+ γ[αs(µ)]

}

C(Q,µ). (B.12)

The perturbative expansion of the Wilson coefficient can be written as

C(Q,µ) =

∞∑

n=0

C(n)(L)

[
αs(µ)

4π

]n

. (B.13)

with

L = ln
Q− i0

µ2
, Cn = C(n)(0) . (B.14)

Then the parturbative expansion of eq. (B.12) is given by [207]

C(0) = 1 ,

C(1)(L) = −L
2

4
Γ0 −

L

2
γ0 + C1 ,

C(2)(L) =
L4

32
Γ2
0 +

L3

24
Γ0(2β0 + 3γ0) +

L2

8
(2β0γ0 + γ20 − 2C1Γ0 − 2Γ1)

− L

2
(2C1β0 + C1γ0 + γ1) + C2 ,

C(3)(L) = − L6

384
Γ3
0 −

L5

192
Γ2
0(4β0 + 3γ0) +

L4

96
Γ0

(
−4β20 − 10β0γ0 − 3γ20 + 3C1Γ0 + 6Γ1

)

+
L3

48

[

−8β20γ0 − 6β0γ
2
0 − γ30 + Γ0(16C1β0 + 6C1γ0 + 6γ1 + 4β1) + Γ1(8β0 + 6γ0)

]

+
L2

8

[

C1(8β
2
0 + 6β0γ0 + γ20 − 2Γ1) + 2β1γ0 + 4β0γ1 + 2γ0γ1 − 2C2Γ0 − 2Γ2

]

− L

2

(
4C2β0 + 2C1β1 + C2γ0 + C1γ1 + γ2

)
+ C3 , (B.15)

where the tree-level result is normalized such that C0 = 1. Here Γn are the appropriate quark

or gluon cusp anomalous dimension coefficients, γn are the non-cusp anomalous dimension

coefficients, βn are the coefficients of the QCD β-function and Cn are the non-logarithmic

constant terms.

B.2.1 Quark scalar-current matching coefficient

For our N3LL′+aN3LO prediction for quark initiated Higgs production we need the quark

scalar-current matching coefficient up to three loops. The corresponding form factor has been
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calculated to three loops [199]. The coefficients are given by [207]

Cqq̄ 1 = CF (−2 + ζ2) ,

Cqq̄ 2 = CF

[

CF

(

6 + 14ζ2 −
83

10
ζ22 − 30ζ3

)

+ CA

(

−467

81
− 103

18
ζ2 +

44

5
ζ22 +

151

9
ζ3

)

+ nf

(200

81
+

5

9
ζ2 +

2

9
ζ3

)]

,

Cqq̄ 3 = CF

[

C2
A

(

−6152

189
ζ32 +

10093

135
ζ22 +

326

3
ζ2ζ3 −

264515

1458
ζ2 −

1136

9
ζ23 +

107648

243
ζ3

+
106

9
ζ5 +

5964431

26244

)

+ CFCA

(

−12676

315
ζ32 − 893

270
ζ22 − 3049

9
ζ2ζ3 +

31819

81
ζ2 +

296

3
ζ23 − 4820

27
ζ3

− 1676

9
ζ5 −

9335

81

)

+ C2
F

(37729

630
ζ32 − 77ζ22 + 178ζ2ζ3 −

353

3
ζ2 + 16ζ23 − 654ζ3 + 424ζ5 +

575

3

)

+ CA nf

(

−476

135
ζ22 +

4

3
ζ2ζ3 +

33259ζ2
729

− 2860

27
ζ3 −

4

3
ζ5 −

521975

13122

)

+ CF nf

(

−61

27
ζ22 − 38

9
ζ2ζ3 −

6131

162
ζ2 +

11996

81
ζ3 −

416

9
ζ5 +

35875

972

)

+ n2f

(

−188

135
ζ22 − 212

81
ζ2 −

200

243
ζ3 +

2072

6561

)]

. (B.16)

B.3 Heavy and light matching coefficients

In this appendix we collect various perturbative ingredients from elsewhere in the literature in

our notation, as used for cross-checks of our results in chapter 7. The following expressions are

all accurate to one-loop order.

This section follows the appendix on perturbative ingredients from ref. [1].

B.3.1 Large-mass limit

The combined collinear and soft mass matching coefficient Cm see also ref. [3] for our notation,

is given by [293]

Cm(m,µ, ζ) = 1 +
αsCF
4π

(

4 ln2
µ

m
+ 2 ln

µ

m
+ 4 +

π2

6

)

+O
(
α2
s

)
. (B.17)

At this order, it is also equal to the matching coefficient HQ→hv
m,n (m,µ, ν/

√
ζ) (defined in ref. [293],

without the superscript) for matching massive collinear quark modes with label momentum
√
ζ

onto bHQET on their own, whereas the additional contribution
√
Hm,s(m,µ, ν) from matching

secondary soft heavy quarks onto light soft modes becomes nontrivial at O(α2
s). Two-loop

expressions for both are given in ref. [293], where they were extracted from the NNLO heavy-

quark form factor [370, 371]. At that order, there is also a nonzero ζ dependence that arises

from the rapidity renormalization of HQ→hv
m,n and Hm,s. The two-loop expression for secondary

heavy-quark effects on the light-to-light collinear matching coefficient Hq→q
m,n is given in ref. [205]

as Hc, where it was extracted from the results of refs. [293,372]. The renormalized TMD soft
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function for both the η regulator of ref. [113,118] and the exponential regulator of ref. [128] reads

√
S(bT ,m, µ, ν) = 1 +

αsCF
4π

[

−L2
b + 4Lb ln

µ

ν
− π2

6

]

. (B.18)

B.3.2 Small-mass limit

The massless TMD FF matching coefficients are given by [147,303,373]

Jq/q(z, bT , µ, ζ) = δ(1− z) +
αsCF
4π

[
4(1 + z2) ln(z)

1− z
− 4LbL0(1− z)

+ δ(1− z)
(

−L2
b − 2Lb ln

ζ

µ2
− π2

6

)

+ 2Lb(z + 1) + 2(1− z)

]

,

Jg/q(z, bT , µ, ζ) =
αsCF
4π

[
4(z2 − 2z + 2) ln z

z
− 2Lb(z

2 − 2z + 2)

z
+ 2z

]

,

Jg/g(z, bT , µ, ζ) = δ(1− z) +
αsCA
4π

[

δ(1− z)
(

−L2
b − 2Lb ln

ζ

µ2
− π2

6

)

− 4LbL0(1− z)

+
8(z2 − z + 1)2 ln z

(1− z)z
+

4Lb(z
3 − z2 + 2z − 1)

z

]

Jq/g(z, bT , µ, ζ) =
αsTF
4π

[
2(4z2 − 4z + 2) ln z − 2Lb(2z

2 − 2z + 1) + 4(1− z)z
]
. (B.19)

The collinear heavy-quark FFs dQ/Q(z, µ) and dQ/g(z, µ) are given by [358]

dQ/Q(z, µ) = δ(1− z) +
αs
4π
CF

{

ln
µ2

m2

[
4L0(1− z) + 3δ(1− z)− 2(z + 1)

]

− 4L0(1− z)− 8L1(1− z) + 4δ(1− z) + 2(z + 1)
[
2 ln(1− z) + 1

]}

,

dQ/g(z, µ) =
αs
4π
TF
[
2z2 + 2(1− z)2

]
ln
µ2

m2
, . (B.20)

The decoupling kernels relating collinear FFs in theories with nf = nℓ + 1 and nℓ active flavors

are given by [359]

Mg/g(z, µ) = δ(1− z) +
αsTF
4π

δ(1− z)
(

−4

3

)

ln
µ2

m2

Mg/Q(z, µ) =
αs
4π
CF

1 + (1− z)2

z

(

2 ln
µ2

m2
− 2− 4 ln z

)

. (B.21)

In both eqs. (B.20) and (B.21) we have rewritten the original results in terms of the minimal

distributional basis of δ(1− z) and Ln(1− z).

163



Appendix B – Perturbative ingredients

164



Appendix C

Plus distributions

This appendix follows the appendix on plus distributions from ref. [1].

Plus distributions in a variable x formally arise in perturbative calculations as

f(x, ǫ) =
[
f(x, ǫ)

]

+
+ δ(x)F (ǫ) , F (ǫ) =

∫ 1

0
dx′ f(x′, ǫ) , (C.1)

where f(x, ǫ) ∼ x−1−ǫ +O(x0) has a dimensionally regulated singular limit x→ 0 on the first

left-hand side. By contrast, on the right-hand side f(x, ǫ) can be expanded in ǫ since each term

in the expansion is now regulated by dimensional regularization, whereas the explicit poles are

isolated in the total integral F (ǫ). The one-dimensional plus distribution is defined through

their action on test functions g(x),

∫

dx
[
f(x)

]

+
g(x) ≡

∫

dx f(x)
[
g(x)− g(0)Θ(1− x)

]
, (C.2)

where f(x) diverges at most as x−1−α with α < 1 for x → 1 and we assume that g(x) is

differentiable as x→ 0. The integral of [f(x)]+ against the constant test function over the [0, 1]

vanishes by construction. The generalization of eq. (C.2) to two dimensions is given by

f(x, z, ǫ) =
[
f(x, z, ǫ)

]

+,+
+ δ(x)

[
Fx(z, ǫ)

]

+
+ δ(z̄)

[
Fz(x, ǫ)

]

+
+ δ(x) δ(z̄)Fxz(ǫ) , (C.3)

where

Fx(z, ǫ) ≡
∫ 1

0
dz′ f(x, z′, ǫ) , Fz(x, ǫ) ≡

∫ 1

0
dx′ f(x′, z, ǫ) ,

Fxz(ǫ) ≡
∫ 1

0
dx

∫ 1

0
dz′ f(x, z′, ǫ) (C.4)

and the two-dimensional plus bracket [. . . ]+,+ is defined through its action on test functions

g(x, z) as

∫ 1

0
dx

∫ 1

0
dz
[
f(x, z, ǫ)

]

+,+
g(x, z)

≡
∫ 1

0
dx

∫ 1

0
dz f(x, z, ǫ)

[
g(x, z)− g(0, z)− g(x, 0) + g(0, 0)

]
. (C.5)
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For logarithmic plus distributions with homogeneous power counting ∼ 1/x and their analogs

for dimensionful variables, we further define the shorthands

Ln(x) ≡
[Θ(x) lnn x

x

]

+
, Ln(k, µ) ≡

1

µ
Ln
(k

µ

)

, Ln(k2T , µ2) ≡
1

µ2
Ln
(k2T
µ2

)

. (C.6)

The definition in eq. (C.2) enables expansions in a regulator α ∼ ǫ, η as follows,

Θ(x)

x1+α
= −δ(x)

α
+
[Θ(x)

x1+α

]

+
= −δ(x)

α
+ L0(x)− αL1(x) +O(α2) , (C.7)

Θ(x) lnx

x1+α
= −δ(x)

α2
+
[Θ(x) lnx

x1+α

]

+
= −δ(x)

α2
+ L1(x) +O(α) . (C.8)

To relate plus distributions Ln(k, µ) with different boundary conditions µ1,2, it is useful to shift

one of the boundary conditions by making use of identities like

L0(k, µ2) = L0(k, µ1) + δ(k) ln
µ1
µ2

,

L1(k, µ2) = L1(k, µ1) + L0(k, µ1) ln
µ1
µ2

+ δ(k)
1

2
ln2

µ1
µ2

. (C.9)
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Appendix E

Feynman rules

In this appendix, we give all Feynman rule that were used for our calculations in chapter 5. For

the derivation of these Feyman rules, we wrote down the full QCD diagram and expanded the

momenta in the appropriate soft or ni-collinear limit.

Springs with lines denote collinear gluon, regular springs soft gluons, dashed fermion lines

collinear quarks and regular fermion lines soft quarks. We again used our color coding from

chapter 5 where n-collinear gluons are shown in green and n̄-collinear gluons are shown in

magenta. Then the collinear Feynman rules are give by

n̄, b, ν

n

n

qk2

k1

p

=gT b
( 1

k−1
− 1

k−2

) /̄n

2
γν⊥δ(ω1 − k−1 )δ(ω2 + k−2 )δ(p

+ − q+)

=− gT bCbbg(ξ)
/̄n

2
γν⊥δ(ωn − k−2 + k−1 )δ(ξω − k−2 )δ(p

+ − q+), (E.1)

n̄, b, ν

n

n

n, c, ρ

q

k2

k1

p

k
=g2Cbbg(ξ)

n̄ρ

ωn

/̄n

2
γν⊥ − δ(p+ − q+)

×
[

T bT cδ(ωn − k−2 + k−1 + k−)δ(ξω − k−2 + k−)

− T cT bδ(ωn − k−2 + k−1 + k−)δ(ξω − k−2 )
]

, (E.2)

For eq. (E.2), we also checked that the derivation from the full QCD diagram and using

collinear gauge invariance in SCET yield the same result. For the n̄-collinear contribution, the

leading-order Feynman rule is obtained from symmetry: interchanging (n→ n̄) switches n- and
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n̄-collinear modes.

n, b, ν

n̄

n̄

qk2

k1

p

=gT b
( 1

k+1
− 1

k+2

) /n

2
γν⊥δ(ω1 − k+1 )δ(ω2 + k+2 )δ(p

− − q−)

=− gT bCbbg(ξ)
/n

2
γν⊥δ(ωn − k+2 + k+1 )δ(ξω − k+2 )δ(p

− − q−), (E.3)

n, b, ν

n̄

n̄

n, c, ρ

q

k2

k1

p

k
=− igT dfdcb

n̄ρ

k−
Cbbg(ξ)

/n

2
γν⊥δ(p

− − q−)δ(ωn − k+2 + k+1 )δ(ξω − k+2 ).

(E.4)

The soft Feynman rules are given by

s

s
n̄, b, ν

n, a, µ

k1

k2

p2

p1

= g2
(T aT b

k+2 k
−
1

+
T aT b

k−2 k
+
1

)

γν⊥
/n/̄n

4
γµ⊥, (E.5)

s

s
n̄, b, ν

n, a, µ

k1

k1
n, c, ρ

p2

p1

k
=− ig3

2

fabc

k+1 k
−
1

n̄ρ

k−
γν⊥

/n/̄n

4
γµ⊥. (E.6)
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Appendix F

Calculational details

In this appendix, we give some details of the calculations carried out in chapter 5.

F.1 Leading-order soft contribution

We start with calculational details on the leading-order soft calculation carried out in section 5.2.2.

In the first step, we want to solve the ℓ0 integral by contours.

Ms =

∫
dℓ0dℓzd

2−2ǫℓ⊥
(2π)d

−ig2µ2ǫδabgµν⊥
(ℓ0 − ℓz + i0)(ℓ0 + ℓz − i0)

1

ℓ2⊥ + ℓ20 − ℓ2z −m2 + i0

=

∫
dℓ0dℓzd

2−2ǫℓ⊥
(2π)d

−ig2µ2ǫδabgµν⊥
(ℓ0 − ℓz + i0)(ℓ0 + ℓz − i0)

× 1

(ℓ0 +
√
ℓ2z − ℓ2⊥ +m2 − i0)(ℓ0 −

√
ℓ2z − ℓ2⊥ +m2 − i0)

, (F.1)

where we can read off the poles in the complex ℓ0-plane:

ℓ1,20 = ±ℓz ∓ i0, ℓ3,40 = ±
√

ℓ2z − ℓ2⊥ +m2 − i0, (F.2)

To make the imaginary part more explicit, we expand the ℓ3,40

ℓ3,40 = ±
√

ℓ2z − ℓ2⊥ +m2 ∓ i0√
ℓ2z − ℓ2⊥ +m2

(F.3)

where ℓ2z > or < ℓ2⊥ −m2 determines the location of the pole in the complex ℓ0 plane. The

resulting poles are shown in figure F.1. Using the theorem of residues for the different sets of

poles, we find

M>
s =g2µ2ǫδabgµν⊥

∫ ∞
√

ℓ2⊥−m2

dℓz
2π

∫
d2−2ǫℓ⊥
(2π)2−2ǫ

1

ℓ2⊥ −m2



− 1

ℓz
+

1
√

ℓ2z − ℓ2⊥ +m2



 ,

M<
s =g2µ2ǫδabgµν⊥

∫
√

ℓ2⊥−m2

−∞

dℓz
2π

∫
d2−2ǫℓ⊥
(2π)2−2ǫ

1

ℓ2⊥ −m2



− 1

ℓz
− 1
√

ℓ2z − ℓ2⊥ +m2



 , (F.4)

where M>
s is valid for ℓ2z > ℓ2⊥ −m2 and M<

s for ℓ2z < ℓ2⊥ −m2. In the next step, we want to

solve the ℓz integral which needs to be regulated. The 1/ℓz terms will combine to a scaleless
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ℓ2z > ℓ2⊥ −m2

Re(ℓ+)

Im(ℓ+)

× ×

××

ℓ0 = lz − i0

ℓ0 = −lz + i0

ℓ0 =
√

ℓ2z − ℓ2⊥ +m2 − i0√
...

ℓ0 = −
√

ℓ2z − ℓ2⊥ +m2 + i0√
...

ℓ2z < ℓ2⊥ −m2

Re(ℓ+)

Im(ℓ+)

×

×

×

×

Figure F.1: Pole analysis for the soft LO0 integral. The poles for ℓ2z > ℓ2⊥ −m2 are shown on

the left hand side. Here the square root is positive and the imaginary part of ℓ3,4 is given by

the i0. The right hand side shows the poles for ℓz < ℓ2⊥ −m2. In this case the square root is

imaginary and the poles change.

integral and can be dropped. For the second term we use the following substitution

coshx =
ℓz

ℓ2⊥ −m2
, dℓz = sinhx

√

ℓ2⊥ −m2 dx. (F.5)

Then,

M>
s =g2µ2ǫδabgµν⊥

∫
d2−2ǫℓ⊥
(2π)2−2ǫ

∫ ∞
√

ℓ2⊥−m2

dℓz
2π

1

ℓ2⊥ −m2

∣
∣
∣
∣

2ℓz
ν

∣
∣
∣
∣

−η 1
√

ℓ2z − ℓ2⊥ +m2

=g2µ2ǫδabgµν⊥

∫
d2−2ǫℓ⊥
(2π)2−2ǫ

∫ ∞

0

dx

2π

1

ℓ2⊥ −m2

∣
∣
∣
∣
∣

2
√

ℓ⊥ −m2

ν

∣
∣
∣
∣
∣

−η

cosh−η x

=
g2

2π
µ2ǫδabgµν⊥

|ν|η
η

2F1

(η

2
, η;

η + 2

2
;−1

)
∫

d2−2ǫℓ⊥
(2π)2−2ǫ

1

(ℓ2⊥ −m2)1+
η
2

. (F.6)

The M<
s contribution yields the same result. The ℓ⊥-integral can be evaluated using standard

fromulæ, yielding the final result in the MS scheme

Ms =− iηg2

4π2
δabgµν⊥ eǫγEµ2ǫm1−2ǫ−η |ν|η

η
2F1

(η

2
, η;

η + 2

2
;−1

)Γ(ǫ+ η
2 )

Γ(η2 + 1)
. (F.7)

F.2 Leading-order hard contribution

For the massless triangle in section 5.2.3 we used

C0 =

∫
ddℓ

(2π)2
1

(ℓ2 + i0)[(ℓ+ p2)2 + i0][(ℓ− p1)2 + i0]

= i(4π)ǫ−2Γ(1− ǫ)Γ(−ǫ)Γ(1 + ǫ)

ǫΓ(1− 2ǫ)
(−2p1 · p2 − i0)−1−ǫ, (F.8)

C2 =

∫
ddℓ

(2π)2
ℓ2

(ℓ2 + i0)[(ℓ+ p2)2 + i0][(ℓ− p1)2 + i0]

= −i42ǫ−3πǫ−
3
2

Γ(1− ǫ)

(ǫ− 1)Γ(32 − ǫ)
(−2p1 · p2 − i0)−ǫ

[
(2− ǫ)Γ(ǫ) + Γ(1 + ǫ)

]
, (F.9)
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and rewrote

ℓµℓν =
1

d
ℓ2gµν . (F.10)

The results for C0 and C2 agree with the literature.

F.3 NLO loop emission diagrams

In this section, we give some caculational details for the loop emission diagrams d1LE and d2LE
which were discussed in section 5.4.3. For this class of diagrams, the ℓ⊥ integral is much more

involved: First, these contribution include three propagators and we have to use Feynman

parameters in order to combine them. Second, the Lorentz structure is more complicated as

for the previous diagrams and features terms with ℓ⊥ in the numerator. The structure of the

integrals is given by

M0,±
dLE

∼
∫

d2ℓ⊥
(#ℓρ⊥ + ...ρ)gµν⊥ + gνρ⊥ (#ℓµ⊥ + ..µ) + ...

(ℓ2⊥ − 2ξk⊥ · ℓ⊥ −m2)(ℓ2⊥ −m2)
+

#ℓ2⊥n̄
ρgµν⊥

(ℓ2⊥ − 2ξk⊥ · ℓ⊥ −m2)(ℓ2⊥ −m2)

=M0,±
ǫ0,dLE

+M0,±
1
ǫ
,dLE

, (F.11)

where the superscripts indicate the regions for R. The first term in the sum is ǫ finite whereas

the the second term exhibits a 1/eps pole. We therefore split the integral in these contributions

and treat them separately. Further, the ǫ finite integral contains terms ∼ ℓµ and ∼ ℓρ.

We begin with combining the two denominators by introducing a Feynman parameter x. In the

next step, we can complete the square and shift ℓ⊥ → ℓ′⊥. At this point, we can drop all terms

proportional to ℓ′µ⊥ and ℓ′ρ⊥ as these integrals with an odd power of ℓ⊥ in the numerator vanish.

Next, we use standard formulæto evaluate the ℓ′⊥ integrals.

The Feynman parameter integrals can be done analytically but their results become tedious to

work with in the following steps. We therefore complete the square in the Feynman parameter

and shift it which leads to a much simpler result

Iǫ+1 ∼
∫ 1

0
dx

(
1

a1x2 + b1x+ c1

)ǫ+1

(d1x
2 + e1x+ f1)

=

∫ 1+ b
2a

b
2a

dy

(
1

a′1y
2 + c′1

)ǫ+1

(d′1y
2 + e′1y + f ′1), (F.12)

Iǫ ∼
∫ 1

0
dx

(
1

a2x2 + b2x+ c2

)ǫ

f2 =

∫ 1+ b
2a

b
2a

dy

(
1

a′2y
2 + c′2

)ǫ

f2. (F.13)

These integrals can easily be evaluated in Mathematica. Now the the only remaining integral is

the ξ integral. We will use eq. (5.50) to evaluate the integral in the central region R0. For the

R± regions only one of the limits is divergent and needs to be regulated. Since M0,±
ǫ0,dLE

and

M0,±
1
ǫ
,dLE

have a different pole structure, we will treat them separately.

1
ǫη contribution

The finite parts of fdLE ,
1
ǫ
(ξ) in eq. (5.50) are too complicated to evaluate them analytically.

Even evaluating the η finite piece in ǫ is not sufficient to solve the integrals. The integral over the

O
(
1/ǫ
)

term vanishes and the only missing piece is a ǫ and η finite contribution. In this thesis,
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our main focus is on the cancellation of endpoint divergences. We will therefore concentrate on

the divergent contributions and indicate the presence of these finite terms in our expression by

“+ finite”.

For the endpoint-divergent piece we find

M0
1
ǫ
d1LE

=− (ifabc − dabc)g3

25−2ǫπ2
gµν⊥ n̄ρ

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η zm(ǫ− 1)

ωn(1− z)

Γ(ǫ)

η
eǫγE

( µ2

m2

)ǫ( −m2

k2⊥ − 4m2

)ǫ

× 2F1

(1

2
, ǫ,

3

2
,

k2⊥
k2⊥ − 4m2

)

+ finite, (F.14)

M0
1
ǫ
d2LE

=− (ifabc + dabc)g3

25−2ǫπ2
gµν⊥ n̄ρ

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η zm(ǫ− 1)

ωn(1− z)

Γ(ǫ)

η
eǫγE

( µ2

m2

)ǫ( −m2

k2⊥ − 4m2

)ǫ

× 2F1

(1

2
, ǫ,

3

2
,

k2⊥
k2⊥ − 4m2

)

+ finite, (F.15)

M+
1
ǫ
d1LE

=
(ifabc − dabc)g3

32π2
gµν⊥ n̄ρ

zm(ǫ− 1)

ωn(1− z)

Γ(ǫ)

η
eǫγE

( µ2

m2

)ǫ

×
[

4ǫ
( −m2

k2⊥ − 4m2

)ǫ

2F1

(1

2
, ǫ,

3

2
,

k2⊥
k2⊥ − 4m2

)(1

z
− 1
)−η

− η log z

]

+ finite, (F.16)

M−
1
ǫ
d2LE

=
(ifabc + dabc)g3

32π2
gµν⊥ n̄ρ

zm(ǫ− 1)

ωn(1− z)

Γ(ǫ)

η
eǫγE

( µ2

m2

)ǫ

×
[

4ǫ
( −m2

k2⊥ − 4m2

)ǫ

2F1

(1

2
, ǫ,

3

2
,

k2⊥
k2⊥ − 4m2

)(1

z
− 1
)−η

− η log z

]

+ finite. (F.17)

Combining these contributions we find that all endpoint divergences cancel in the 1/ǫ contribution

M 1
ǫ
dLE

= M0
1
ǫ
d1LE

+M+
1
ǫ
d1LE

+M0
1
ǫ
d2LE

+M−
1
ǫ
d2LE

= O(η0). (F.18)

ǫ0

η contribution

For the ǫ finite contribution, we have a similar issue as before: the η finite terms are too

complicated even after expanding them in ǫ. We could not find a closed form for these terms

denote them by “+ finite” as before. The final expressions are given by

M0
ǫ0d1LE

=− (ifabc − dabc)g3

25−4ǫπ2−ǫ

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η m

ωn(1− z)

Γ(ǫ+ 1)

η

( 1

m2

)ǫ+1( −m2

k2⊥ − 4m2

)ǫ+1

×
{

zk2⊥
3

2F1

(1

2
, ǫ+ 1,

5

2
,

k2⊥
k2⊥ − 4m2

)

gµν⊥ n̄ρ + 2F1

(1

2
, ǫ+ 1,

3

2
,

k2⊥
k2⊥ − 4m2

)

×
[

4z(z − 1)kµ⊥(ωng
νρ
⊥ + kν⊥n̄

ρ)− 4ωn(z − 1)kν⊥g
µρ
⊥ + z(k2⊥ − 4m2)gµν⊥ n̄ρ

]
}

,

+ finite, (F.19)

M0
ǫ0d2LE

=− (ifabc + dabc)g3

25−4ǫπ2−ǫ

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η m

ωn(1− z)

Γ(ǫ+ 1)

η

( 1

m2

)ǫ+1( −m2

k2⊥ − 4m2

)ǫ+1
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×
{

zk2⊥
3

2F1

(1

2
, ǫ+ 1,

5

2
,

k2⊥
k2⊥ − 4m2

)

gµν⊥ n̄ρ + 2F1

(1

2
, ǫ+ 1,

3

2
,

k2⊥
k2⊥ − 4m2

)

×
[

4z(z − 1)kµ⊥(ωng
νρ
⊥ + kν⊥n̄

ρ)− 4ωn(z − 1)kν⊥g
µρ
⊥ + z(k2⊥ − 4m2)gµν⊥ n̄ρ

]
}

+ finite, (F.20)

M+
ǫ0d1LE

=
(ifabc − dabc)g3

25−2ǫπ2−ǫ
m

ωn(1− z)

Γ(ǫ+ 1)

η

( 1

m2

)ǫ+1( −m2

k2⊥ − 4m2

)ǫ+1

×
{

zk2⊥
3

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η (1

z
− 1
)−η

2F1

(1

2
, ǫ+ 1,

5

2
,

k2⊥
k2⊥ − 4m2

)

gµν⊥ n̄ρ

+ 4ǫηm2z log zgµν⊥ n̄ρ +

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η (1

z
− 1
)−η

2F1

(1

2
, ǫ+ 1,

3

2
,

k2⊥
k2⊥ − 4m2

)

×
[

4z(z − 1)kµ⊥(ωng
νρ
⊥ + kν⊥n̄

ρ)− 4ωn(z − 1)kν⊥g
µρ
⊥ + z(k2⊥ − 4m2)gµν⊥ n̄ρ

]
}

+ finite, (F.21)

M−
ǫ0d2LE

=
(ifabc + dabc)g3

25−2ǫπ2−ǫ
m

ωn(1− z)

Γ(ǫ+ 1)

η

( 1

m2

)ǫ+1( −m2

k2⊥ − 4m2

)ǫ+1

×
{

zk2⊥
3

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η (1

z
− 1
)−η

2F1

(1

2
, ǫ+ 1,

5

2
,

k2⊥
k2⊥ − 4m2

)

gµν⊥ n̄ρ

+ 4ǫηm2z log zgµν⊥ n̄ρ +

∣
∣
∣
∣

ν

ωn

∣
∣
∣
∣

η (1

z
− 1
)−η

2F1

(1

2
, ǫ+ 1,

3

2
,

k2⊥
k2⊥ − 4m2

)

×
[

4z(z − 1)kµ⊥(ωng
νρ
⊥ + kν⊥n̄

ρ)− 4ωn(z − 1)kν⊥g
µρ
⊥ + z(k2⊥ − 4m2)gµν⊥ n̄ρ

]
}

+ finite. (F.22)

Combining these results we find that the diagram class dLE is free of endpoint divergences

Mǫ0dLE
= M0

ǫ0d1LE
+M+

ǫ0d1LE
+M0

ǫ0d2LE
+M−

ǫ0d2LE
= Mǫ0d1LE

+Mǫ0d2LE
= O(η0). (F.23)
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